R1b-L23-rich Bell Beaker-derived Italic peoples from the West vs. Etruscans from the East

final-bronze-age-italy

New paper (behind paywall) Ancient Rome: A genetic crossroads of Europe and the Mediterranean, by Antonio et al. Science (2019).

The paper offers a lot of interesting data concerning the Roman Empire and more recent periods, but I will focus on Italic and Etruscan origins.

NOTE. I have updated prehistoric maps with Y-DNA and mtDNA data, and also the PCA of ancient Eurasian samples by period including the recently published samples, now with added sample names to find them easily by searching the PDFs.

Apennine homeland problem

The traditional question of Italic vs. Etruscan origins from a cultural-historical view* lies in the opposition of the traditional way of life during the Bronze Age as opposed to increasingly foreign influences in the Final Bronze Age, which eventually brought about a proto-urban period in the Apennine Peninsula.

* From a modern archaeological perspective, as well as from the (unrelated) nativist view, “continuity” of ancient cultures, languages, and peoples is generally assumed, so this question is a no-brainer. Seeing how population genomics has essentially supported the cultural-historical view, dismissing the concepts of unscathed genomic or linguistic continuity, we have to assume that different cultures potentially represent different languages, and that genetic shift coupled with radical cultural changes show a strong support for linguistic change, although the later Imperial Roman period is an example of how this is not necessarily the case.

bronze-age-polada-proto-apennine
Early Bronze Age cultures ca. 2200 – 1750 BC. See full maps.

A little background to the Italic vs. Etruscan homeland problem, from Forsythe (2006) (emphasis mine):

While the material culture of the Po Valley developed in response to influences from central Europe and the Aegean, peninsular Italy during the late Bronze Age lagged somewhat behind for the most part. Inhumation continued to be the funerary practice of this region. Although agriculture doubtless remained the mainstay of human subsistence, other evidence (the occupation of mountainous sites not conducive to farming, the remains of cattle, sheep, pigs, and goats, and ceramic vessels used for boiling milk and making cheese) indicates that pastoralism was also very widespread. This suggests that transhumance was already a well-established pattern of human existence. In fact, since the material culture of central and southern Italy was relatively uniform at this time, it has been conjectured that this so-called Apennine Culture of c. 1600–1100 B.C. owed its uniformity in part to the migratory pattern characteristic of ancient Italian stockbreeding.

During the first quarter of the twelfth century B.C. the Bronze-Age civilizations of the eastern Mediterranean came to an abrupt end. The royal palaces of Pylos, Tiryns, and Mycenae in mainland Greece were destroyed by violence, and the Hittite kingdom that had ruled over Asia Minor was likewise swept away. The causes and reasons for this major catastrophe have long been debated without much scholarly consensus (see Drews 1993, 33–96). Apart from the archaeological evidence indicating the violent destruction of many sites, the only ancient accounts relating to this phenomenon come from Egypt. The most important one is a text inscribed on the temple of Medinet Habu at Thebes, which accompanies carved scenes portraying the pharaoh’s military victory over a coalition of peoples who had attempted to enter the Nile Delta by land and sea.

sea-peoples-egypt-rameses-iii

Iron metallurgy did not reach Italy until the ninth century B.C., and even then it was two or more centuries before iron displaced bronze as the most commonly used metal. Thus, archaeologists date the beginning of the Iron Age in Italy to c. 900 B.C.; and although the Italian Bronze Age is generally assigned to the period c. 1800–1100 B.C. and is subdivided into early, middle, and late phases, the 200-year interval between the late Bronze Age and early Iron Age has been labeled the Final Bronze Age.

During this period the practice of cremation spread south of the Po Valley and is attested at numerous sites throughout the peninsula. Since this cultural tradition developed into the Villanovan Culture which prevailed in Etruria and much of the Po Valley c. 900–700 B.C., modern archaeologists have devised the term “Proto-Villanovan” to describe the cremating cultures of the Italian Final Bronze Age.

The fact that some of the earliest urnfield sites of peninsular Italy are located on the coast (e.g. Pianello in Romagna and Timmari in Apulia) is interpreted by some archaeologists as an indication that cremating people had come into Italy by sea, and that their migration was part of the larger upheaval which affected the eastern Mediterranean at the end of the Bronze Age (so Hencken 1968, 78–90). On the other hand, the same data can be explained in terms of indigenous coastal settlements adopting new cultural traits as the result of commercial interaction with foreigners. In any case, by the end of the Final Bronze Age inhumation had reemerged as the dominant funerary custom of southern Italy, but cremation continued to be an integral aspect of the Villanovan Culture of northern and much of central Italy.

etruscan-world
Diffusion of the Villanovan culture (after M. Torelli, ed., Gli Etruschi, Milan, 2000, p. 45). Modified from The Etruscan World (2013), by Turfa.

There is a myriad of linguistic reasons why eastern foreign influences can be attributed to Indo-European (mainly Anatolian, including a hypothetic influence on Latino-Faliscan) or Tyrsenian – as well as many other less credible models – and there is ground in archaeology to support any of the linguistic models proposed, given the long-lasting complex interactions of Italy with other Mediterranean cultures.

NOTE. The lack of theoretical schemes including integral archaeological-linguistic cultural-historical models due to the radical reaction against the excesses of the early 20th century have paradoxically allowed anyone (from archaeologists or linguists to laymen) to posit infinite population movements often based on the simplest similarities in vase decoration, burial practices, or shared vocabulary.

However, recent studies in population genomics have simplified the picture of Bronze Age population movements, identifying radical changes related to population replacements as opposed to more subtle admixture events. As of today, (France Bell Beaker-like) Urnfield stands as the most likely vector of Celtic languages; NW Iberian Bell Beakers as the vector of Galaico-Lusitanian; NW Mediterranean Beakers as the most likely ancestors of Elymian; the Danish Late Neolithic as representative of expanding Proto-Germanic; or Central-East Bell Beakers of Proto-Balto-Slavic.

With this in mind, the most logical conclusion is to assume that Alpine Bell Beakers (close to the sampled Italian Beakers from Parma or from southern Germany) spread Italo-Venetic languages, which is deemed to have split in the early to mid-2nd millennium BC, with dialects found widespread from the Alps to Sicily by the early 1st millennium BC.

Therefore, the two main remaining models of Italian linguistic prehistory – with the information that we already had – were as follows, concerning Tyrsenian (the ancestor of Etruscan and Rhaetian):

  1. It is a remnant language of the Italian (or surrounding) Chalcolithic, which survived in some pockets isolated from the Bell Beaker influence;
  2. It was a foreign language that arrived and expanded at the same time as the turmoil that saw the emergence of the Sea Peoples.

NOTE. Read more on Italo-Venetic evolution and on the likely distribution of Old European and Tyrsenian in the Bronze Age.

Italic-venetic-etruscan-languages-map
Languages of pre-Roman Italy and nearby islands. Italo-Venetic languages surrounded with shadowed red border. I1, South Picene; I2, Umbrian; I3, Sabine; I4, Faliscan; I5, Latin; I6, Volscian and Hernican; I7, Central Italic (Marsian, Aequian, Paeligni, Marrucinian, Vestinian); I8, Oscan, Sidicini, Pre-Samnite; I9, Sicel; IE1, Venetic; IE2, North Picene; IE3, Ligurian; IE4, Elymian; IE5, Messapian; C1, Lepontic; C2, Gaulish; G1-G2-G3, Greek dialects (G1: Ionic, G2: Aeolic, G3: Doric); P1, Punic; N1, Rhaetian; N2, Etruscan; N3, Nuragic. Image modified from Davius Sanctex.

Proto-Villanovan

A Proto-Villanovan female from Martinsicuro in the Abruzzo coast (ca. 890 BC), of mtDNA hg. U5a2b, is the earliest mainland sample available showing foreign (i.e. not exclusively Anatolia_N ± WHG) ancestry:

Martinsicuro is a coastal site located on the border of Le Marche and Abruzzo on central Italy’s Adriatic coast. It is a proto-Villanovan village, situated on a hill above the Tronto river, dating to the late Bronze Age and Early Iron Age (…) finds from the site indicate an affinity with contemporaries in the Balkans, suggesting direct trade contacts and interaction across the Adriatic. In particular, the practice of decorating ceramics with bronze elements was shared between the Nin region in Croatia and Picene region of Italy, including Martinsicuro.

NOTE. These are just some of the models I have tried, most of them unsuccessfully. The standard errors that I get are too high, but I am not much interested in this sample that seems (based on its position in the PCA and the available qpAdm results) mostly unrelated to Italic and Etruscan ethnogenesis.

The sample clusters close to the Early Iron Age sample from Jazinka (ca. 780 BC), from the central Dalmatian onomastic region, on the east Adriatic coast opposite to Abruzzo, possibly related to the south-east Dalmatian (or Illyrian proper) onomastic region to the south. However, there is no clear boundary between hydrotoponymic regions for the Bronze Age, and it is quite close to the (possibly Venetic-related) Liburnian onomastic region to the north, so the accounts of Martinsicuro belonging to the Liburni in proto-historical times can probably be extrapolated to the Final Bronze Age.

NOTE. Based on feminine endings in -ona in the few available anthroponyms, Liburnian may have shared similarities with personal names of the Noricum province, which doesn’t seem to be related to the more recent (Celtic- or Germanic-related?) Noric language. On the other hand, anthroponyms are known to show the most recent hydrotoponymic layer of a region, so these personal names might be unrelated to the ancestral language behind place and river names.

dalmatian-toponymic-liburnian
Toponyms ending in -ona (after S. Čače 2007).

Villanovan

A Villanovan sample from the powerful Etruscan city-state of Veio in the Tyrrhenian coast (ca. 850 BC), to the north of Rome, shows a cluster similar to later Etruscans and some Latins. Veio features prominently in the emergence of the Etruscan society. From The Etruscan World (2013) by Turfa:

In the final phase of the Bronze Age (mid-twelfth to tenth century bc) the disposition of settlements appears to be better distributed, although they are no longer connected to the paths of the tratturi (drove roads for transhumance of flocks and herds) as they had been during the Middle Bronze Age. As evidence of the intensive exploitation of land and continuous population growth there are now known in Etruria at least 70 confirmed settlements, and several more sites with indications of at least temporary occupation. The typical town of this chronological phase generally occupies high ground or a tufa plateau of more than five hectares, isolated at the confluence of two watercourses. These small plateaus, naturally or artificially protected, are not completely built up: non-residential areas within the defenses were probably intended as collecting points for livestock or zones reserved for cultivation, land used only by certain groups, or areas designated for shelter in case of enemy attack.

Taken together, the data seem to indicate the presence of individuals or families at the head of different groups. And in the final phase of the Bronze Age, there must have begun the process that generated (at least two centuries later) a tribal society based on families and the increasingly widespread ownership of land.

In the ninth century bc the territory is divided instead into rather large districts, each belonging to a large village, divided internally into widely spaced groups of huts, and into a small number of isolated villages located in strategic positions, for which we can assume some form of dependence upon the larger settlements.

etruscan-proto-urban
Schematic reconstruction of the birth of a proto-urban center (after P. Tamburini, II Museo
territoriale del Lago di Bolsena. Vol 1. Dalle origini alperiodo etrusco, Bolsena 2007). Modified from The Etruscan World (2013), by Turfa.

Compared to the preceding period, this type of aggregation is characterized by a higher concentration of the population. To the number of villages located mostly on inaccessible plateaus, with defensive priority assigned to the needs of agriculture, are added settlements over wide plains where the population was grouped into a single hilltop location. It is a sort of synoikistic process, so, for example, at Vulci people were gathered from the district of the Fiora and Albegna Rivers, while to Veii came the communities that inhabited the region from the Tiber River to Lake Bracciano, including the Faliscan and Capenate territories. The reference to Halesos, son of Saturn, the mythical founder of Falerii in the genealogy of Morrius the king of Veii (Servius, Commentary on Aeneid 8.285) may conceal this close relationship between Veii and the Ager Faliscus (the territory of the historical Faliscans).

The great movement of population that characterizes this period is unthinkable without political organizations that were able to impose their decisions on the individual village communities: the different groups, undoubtedly each consisting of nuclei linked by bonds of kinship, located within or outside the tufa plateaus that would be the future seats of the Etruscan city-states, have cultural links between them, also attested to by the analysis of craft production, such as to imply affiliation to the same political unit and enabling us to speak of such human concentrations as “proto-urban”.

etruscan-expansion-padania
Map of Etruria Padana. Left: From 9th to 8th century BC. Right: From 6th to 4th century BC. Dipartimento di Archeologia di Bologna. Modified from The Etruscan World (2013), by Turfa.

Italic vs. Etruscan origins

Four out of five sampled Latins show Yamnaya-derived R1b-L23 lineages, including three R1b-U152 subclades, and one hg. R1b-Z2103 (in line with the variability found among East Bell Beakers), while one from Ardea shows hg. T1a-L208. A likely Volscian (i.e. Osco-Umbrian-speaking) sample from Boville Ernica also shows hg. R1b-Z2118*, an ‘archaic’ subclade within the P312 tree. These R1b-L23 subclades are also found later during the Imperial period, although in lesser proportion compared to East Mediterranean ones.

Among Etruscans, the only male sampled shows hg. J2b-CTS6190* (formed ca. 1800 BC, TMRCA ca. 1100 BC), sharing parent haplogroup J2b-Y15058 (formed ca. 2400 BC, TMRCA ca. 1900 BC) with a Croatian MBA sample from Veliki Vanik (ca. 1580 calBCE), who also clusters close to the IA sample from Jazinka.

Given the position of Latins and Etruscans in the PCA and the likely similar admixture, it is not striking that differences are subtle. From Antonio et al. (2019):

Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.

On the other hand, there are 3 clear outliers among 11 Iron Age individuals, and all Iron Age samples taken together form a wide Etrurian cluster, so it seems natural to test them in groups divided geographically:

Results seem inconsistent, especially for Italic peoples, due to their wide cluster. It could be argued that the samples with ‘northern’ admixture – a Latin from Palestrina Colombella (of hg. R1b-Z56) and the Volscian sample – might represent better the Italic-speaking population before the proto-urban development of Latium, especially given the reported strong Etruscan influences among the Rutuli in Ardea, which might explain the common cluster with Etruscans and the outlier with reported ‘eastern’ admixture.

etruscan-latino-faliscan-osco-umbrian-italic-languages
Languages of Central Italy at the beginning of Roman expansion. Image modified from original by Susana Freixeiro at Wikipedia.

It makes sense then to test for a group of Etruscans (adding the Villanovan sample) and another of Italic peoples, to distinguish between a hypothetic ancestral Italic ancestry from a Tyrrhenian one:

NOTE. Fine-tuning groups based on the position of samples in the PCA or the amount of this or that component, or – even worse – based on the good or bad fits relative to the tested populations risks breaking the rules of subgroup analysis, eventually obtaining completely useless results, so interpretations for the Italic cluster need to be taken with a pinch of salt (until more similar Italic samples are published). The lack of proper rules regarding what can and cannot be done with this combined archaeological – genomic research is already visible to some extent in genetic papers which use brute force qpAdm tests for all available sampled populations, instead of selecting those potentially ancestral to the studied groups.

Tabs are organized from ‘better’ to ‘worse’ fits. In this case, as a general guide to the spreadsheets, the first tabs (to the left) show better fits for Italic peoples, and as tabs progress to the right they show ‘better’ fits for Etruscans, until it reaches the ‘infeasible’ or otherwise bad models.

This is what can be inferred from the models:

1) Steppe ancestry: Italic peoples seem to show better fits for north-western Alpine sources, closest to Bell Beakers from France or South Germany; whereas Etruscans show a likely Transdanubian source, closest to late Bell Beakers from Hungary (excluding Steppe- and WHG-related outliers).

To see if Bell Beakers from the south-west could be related, I tried the same model as in Fernandes et al. (2019), selecting Iberian BBC samples with more Steppe ancestry – to simplify my task, I selected them according to their PCA position. In a second attempt, I tried adding those intermediate with Iberia_CA, and it shows decreasing p-values, suggesting that the most likely source is close to high Steppe-related Bell Beaker populations. In both cases, models seem worse than France or Germany Bell Beakers.

Since Celtic spread with France BBC-like Urnfield peoples, and Italic peoples appear to be also ancestrally connected to this ancestry, the most plausible explanation is that they share an origin close to the Danubian EBA culture, which would probably be easily detectable by selecting precise Bell Beaker groups from South Germany.

expansion-celtic-peoples
Hypothetic expansion of Celtic-speaking peoples during the La Tène period (source). Image used in Udolph (2009) because it reflects a homeland roughly coincident with the oldest Celtic hydrotoponymy.

2) Anatolia_Neolithic ancestry: different tests seem to show that fits for EEF-related ancestry get warmer the closer the source population selected is to North-West Anatolian farmers, in line with the apparent shift from the East Bell Beaker cluster toward the Anatolia Neolithic cluster in the PCA:

These analyses suggest that there was a renewed Anatolia_N-like contribution during the Bronze Age, older than these Iron Age populations, but later than the rebound of WHG ancestry found among Late Neolithic and Chalcolithic samples from Italy, Sicily, or Sardinia, reflected in their shift in the PCA towards the WHG cluster.

From a range of chronologically closer groups clustering near Anatolia_N, the source seems to be closest to Neolithic samples from the Peloponnese. The direct comparison of Greece_Peloponnese_N against Italy_CA in the analyses labelled “Strict” shows that the sampled Greece Late Neolithic individuals are closer to the source of Neolithic ancestry of Iron Age Etrurians than the Chalcolithic samples from Remedello, Etruria, or Sardinia.

NOTE. Most qpAdm analyses are done with a model similar to Ning et al. (2019), using Corded_Ware_Germany.SG as an outgroup instead of Italy_Villabruna, because I expected to test all models against Yamnaya, too, but in the end – due to the many potential models and my limited time – I only tested those with ‘better’ fits:

Using Yamnaya_Kalmykia as outgroup gives invariably ‘worse’ results, as expected from Bell Beaker-derived populations who are directly derived from Yamnaya, despite their potential admixture with local Corded Ware peoples through exogamy during their expansion in Central Europe. The differences between Italic and Etruscan peoples have to be looked for mainly in EEF-related contributions, not in Steppe-related populations.

pca-italic-etruscan-latins-villanovan
Detail of the PCA of Eurasian samples, including Italian samples from Antonio et al. (2019) with the selected clusters of Italic vs. Etruscans, as well as Bell Beaker and Balkan BA and related clusters and outliers. Also marked are Peloponnese Late Neolithic (Greece_N), Minoans, Mycenaeans and Armenian BA samples. See image with better resolution.

Etruscans and Sea Peoples

The sister clade of the Etruscan branch, J2b-PH1602 (TMRCA ca. 1100 BC), seems to have spread in different directions based on its modern distribution, and their global parent clade J2b-Y15058 (TMRCA ca. 1900 BC) was previously found in Veliki Vanik. J2b-L283 appears related to Neolithic expansions through the Mediterranean, based on its higher diversity in Sardinia, although its precise origin is unclear.

Based on the modern haplogroup distribution and on the TMRCA, it can be assumed that a community spread with hg. J2b-Z38240 from somewhere close to the Balkans coinciding with the population movements of the Final Bronze Age. Whether this haplogroup’s Middle Bronze Age area, probably close to the Adriatic, was initially Indo-European-speaking or was related to a regional survival of Etruscan-speaking communities remains unclear.

Greece Late Neolithic is probably the closest available population (from those sampled to date) geographically and chronologically to the Bronze Age North-Western Anatolian region, where the Tyrsenian language family is hypothesized to have expanded from.

We only have a few Iron Age samples from Etruria, dating from a period of complex interaction in the Mediterranean – evidenced by the relatively high proportion of outliers – so it is impossible to discard the existence of some remnant Bronze Age population closer to the Adriatic – from either the Italian (Apulia?) or the Balkan coasts – expanding with the Proto-Villanovan culture and responsible for the Greece_LN-like ancestry seen among the sampled Final Bronze / Iron Age populations from central Italy.

On the other hand, taking into account the ancestry of available Italian, Sardinian and Sicilian Neolithic, Chalcolithic and Bronze Age samples, the current genetic picture suggests an expansion of a different North-West Anatolia Neolithic-related population after the arrival of Bell Beakers from the north, hence probably through the Adriatic rather than through the Tyrrhenian coast, whether the common language group formed with Lemnian had a more distant origin in Bronze Age North-West Anatolian groups or in some isolated coastal community of the Adriatic.

NOTE. Admittedly, the ancestry of the Proto-Villanovan sample seems different from that of Etruscans, although a contribution of the most likely sources for Etruscans cannot be rejected for the Proto-Villanovan individual (see ‘reciprocal’ models of admixture here). In any case, I doubt that the main ancestry of the Proto-Villanovan from Abruzzo is directly related to the population that gave rise to Etruscans, and is more likely related to recent, intense bilateral exchanges in the Adriatic between (most likely) Indo-European-speaking populations.

violin-bow-fibula-italy-illyria-aegean-crete
The distribution of violin bow fibula from thirteenth century onward showing the movement of people between northern Italy, Illyria and the Aegean, Crete, and the parallel distribution of “foreign” darksurfaced handmade pottery (based on Kasuba 2008 : abb. 15; Lis 2009 ). Modified from Kristiansen (2018).

Northern Adriatic

This Adriatic connection could in turn be linked to wider population movements of the Final Bronze Age. Proto-Villanova represents the introduction of oriental influences coinciding with the demise of the local Terramare culture (see e.g. Cremaschi et al. 2016), whereas the Villanovan culture shows partial continuity with many Proto-Villanovan settlements where Etruscan-speaking communities later emerge. From Nicolis (2013):

Founded in the LBA, the village of Frattesina extended over around 20 hectares along the ‘Po di Adria’, a palaeochannel of the Po. It experienced its greatest development between the twelfth and eleventh centuries BC, when it had a dominant economic role thanks to an extraordinary range of artisan production (metalworking, working of bone and deer horn, glass) and major commercial influence due to trading with the Italian Peninsula and the eastern Mediterranean.

This is demonstrated by the presence of exotic objects and raw materials, such as Mycenaean pottery, amber, ivory, ostrich eggs, and glass paste. For the Mycenaean sherds found in settlements in the Verona valleys and the Po delta, analysis of pottery fabrics has shown that some of them very probably come from centres in Apulia where there were Aegean craftsmen and workers, whereas others would seem to have originated on the Greek mainland (Vagnetti 1996; Vagnetti 1998; Jones et al. 2002).

acqua-fredda-passo-del-redebus
Reconstruction of Acqua Fredda archaeological site, Passo del Redebus, where a group of 9 smelting furnaces has been discovered dating back to the Late Bronze Age (8-9th century BC). Image modified from Trentino Cultura.

In this context a particular system of relations seems to link one specific Alpine region with the social and economic structure of the groups settling between the Adige and the Po and the eastern Mediterranean trading system. In eastern Trentino, at Acquafredda, metallurgical production on a proto-industrial scale has been demonstrated between the end of the LBA and the FBA (twelfth–eleventh centuries BC) (Cierny 2008) (Fig. 38.3). These products must have supplied markets stretching beyond the local area, linked to the Luco/Laugen culture typical of the central Alpine environment. According to Pearce and De Guio (1999), such extensive production must have been destined for the supply of metal to other markets, first of all to other centres on the Po plain, where transactions for materials of Mediterranean origin also took place.

The picture of the Final Bronze Age of these regions, which seems to be coherent with the development of the cultural setting of the Early Iron Age, shows that the birth of the proto-urban Villanovan centres of Bologna in Emilia and Verucchio in Romagna, at the beginning of the Iron Age, seems to follow a line of continuity starting with the role played by Frattesina in the Final Bronze Age (Bietti Sestieri 2008).

naue-swords-final-bronze-age
Reconstruction of pan-European communication network represented by the geographical spread of archaeological objects. The network nodes represent sites that have yielded an above-average number of relevant finds. The links are direct connections between neighbouring nodes. Modified from Suchowska-Ducke (2015).

Tyrsenian

The close similarities shared by Rhaetian with the oldest Etruscan inscriptions – but not with the language of later periods, when Etruscan expanded further north – together with increased ‘foreign’ contacts in the Final Bronze Age and the ‘foreign’ ancestry of Etruscans (relative to Italian Chalcolithic and to near-by Bell Beakers) support a language split close to the Adriatic, and not long before they started using the Euboean-related Old Italic alphabet. All this is compatible with an expansion associated with the Proto-Villanovan period, possibly starting along the Po and the Adige.

From Nicolis (2013):

In this geographical context the most important morphological features are the Alps and the alluvial plain of the River Po. Since Roman times the former have always been considered a geographical limit and thus a cultural barrier. In actual fact the Alps have never really represented a barrier, but instead have played an active role in mediating between the central European and Mediterranean cultures. Some of the valleys have been used since the Mesolithic as communication routes, to establish contacts and for the exchange of materials and people over considerable distances. The discovery of Ötzi the Iceman high in the Alps in 1991 demonstrated incontrovertibly that this environment was accessible to individuals and groups from the end of the fourth millennium BC.

From the Early Neolithic period the plain of the Po Valley provided favourable conditions for the population of the area by human groups from central and eastern Europe, who found the wide flat spaces and fertile soils an ideal environment for developing agricultural techniques and animal husbandry. Lake Garda represents a very important morphological feature, benefiting among other things from a Mediterranean-type microclimate, the influence of which can already be seen in the Middle Neolithic. Situated between the plain and the mountains, the hills have always offered an alternative terrain for demographic development, equally important for the exploitation of economic and environmental resources.

As documented for previous periods, in the late and final phases of the Bronze Age the northern Adriatic coast would also seem to represent an important geographical feature, above all in terms of possible long-distance trading contacts with the Aegean and eastern Mediterranean coasts. However, the geographical and morphological characteristics and the river network in this area were very different to the way they are today, and the preferred communications routes must always have been the rivers, particularly the Po and the Adige.

etruscan-rhaetian-inscriptions
Map of inscriptions of Northern Italy. In green, Rhaetian inscriptions; in Pink, Etruscan inscriptions. Arrows show potential language movements through the Po and the Adige based on the relationship between both language. Image modified from Raetica.

Conclusion

Although it seems superfluous at this point, finding mostly Yamnaya-derived R1b-L23 lineages among speakers of another early North-West Indo-European dialect – and also the earliest to have split into its attested dialects – gives still more support to Yamnaya steppe herders as the vector of expansion of Late PIE, and their continuity up to the Iron Age also supports the strong patrilineal ties of Indo-Europeans.

This, in turn, further supports the nature of Afanasievo as the earliest separated branch from a Late Proto-Indo-European trunk, and of Khvalynsk as the Indo-Anatolian community, while a confirmation of R1b-L23 among early Greeks (speaking the earliest attested Graeco-Aryan dialect) will indirectly confirm East Yamnaya/Poltavka as the early Proto-Indo-Iranian community.

As it often happens with genetic sampling, due to many uncontrollable factors, there is a conspicuous lack of a proper regional and chronological transect of Bell Beaker and Bronze Age samples from Italy, which makes it impossible to determine the origin of each group’s ancestral components. Even though the sampled Italian Beakers don’t seem to be the best fit for Iron Age Italic-speaking peoples from Etruria, they still might have formed part of the migration waves that eventually developed the Apennine culture together with those of prevalent West-Central European Bell Beaker ancestry.

Similarly, the visible radical change from the increasingly WHG-shifted Italian farmers up to the sampled Chalcolithic individuals, including Parma Bell Beakers, to the Anatolia_N-shifted ancestry found in Iron Age Etruscans and Latins might be related to earlier population movements associated with Middle or Late Bronze Age contacts, and not necessarily to the radical social changes seen in the Final Bronze Age. The Etruscan subclade with a likely origin in the Balkans, on the other hand, suggests recent migrations from the Adriatic into Etruria.

middle-bronze-age-italy
Middle Bronze Age cultures of Italy and its surroundings ca. 1750-1250 BC. Potential source of the Greece_N-like admixture found widespread during the Iron Age. See full maps.

Until there is more data about these ancestry changes in Italy, the Balkans, and North-West Anatolia, I prefer to leave the Tyrsenian origins up in the air, so I deleted the Lemnian -> Etruscan arrow of the map of Late Bronze Age migrations, if only because an arrival through the Tyrrhenian Sea has become much less likely. An East -> West movement is still the most likely explanation for the common Tyrsenian language, culture, and ancestry, but the only Y-DNA haplogroup available seems to have an origin closer to the Adriatic.

The recent study of Sea Peoples showed – based on the previous hypothesis of the language and culture of the Philistines – that a minority of incoming elites must have imposed the language as their genetic ancestry (including haplogroups) became diluted among a majority of local peoples. Similarly, the original genetic pool of Tyrsenian speakers might have become diluted among different groups due to their more complex social organization, similar to what happened to Italic peoples during the Imperial period.

One of the most interesting aspects proven in the paper – and strongly suspected before it – is the reflection in population genomics of the change in the social system of the Italian Peninsula during the Roman expansion, and even before it during the Etruscan polity. In fact, it was not only Romans who spread and genetically influenced other European regions, but other regions – especially the more numerous Eastern Mediterranean populations – who became incorporated into a growing Etrurian community which nevertheless managed to spread its language.

In other words, Tyrsenian spread through central and northern Italy, and Latin throughout the whole Mediterranean area and mainland Europe, not (only) through population movements, but through acculturation, in a growing international system of more complex political organizations that can be inferred for most population and language expansions since the Early Iron Age. East Mediterranean populations, Scythians and other steppe peoples, East Germanic peoples, Vikings, or North-Eastern Europeans are other clear examples known to date.

Related

Proto-Tocharians: From Afanasievo to the Tarim Basin through the Tian Shan

tocharians-early-eneolithic

A reader commented recently that there is little information about Indo-Europeans from Central and East Asia in this blog. Regardless of the scarce archaeological data compared to European prehistory, I think it is premature to write anything detailed about population movements of Indo-Iranians in Asia, especially now that we are awaiting the updates of Narasimhan et al (2018).

Furthermore, there was little hope that Tocharians would be different than neighbouring Andronovo-like populations (see a recent post on my predicted varied admixture of Common Tocharians), so the history of both unrelated Late PIE languages would have had to be explained by the admixture of Afanasievo-related groups with peoples of Andronovo descent and their acculturation.

However, data reported recently by Ning, Wang et al. Current Biology (2019) confirmed that peoples of mainly Afanasievo ancestry – as opposed to those of Corded Ware-related ancestry expanding with the Srubna-Andronovo horizon – spread the Tocharian branch of Proto-Indo-European from the Altai into the Tian Shan area, surviving essentially unadmixed into the Early Iron Age.

This genetic continuity of Tocharians will no doubt help us disentangle a great part the ethnolinguistic history of speakers of the Tocharian branch of Proto-Indo-European, from Pre-Proto-Tocharians of Afanasievo to Common Tocharians of the Late Bronze Age/Iron Age eastern Tian Shan.

NOTE. Tocharian’s isolation from the rest of Late PIE dialects and its early and intense language contacts have always been the key to support an early migration and physical separation of the group, hence the traditional association with Afanasievo, a late Repin/early Yamna offshoot. Even with the current incomplete archaeological and genetic picture, there is no other option left for the expansion of Tocharian.

It is not possible to use the currently available ancestry data to map the evolution of Afanasievo ancestry, lacking a proper geographical and temporal transect of Central and East Asian groups. In spite of this, Ning, Wang, et al. (2019) is a huge leap forward, discarding some archaeological models, and leaving only a few potential routes by which Tocharians may have spread southward from the Altai.

NOTE. I have updated the maps of prehistoric cultures accordingly, with colours – as always – reflecting the language/ancestry evolution of the different groups, even though the archaeological data of some groups of Xinjiang remains scarce, so their ethnolinguistic attribution – and the colours picked for them – remain tentative.

xinjiang-andronovo-xiaohe-horizon-bronze-iron-age
A rough timeline of related archaeological sites from North Eurasia. Image modified from Yang (2019).

Tocharians

The recent book Ancient China and its Eurasian Neighbors. Artifacts, Identity and Death in the Frontier, 3000–700 BCE, by Linduff, Sun, Cao, and Liu, Cambridge University Press (2017) offers an interesting summary of the introduction of metalworking into western China.

Here are some relevant excerpts (emphasis mine):

Although [the Xinjiang] route is not uniformly agreed upon (Shelach-Lavi 2009: 134–46), this western transmission has been thought to have passed through eastern Kazakhstan, especially as it is manifest in Semireiche, with Yamnaya, Afanasievo (copper) and Andronovo (tin bronze) peoples (Mei 2000: Fig. 3). From Xinjiang this knowledge has been thought to have traveled through the Gansu Corridor via the Qijia peoples (Bagley 1999) and then into territories controlled by dynastic China. The dating of this process is still a problem, as the sites and their contents in Xinjiang are consistently later than those in Gansu, suggesting that the point of contact was in Gansu and that the knowledge then spread from there westward.

1. Eneolithic Altai

tocharians-chalcolithic-eneolithic
Afanasievo expansion ca. 3300-2600 BC. See full culture and ancient DNA maps.

The Afanasievo sites, as they are identified in Mongolia, for instance, make up an Eneolithic culture analogous to that of southern Siberia (3100/2500–2000 BCE) in the Upper Yenissei Valley that is characterized by copper tools and an economy reliant on horse, sheep and cattle breeding as well as hunting. (…) The Afanasievo is best known through study of its burials, which typically include groups of round barrows (kurgans), each up to 12 m in diameter with a stone kerb and covering a central pit grave containing multiple inhumations. In their Siberian context, burial pottery types and styles have suggested contacts with the slightly earlier Kelteminar culture of the Aral and Caspian Sea area.

The Afanasievo culture monuments, located in the northern Altai and in the Minusinsk Basin (the western Sayan), have been seen as analogous evidence for cross-Eurasian exchange. These complexes contain small collections of metal, and many of the items are made of brass, although golden, silver and iron ornaments were also identified. A mere one-fourth of these objects are tools and ornaments, while the rest consist of unshaped remains and semi-manufactured objects. Its metallurgical tradition has recently been dated by Chernykh to as early as 3100 to 2700 BCE (1992),making it more compatible chronologically with the early brass-using sites in Shaanxi mentioned above. Kovalev and Erdenebaatar have excavated barrows in Bayan-Ulgii, Mongolia, that have been carbon-dated to the first half of the third millennium BCE and associated by ceramic types and styles and burial patterns with the Afanasievo (Kovalev and Erdenebaatar 2009: 357–58). These mounded kurgans were covered with stone and housed rectangular, wooden-faced tombs that included Afanasievo-type bronze awls, plates and small “leaf-shaped” knife blades (Kovalev and Erdenebaatar 2009: Figs. 6 and 7).

They also excavated sites belonging to the more recently identified Chemurchek archaeological culture, located in the foothills of the Mongolian Altai (Kovalev 2014, 2015) (Fig. 2.6). These sites are carbon-dated to the same period as the Afanasievo burials or to c. 3100/2500–1800 BCE (six barrows in Khovd aimag and four in Bayan-Ulgo aimag). In the rectangular stone kerbed Chemurchek slab burials (Ulaaanhus sum, Bayan-ul’gi aimag and so forth), bronze items included awls; and at Khovd aimag, Bulgan sum, in addition to stone sculptures, three lead and one bronze ring were excavated (Kovalev and Erdenebaatar 2009: Figs. 2 and 3; Fig. 2.6). Although we will not know if they were produced locally until much further investigation is undertaken, these discoveries do document knowledge of various uses and types of metal objects in western and south central Mongolia. The types of metal items thus far recovered are simple tools (awls) and rings (ornamental?) not unlike those associated with Andronovo archaeological cultures as well.

This is a complex circumstance where archaeological evidence is not complete, but raises very important questions about transmission of metallurgical knowledge to and from areas in present-day China. In the 1970s some Afanasievo mounds were excavated in Central Mongolia by a Soviet–Mongolian expedition led by V. V. Volkov and E. A. Novgorodova (Novgorodova 1989: 81–85). Unfortunately, these mounds did not yield metal objects, only ceramics, but they show that the Afanasievo culture with the Eneolithic metallurgical tradition of manufacturing pure copper items had already moved east at least far as central Mongolia. In 2004, Kovalev and Erdenebaatar investigated a large Afanasievo mound, Kulala ula, in the extreme northwest of Mongolia, near the Russian border (Kovalev and Erdenebaatar 2009). There they found a copper knife and awl (Fig. 2.5). There are five C14 dates on wood, coal and human bones from this mound, which belong to the period 2890–2570 BCE. This shows that the Afanasievo culture were carriers of technology and produced artifacts in the first half of the third millennium BCE and that they also moved south along the foothills of the Mongolian Altai. Afanasievo culture in Altai and the Minusinsk basin is dated by C14 to 3600–2500 BCE (Svyatko et al. 2009; Polyakov 2010). In the north of Xinjiang in the Altai district, several typical egg-shaped vessels and two censers of Afanasievo types were found. Some of these have been obtained from the stone boxes (chambers of megalithic graves of the Chemurchek culture) (Kovalev 2011). Thus, the Afanasievo tradition of pure copper metallurgy must have spread to the northern foothills of the Tienshan Mountains no later than the mid-third millennium BCE. The links with Afanasievo and local cultures adjacent to and south of the mountains into present-day China can now be assumed.

tocharians-chalcolithic-late
Afanasievo – Chemurchek evolution ca. 2600-2200 BC. See full culture and ancient DNA maps.

2. Bronze Age Altai

Kovalev and Erdenebaatar (2014a) and later Tishkin, Grushin, Kovalev and Munkhbayar (2015) in Western Mongolia conducted large-scale excavations of megalithic barrows of the Chemurchek culture (dated about 2600–1800 BCE). This peculiar culture appeared in Dzungaria and the Mongolian Altai in the second quarter of the third millennium BCE and for some time existed together with the late Afanasievo culture, as evidenced by the findings of Afanasievo ceramics in Chemurchek graves, in the stone boxes. Unfortunately, in China we do not yet know of any metal object related,without doubt, to the Chemurchek culture. Kovalev, Erdenebaatar, Tishkin and Grushin found several leaden ear rings and one ring of tin bronze in three excavated Chemurchek stone boxes (Kovalev and Erdenebaatar 2014a; Tishkin et al. 2015). Such lead rings are typical for Elunino culture,which occupied the entire West Altai after 2400–2300 BCE (Tishkin et al. 2015). This culture had developed a tradition of bronze metallurgy with various dopants, primarily tin. Thus, the tradition of bronze metallurgy as early as this time could have penetrated the Mongolian Altai far to the south. In addition, in the Hadat ovoo Chemurchek stone box, Kovalev and Erdenebaatar discovered stone vessels refurbished with the help of copper “patches,” indicating the presence there of metallurgical production (Fig. 2.7) (Kovalev and Erdenebaatar 2014a). In one of the secondary

Chemurchek graves unearthed by Kovalev and Erdenebaatar in Bayan-Ulgi (2400–2220 BCE), a bronze awl was found (Kovalev and Erdenebaatar 2009). Kovalev and Erdenebaatar also discovered a new culture in the territory of Mongolia (Map 2.3), one that begins immediately after Chemurchek – Munkh-Khairkhan culture (Kovalev and Erdenebaatar 2009, 2014b). To date, about 17 mounds of this culture have been excavated in Khovd, Zavkhan, Khovsgol, Bulgan aimag of Mongolia. This culture dates from about 1800 to 1500 BCE, that is, contemporary with the Andronovo culture. Therefore, the Andronovo culture does not extend far into the territory of Mongolia. Three knives without dedicated handles or stems and five awls have been found in the Munkh-Khairkhan culture mounds (Fig. 2.8). All these products are made of tin bronze. (…) Additionally, eight Late Bronze Age burials (c. 1400–1100 BCE) were unearthed in the Bulgan sum of Khovd aimag and belong to another previously unknown culture called Baitag. And in the Gobi Altai, a new group of “Tevsh” sites dating to the Late Bronze Age were defined in Bayankhongor and South Gobi aimags (Miyamoto and Obata 2016: 42–50). From these Tevsh and Baitag sites, we see the expansion of burial goods to include beads of semiprecious stones (carnelian), bronze beads, buttons and rings and even the famous elaborate golden hair ornaments (Tevsh uul;Bogd sum;Uverkhanagia aimag) from the Baitag barrows (Kovalev and Erdenebaatar 2009: Fig. 5; Miyamoto and Obata 2016).

2.1. Chemurchek

About the Chemurchek culture, from A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China, by Jia and Betts JIES (2010) 38(4):

The major characteristics of Qiemu’erqieke Phase I include:

  1. Burials with two orientations of approximately 20° or 345°.
  2. Rectangular enclosures built using large stone slabs. The size of the enclosure varies from a maximum of 28 x 30 m.*to a minimum of 10.5 x 4.4 m. (Figure 8, Table 2).
  3. *The stone enclosure located near Hayinar is the largest one at approximately 30 x 40 m. based on pacing of the site during a visit by the authors in 2008.

  4. Almost life-sized anthropomorphic stone stelae erected along one side of the stone enclosures (Lin Yun 2008).
  5. Single enclosures tend to contain one or more than one burial, all or some with stone cist coffins.
  6. The cist coffin is usually constructed using five large stone slabs, four for the sides and one on top, leaving bare earth at the base (Zhang Yuzhong 2007). Sometimes the insides of the slabs have simple painted designs (Zhang Yuzhong 2005).
  7. Primary and secondary burials occur in the same grave.
  8. Some decapitated bodies (up to 20) may be associated with the main burial in one cist.
  9. Bodies are commonly placed on the back or side with the legs drawn up.
  10. Grave goods include stone and bronze arrowheads, handmade gray or brown round-bottomed ovoid jars, and small numbers of flat-bottomed jars (Fig. 7).
  11. Clay lamps appear to occur together with roundbottomed jars.
  12. Complex incised decoration on ceramics is common but some vessels are undecorated.
  13. The stone vessels are distinctive for the high quality of manufacture.
  14. Stone moulds indicate relatively sophisticated metallurgical expertise.
  15. Artefacts made from pure copper occur.
  16. Sheep knucklebones (astragali) imply a tradition (as in historical and modern times) of keeping knucklebones for ritual or other purposes. They also indicate the herding of domestic sheep as part of the subsistence economy.
tocharians-bronze-age-early
Chemurchek culture ca. 2200-1750 BC. See full culture and ancient DNA maps.

Chemurchek dating

Available evidence suggests that the date range for Qiemu’erqieke Phase I should fall from the later third into the early second millennium BC. There are several reasons to suggest that the time span is around the early second millennium BC. Lin Yun (2008) (…) maintains that the bronze artefacts found in Phase I show a greater sophistication in the level of copper alloy technology than that of the pure copper artefacts common to the Afanasievo tradition. On this basis it might be suggested that the Afanasievo could be considered to be Chalcolithic with a time span across much of the third millennium BC ( Gorsdorf et al. 2004: 86, Fig. 1). Qiemu’erqieke Phase I, however, should more properly be considered as Bronze Age.

Lin Yun also used the bronze arrowhead from burial Ml 7 to narrow down the date of Qiemu’erqieke Phase I. Two arrowheads were found in this burial, one of them leaf shaped with a single barb on the back (Fig. 7:4). A similar arrowhead, together with its casting mould, has been found at the Huoshaogou site of Siba tradition (Li Shuicheng 2005, Sun Shuyun and Han Rufen 1997), in Gansu province, northwest China, dated around 2000-1800 BC (Li Shuicheng and Shui Tao 2000) . This supports a date in the early second millennium BC for the Qiemu’erqieke arrowhead. The painted, round-bottomed jar from the Tianshanbeilu cemetery Qia Weiming, Betts and Wu Xinhua 2008: Fig. 7, bottom left) has been considered as a hybrid between the Upper Yellow River Bronze Age cultures of Siba in northwest China and the steppe tradition of Qiemu’erqieke in west Siberia (Li Shuicheng 1999). If this assumption is correct, the date of Tianshanbeilu, around 2000 BC, can be used as a reference for Qiemu’erqieke Phase I (Jia Weiming, Betts and Wu Xinhua 2008, Lin Yun 2008, Li Shuicheng 1999). Stone arrowheads found in Qiemu’erqieke Phase I also imply that the date is likely to fall within the earlier part of the Bronze Age as no such stone arrowheads have yet been found elsewhere in sites of the Bronze Age in Xinlang dated after the beginning of the second millennium BC.*
*For example Chawuhu and Xiaohe cemeteries (Xinjiang Institute of Archaeology 1999, 2003).

pottery-afanasevo-chemurchek
Pottery of Afanasevo and East European traits from the Chemurchek complex. Image modified from Kovalev (2017).

(…) Pottery “oil burners” (goblet-like ceramic vessels, possibly lamps) have been found in three traditions: Afanasievo (Gryaznov and Krizhevskaya 1986:21), Okunevo and Qiemu’erqieke. It is believed that this oil-burner found in Siberia and the Altai is a heritage from the Yamnaya and Catacomb
cultures (Sulimirski 1970: 225, 425; Shishlina 2008:46) in the Caspian steppe further to the west, but does not seem to exist in known Andronovo cultures.
The oil-burner tends to disappear after around 2300 BC during the mid-Okunevo period. It is, however, possible that the tradition continues longer in the Qiemu’erqieke sites.

The construction of the stone enclosures also reveals a close connection between Qiemu’erqieke Phase I and the mid and late Okunevo tradition (Sokolova 2007). Slab built stone enclosures emerged in both the Okunevo and Afanasievo traditions (Gryaznov and Krizhevskaya 1986:15-23, Kovalev 2008, Sokolova 2007, Anthony 2007:310, Koryakova and Epimakhov 2007). In the early Afanasievo the enclosure is circular with no cist coffin (Anthony 2007:310, Gryaznov and Krizhevskaya 1986:20), but in the early stage of the Okunevo square stone enclosures with a single cist burial are dominant. Square or rectangular stone enclosures are a marked feature of Qiemu’erqieke Phase I, suggesting temporal relationships between Qiemu’erqieke Phase I and the Okunevo. In Okunevo chronological group II, possibly with influence from the Anfanasievo, circular stone enclosures appeared in combination with rectangular enclosures within individual cemeteries, referred to by Sokolova (2007: table 2) as hybrid examples. By Okunevo chronological group III, rectangular stone slab enclosures with multi-burials emerged again. This is the dominant form in Qiemu’erqieke Phase I. Okunevo burial traditions changed again to single cist burials in the late stage around chronological group V ( Sokol ova 2007). A specific mortuary rite of decapitated burials exists in both the Qiemu’erqieke and Okunevo traditions (Sokolova 2007, Chen Kwang-tzuu and Hiebert 1995), as does the occasional occurrence of painted designs on the interior of the slabs forming the cists ( e.g., Khavrin 1997: 70, fig. 4; 77: tab. IV.5). Based on these comparisons, the date of Qiemu’erqieke Phase I may well parallel that of the Okunevo from at least chronological group II around 2400 BC (Gorsdorf et al. 2004: fig. 1).

khuh-udzuur-barrow
Khuh Udzuuriin I-1 elite barrow (ca. 2470-2190 BC). Modified from Image modified from Kovalev (2014).

In addition to the pottery making tradition, the anthropomorphic stone stelae may also have earlier antecedents. In the Okunevo assemblage there are anthropomorphic stelae that are longer, thinner and more abstract than those of Qiemu’erqieke. There is no indication of such stelae in the Afanasievo tradition (Gryaznov and Krizhevskaya 1986:15-23). However, further to the west, anthropomorphic stone stelae are associated with the Kemi-Oba and Yamnya cultures around the third millennium BC (Telegin and Mallory 1994; Figure 13). Some major characteristics of these stelae such as the icons on the front face of the stelae (Telegin and Mallory 1994:8-9) also appear on stelae found in Qiemu’erqieke Phase I. Recalling the oil burners that may have been inherited from the Yamnya culture and which are found in the Afansievo, Okunevo and Qiemu’erqieke Phase I, it migh t be possible to speculate that Qiemu’erqieke Phase I has its origins even earlier than the first half of the third millennium BC. This idea has also been suggested by Kovalev ( 1999).

Despite the affinities with the Okunevo cultural tradition, Qiemu’erqieke Phase I appears to be a discrete regional variant. The ceramic assemblage shows traits unique to this cluster of sites, while the anthropomorphic stelae are also distinctive markers of this tradition.

khuh-udzuur-stela
Khuh Udzuur anthropomorphic stone stela, oriented toward the south – south-east. Image modified from Kovalev (2014).

3. Bronze Age Xinjiang

I recently reported on this blog the description of Xiaohe and Gumugou cemeteries from interesting Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

It also offered a full summary of findings from prehistoric sites of Xinjiang related to the arrival of a cultural package from the Altai region, ultimately connected to Afanasievo. Relevant excerpts include the following (emphasis mine):

In Bronze Age Xinjiang, burials were diverse but also show some common features between different geographic sections. The main three mountains, including Kunlun Mountains, Tian Shan (mountains) and Altai Mountains, enclose the Tarim Basin, and the Dzungaria Basin, but leave the eastern part of the Tarim Basin and the south-eastern part of the Dzungaria Basin open (with easy access to the surroundings). The Hami Basin is located at the transitional area, connecting the two basins. Burials are mainly spread along the edge of the mountain ranges.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

3.1. The Lop Nur region

In the Lop Nur region, the Xiaohe cemetery (2000-1450 BCE) and the Gumugou cemetery (1900-1800 BCE) had many common features shared, and so is the Keliyahe northern cemetery:

  • Cemeteries were located in sandy areas;
  • Rectangular/boat-shaped wooden coffins with monuments of wooden planks or poles;
  • Coffins had no bottoms;
  • The dead were placed lying straight on the back;
  • The dead were commonly buried in single graves.

The Gumugou cemetery contained six special sun-radiating-spokes burial pattern in addition to the normal burials, which were similar to the wooden coffin graves of the Xiaohe cemetery.

NOTE. For more on Xiaohe and Gumugou, see the recent post on Proto-Tocharians. See other papers on the Andronovo horizon for other Early to Middle Bronze Age cultural groups less clearly associated with the Xiaohe horizon, like Hazandu, Xintala, or the Chust culture.

From Shuicheng (2006):

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority. The composition of alloy did not show significant change over time. Some colleagues pointed out that the Nulasai 奴拉赛 site at Nileke 尼勒克 County in the Yili 伊犁 River basin of Xinjiang was the pioneer in the use of “sulphuric ore–ice copper–copper”technology. It is also the only early smelting site in Euro-Asia that arsenic ore was added to deliberately produce an alloy

tocharians-bronze-age-middle
Prehistoric cultures of Xinjiang during the Middle Bronze Age. See full culture and ancient DNA maps.

3.2. The Hami Basin-the Balikun Grassland

From Yang (2019):

The Hami Basin-the Balikun Grassland area is located at the eastern part of Tian Shan. The area is divided in a northern basin and a southern basin by the east-west stretch of the Tian Shan. In the Hami Basin-the Balikun Grassland area, the main type of burials were earth-pit graves in the early Bronze Age, and burials of stone-pit with barrows became more common in the late Bronze Age. The Hami-Tianshan-Beilu cemetery is a representative of the earth-pit graves. The features of the Hami-Tianshan-Beilu cemetery (2000-1500 bce) here were:

  • Rectangular earth pit graves;
  • The dead were often in a hocker position lying on one side;
  • Commonly a single dead in one grave.
balikun-grassland
The Balikun grassland today (source).

The Hami-Wubu cemetery (earlier than 1000 bce) and the Yanbulake cemetery (1200-600 bce) are representatives of another common earth-pit graves. Common features here were:

  • Rectangular earth pits, with two storeys and/or roofed with wooden boards;
  • The dead was placed in a hocker position lying on one side;
  • Mostly a single dead in one grave.

Later there appeared more stone-pit graves in this area, and the features can be summarized as:

  • Round burial mounds, commonly constructed by stones or a mix of stones and earth;
  • Burial mounds with a sunken top or a normal (dome) top;
  • The diameter of the burial mounds varied between 3 and 25.4 m (but not necessarily limited in this scope);
  • Circular or rectangular stone kerbs;
  • Rectangular stone pits, constructed by earth, or stones, or a mix of earth and stones;
  • Rectangular stone pits contained wooden coffins (represented by the Yiwu Baiqi’er cemetery).
hami-basin-balikun-grassland-iron-age-burials
Some representatives of stone burials in the Hami Basin – the Balikun Grassland in the Iron Age (Adapted from: Xinjiang 2011, 29-41). Image modified from Yang (2019).

In the Hami Basin, the Bronze Age cemeteries show common burial features like earth pits and hocker position of the dead. With similar pottery styles in the Hami-Tianshan-Beilu cemetery to those in the Machang and Siba cultures (Xinjiang 2011: 17), it suggests possible cultural influence or people’s migrating from the Hexi Corridor in the east.

In the Balikun Grassland, burials in an earlier time contained mostly earth-pit graves but also a small number of stone-pit graves. The pebbles were imbedded in the floors and the walls of the graves in a rectangular shape, e.g. the Balikun-Nanwan cemetery (1600-1000 bce). In a later time, there appeared huge burial mounds with a sunken top, and with the diameters of the burial mounds varying from 3 to 25.4 m, e.g. the Balikun-Dongheigou cemetery and the Balikun-Heigouliang cemetery. The Yiwu-Bai’erqi and the Yiwu-Kuola cemeteries contained either round stone burial mounds or circular stone kerbs on the ground surface. Considering the three burial elements including burial mounds, stone pits and circular kerbs, the later period cemeteries in the Balikun Grassland were actually similar to cemeteries from the southern edge of the Altai Mountain area.

From Shuicheng (2006):

The Nanwan 南湾 cemetery site at Kuisu 奎苏 Town, Balikun 巴里坤 (1600–1100 BC) also yielded an assemblage of early bronzes. The style of its early phase artifacts is similar to that of the burials distributed in the North Tianshan Route. Some sorts of cultural connection should have existed between the two.

The dates of Yanbulake 焉不拉克 Culture (1300–700 BC) are comparatively late. Its metallurgy was a continuation of the western China tradition. Artifact types include a variety of utilitarian tools, weapons and apparels.

tocharians-bronze-age-late
Prehistoric cultures of Xinjiang during the Late Bronze Age. See full culture and ancient DNA maps.

3.3. The Turpan Basin-the middle part of Tian Shan

From Yang (2019):

Turpan Basin is located at the western part of the Hami Basin, and lies at the southern edge of the eastern Tian Shan. In the Turpan Basin-the middle part of Tian Shan area, the main representative of the Bronze Age cemeteries is the Yanghai Nr.1 cemetery. The features here were:

  • Elliptic earth pit graves, commonly covered by round logs on the top;
  • Some graves contained burial beds made of round logs or reeds;
  • The dead were mainly placed lying straight on the back;
  • Mostly a single dead in one grave.

In Iron Age, the stone burials became dominant, but the stone burials varied in different regions of the Turpan Basin-the middle part of Tian Shan area. Graves containing burial mounds, stone pit, and circular stone kerbs are represented by the Shanshan-Ertanggou cemetery, the Tuokexun-Alagou cemetery, the Urumqi-Chaiwobu cemetery and the Urumqi-Yizihu-Sayi cemetery, etc. The stone funeral construction features here are similar to those contemporary cemeteries in the Hami Basin-the Balikun Grassland area.

3.4. The southern edge of the western and middle part of Tian Shan

In the southern edge of the western and middle part of Tian Shan area, the main representatives of the late Bronze Age cemeteries are the Hejing-Chawuhu Nr.4 cemetery (around 1000-500 bce), the Hejing-Xiaoshankou cemetery, the Baicheng-cemetery, etc. The main burial features of the late Bronze Age and the early Iron Age cemeteries (see Fig.12) here were:

  • Burial mounds, constructed by stones or a mix of stones and earth;
  • Irregular circular or rectangular stone kerbs;
  • Stone pit graves in a bell-shape or a rectangular shape;
  • Stone pit graves constructed by imbedding pebbles or stone slabs in walls and floors;
  • The dead were often placed lying on their back with bent legs;
  • The dead were commonly reburied a second time with multiple burials.

From the late Bronze Age to the early Iron Age in this area, the burial traditions tended to be in a more varied way. In the stone burials with stone kerbs, there is a mixture of stone pit and earth pit graves. The burial features of the Iron Age cemeteries in this section were similar to those contemporary both in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area.

From Shuicheng (2006):

The Chawuhu 察吾呼 Culture (1100–500 BC) distributes on the foothills between the middle section of the Tianshan Mountain Ranges and Tarim River. Its bronze assemblage comprises a variety of weapons, utilitarian tools and small apparels. They show no apparent temporal change in form and type through the four cultural phases. In addition, bronzes bear the Chawuhu characteristics were found in Hejing 和静, Baicheng 拜城 and Luntai 轮台 (Bügür). Yet, sites distributed along the Tarim River, such as Heshuo 和硕, Kuga 库车and Aksu 阿克苏, yielded remains of a bronze culture different from that of Chawuhu. Bronzes recovered include double-eared socketed axe, arrowheads, awls, knives, needles and bracelets. Their absolute dates have been estimated to be earlier than that of Chawuhu.

tocharians-iron-age-early
Prehistoric cultures of Xinjiang during the Early Iron Age. See full culture and ancient DNA maps

3.5. The Pamir Plateau

From Yang (2019):

A typical Bronze Age cemetery from the Pamir Plateau area is the Tashenku’ergan-Xiabandi cemetery (around 1000-500 bce). The burial features here were:

  • Mainly inhumations, but also a few cremations;
  • Burial mounds, constructed of stones;
  • Irregular circular or rectangular stone kerbs;
  • Mostly a single dead in one grave;
  • The dead was placed in a hocker position lying on one side.

The adoption of burial customs from the east supports the migration of Afanasievo-related peoples from the Tian Shan up to the Pamir Plateau, strongly influencing the findings of the Xiabandi cemetery, which has been dated from an early Bronze Age phase (ca. 1500-300 BC) to a late date up to ca. 600 BC.

While it is today unclear how far the Afanasievo admixture reached into the western Xinjiang, it seems that the Pamir Plateau remained culturally connected to neighbouring Andronovo-related cultures in pottery and metallurgical innovations, hence their language probably belonged – during most part of the Bronze and Iron Ages – to the Indo-Iranian branch, even though specific dialects might have changed with each new attested group.

In particular, it is possible that the early Andronovo groups related to the Xiaohe Horizon spoke Indo-Aryan or West Iranian dialects, while Saka-related groups replaced them – or an intermediate Tocharian-speaking group – with East Iranian dialects. A close interaction with West Iranian would justify the known ancient borrowings of Tocharian, although they could also be explained by contacts with Chust-related groups farther west. For more on this, see Ged Carling’s work on the different layers of Iranian loans.

Xinjiang BA/IA Summary

From Yang (2019):

In the early Bronze Age, there are distinct regional differences in the burial customs in and surrounding the Tarim Basin. At the southern edge of the Altai Mountains area, the burial customs included stone burial mounds, stone pit graves, circular or rectangular stone kerbs and stone human sculptures; the dead were placed lying straight on the back. In the Hami Basin-the Balikun Grassland area, the burial customs included earth pit graves; the dead were placed in a hocker position lying on one side. In the Turpan Basin-the middle part of Tian Shan area, the burial customs included earth pit graves; the dead were placed lying straight on the back. In the Lop Nur region, the burial customs included wooden coffins buried in sand; the dead were placed lying straight on the back.

But from the late Bronze Age to the early Iron Age, there was a common shift in burial customs from earth pit graves to stone burials in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area. The main features of the stone burials include stone burial mounds, circular or rectangular stone kerbs, and the stone pit graves in the cemeteries. Similar stone burial customs commonly appeared at the southern edge of the western and middle part of Tian Shan area and the Pamir Plateau area in Iron Age. The burial features in most areas are in a mixture of both the earth pit graves and stone pit graves, especially in the Hami Basin-the Balikun Grassland area and the Turpan Basin-the middle part of Tian Shan area.

xinjiang-bronze-age-iron-age

From Shuicheng (2006):

Historians of metallurgy conducted metallographic analyses on a sample of 234 metal specimens recovered from 16 localities in eastern Xinjiang. They concluded that the metallurgic industry in eastern Xinjiang could be roughly partitioned into three developmental phases. The early phase is represented by the burials distributed in the North Tianshan Route. The majority of the metal assemblage was tin-bronzes; however, copper and arsenic-bronzes maintained considerable proportions. The middle phase is represented by the burials at Yanbulake. During this phase, tin-bronze still maintained the majority; the proportion of arsenic-bronze increased, and some of them were high arsenic-bronzes. The late phase is represented by the burials at Heigouliang 黑沟梁. The composition of lead increased in the bronze alloy in the expense of arsenic. In addition, this phase witnessed the appearance of high tin-bronze that composed up to 16% of tin and the appearance of brass, that is, an alloy of copper and zinc. The bronze alloy consistently contained significant amount of impurities regardless of temporal difference. Casting and forging technologies coexisted throughout the three phases. The early bronzes (2000–500 BC) of eastern Xinjiang, in general, contained arsenic; however, the composition of arsenic was usually under 8%, but a few artifacts contained more than 20% arsenic. In all, arsenic had long been used in the alloy-forming of the early bronzes in eastern Xinjiang. Consequently, arsenic-bronzes were widely found in the prehistoric archaeology of the region. The artifact types, chemical compositions and manufacture techniques of the bronze assemblage of the burials of the North Tianshan Route are similar to those of Siba Culture, indicating that eastern Xinjiang had played a significant role in the East-West interactions.

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic-bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority.

tocharians-iron-age-late
Prehistoric cultures of Xinjiang during the Late Iron Age. See full culture and ancient DNA maps.

Tocharians in population genomics

Prehistoric population movements between the Altai and the Tian Shan are difficult to pinpoint, not the least because of the division of these territories among three different countries and their archaeological teams, only recently (more) open to the international scholarship.

The available schematic archaeological picture, where migrations could only be roughly inferred, has been recently updated to a great extent by Ning, Wang et al. (2019), whose genetic analysis of the samples is as thorough as anyone could have asked for, with a level of detail which matches the complex genetic picture of the region by the Iron Age.

As a summary, here is what they described about the samples from Shirenzigou (ca 400-200 BC), corresponding to the Iron Age populations of the Hami Basin-the Balikun Grassland area, and closely related to the preceding Yanbulake Culture:

As shown in Figure S3, the Steppe_MLBA populations including Srubnaya, Andronovo, and Sintashta were shifted toward farming populations compared with Yamnaya groups and the Shirenzigou samples. This observation is consistent with ADMIXTURE analysis that Steppe_MLBA populations have an Anatolian and European farmer-related component that Yamnaya groups and the Shirenzigou individuals do not seem to have. The analysis consistently suggested Yamnaya-related Steppe populations were the better source in modeling the West Eurasian ancestry in Shirenzigou.

biplot-yamnaya-tocharians-shirenzigou
Biplot of f3-outgroup tests illustrating the Kostenki14 and Anatolia_N like ancestries in Shirenzigou individuals. Most Shirenzigou individuals were on a cline with Yamnaya and European hunter-gatherer groups, lacking the European farmer ancestry as compared to the Steppe_MLBA populations such as Andronovo, Srubnaya and Sintashta [S1-S5]. Horizontal and vertical bars represent ± 3 standard errors, corresponding to form of outgroup f3 tests on the x axis and y axis respectively.

We continued to use qpAdm to estimate the admixture proportions in the Shirenzigou samples by using different pairs of source populations, such as Yamnaya_Samara, Afanasievo, Srubnaya, Andronovo, BMAC culture (Bustan_BA and Sappali_ Tepe_BA) and Tianshan_Hun as the West Eurasian source and Han, Ulchi, Hezhen, Shamanka_EN as the East Eurasian source. In all cases, Yamnaya, Afanasievo, or Tianshan_Hun always provide the best model fit for the Shirenzigou individuals, while Srubnaya, Andronovo, Bustan_BA and Sappali_Tepe_BA only work in some cases.

p-values-shirenzigou-samples-han-chinese
Table S2. P values in modelling a two-way (P=rank 1) admixture in Shirenzigou samples using each of the four populations (Bustan_BA, Sappali_Tepe_BA, Andronovo.SG, Srubnaya) together with Han Chinese as two sources [S6], Related to Figure 2. We used the following set of outgroups populations: Dinka, Ust_Ishim, Kostenki14, Onge, Papuan, Australian, Iran_N, EHG, LBK_EN.

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

In the PCA, ADMIXTURE, outgroup f3 statistics [see Figure S4], as well as f4 statistics (Table S3), we observed the Shirenzigou individuals were closer to the present day Tungusic and Mongolic-speaking populations in northern Asia than to the populations in central and southern China, suggesting the northern populations might contribute more to the Shirenzigou individuals. Based on this, we then modeled Shirenzigou as a three-way admixture of Yamnaya_Samara, Ulchi (or Hezhen) and Han to infer the source from the East Eurasia side that contributed to Shirenzigou. We found the Ulchi or Hezhen and Han-related ancestry had a complicated and unevenly distribution in the Shirenzigou samples. The most Shirenzigou individuals derived the majority of their East Eurasian ancestry from Ulchi or Hezhen-related populations, while the following two individuals M820 and M15-2 have more Han related than Ulchi/ Hezhen-related ancestry

It is unclear whether the Chemurchek population will show a sizeable local contribution from neighbouring groups. The fact that Okunevo shows 20% Yamnaya-related ancestry strongly supports the nature of neighbouring stone-grave-building peoples of the Altai and the northern Tian Shan as mostly Afanasievo-like, and the apparent lack of contributions of Srubna/Andronovo-like ancestry in the early Hami-Balikun stone burial builders also speaks for radical population replacement events reaching the areas south of Tian Shan, at least initially.

While ancestry cannot settle linguistic questions, it seems that nomads of the Gansu and Qinghai grasslands retained an ancestry close to Andronovo, whereas nomads of the Hami Basin-Balikun grasslands and related populations of Xinjiang remained closely related to Afanasievo. This doesn’t preclude that the ancestors of the Yuezhi became acculturated under the influence of peoples from eastern Xinjiang, but all data combined suggest an isolation of both populations – relative to other groups and to each other – and it is therefore more likely that they spoke Indo-Iranian-related languages rather than a language of the Tocharian branch.

Haplogroups

In an interesting twist of events, despite the initially reported hg. R1b and Q, Tocharians from Shirenzigou actually show a haplogroup diversity comparable to that attested in other late Iron Age populations: a similar diversity is seen, for example, among Germanic, Baltic, and Balto-Finnic peoples of the Baltic region; among East Germanic or Scythians of the north Pontic region; or among Mediterranean peoples sampled to date. Iron Age peoples show thus a complex sociopolitical setting that overcame the previous patrilineal homogeneity of Bronze Age expansions.

tocharians-pca
PCA and ADMIXTURE for Shirenzigou Samples. Modified from the original to include in black squares samples related to Yamnaya. Modified from the paper to include labels of modern populations and a dotted lines with the cline formed by Shirenzigou, from (Yamnaya-like) Afanasievo to Central and East Asian-like populations. In red circles, samples with best fit for Andronovo-like ancestry. In green circles, samples with Han-related admixture.

M15-2 (with Han-related ancestry) is of the rare haplogroup Q1a-M120, while the samples with highest Steppe_MLBA-related ancestry are of hg. R1b-PH155, which points to their recent origin among Yuezhi, or to Hun-related populations showing an admixture related to the proto-historic nomads of the Gansu and Qinghai grasslands.

The expansion of Chemurchek-related peoples was probably associated more with hg. Q1a (dubious if it’s a Pre-ISOGG 2017 nomenclature, hence possibly Q1b), a haplogroup that might be found in Khvalynsk as a “significant minority” according to Anthony (2019), and it might also be attested in sampled individuals from Afanasievo in its late phase. This might be, therefore, a case similar to the early expansion of Indo-Europeans with R1b-V1636 lineages through the Volga – North Caucasus region, and of the later expansion with I2a-L699 lineages into the Balkans.

Haplogroup Q1a2-M25 is found in individual X3, whose Steppe ancestry is likely a combination of Afanasievo plus Andronovo-like ancestry heavily admixed with Hezhen/Ulchi-like populations, in line with the expected recent contacts with the neighbouring Xiongnu, Yuezhi, and other population movements affecting eastern Xinjiang.

Sample M4, which packs the most Afanasievo-like ancestry, is of hg. R1a-Z645, which – like sample M8R1 of hg. O – is most likely related to haplogroup resurgence events of local populations, which left the predominant Afanasievo-like admixture brought by builders of stone burials essentially intact, evidenced by the almost 100% of R1a found in the Xiaohe cemetery – and in most of the early Andronovo horizon – and among expanding Kangju and Wusun, as well as by the prevalence of hg. O among sampled East Asian populations.

A question that will only be answered with more samples is how and when the prevalent R1b-L23 and Q1b lineages among Afanasievo-related peoples began to be replaced to reach the high variability seen in Shirenzigou. Given the pastoralist nature of peoples around Tian Shan, the succeeding expansions of Proto-Tocharians, and the late isolation of different Common Tocharian groups, it is more than likely that this variability represents a late and local phenomenon within Xinjiang itself.

tocharians-antiquity
Peoples of Xinjiang during Antiquity. See full culture and ancient DNA maps.

Conclusion

Tocharians are one of the main pillars that confirm the Late Proto-Indo-European homeland of the R1b-rich populations of the Don-Volga region. There is already:

Just like the East Bell Beaker expansion from Yamnaya Hungary has confirmed that Corded Ware peoples did not partake in spreading Indo-European languages (spreading Uralic languages instead), data on the expansion of Tocharian speakers from Afanasievo to the Tian Shan was always there; population genomics is merely helping to connect the dots.

In summary, genetic research is supporting the expected linguistic expansions of the Neolithic and Bronze Age step by step, slowly but surely.

Related

North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

Corded Ware ancestry in North Eurasia and the Uralic expansion

uralic-clines-nganasan

Now that it has become evident that Late Repin (i.e. Yamnaya/Afanasevo) ancestry was associated with the migration of R1b-L23-rich Late Proto-Indo-Europeans from the steppe in the second half of the the 4th millennium BC, there’s still the question of how R1a-rich Uralic speakers of Corded Ware ancestry expanded , and how they spread their languages throughout North Eurasia.

Modern North Eurasians

I have been collecting information from the supplementary data of the latest papers on modern and ancient North Eurasian peoples, including Jeong et al. (2019), Saag et al. (2019), Sikora et al. (2018), or Flegontov et al. (2019), and I have tried to add up their information on ancestral components and their modern and historical distributions.

Fortunately, the current obsession with simplifying ancestry components into three or four general, atemporal groups, and the common use of the same ones across labs, make it very simple to merge data and map them.

Corded Ware ancestry

There is no doubt about the prevalent ancestry among Uralic-speaking peoples. A map isn’t needed to realize that, because ancient and modern data – like those recently summarized in Jeong et al. (2019) – prove it. But maps sure help visualize their intricate relationship better:

natural-modern-srubnaya-ancestry
Natural neighbor interpolation of Srubnaya ancestry among modern populations. See full map.
kriging-modern-srubnaya-ancestry
Kriging interpolation of Srubnaya ancestry among modern populations. See full map

Interestingly, the regions with higher Corded Ware-related ancestry are in great part coincident with (pre)historical Finno-Ugric-speaking territories:

uralic-languages-modern
Modern distribution of Uralic languages, with ancient territory (in the Common Era) labelled and delimited by a red line. For more information on the ancient territory see here.

Edit (29/7/2019): Here is the full Steppe_MLBA ancestry map, including Steppe_MLBA (vs. Indus Periphery vs. Onge) in modern South Asian populations from Narasimhan et al. (2018), apart from the ‘Srubnaya component’ in North Eurasian populations. ‘Dummy’ variables (with 0% ancestry) have been included to the south and east of the map to avoid weird interpolations of Steppe_MLBA into Africa and East Asia.

modern-steppe-mlba-ancestry2
Natural neighbor interpolation of Steppe MLBA-like ancestry among modern populations. See full map.

Anatolia Neolithic ancestry

Also interesting are the patterns of non-CWC-related ancestry, in particular the apparent wedge created by expanding East Slavs, which seems to reflect the intrusion of central(-eastern) European ancestry into Finno-Permic territory.

NOTE. Read more on Balto-Slavic hydrotoponymy, on the cradle of Russians as a Finno-Permic hotspot, and about Pre-Slavic languages in North-West Russia.

natural-modern-lbk-en-ancestry
Natural neighbor interpolation of LBK EN ancestry among modern populations. See full map.
kriging-modern-lbk-en-ancestry
Kriging interpolation of LBK EN ancestry among modern populations. See full map

WHG ancestry

The cline(s) between WHG, EHG, ANE, Nganasan, and Baikal HG are also simplified when some of them excluded, in this case EHG, represented thus in part by WHG, and in part by more eastern ancestries (see below).

modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations. See full map.
kriging-modern-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Arctic, Tundra or Forest-steppe?

Data on Nganasan-related vs. ANE vs. Baikal HG/Ulchi-related ancestry is difficult to map properly, because both ancestry components are usually reported as mutually exclusive, when they are in fact clearly related in an ancestral cline formed by different ancient North Eurasian populations from Siberia.

When it comes to ascertaining the origin of the multiple CWC-related clines among Uralic-speaking peoples, the question is thus how to properly distinguish the proportions of WHG-, EHG-, Nganasan-, ANE or BaikalHG-related ancestral components in North Eurasia, i.e. how did each dialectal group admix with regional groups which formed part of these clines east and west of the Urals.

The truth is, one ought to test specific ancient samples for each “Siberian” ancestry found in the different Uralic dialectal groups, but the simplistic “Siberian” label somehow gets a pass in many papers (see a recent example).

Below qpAdm results with best fits for Ulchi ancestry, Afontova Gora 3 ancestry, and Nganasan ancestry, but some populations show good fits for both and with similar proportions, so selecting one necessarily simplifies the distribution of both.

Ulchi ancestry

modern-ulchi-ancestry
Natural neighbor interpolation of Ulchi ancestry among modern populations. See full map.
kriging-modern-ulchi-ancestry
Kriging interpolation of Ulchi ancestry among modern populations. See full map.

ANE ancestry

natural-modern-ane-ancestry
Natural neighbor interpolation of ANE ancestry among modern populations. See full map.
kriging-modern-ane-ancestry
Kriging interpolation of ANE ancestry among modern populations. See full map.

Nganasan ancestry

modern-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among modern populations. See full map.
kriging-modern-nganasan-ancestry
Kriging interpolation of Nganasan ancestry among modern populations. See full map.

Iran Chalcolithic

A simplistic Iran Chalcolithic-related ancestry is also seen in the Altaic cline(s) which (like Corded Ware ancestry) expanded from Central Asia into Europe – apart from its historical distribution south of the Caucasus:

modern-iran-chal-ancestry
Natural neighbor interpolation of Iran Neolithic ancestry among modern populations. See full map.
kriging-modern-iran-neolithic-ancestry
Kriging interpolation of Iran Chalcolithic ancestry among modern populations. See full map.

Other models

The first question I imagine some would like to know is: what about other models? Do they show the same results? Here is the simplistic combination of ancestry components published in Damgaard et al. (2018) for the same or similar populations:

NOTE. As you can see, their selection of EHG vs. WHG vs. Nganasan vs. Natufian vs. Clovis of is of little use, but corroborate the results from other papers, and show some interesting patterns in combination with those above.

EHG

damgaard-modern-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-ehg-ancestry
Kriging interpolation of EHG ancestry among modern populations. See full map.

Natufian ancestry

damgaard-modern-natufian-ancestry
Natural neighbor interpolation of Natufian ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-natufian-ancestry
Kriging interpolation of Natufian ancestry among modern populations. See full map.

WHG ancestry

damgaard-modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Baikal HG ancestry

damgaard-modern-baikalhg-ancestry
Natural neighbor interpolation of Baikal hunter-gatherer ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-baikal-hg-ancestry
Kriging interpolation of Baikal HG ancestry among modern populations. See full map.

Ancient North Eurasians

Once the modern situation is clear, relevant questions are, for example, whether EHG-, WHG-, ANE, Nganasan-, and/or Baikal HG-related meta-populations expanded or became integrated into Uralic-speaking territories.

When did these admixture/migration events happen?

How did the ancient distribution or expansion of Palaeo-Arctic, Baikalic, and/or Altaic peoples affect the current distribution of the so-called “Siberian” ancestry, and of hg. N1a, in each specific population?

NOTE. A little excursus is necessary, because the calculated repetition of a hypothetic opposition “N1a vs. R1a” doesn’t make this dichotomy real:

  1. There was not a single ethnolinguistic community represented by hg. R1a after the initial expansion of Eastern Corded Ware groups, or by hg. N1a-L392 after its initial expansion in Siberia:
  2. Different subclades became incorporated in different ways into Bronze Age and Iron Age communities, most of which without an ethnolinguistic change. For example, N1a subclades became incorporated into North Eurasian populations of different languages, reaching Uralic- and Indo-European-speaking territories of north-eastern Europe during the late Iron Age, at a time when their ancestral origin or language in Siberia was impossible to ascertain. Just like the mix found among Proto-Germanic peoples (R1b, R1a, and I1)* or among Slavic peoples (I2a, E1b, R1a)*, the mix of many Uralic groups showing specific percentages of R1a, N1a, or Q subclades* reflect more or less recent admixture or acculturation events with little impact on their languages.

*other typically northern and eastern European haplogroups are also represented in early Germanic (N1a, I2, E1b, J, G2), Slavic (I1, G2, J) and Finno-Permic (I1, R1b, J) peoples.

ananino-culture-new
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

The problem with mapping the ancestry of the available sampling of ancient populations is that we lack proper temporal and regional transects. The maps that follow include cultures roughly divided into either “Bronze Age” or “Iron Age” groups, although the difference between samples may span up to 2,000 years.

NOTE. Rough estimates for more external groups (viz. Sweden Battle Axe/Gotland_A for the NW, Srubna from the North Pontic area for the SW, Arctic/Nganasan for the NE, and Baikal EBA/”Ulchi-like” for the SE) have been included to offer a wider interpolated area using data already known.

Bronze Age

Similar to modern populations, the selection of best fit “Siberian” ancestry between Baikal HG vs. Nganasan, both potentially ± ANE (AG3), is an oversimplification that needs to be addressed in future papers.

Corded Ware ancestry

bronze-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Bronze Age populations. See full map.

Nganasan-like ancestry

bronze-age-nganasan-like-ancestry
Natural neighbor interpolation of Nganasan-like ancestry among Bronze Age populations. See full map.

Baikal HG ancestry

bronze-age-baikal-hg-ancestry
Natural neighbor interpolation of Baikal Hunter-Gatherer ancestry among Bronze Age populations. See full map.

Afontova Gora 3 ancestry

bronze-age-afontova-gora-ancestry
Natural neighbor interpolation of Afontova Gora 3 ancestry among Bronze Age populations. See full map.

Iron Age

Corded Ware ancestry

Interestingly, the moderate expansion of Corded Ware-related ancestry from the south during the Iron Age may be related to the expansion of hg. N1a-VL29 into the chiefdom-based system of north-eastern Europe, including Ananyino/Akozino and later expanding Akozino warrior-traders around the Baltic Sea.

NOTE. The samples from Levänluhta are centuries older than those from Estonia (and Ingria), and those from Chalmny Varre are modern ones, so this region has to be read as a south-west to north-east distribution from the Iron Age to modern times.

iron-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Iron Age populations. See full map.

Baikal HG-like ancestry

The fact that this Baltic N1a-VL29 branch belongs in a group together with typically Avar N1a-B197 supports the Altaic origin of the parent group, which is possibly related to the expansion of Baikalic ancestry and Iron Age nomads:

iron-age-baikal-ancestry
Natural neighbor interpolation of Baikal HG ancestry among Iron Age populations. See full map.

Nganasan-like ancestry

The dilution of Nganasan-like ancestry in an Arctic region featuring “Siberian” ancestry and hg. N1a-L392 at least since the Bronze Age supports the integration of hg. N1a-Z1934, sister clade of Ugric N1a-Z1936, into populations west and east of the Urals with the expansion of Uralic languages to the north into the Tundra region (see here).

The integration of N1a-Z1934 lineages into Finnic-speaking peoples after their migration to the north and east, and the displacement or acculturation of Saami from their ancestral homeland, coinciding with known genetic bottlenecks among Finns, is yet another proof of this evolution:

iron-age-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among Iron Age populations. See full map.

WHG ancestry

Similarly, WHG ancestry doesn’t seem to be related to important population movements throughout the Bronze Age, which excludes the multiple North Eurasian populations that will be found along the clines formed by WHG, EHG, ANE, Nganasan, Baikal HG ancestry as forming part of the Uralic ethnogenesis, although they may be relevant to follow later regional movements of specific populations.

iron-age-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Iron Age populations. See full map.

Conclusion

It seems natural that people used to look at maps of haplogroup distribution from the 2000s, coupled with modern language distributions, and would try to interpret them in a certain way, reaching thus the wrong conclusions whose consequences are especially visible today when ancient DNA keeps contradicting them.

In hindsight, though, assuming that Balto-Slavs expanded with Corded Ware and hg. R1a, or that Uralians expanded with “Siberian” ancestry and hg. N1a, was as absurd as looking at maps of ancestry and haplogroup distribution of ancient and modern Native Americans, trying to divide them into “Germanic” or “Iberian”…

The evolution of each specific region and cultural group of North Eurasia is far from being clear. However, the general trend speaks clearly in favour of an ancient, Bronze Age distribution of North Eurasian ancestry and haplogroups that have decreased, diluted, or become incorporated into expanding Uralians of Corded Ware ancestry, occasionally spreading with inter-regional expansions of local groups.

Given the relatively recent push of Altaic and Indo-European languages into ancestral Uralic-speaking territories, only the ancient Corded Ware expansion remains compatible with the spread of Uralic languages into their historical distribution.

Related

A Song of Sheep and Horses, revised edition, now available as printed books

cover-song-sheep-and-horses

As I said 6 months ago, 2019 is a tough year to write a blog, because this was going to be a complex regional election year and therefore a time of political promises, hence tenure offers too. Now the preliminary offers have been made, elections have passed, but the timing has slightly shifted toward 2020. So I may have the time, but not really any benefit of dedicating too much effort to the blog, and a lot of potential benefit of dedicating any time to evaluable scientific work.

On the other hand, I saw some potential benefit for publishing texts with ISBNs, hence the updates to the text and the preparation of these printed copies of the books, just in case. While Spain’s accreditation agency has some hard rules for becoming a tenured professor, especially for medical associates (whose years of professional experience are almost worthless compared to published peer-reviewed papers), it is quite flexible in assessing one’s merits.

However, regional and/or autonomous entities are not, and need an official identifier and preferably printed versions to evaluate publications, such as an ISBN for books. I took thus some time about a month ago to update the texts and supplementary materials, to publish a printed copy of the books with Amazon. The first copies have arrived, and they look good.

series-song-sheep-horses-cover

Corrections and Additions

Titles
I have changed the names and order of the books, as I intended for the first publication – as some of you may have noticed when the linguistic book was referred to as the third volume in some parts. In the first concept I just wanted to emphasize that the linguistic work had priority over the rest. Now the whole series and the linguistic volume don’t share the same name, and I hope this added clarity is for the better, despite the linguistic volume being the third one.

Uralic dialects
I have changed the nomenclature for Uralic dialects, as I said recently. I haven’t really modified anything deeper than that, because – unlike adding new information from population genomics – this would require for me to do a thorough research of the most recent publications of Uralic comparative grammar, and I just can’t begin with that right now.

Anyway, the use of terms like Finno-Ugric or Finno-Samic is as correct now for the reconstructed forms as it was before the change in nomenclature.

west-east-uralic-schema

Mediterranean
The most interesting recent genetic data has come from Iberia and the Mediterranean. Lacking direct data from the Italian Peninsula (and thus from the emergence of the Etruscan and Rhaetian ethnolinguistic community), it is becoming clearer how some quite early waves of Indo-Europeans and non-Indo-Europeans expanded and shrank – at least in West Iberia, West Mediterranean, and France.

Finno-Ugric
Some of the main updates to the text have been made to the sections on Finno-Ugric populations, because some interesting new genetic data (especially Y-DNA) have been published in the past months. This is especially true for Baltic Finns and for Ugric populations.

ananino-culture-new

Balto-Slavic
Consequently, and somehow unsurprisingly, the Balto-Slavic section has been affected by this; e.g. by the identification of Early Slavs likely with central-eastern populations dominated by (at least some subclades of) hg. I2a-L621 and E1b-V13.

Maps
I have updated some cultural borders in the prehistoric maps, and the maps with Y-DNA and mtDNA. I have also added one new version of the Early Bronze age map, to better reflect the most likely location of Indo-European languages in the Early European Bronze Age.

As those in software programming will understand, major changes in the files that are used for maps and graphics come with an increasing risk of additional errors, so I would not be surprised if some major ones would be found (I already spotted three of them). Feel free to communicate these errors in any way you see fit.

bronze-age-early-indo-european
European Early Bronze Age: tentative langage map based on linguistics, archaeology, and genetics.

SNPs
I have selected more conservative SNPs in certain controversial cases.

I have also deleted most SNP-related footnotes and replaced them with the marking of each individual tentative SNP, leaving only those footnotes that give important specific information, because:

  • My way of referencing tentative SNP authors did not make it clear which samples were tentative, if there were more than one.
  • It was probably not necessary to see four names repeated 100 times over.
  • Often I don’t really know if the person I have listed as author of the SNP call is the true author – unless I saw the full SNP data posted directly – or just someone who reposted the results.
  • Sometimes there are more than one author of SNPs for a certain sample, but I might have added just one for all.
ancient-dna-all
More than 6000 ancient DNA samples compiled to date.

For a centralized file to host the names of those responsible for the unofficial/tentative SNPs used in the text – and to correct them if necessary -, readers will be eventually able to use Phylogeographer‘s tool for ancient Y-DNA, for which they use (partly) the same data I compiled, adding Y-Full‘s nomenclature and references. You can see another map tool in ArcGIS.

NOTE. As I say in the text, if the final working map tool does not deliver the names, I will publish another supplementary table to the text, listing all tentative SNPs with their respective author(s).

If you are interested in ancient Y-DNA and you want to help develop comprehensive and precise maps of ancient Y-DNA and mtDNA haplogroups, you can contact Hunter Provyn at Phylogeographer.com. You can also find more about phylogeography projects at Iain McDonald’s website.

Graphics
I have also added more samples to both the “Asian” and the “European” PCAs, and to the ADMIXTURE analyses, too.

I previously used certain samples prepared by amateurs from BAM files (like Botai, Okunevo, or Hittites), and the results were obviously less than satisfactory – hence my criticism of the lack of publication of prepared files by the most famous labs, especially the Copenhagen group.

Fortunately for all of us, most published datasets are free, so we don’t have to reinvent the wheel. I criticized genetic labs for not releasing all data, so now it is time for praise, at least for one of them: thank you to all responsible at the Reich Lab for this great merged dataset, which includes samples from other labs.

NOTE. I would like to make my tiny contribution here, for beginners interested in working with these files, so I will update – whenever I have time – the “How To” sections of this blog for PCAs, PCA3d, and ADMIXTURE.

-iron-age-europe-romans
Detail of the PCA of European Iron Age populations. See full versions.

ADMIXTURE
For unsupervised ADMIXTURE in the maps, a K=5 is selected based on the CV, giving a kind of visual WHG : NWAN : CHG/IN : EHG : ENA, but with Steppe ancestry “in between”. Higher K gave worse CV, which I guess depends on the many ancient and modern samples selected (and on the fact that many samples are repeated from different sources in my files, because I did not have time to filter them all individually).

I found some interesting component shared by Central European populations in K=7 to K=9 (from CEU Bell Beakers to Denmark LN to Hungarian EBA to Iberia BA, in a sort of “CEU BBC ancestry” potentially related to North-West Indo-Europeans), but still, I prefer to go for a theoretically more correct visualization instead of cherry-picking the ‘best-looking’ results.

Since I made fun of the search for “Siberian ancestry” in coloured components in Tambets et al. 2018, I have to be consistent and preferred to avoid doing the same here…

qpAdm
In the first publication (in January) and subsequent minor revisions until March, I trusted analyses and ancestry estimates reported by amateurs in 2018, which I used for the text adding my own interpretations. Most of them have been refuted in papers from 2019, as you probably know if you have followed this blog (see very recent examples here, here, or here), compelling me to delete or change them again, and again, and again. I don’t have experience from previous years, although the current pattern must have been evidently repeated many times over, or else we would be still talking about such previous analyses as being confirmed today…

I wanted to be one step ahead of peer-reviewed publications in the books, but I prefer now to go for something safe in the book series, rather than having one potentially interesting prediction – which may or may not be right – and ten huge mistakes that I would have helped to endlessly redistribute among my readers (online and now in print) based on some cherry-picked pairwise comparisons. This is especially true when predictions of “Steppe“- and/or “Siberian“-related ancestry have been published, which, for some reason, seem to go horribly wrong most of the time.

I am sure whole books can be written about why and how this happened (and how this is going to keep happening), based on psychology and sociology, but the reasons are irrelevant, and that would be a futile effort; like writing books about glottochronology and its intermittent popularity due to misunderstood scientist trends. The most efficient way to deal with this problem is to avoid such information altogether, because – as you can see in the current revised text – they wouldn’t really add anything essential to the content of these books, anyway.

Continue reading

Official site of the book series:
A Song of Sheep and Horses: eurafrasia nostratica, eurasia indouralica

“Dinaric I2a” and the expansion of Common Slavs from East-Central Europe

late-iron-age-eastern-europe

A recently published abstract for an upcoming chapter about Early Slavs shows the generalized view among modern researchers that Common Slavs did not spread explosively from the east, an idea proper of 19th-century Romantic views about ancestral tribes of pure peoples showing continuity since time immemorial.

Migrations and language shifts as components of the Slavic spread, by Lindstedt and Salmela, In: Language contact and the early Slavs, Eds. Tomáš Klír, Vít Boček, Universitätsverlag Winter (2019):

The rapid spread of the Proto-Slavic language in the second half of the first millennium CE was long explained by the migration of its speakers out of their small primary habitat in all directions. Starting from the 1980s, alternative theories have been proposed that present language shift as the main scenario of the Slavic spread, emphasizing the presumed role of Slavic as the lingua franca of the Avar Khaganate. Both the migration and the language shift scenarios in their extreme forms suffer from factual and chronological inaccuracy. On the basis of some key facts about human population genetics (the relatively recent common ancestry of the East European populations), palaeoclimatology (the Late Antique Little Ice Age from 536 to around 660 CE), and historical epidemiology (the Justinianic Plague), we propose a scenario that includes a primary rapid demographic spread of the Slavs followed by population mixing and language shifts to and from Slavic in different regions of Europe. There was no single reason for the Slavic spread that would apply to all of the area that became Slavic-speaking. The northern West Slavic area, the East Slavic area, and the Avar sphere and South-Eastern Europe exhibit different kinds of spread: mainly migration to a sparsely populated area in the northwest, migration and language shift in the east, and a more complicated scenario in the southeast. The remarkable homogeneity of Slavic up to the jer shift was not attributable to a lingua-franca function in a great area, as is often surmised. It was a founder effect: Proto-Slavic was originally a small Baltic dialect with little internal variation, and it took time for the individual Slavic languages to develop in different directions.

While I would need to read the whole chapter, in principle it seems easier to agree with this summary than with Curta’s (sort of diffuse) Danubian origin of Common Slavic, based on the likely origin of the Balto-Slavic expansion with the Trzciniec and/or Lusatian culture, close to the Baltic.

A multi-ethnic Chernyakhov culture

In a sneak peek to the expected Järve et al. (2019) paper in review, there are three Chernyakhov samples (ca. calAD 350-550) with different ancestry probably corresponding to the different regions where they stem from (see image below), which supports the idea that Iron Age eastern Europe was a true melting pot where the eventual language of the different cultures depended on many different factors:

chernyakhov-samples-region
Map of the samples from Järve et al. (2019).

From the paper:

The Chernyakhiv culture was likely an ethnically heterogeneous mix based on Goths (Germanic tribes) but also including Sarmatians, Alans, Slavs, late Scythians and Dacians – the entire ancient population of the northern coast of the Black Sea.

Contacts with neighbouring regions were active, and the Chernyakhiv culture is associated with a number of historical events that took place in Europe at that time. In particular, during the Scythian or Gothic wars of the 230s and 270s, barbarians living in the territory of the Chernyakhiv culture (Goths, Ferules, Carps, Bastarns, etc.) carried out regular raids across the Danube Limes of the Roman Empire. However, from the end of the 3rd century the relations of the barbarians with the Roman Empire gained a certain stability. From the reign of Constantine I the Goths, who were part of the Chernyakhiv culture, became federates (military allies) of the Empire.

The Goths also interacted with the inhabitants of the East European forest zone. The Roman historian Jordanes described the military campaigns of the Gothic king Ermanaric against northern peoples (the ancestors of Vends, Slavs, etc., and the inhabitants of the northern Volga region).

NOTE. As it has become traditional in writings about eastern Europe, ‘Slavs’ are assumed – for no particular reason – to be part of the ‘northern peoples of the forest’ since who knows when exactly, and thus appear mentioned in this very text simultaneously as part of Chernyakhov, but also part of peoples to the north of Chernyakhov warring against them…

admixture-chernyakhov
Proportions of Eastern Hunter-Gatherer (EHG, blue), Natufian (red) and Altaian (green) ancestries in Scythian/Sarmatian groups and groups pre- and postdating them inferred using the a) qpAdm and b) ChromoPainter/NNLS method. c–e Correlation of qpAdm and CP/NNLS proportions for the three putative sources evaluated. Steppe populations predating the Scythians: Yamnaya_Ukraine [26], Yamnaya_Kalmykia [15], Ukr_BA (this study). Scythians and Sarmatians: Nomad_IA [15], Scythian_East and Sarmatian_SU [3], Hungarian Scythian, Sarmatian, Central Saka, Tian Shan Saka and Tagar [1], Scy_Ukr, ScySar_SU and Scy_Kaz (this study). Population postdating the Scythians: Chern (this study). See also Table S3.

Genetic variation

(…) the Chernyakhiv samples overlapped with modern Europeans, representing the most ‘western’ range of variation among the groups of this study.

After the end of the Scythian period in the western Eurasian Steppe, the Chernyakhiv culture samples have higher Near Eastern affinity compared to the Scythians preceding them, agreeing with the Gothic component in the multi-ethnic mix of the Chernyakhiv culture.

The higher proportion Near Eastern and (according to CP/NNLS) lower proportion of eastern ancestry in the Chernyakhiv culture samples were mirrored by f4 analyses where Chern showed lower affinity to Han (Z score –3.097) and EHG (Z score –3.643) than Ukrainian Scythian and Bronze Age samples, respectively, as well as higher Near Eastern (Levant_N and Anatolia_N) affinity than Ukrainian Scythians (Z scores 4.696 and 3.933, respectively). It is plausible to assume that this excess Near Eastern ancestry in Chern is related to European populations whose Near Eastern proportion has exceeded that in the steppe populations since the Neolithic expansion of early farmers. While the Chernyakhiv culture was likely ethnically heterogeneous, the three samples in our Chern group appear to represent its Gothic component.

chernyakhov-goths-uralic-clines
PCA obtained by projecting the ancient samples of this study together with published Scythian/Sarmatian and related samples onto a plot based on 537,802 autosomal SNPs in 1,422 modern Eurasians. To improve readability, the modern populations have been plotted as population medians (after outlier removal). Image modified from the paper, including Sredni Stog, Corded Ware/Uralic (with Srubna outliers) and Chernyakhov clusters.Notice the two new Late Yamna and Catacomb samples from Ukraine clustering with other published samples, despite being from the same region as Sredni Stog individuals.

Early Slavs of hg. I2-L621

A post in Anthrogenica shows some subclades of the varied haplogroups that are expected from medieval Poland:

KO_55, Kowalewko (100-300 AD), I1a3a1a1-Y6626
KO_45, Kowalewko (100-300 AD), I2a2a1b2a-L801
KO_22, Kowalewko (100-300 AD), G2a2b-L30
KO_57, Kowalewko (100-300 AD), G2a2b-L30

ME_7, Markowice (1000-1200 AD), I1a2a2a5-Y5384
NA_13, Niemcza, (900-1000 AD), I2a1b2-L621
NA_18, Niemcza, (900-1000 AD), J2a1a-L26

Just because of these samples among Early Slavs, and looking again more carefully at the modern distribution of I2a-L621 subclades, I think now I was wrong in assuming that I2a-L621 in early Hungarian Conquerors would mean they would appear around the Urals as a lineage integrated in Eastern Corded Ware groups. It seems rather a haplogroup with an origin in Central Europe. Whether it was part of a Baltic community that expanded south, or was incorporated during the expansions to the south is unclear. Like hg. E-V13, it doesn’t seem to have been incorporated precisely along the Danube, but closer to the north-east Carpathians.

Especially interesting is the finding of I2a-L621 among Early Slavs from Silesia, a zone of close interaction among early West Slavs. From Curta (2019):

On Common Slavs

In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland.

On Great Moravia

Svatopluk’s remarkably strong position was immediately recognized by Pope John VIII, who ordered the immediate release of Methodius from his monastic prison in order to place him in 873 under Svatopluk’s protection. One year later (874), Louis the German himself was forced to recognize Svatopluk’s independence through the peace of Forchheim. By that time, the power of Svatopluk had extended into the upper Vistula Basin, over Bohemia, the lands between the Saale and the Elbe rivers, as well as the northern and northeastern parts of the Carpathian Basin.* The Czech prince Bořivoj, a member of the Přemyslid family which would unify and rule Bohemia in the following century, is believed to have been baptized in 874 by Methodius in Moravia together with his wife Ludmila (St. Wenceslas’s grandmother).

*Brather, Archäologie, p. 71. The expansion into the region of the Upper Vistula (Little Poland) results from one of St. Methodius’ prophecies, for which see the Life of Methodius 11, p. 72; Poleski, “Contacts between the Great Moravian empire and the tribes”; Poleski, “Contacts between the tribes in the basins.” Despite an early recognition of the Moravian influences on the material culture in 9th-century southern Poland and Silesia (e.g., Dostál, “Das Vordringen”), the question of Svatopluk’s expansion has triggered in the 1990s a fierce debate among Polish archaeologists. See Wachowski, “Problem”; Abłamowicz, “Górny Śląsk”; Wachowski, “Północny zasięg ekspansji”; Szydłowski, “Czy ślad”; Jaworski, “Elemente.”

On Piast Poland

Mieszko agreed to marry Oda, the daughter of the margrave of the North March, for his first wife had died in 977. The marriage signaled a change in the relations with the Empire, for Mieszko sent troops to help Otto II against the Slavic rebels of 983. He also attacked Bohemia and incorporated Silesia and Lesser Poland into the Piast realm, which prompted Bohemians to ally themselves with the Slavic rebels against whom Emperor Otto was now fighting. By 980, therefore, Mieszko was part of a broader configuration of power, and his political stature was recognized in Scandinavia as well. His daughter, Swietoslawa married first Erik Segersäll of Sweden (ca. 970–ca. 995) and then Sweyn Forkbeard of Denmark (986–1014).26 In the early 990s, together with his wife and children, Mieszko offered his state (called “civitas Schinesghe,” the state of Gniezno) to the pope as a fief, as attested by a unique document known as Dagome iudex and preserved in a late 11th-century summary. The document describes the inner boundaries of the state and peripheral provinces, as if Gniezno were a civitas (city) in Italy, with its surrounding territory. Regional centers, however, did indeed come into being shortly before AD 1000 in Lesser Poland (Cracow, Sandomierz), Pomerania (Gdańsk), and Silesia (Wrocław). Such regional centers came to be distinguished from other strongholds by virtue of the presence within their walls of some of the earliest churches built in stone. Mieszko got his own, probably missionary bishop.

In light of this recent find, which complements the Early Slav of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, we can assume now less speculatively that I2a-CTS10228 most likely expanded with Common Slavs, because alternative explanations for its emergence in the Carpathian Basin, among Early West Slavs, and among Early East Slavs within this short period of time requires too many unacceptable assumptions.

dinaric-i2a-distribution
Modern distribution of “Dinaric” I2a. Modified from Balanovsky et al. (2008)

Hungarian Conquerors

Knowing that R1a-Z280 was an Eastern Corded Ware lineage, found from Baltic Finns to Finno-Ugric populations of the Trans-Urals, we can probably assign expanding Magyars to at least R1a-Z280, R1a-Z93, and N1c-L392 (xB197) lineages.

From Curta (2019):

Earlier Latin sources, especially those of the first half of the 10th century, refer to Magyars as Huns or Avars. They most likely called themselves Magyars, a word indicating that the language they spoke was not Turkic, but Finno-Ugrian, related to a number of languages spoken in Western Siberia and the southern Ural region. The modern word—Hungarian—derives from the Slavic word for those people, U(n)gri, which is another indication of Ugric roots. This has encouraged the search for the origin of the Hungarian people in the lands to the east from the Ural Mountains, in western Siberia, where the Hungarian language is believed to have emerged between 1000 and 500 BC.

In looking for the Magyar primordial homeland, they draw comparisons with the assemblages found in Hungary that have been dated to the 10th century and attributed to the Magyars. Some of those comparisons had extraordinary results. For example, the excavation of the burial mound cemetery recently discovered near Lake Uelgi, in the Cheliabinsk region of Russia, has produced rosette-shaped harness mounts and silver objects ornamented with palmette and floral designs arranged in reticulated patterns, which are very similar to those of Hungary. But Uelgi is not dated to prehistory, and many finds from that site coincided in time with those found in burial assemblages in Hungary. In other words, although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).14 However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

Adding J2a and I1a samples to the Early Slavic stock, based on medieval samples from Poland – with G2a and E-V13 lineages probably shared with Goths from Wielbark/Chernyakhov, or becoming acculturated in the Carpathian Basin – one is left to wonder which of these lineages actually took part in Common Slavic migrations/acculturation events, whenever and wherever those actually happened.

I have tentatively re-assigned lineages of Hungarian conquerors according to their likely origins in a simplistic way – similar to how the paper classifies them – , now (I think) less speculatively, assuming that Early Slavs likely formed eventually part of them:

hungarian-conquerors-y-dna-slavs
Image modified from the paper, with drawn red square around lineages of likely East Slavic origin, and blue squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples, of likely Ugric origin Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

NOTE. The ancestral origin of lineages is meaningless for an ethnolinguistic identification. The only reasonable assumption is that all the individuals sampled formed part of the Magyar polity, shared Magyar culture, and likely spoke Hungarian, unless there is a clear reason to deny this: which I guess should include at least a clearly ‘foreign’ ancestry (showing a distant cluster compared to the group formed by all other samples), ‘foreign’ isotopic data (showing that he was born and/or raised outside of the Carpathian Basin), and particularly ‘foreign’ cultural assemblage of the burial, if one really wants to risk assuming that the individual didn’t speak Hungarian as his mother tongue.

“Dinaric” or Slavic I2a?

I don’t like the use of “Dinaric I2a”, because it is reminiscent of the use of “Iberian R1b-DF27”, or “Germanic R1b-U106”, when ancient DNA has shown that this terminology is most often wrong, and turns out to be misleading. As misleading as “Slavic R1a”. Recently, a Spanish reader wrote me emails wondering how could I possibly say that R1b-DF27 came from Central Europe, because modern distribution maps (see below) made it evident that the haplogroup expanded from Iberia…

DF27-iberia-france-m167
Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

The obvious answer is, these maps show modern distributions, not ancient ones. In the case of R1b-DF27, different Iberian lineages are not even related to the same expansion. At least R1b-M167/SRY2627 lineages seem to have expanded from Central Europe into Iberia much more recently than other DF27 subclades associated with Bell Beakers. What’s more, if R1b-M167/SRY2627 appear densest in north-east Spain it is not because of the impact of Celts or Iberians before the arrival of Romans, but because of the impact of medieval expansions during the Reconquista from northern kingdoms expanding south in the Middle Ages:

iberian-medieval-kingdoms-expansion-population-genomics
Genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. Image modified from Bycroft et al. (2018).

Similarly, the term “Dinaric I2a”, based on the higher density in the Western Balkans, is misleading because it is probably the result of later bottlenecks. Just like the density of different R1a subclades among Modern Slavs is most likely the result of acculturation of different groups, especially to the east and north-east, where language shift is known to have happened in historical times, with the cradle of Russians in particular being a Finno-Volgaic hotspot, later expanding with hg. R1a-Z280 and N1c-L392 lineages.

Now, one may think that maybe Slavs expanded with ALL of these different lineages. Since we are talking about late Iron Age / medieval expansions, there might be confederations of different peoples expanding with a single lingua franca… But no, not really. Not likely in linguistics, not likely in archaeology, and apparently not in population genomics, either.

How many ancient peoples from the Iron Age and Early Middle Ages expanded with so many different lineages? We see bottlenecks in expansions even in recent times: say, in Visigoths under E-V13 (probably recently incorporated during their migrations); in Moors (mostly Berbers) with E-M81 and J; in medieval Iberians under different DF27 bottlenecks during the Reconquista (including huge bottlenecks among Basques); similarly, huge bottlenecks are found in Finnic expansions under N1c…How likely is it that Proto-Slavs (and Common Slavs) expanded with all those attested lineages to date among Early Slavs (E-V13, I2a-L621, R1a-M458, I1, J2a) AND also with other R1a subclades prevalent today, but almost absent in sampled Early Slavs?

To sum up, I am not so sure anymore about the possibility of simplistically assigning R1a-M458 to expanding Common Slavs. R1a-M458 may well have been the prevalent R1a subclade in Central Europe among early Balto-Slavic – and possibly also neighbouring Northern Indo-European-speaking – peoples (let’s see what subclades Tollense and Unetice samples bring), but it is more and more likely that most of the density we see in modern R1a-M458 distribution maps is actually the effect of medieval bottlenecks of West Slavs, similar to the case of Iberia.

r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

Related

Pre-Germanic and Pre-Balto-Finnic shared vocabulary from Pitted Ware seal hunters

corded-ware-pitted-ware

I said I would write a post about topo-hydronymy in Europe and Iberia based on the most recent research, but it seems we can still enjoy some more discussions about the famous Vasconic Beakers, by people longing for days of yore. I don’t want to spoil that fun with actual linguistic data (which I already summarized) so let’s review in the meantime one of the main Uralic-Indo-European interaction zones: Scandinavia.

Seal hunting

One of the many eye-catching interpretations – and one of the few interesting ones – that could be found in the relatively recent article Talking Neolithic: Linguistic and Archaeological Perspectives on How Indo-European Was Implemented in Southern Scandinavia, by Iversen & Kroonen AJA (2017) was this:

The borrowing of lexical items from hunter-gatherers into Germanic refers to the potential adoption of Proto-Germanic *selhaz “seal” (Old Norse selr, Old English seolh, Old High German selah) as well as Early Proto-Balto-Finnic *šülkeš “seal” (Finnish hylje, Estonian hüljes) from the marine-oriented Sub-Neolithic Pitted Ware culture.

kroonen-iversen
Modified from Kristiansen et al. (2017), with red circle around the hypothesized interaction of Germanic with hunter-gatherers. “Schematic representation of how different Indo-European branches have absorbed words (circles) from a lost Neolithic language or language group (dark fill) in the reconstructed European linguistic setting of the third millennium BC, possibly involving one or more hunter gatherer languages (light fill) (after Kroonen & Iversen 2017)”.

This is what Kroonen thought about this word in his Etymological Dictionary of Proto-Germanic (2006):

Gmc. *selha– m. ‘seal’ – ON selr m. ‘id.’, Far. selur m. ‘id.’, OSw. siæl m. ‘id.’, Sw. själ c. ‘id.’, OE seolh m. ‘id.’, E seal, OS selah m. ‘id.’, EDu. seel, seel-hont m. ‘id.’, Du. zee-hond c. ‘id.’, OHG selah m. ‘id.’, MHG sele m. ‘id.’ (GM).

A Germanic word with no certain IE etymology. The link with Lith. selė́ti ‘to crawl’ (Torp 1909: 436) is erroneous, as this verb corresponds to PGm. *stelan- (q.v.). The *h may nevertheless correspond to the PIE animal suffix *-ko-, for which see *elha{n)- ‘elk’ and *baruga- ‘boar’.

Focusing on this substrate etymon, coupled with archaeology and ancient DNA, in the recent SAA 84th Annual Meeting (Abstracts in PDF):

Kroonen, Guus (Leiden University) and Rune Iversen

[196] The Linguistic Legacy of the Pitted Ware Culture

The Scandinavian hunter-, fisher- and gatherer-based Pitted Ware culture is chronologically situated in the Neolithic. However, it challenges our traditional view on cultural and social evolution by representing a return to an otherwise abandoned hunter-gatherer lifestyle. In general, the Pitted Ware culture must be seen as an offshoot of the “Sub-Neolithic” societies inhabiting wide parts of northern and northeastern Europe in the fourth and third millennium B.C.E.

Isotopic and aDNA studies have shown that people of the east Swedish Pitted Ware culture, both dietarily and genetically were distinct from the early farmers in this region, the Funnel Beaker culture. Isotopic data shows a marked predominance of seal in the diet, which has given the Pitted Ware people the nickname “Inuit of the Baltic”.

As regards language, it is to be expected that people practicing a Pitted Ware lifestyle spoke a non-Indo-European language. In fact, there is some linguistic evidence that can support this claim. It is conceivable that both the Germanic and Finnish word for “seal” were ultimately borrowed from a language spoken in a Pitted Ware context. Once more, the linguistic evidence turns out to offer important information complementary to that of archaeology and archaeo-genetics.

prehistoric-seal-hunters
Stone Age Seal Hunters, by Måns Sjöberg.

Apparently, the idea of non-IE substrate languages in contact with Germanic in Scandinavia is fashionable for the Copenhagen group, probably due to their particular interpretation of the recent genetic papers, hence the multiple Germanic-Fennic connections to be reviewed through this new prism. While the ulterior motive of this proposal may be to try and connect yet again Germanic with CWC Denmark, I would argue that the effect is actually the opposite.

An early borrowing via Uralic

The word has always been considered a more likely loan from one language to the other, and – because of the quite popular idea of Uralic native to Fennoscandia – it was often seen as a likely borrowing of Germanic from Balto-Finnic. In any possible case, the borrowing in either direction must be quite early, for obvious reasons:

  • If the borrowing had been via late Palaeo-Germanic, the ending in *-xa– would have been reflected in Balto-Finnic, hence an early Palaeo-Germanic to Pre-Balto-Finnic stage would be necessary.
  • If the borrowing had been via late Balto-Finnic, the initial sibilant would be already aspirated, being adopted as *-x– in Palaeo-Germanic, while the ending in *-k– would have remained as such if it was adopted after Grimm’s law ceased to be active.
  • Similarly, a borrowing from a common, non-Indo-European & non-Uralic source would require that it happened during the early stages of both proto-languages to have undergone their respective phonetic changes, and both borrowings chronologically close to each other, to assume a similar vocalism and consonantism of the ultimate source.
wiik-indo-european-uralic-substrate
The idea of seal-hunting Uralic substrate of Pitted Ware is not new. Image modified from The Uralic and Finno-Ugric Phonetic Substratum, by Kalevi Wiik, Linguistica Uralica (1997).

Furthermore, regarding the most likely way of expansion of this loanword, due to the different vowels and sibilants present in Uralic but not in Indo-European:

  • A direct loan from Pre-Germanic **selkos – which shows a regular thematic declension – to Pre-Balto-Finnic *šülkeš doesn’t seem to be a reasonable assumption.
  • NOTE. A Germanic borrowing from alternative Gmc. genitive *silxis could only work in a Pre-Germanic to Pre-Balto-Finnic model, hence only if the Gmc. form can be reconstructed for an earlier stage. Even then, for the same reason stated above, the opposite could be more reasonably argued, i.e. that this form is the original one adopted in Germanic: Pre-PBF *šülkeš > Pre-Gmc. *silkis, reinterpreted as an -o- stem in its declension.

  • If we reconstruct an older Pre-Finno-Samic (i.e. with Finno-Permic-like vocalism) **šëlkëš, a borrowing into Pre-Germanic **selkos would work. Even though no Saami derivative exists to confirm such a possibility, this would be supported by the known common evolution of Finno-Samic dialects in close contact with Pre-Germanic.
  • Admittedly, even accepting the existence of a Finno-Samic stem, a potential substrate word could not be discarded. In fact, while **šëlkë- could perfectly be a Uralic root, the ending in *-š can’t be easily interpreted. Therefore, a third, non-Indo-European & non-Uralic source is a plausible explanation.

NOTE. Arguably, Proto-Finno-Samic could have adopted Gmc. *kh or *x exceptionally as PFS *k. However, early Palaeo-Germanic borrowings in Finno-Samic show a consistent regular consonant change as described above. For more on this, see Finno-Samic borrowings.

This likely Uralic first nature of the loanword is important for the discussion below.

Pitted Ware culture

pitted-ware-pyheensilta-ware-culture
Middle Neolithic A period. Distribution of Pyheensilta Ware, Funnel Beaker Culture in Sweden, and Pitted Ware Culture in northern Europe during the Middle Neolithic A period, c. 3300–2800 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Image from Vanhanen et al. (2019).

About the Pitted Ware culture, this is what the recent paper by Vanhanen et al. (2019), from the University of Finland (including Volker Heyd) had to say:

The origins of the PWC are controversial. In one likely scenario, Comb Ceramic and Mesolithic hunter-gatherers first interacted with FBC during the last centuries of the EN and became specialized maritime hunter-gatherers. The PWC pushed south and westwards during the Middle Neolithic (MN), c. 3300–2300 BC, along the northern Baltic shoreline and adjacent islands, eventually reaching as far west as Denmark and southern Norway. Around 2800 BC, after the FBC ceased to exist, the Corded Ware Culture (CWC) migrated into the PWC area. The end date for the PWC and CWC is approximately 2300 BC, when the material culture was replaced by the Late Neolithic (LN) culture<. Spanning nearly a millennium virtually unchanged, the PWC maintained a coherent society and a successful economic model. PWC people lived in marine-oriented settlements, commonly dwelled in huts and produced relatively large amounts of ceramic vessels. This speaks to the partly sedentary nature of their habitation, at least for their base camps. These specialist hunter-gatherers obtained the great majority of their subsistence from maritime sources, such as seal, fish, and sea birds. Considering the amount of bones, sealing was of paramount importance, causing these peoples to be labelled ‘hard-core sealers’ or even the ‘Inuit of the Baltic’.

The Middle Neolithic Pitted Ware culture is dated ca. 3500–2300 BC, so we would be seeing here Pre-Germanic and Pre-Balto-Finnic peoples arriving near the Pitted Ware culture. That would leave us with one of both languages expanding with Corded Ware peoples, and the other with Bell Beakers. Since Battle Axe-derived cultures around the Gulf of Finland are associated with Balto-Finnic groups, and Bell Beakers arriving ca. 2400 started the Dagger Period, commonly associated with the Pre-Germanic community, I think the connection of each group with their language is self-evident.

pitted-ware-cored-ware-culture
Middle Neolithic B period. Distribution of Corded Ware Culture and Pitted Ware Culture in northern Europe during the Middle Neolithic B period, c. 2800–2300 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Modified from Vanhanen et al. (2019).

NOTE. You can read some interesting information about prehistoric and recent seal hunting in the Baltic in the blog post “Själen” – Seal Hunting in the Northern Baltic Sea.

Germanic-Fennic phonetic evolution

The common Germanic – Balto-Finnic phonetic evolution, especially Verner’s law in Palaeo-Germanic and qualitative gradation in Proto-Balto-Finnic, has been variably interpreted as:

  • Uralic in Scandinavia influenced by Germanic (Verner’s law source of the gradation), by Koivulehto and Vennemann (1996).
  • Germanic over a Uralic substratum in Scandinavia, by Wiik (1997).
  • Both Germanic and Balto-Finnic influenced by a third language, an “extinct non-Uralic source” spoken in Fennoscandia before the arrival of Uralic and Indo-European, by Kallio (2001); maybe the same substrate proposed to have influenced the accent shift in Germanic similar to Uralic.
  • Balto-Finnic speakers adopting Pre-Germanic in Scandinavia, in contact with Balto-Finnic speakers retaining their language, by Schrijver in Language Contact and the Origins of the Germanic Languages (2014)– although first suggested by him in the 1990s.

NOTE. There are other (some much older) proposals of a Uralic substrate in Scandinavia, but I think those above summarize the most common positions tenable today.

If you add all linguistic, archaeological, and now genetic connections, it is really strange to keep arguing for so many surprisingly fitting common substrates and/or contact languages for both. Especially because the Pre-Germanic community – if originally from southern Scandinavia and not further south (see e.g. Kortlandt’s theory) – was marked by the Dagger Period, as accepted by most archaeologists (including Kristiansen), and we know that Bell Beakers – who triggered the Dagger period – might have arrived a little late to the Pitted Ware disintegration in most seal-hunting areas of southern Scandinavia.

bell-beaker-density
Density analysis based (Bell Beaker per km2) on the distribution of Bell Beaker per region (ca. 2700-2200 BC). Combination of different levels of b-spline interpolation. Exaltation of the values through square root usage. Modified from Michael Bilger (2018).

In other words, how many common substrate languages can we propose for Germanic (and Balto-Finnic)? Just from Kroonen we have already the Semitic-like TRB, and the seal-hunting Pitted Ware culture. Apparently, the culprit of the common phonetic evolution must be some (other?) culture that both Pre-Germanic and Pre-Balto-Finnic assimilated (or with which both were in contact) in Fennoscandia.

NOTE. I believe no data supports the attribution of those Germanic borrowings to the TRB culture, especially if one assumes they belong to an Afroasiatic branch, as did Kroonen. His initial assumption about an expansion of R1b-M269 associated with the Neolithic from Anatolia, and thus with Afroasiatic, must today be rejected. Much more likely is the incorporation of most of these loanwords during the expansion of North-West Indo-Europeans from Yamna Hungary.

How many “common” substrates from different regions and cultures is too much? Arguably, it’s not a question of quantity (because the overall probability remains the same), but a question of quality of arguments.

In my opinion, both a) the marked seal-hunting subsistence economy of the Pitted Ware culture and b) the difficult reconstruction of a fitting ‘natural’ PIE or PU stem warrant this proposal of a third source, just like the European agricultural substrate of North-West Indo-European and Palaeo-Balkan languages, as well as the Asian agricultural substrate of Indo-Iranian are the most logical interpretation of words not found in other IE dialects. The only problem in this case is the lack of other Scandinavian substrate words to compare its typology against.

scandinavia-neolithic-flint-daggers
Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

Common Scandinavian substratum

The theory of a Pitted Ware borrowing is therefore quite convincing from a cultural point of view, at the same time as it fits the linguistic data. However, one reason why I dislike the interpretation of a dual origin is that our knowledge of Uralic languages is fairly limited, whereas that of Indo-European branches and hence Proto-Indo-European is huge. To put it otherwise: if a common word appears in both, and it is most likely (culturally and linguistically) not Indo-European, it certainly means that it was borrowed in Germanic. What are the a priori chances of it coming directly from a third substrate language for both dialects, instead of coming directly from Pre-Balto-Finnic?

From Schrijver (2014):

What did happen, apparently, is that Finnic speakers had enough access to the way in which Germanic speakers pronounced Balto-Finnic in order to model their own pronunciation of Balto-Finnic on it. In other words, Balto-Finns conversed with bilingual speakers of Germanic and Balto-Finnic whose pronunciation of both was essentially Germanic. But access to the Germanic language itself was not sufficient to allow Balto-Finns to become bilingual themselves, either because social segregation prevented this or because contact with Germanic was severed before widespread bilingualism set in. This limited access to Germanic would allow us to understand why Balto-Finnic did not go the way of the vernacular languages that came in contact with Latin in the Roman Empire, where access to Latin was open to almost everybody and massive language shift in favour of Latin ensued.

NOTE. For a more detailed discussion, you can read the whole chapter dedicated to this question. I summarized it in Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia.

On the other hand, about the ad hoc interpretation by Kallio (2001) of hypothetic third languages strongly influencing in the same way both the Palaeo-Germanic- and Balto-Finnic-speaking communities, Schrijver (2014) comments:

The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

early-bronze-age-nordic-dagger-period
Early Bronze Age cultures of Northern Europe (roughly ca. 2200-1750). Dagger period representing the expansion of BBC-derived groups from southern Scandinavia.

NOTE. The proposal of some kind of “SHG/EHG-based Fennoscandian substrate” seems funny to me, for two reasons: firstly, there is usually no talk about which culture spread that common language, how it survived, how it was in contact with both groups and until when, etc. (see below for possibilities); secondly, apparently the evident survival of West European EEF communities driven by at least two cultural groups – El Argar and the poorly known groups from the Atlantic façade north of the Pyrenees – is, for the same people proposing this simplistic SHG/EHG idea, somehow not fitting for the prehistory of Proto-Iberian and Proto-Aquitanian, respectively…

The same argument that one could use against the direct borrowing of both dialects from Pitted Ware, but much more strongly, can be thus wielded against a common, centuries-long phonetic evolution of both Balto-Finnic and Germanic caused by close interactions with (and/or substrate influence of) some third language. Which unitary culture and when exactly could that have happened around the Baltic Sea?

  • Was it Pitted Ware the mysterious substrate language? Seems rather unlikely, due to the early demise of the Pitted Ware culture in contrast to the long-lasting common influence seen in both dialects.
  • Was it Pitted Ware in southern Scandinavia, but Comb Ware in the Gulf of Finland? Is there a direct genetic connection between both cultures? And how likely is a common phonology of an ancestral Comb Ware-like substrate language surviving separately in Finland and Sweden? Even accepting these assumptions, we would be stuck again in the Indo-European Beakers vs. Uralic Battle Axe model.
  • Was it a succession of cultures, from some Scandinavian culture that was replaced by some incoming ethnolinguistic group, then influencing the other? This non-IE, non-Uralic substrate would then need to be proposed, given the chronological and archaeological constraints, as an effect of Pitted Ware over Pre-Finno-Baltic spoken by Battle Axe peoples in Scandinavia, then replaced by Pre-Germanic peoples arriving later with Bell Beakers. A reverse direction and later chronology (say, Germanic replaced by Balto-Finnic from Netted Ware arriving from the Volga) wouldn’t work as well.
  • Was it Asbestos Ware as a late Comb Ware group influencing both? How likely is such a continued influence in Southern Scandinavia and the Gulf of Finland? Even if we accepted this influence that miraculously didn’t affect Samic (most likely located between the Balto-Finnic-speaking Gulf of Finland and northern Fennoscandian Asbestos Ware groups), it would necessarily mean that Germanic and Balto-Finnic were spoken neighbouring exactly the same Asbestos Ware groups in Scandinavia. That is, essentially, that the BBC-derived Dagger Period represented Pre-Germanic, while Battle Axe-derived groups around the Gulf of Finland were Balto-Finnic.

Mixing linguistics with archaeology (now complemented with genetics) also risks circular reasoning. But, how else can someone propose a third substrate language for a phonetic change, necessarily represented by Fennoscandian groups potentially separated by thousands of years? In this age of population genomics we can’t simply talk about theoretical models anymore: we must refer to Fennoscandian cultures and populations in a very specific time frame, as Kronen & Iversen do in their proposal. Not only is such a third unknown language usually a weak explanation for a common development of two unrelated languages; in this case it finds no support whatsoever.

Seals and the Arctic

Another interesting aspect about this Fennic-Germanic comparandum is its relevance to the Uralic homeland problem.

uralic-languages-modern
Current distribution of Uralic languages. Nenets and Saami are among the best positioned to retain the ‘original’ Uralic seal-hunting vocabulary.

Since the publication of Mittnik et al. (2018), Lamnidis et al. (2018), and Sikora et al. (2018), the new normal is apparently to consider Corded Ware Finland as Germanic-speaking, the Gulf of Finland as Balto-Slavic-speaking, while the Kola peninsula and whichever Palaeo-Arctic peoples preceded Nganasans and Nenets as ancient Uralians. Uh-huh, OK.

But, if prehistoric Arctic peoples practiced specialized seal-hunting economies, and Uralians were one among such populations – supposedly one widespread from the Barents Sea to the Lapteve Sea…how come no common Uralic word for ‘seal’ exists? In other words, why would these True™ Uralic peoples expanding from the Arctic need to borrow a word for ‘seal’ from neighbouring populations in every single seal-hunting region they are attested?

grey-seal-distribution
Historical distribution of grey seals, an important part of the diet around the Baltic Sea. Image modified from Wikimedia to include Skagerrak and Kattegat regions.

About Saami, which some have recklessly proposed to be derived from Bronze Age N1c-L392 samples from the Kola Peninsula (against the good judgment of the authors of the paper), this is what we know from their word for ‘seal’, from Grünthal (2004):

Ter Saami vīrre ‘seal; wolf’ displays two meanings that refer to clearly different animals. Neither of them is borrowed from the source language because the word descends from Russian zver’ ‘animal’ (T.I.Itkonen 1958: 756). Another word, Skolt Saami näúdd ‘seal, wolf’, has been similarly used in the two meanings. The evidence of North Saami návdi ‘wolf; creature, fur animal; beast’ (Sammallahti 1989: 305; Lagercrantz (1939: 518) presents the alternative meanings in the opposite order; E. Itkonen (1969: 148) lists the meanings ‘wildes Tier; Raubtier (bes. Wolf); Pelztier’) suggesting that ‘wolf’ is the primary sense and ‘seal’ is a metaphorical extension of it. More precisely, it is an example of a mythic metaphor (cf. Siikala 1992). According to the old folk belief, seal was a wolf and the Skolt Saamis preferred not to eat its meat (T.I.Itkonen 1958: 906). Before that the metonymic meaning ‘wolf’ rose from the less specified meanings, and originally návdi is a Scandinavian or Finnic loan word in Saamic, cf. Old Norse naut ‘vieh, rind’, Icelandic and Norwegian naut, Swedish nöt < Germanic *nauta ‘property’ (Hellquist 1980: 721, T.I.Itkonen 1958: 275, Lagercrantz 1939: 518, de Vries 1961: 406; E. Itkonen (1969: 148) considers Finnic, cf. Finnish nauta ‘bovine’ (< Germanic) as a possible alternative source for the Saamic word).

NOTE. Possibly comparable, for the mythic metaphor proper of Scandinavian folk belief, are Germanic derivatives built as ‘seal-hound’ and/or ‘sea-hound’.

sea-distribution-arctic
Seals formed a great part of the diet for Palaeo-Arctic populations. Boundaries of regions used to predict sea ice, superimposed over the distributions of the five ringed seal subspecies. Image modified from Kelly et al. (2010).

About Nenets (quite close to the Naganasans of pure “Siberian ancestry”), here is what Edward Vajda, an expert in Palaeo-Siberian languages, has to say:

Nenets techniques for hunting the animals of the Arctic Ocean seem to have been borrowed from the first Arctic aborigines. Thus, the Nenets word for seal is nyak, the Eskimo word is nesak. Also, the Nenets word for a one-piece Arctic clothing is lu; the Korak word on the Kamchatka peninsula for clothing is l’ku. All of these groups may have borrowed the words from some original circumpolar aborigines. More probably, the first settlers of Arctic Europe were cousins of the present-day Eskimo, Chukchi and other residents of the far northeast region of Asia. Nenets folklore also speaks of the aborigines living in ice dugouts (igloos).

On the other hand, Proto-Uralic shows a Chalcolithic steppe-like culture, with common words for metal and metalworking, for agriculture, and for domesticated animals, most likely including cattle. They were close to Indo-Europeans since at least before the Tocharian split, and probably earlier than that (even if one does not accept the Indo-Uralic phylum). And there were clearly strong contacts of Finno-Ugric with Indo-Iranian, and especially of Finno-Samic with Germanic.

uralic-cline
Uralic clines from Corded Ware groups to the east. A clear reason for the lack of common seal-hunting vocabulary. Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations. You can see another PCA including ancient samples.

Some among my readers may now be thinking about these totally believable proposals of prehistoric cultures around Lake Baikal representing the True™ Uralic homeland; because haplogroup N1c, and because some 0.5% more “Devil’s Gate Cave ancestry” in Estonians than in Lithuanians; despite the fact that 1) the so-called “Siberian ancestry” formed an ancestral cline with EHG in North Eurasia, that 2) N1c-L392 lineages seem to appear among many Asian peoples of different languages, and that 3) recent prehistoric N1c-L392 lines expanded clearly with Micro-Altaic languages.

Like, who would have hunted seals in Lake Baikal, right? The problem is, seals represented one of their main game, essential for their subsistence economy. From Novokonova et al. (2015):

One of the key reasons for the density of human settlement in the Baikal region compared to adjacent areas of Siberia is that the lake and its nearby rivers offer an abundance of aquatic food resources, including several endemic species, with perhaps the most well known being the Baikal seal. This freshwater seal is only found in Lake Baikal and portions of its tributaries. It shares lifecycle and behavioral patterns with other small northern ice-adapted seals, and is genetically and morphologically most closely related to the ringed seal (Pusa hispida). The nerpa can grow up to 1.8 m long and weigh as much as 130 kg, with the males tending to be slightly larger than the females.

Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting and processing location for yearling and juvenile seals taken on the lake ice. After 4800 years ago, seal use declined at the site, while the relative importance of ungulate hunting and fishing increased. Pastoralists began occupying Sagan-Zaba at some point during the Late Holocene, and these groups too utilized the lake’s seals. Domesticated animals are increasingly common after about 2000 years ago, a pattern seen elsewhere in the region, but spring and some summer hunting of seals was still occurring. This use of seals by prehistoric herders mirrors patterns of seal use among the region’s historic and modern groups.

Bronze Age movements in Fennoscandia

Regarding the shrinkage and expansion of different farming economic strategies in Scandinavia since the Neolithic, with potential relevance for population movements and thus ethnolinguistic change – either from Balto-Finnic peoples migrating back from eastern Sweden, or Germanic peoples moving to eastern Finland – from Vanhanen et al. (2019):

Cultivated plants at CWC sites in Finland were not discovered in the current investigation (Supplementary Results) or earlier studies. In Finland, the keeping of domestic animals is indicated by the evidence of dairy lipids and mineralized goat hairs. Charred remains and impressions of cultivated plants have been discovered at CWC sites in Estonia and east-central Sweden (Fig. 3: 12). In the eastern Baltic region, the earliest bones of domestic animals and a shift in subsistence occurred with the CWC. Whether CWC produced the cereals and other agricultural products found at PWC sites is difficult to estimate because only small amounts of plant remains have ever been discovered at CWC sites. The CWC seemingly reached east-central Sweden from regions further to the east, where there is evidence of animal husbandry, but only very few signs of plant cultivation.

For the Late Neolithic (LN), cereal grains have been found north of Mälaren and along the Norrland coast. In mainland Finland, the first cereal grains occur during the LN or Bronze Age, c. 1900–1250 cal BC. The earliest bones of sheep/goat from mainland Finland are earlier, dating back to 2200–1950 cal BC. Finds of Scandinavian bronze artefacts indicate an influx from east-central Sweden, which might well be a source area for these agricultural innovations. A similar development is found in the eastern Baltic region, where the earliest directly radiocarbon-dated cereals originate from the Bronze Age, 1392–1123 cal BC (2 sigma). Thus, agriculture was evident during the Bronze Age in the eastern Baltic, but at least animal keeping and probably crop cultivation were present earlier during the CWC phase.

It has been known for a while already that the only options left for the expansion of Finno-Saami into Fennoscandia are either Battle Axe (continued in Textile Ceramics) or Netted Ware (as proposed e.g. by Parpola), based, among other data, on language contacts, language estimates, cultural evolution, and population genomics. Data like this one on seal-hunting vocabulary also support the most likely option, which entails the identification of Corded Ware as the vector of expansion of Uralic languages.

NOTE. Also interesting in this regard is the lack of Slavic words for ‘seal’ – borrowed, in Russian from Samic, and in other Slavic dialects from Russian, Latin, or other languages -, and the coinage of a new term in East Baltic. Rather odd for an “autochthonous” Proto-Baltic (supposedly in contact with Pitted Ware, Germanic, and Balto-Finnic, then), and for a Proto-Slavic stemming from the Baltic. Quite appropriate, though, for a Proto-East Baltic arriving in the Baltic with Trzciniec and for a Proto-Slavic community evolving further south.

So, what new episode in this renewed 2000s R1b/R1a/N1c soap opera is it going to be, when eastern Fennoscandia shows Corded Ware-derived peoples of “steppe ancestry” (and mainly R1a-Z645 lineages) continue during the Bronze Age? Will the resurge and/or infiltration of I2 – maybe even N1c – lineages among Corded Ware-derived cultures of north-eastern Europe support or challenge this model, and why? Make your bet below.

Related

N1c-L392 associated with expanding Turkic lineages in Siberia

haplogroup-n1c-tat

Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

yakutia-haplogroup-n1c
17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

n1c-uralic-altaic-siberia
14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.

Related