Proto-Tocharians: From Afanasievo to the Tarim Basin through the Tian Shan

tocharians-early-eneolithic

A reader commented recently that there is little information about Indo-Europeans from Central and East Asia in this blog. Regardless of the scarce archaeological data compared to European prehistory, I think it is premature to write anything detailed about population movements of Indo-Iranians in Asia, especially now that we are awaiting the updates of Narasimhan et al (2018).

Furthermore, there was little hope that Tocharians would be different than neighbouring Andronovo-like populations (see a recent post on my predicted varied admixture of Common Tocharians), so the history of both unrelated Late PIE languages would have had to be explained by the admixture of Afanasievo-related groups with peoples of Andronovo descent and their acculturation.

However, data reported recently by Ning, Wang et al. Current Biology (2019) confirmed that peoples of mainly Afanasievo ancestry – as opposed to those of Corded Ware-related ancestry expanding with the Srubna-Andronovo horizon – spread the Tocharian branch of Proto-Indo-European from the Altai into the Tian Shan area, surviving essentially unadmixed into the Early Iron Age.

This genetic continuity of Tocharians will no doubt help us disentangle a great part the ethnolinguistic history of speakers of the Tocharian branch of Proto-Indo-European, from Pre-Proto-Tocharians of Afanasievo to Common Tocharians of the Late Bronze Age/Iron Age eastern Tian Shan.

NOTE. Tocharian’s isolation from the rest of Late PIE dialects and its early and intense language contacts have always been the key to support an early migration and physical separation of the group, hence the traditional association with Afanasievo, a late Repin/early Yamna offshoot. Even with the current incomplete archaeological and genetic picture, there is no other option left for the expansion of Tocharian.

It is not possible to use the currently available ancestry data to map the evolution of Afanasievo ancestry, lacking a proper geographical and temporal transect of Central and East Asian groups. In spite of this, Ning, Wang, et al. (2019) is a huge leap forward, discarding some archaeological models, and leaving only a few potential routes by which Tocharians may have spread southward from the Altai.

NOTE. I have updated the maps of prehistoric cultures accordingly, with colours – as always – reflecting the language/ancestry evolution of the different groups, even though the archaeological data of some groups of Xinjiang remains scarce, so their ethnolinguistic attribution – and the colours picked for them – remain tentative.

xinjiang-andronovo-xiaohe-horizon-bronze-iron-age
A rough timeline of related archaeological sites from North Eurasia. Image modified from Yang (2019).

Tocharians

The recent book Ancient China and its Eurasian Neighbors. Artifacts, Identity and Death in the Frontier, 3000–700 BCE, by Linduff, Sun, Cao, and Liu, Cambridge University Press (2017) offers an interesting summary of the introduction of metalworking into western China.

Here are some relevant excerpts (emphasis mine):

Although [the Xinjiang] route is not uniformly agreed upon (Shelach-Lavi 2009: 134–46), this western transmission has been thought to have passed through eastern Kazakhstan, especially as it is manifest in Semireiche, with Yamnaya, Afanasievo (copper) and Andronovo (tin bronze) peoples (Mei 2000: Fig. 3). From Xinjiang this knowledge has been thought to have traveled through the Gansu Corridor via the Qijia peoples (Bagley 1999) and then into territories controlled by dynastic China. The dating of this process is still a problem, as the sites and their contents in Xinjiang are consistently later than those in Gansu, suggesting that the point of contact was in Gansu and that the knowledge then spread from there westward.

1. Eneolithic Altai

tocharians-chalcolithic-eneolithic
Afanasievo expansion ca. 3300-2600 BC. See full culture and ancient DNA maps.

The Afanasievo sites, as they are identified in Mongolia, for instance, make up an Eneolithic culture analogous to that of southern Siberia (3100/2500–2000 BCE) in the Upper Yenissei Valley that is characterized by copper tools and an economy reliant on horse, sheep and cattle breeding as well as hunting. (…) The Afanasievo is best known through study of its burials, which typically include groups of round barrows (kurgans), each up to 12 m in diameter with a stone kerb and covering a central pit grave containing multiple inhumations. In their Siberian context, burial pottery types and styles have suggested contacts with the slightly earlier Kelteminar culture of the Aral and Caspian Sea area.

The Afanasievo culture monuments, located in the northern Altai and in the Minusinsk Basin (the western Sayan), have been seen as analogous evidence for cross-Eurasian exchange. These complexes contain small collections of metal, and many of the items are made of brass, although golden, silver and iron ornaments were also identified. A mere one-fourth of these objects are tools and ornaments, while the rest consist of unshaped remains and semi-manufactured objects. Its metallurgical tradition has recently been dated by Chernykh to as early as 3100 to 2700 BCE (1992),making it more compatible chronologically with the early brass-using sites in Shaanxi mentioned above. Kovalev and Erdenebaatar have excavated barrows in Bayan-Ulgii, Mongolia, that have been carbon-dated to the first half of the third millennium BCE and associated by ceramic types and styles and burial patterns with the Afanasievo (Kovalev and Erdenebaatar 2009: 357–58). These mounded kurgans were covered with stone and housed rectangular, wooden-faced tombs that included Afanasievo-type bronze awls, plates and small “leaf-shaped” knife blades (Kovalev and Erdenebaatar 2009: Figs. 6 and 7).

They also excavated sites belonging to the more recently identified Chemurchek archaeological culture, located in the foothills of the Mongolian Altai (Kovalev 2014, 2015) (Fig. 2.6). These sites are carbon-dated to the same period as the Afanasievo burials or to c. 3100/2500–1800 BCE (six barrows in Khovd aimag and four in Bayan-Ulgo aimag). In the rectangular stone kerbed Chemurchek slab burials (Ulaaanhus sum, Bayan-ul’gi aimag and so forth), bronze items included awls; and at Khovd aimag, Bulgan sum, in addition to stone sculptures, three lead and one bronze ring were excavated (Kovalev and Erdenebaatar 2009: Figs. 2 and 3; Fig. 2.6). Although we will not know if they were produced locally until much further investigation is undertaken, these discoveries do document knowledge of various uses and types of metal objects in western and south central Mongolia. The types of metal items thus far recovered are simple tools (awls) and rings (ornamental?) not unlike those associated with Andronovo archaeological cultures as well.

This is a complex circumstance where archaeological evidence is not complete, but raises very important questions about transmission of metallurgical knowledge to and from areas in present-day China. In the 1970s some Afanasievo mounds were excavated in Central Mongolia by a Soviet–Mongolian expedition led by V. V. Volkov and E. A. Novgorodova (Novgorodova 1989: 81–85). Unfortunately, these mounds did not yield metal objects, only ceramics, but they show that the Afanasievo culture with the Eneolithic metallurgical tradition of manufacturing pure copper items had already moved east at least far as central Mongolia. In 2004, Kovalev and Erdenebaatar investigated a large Afanasievo mound, Kulala ula, in the extreme northwest of Mongolia, near the Russian border (Kovalev and Erdenebaatar 2009). There they found a copper knife and awl (Fig. 2.5). There are five C14 dates on wood, coal and human bones from this mound, which belong to the period 2890–2570 BCE. This shows that the Afanasievo culture were carriers of technology and produced artifacts in the first half of the third millennium BCE and that they also moved south along the foothills of the Mongolian Altai. Afanasievo culture in Altai and the Minusinsk basin is dated by C14 to 3600–2500 BCE (Svyatko et al. 2009; Polyakov 2010). In the north of Xinjiang in the Altai district, several typical egg-shaped vessels and two censers of Afanasievo types were found. Some of these have been obtained from the stone boxes (chambers of megalithic graves of the Chemurchek culture) (Kovalev 2011). Thus, the Afanasievo tradition of pure copper metallurgy must have spread to the northern foothills of the Tienshan Mountains no later than the mid-third millennium BCE. The links with Afanasievo and local cultures adjacent to and south of the mountains into present-day China can now be assumed.

tocharians-chalcolithic-late
Afanasievo – Chemurchek evolution ca. 2600-2200 BC. See full culture and ancient DNA maps.

2. Bronze Age Altai

Kovalev and Erdenebaatar (2014a) and later Tishkin, Grushin, Kovalev and Munkhbayar (2015) in Western Mongolia conducted large-scale excavations of megalithic barrows of the Chemurchek culture (dated about 2600–1800 BCE). This peculiar culture appeared in Dzungaria and the Mongolian Altai in the second quarter of the third millennium BCE and for some time existed together with the late Afanasievo culture, as evidenced by the findings of Afanasievo ceramics in Chemurchek graves, in the stone boxes. Unfortunately, in China we do not yet know of any metal object related,without doubt, to the Chemurchek culture. Kovalev, Erdenebaatar, Tishkin and Grushin found several leaden ear rings and one ring of tin bronze in three excavated Chemurchek stone boxes (Kovalev and Erdenebaatar 2014a; Tishkin et al. 2015). Such lead rings are typical for Elunino culture,which occupied the entire West Altai after 2400–2300 BCE (Tishkin et al. 2015). This culture had developed a tradition of bronze metallurgy with various dopants, primarily tin. Thus, the tradition of bronze metallurgy as early as this time could have penetrated the Mongolian Altai far to the south. In addition, in the Hadat ovoo Chemurchek stone box, Kovalev and Erdenebaatar discovered stone vessels refurbished with the help of copper “patches,” indicating the presence there of metallurgical production (Fig. 2.7) (Kovalev and Erdenebaatar 2014a). In one of the secondary

Chemurchek graves unearthed by Kovalev and Erdenebaatar in Bayan-Ulgi (2400–2220 BCE), a bronze awl was found (Kovalev and Erdenebaatar 2009). Kovalev and Erdenebaatar also discovered a new culture in the territory of Mongolia (Map 2.3), one that begins immediately after Chemurchek – Munkh-Khairkhan culture (Kovalev and Erdenebaatar 2009, 2014b). To date, about 17 mounds of this culture have been excavated in Khovd, Zavkhan, Khovsgol, Bulgan aimag of Mongolia. This culture dates from about 1800 to 1500 BCE, that is, contemporary with the Andronovo culture. Therefore, the Andronovo culture does not extend far into the territory of Mongolia. Three knives without dedicated handles or stems and five awls have been found in the Munkh-Khairkhan culture mounds (Fig. 2.8). All these products are made of tin bronze. (…) Additionally, eight Late Bronze Age burials (c. 1400–1100 BCE) were unearthed in the Bulgan sum of Khovd aimag and belong to another previously unknown culture called Baitag. And in the Gobi Altai, a new group of “Tevsh” sites dating to the Late Bronze Age were defined in Bayankhongor and South Gobi aimags (Miyamoto and Obata 2016: 42–50). From these Tevsh and Baitag sites, we see the expansion of burial goods to include beads of semiprecious stones (carnelian), bronze beads, buttons and rings and even the famous elaborate golden hair ornaments (Tevsh uul;Bogd sum;Uverkhanagia aimag) from the Baitag barrows (Kovalev and Erdenebaatar 2009: Fig. 5; Miyamoto and Obata 2016).

2.1. Chemurchek

About the Chemurchek culture, from A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China, by Jia and Betts JIES (2010) 38(4):

The major characteristics of Qiemu’erqieke Phase I include:

  1. Burials with two orientations of approximately 20° or 345°.
  2. Rectangular enclosures built using large stone slabs. The size of the enclosure varies from a maximum of 28 x 30 m.*to a minimum of 10.5 x 4.4 m. (Figure 8, Table 2).
  3. *The stone enclosure located near Hayinar is the largest one at approximately 30 x 40 m. based on pacing of the site during a visit by the authors in 2008.

  4. Almost life-sized anthropomorphic stone stelae erected along one side of the stone enclosures (Lin Yun 2008).
  5. Single enclosures tend to contain one or more than one burial, all or some with stone cist coffins.
  6. The cist coffin is usually constructed using five large stone slabs, four for the sides and one on top, leaving bare earth at the base (Zhang Yuzhong 2007). Sometimes the insides of the slabs have simple painted designs (Zhang Yuzhong 2005).
  7. Primary and secondary burials occur in the same grave.
  8. Some decapitated bodies (up to 20) may be associated with the main burial in one cist.
  9. Bodies are commonly placed on the back or side with the legs drawn up.
  10. Grave goods include stone and bronze arrowheads, handmade gray or brown round-bottomed ovoid jars, and small numbers of flat-bottomed jars (Fig. 7).
  11. Clay lamps appear to occur together with roundbottomed jars.
  12. Complex incised decoration on ceramics is common but some vessels are undecorated.
  13. The stone vessels are distinctive for the high quality of manufacture.
  14. Stone moulds indicate relatively sophisticated metallurgical expertise.
  15. Artefacts made from pure copper occur.
  16. Sheep knucklebones (astragali) imply a tradition (as in historical and modern times) of keeping knucklebones for ritual or other purposes. They also indicate the herding of domestic sheep as part of the subsistence economy.
tocharians-bronze-age-early
Chemurchek culture ca. 2200-1750 BC. See full culture and ancient DNA maps.

Chemurchek dating

Available evidence suggests that the date range for Qiemu’erqieke Phase I should fall from the later third into the early second millennium BC. There are several reasons to suggest that the time span is around the early second millennium BC. Lin Yun (2008) (…) maintains that the bronze artefacts found in Phase I show a greater sophistication in the level of copper alloy technology than that of the pure copper artefacts common to the Afanasievo tradition. On this basis it might be suggested that the Afanasievo could be considered to be Chalcolithic with a time span across much of the third millennium BC ( Gorsdorf et al. 2004: 86, Fig. 1). Qiemu’erqieke Phase I, however, should more properly be considered as Bronze Age.

Lin Yun also used the bronze arrowhead from burial Ml 7 to narrow down the date of Qiemu’erqieke Phase I. Two arrowheads were found in this burial, one of them leaf shaped with a single barb on the back (Fig. 7:4). A similar arrowhead, together with its casting mould, has been found at the Huoshaogou site of Siba tradition (Li Shuicheng 2005, Sun Shuyun and Han Rufen 1997), in Gansu province, northwest China, dated around 2000-1800 BC (Li Shuicheng and Shui Tao 2000) . This supports a date in the early second millennium BC for the Qiemu’erqieke arrowhead. The painted, round-bottomed jar from the Tianshanbeilu cemetery Qia Weiming, Betts and Wu Xinhua 2008: Fig. 7, bottom left) has been considered as a hybrid between the Upper Yellow River Bronze Age cultures of Siba in northwest China and the steppe tradition of Qiemu’erqieke in west Siberia (Li Shuicheng 1999). If this assumption is correct, the date of Tianshanbeilu, around 2000 BC, can be used as a reference for Qiemu’erqieke Phase I (Jia Weiming, Betts and Wu Xinhua 2008, Lin Yun 2008, Li Shuicheng 1999). Stone arrowheads found in Qiemu’erqieke Phase I also imply that the date is likely to fall within the earlier part of the Bronze Age as no such stone arrowheads have yet been found elsewhere in sites of the Bronze Age in Xinlang dated after the beginning of the second millennium BC.*
*For example Chawuhu and Xiaohe cemeteries (Xinjiang Institute of Archaeology 1999, 2003).

pottery-afanasevo-chemurchek
Pottery of Afanasevo and East European traits from the Chemurchek complex. Image modified from Kovalev (2017).

(…) Pottery “oil burners” (goblet-like ceramic vessels, possibly lamps) have been found in three traditions: Afanasievo (Gryaznov and Krizhevskaya 1986:21), Okunevo and Qiemu’erqieke. It is believed that this oil-burner found in Siberia and the Altai is a heritage from the Yamnaya and Catacomb
cultures (Sulimirski 1970: 225, 425; Shishlina 2008:46) in the Caspian steppe further to the west, but does not seem to exist in known Andronovo cultures.
The oil-burner tends to disappear after around 2300 BC during the mid-Okunevo period. It is, however, possible that the tradition continues longer in the Qiemu’erqieke sites.

The construction of the stone enclosures also reveals a close connection between Qiemu’erqieke Phase I and the mid and late Okunevo tradition (Sokolova 2007). Slab built stone enclosures emerged in both the Okunevo and Afanasievo traditions (Gryaznov and Krizhevskaya 1986:15-23, Kovalev 2008, Sokolova 2007, Anthony 2007:310, Koryakova and Epimakhov 2007). In the early Afanasievo the enclosure is circular with no cist coffin (Anthony 2007:310, Gryaznov and Krizhevskaya 1986:20), but in the early stage of the Okunevo square stone enclosures with a single cist burial are dominant. Square or rectangular stone enclosures are a marked feature of Qiemu’erqieke Phase I, suggesting temporal relationships between Qiemu’erqieke Phase I and the Okunevo. In Okunevo chronological group II, possibly with influence from the Anfanasievo, circular stone enclosures appeared in combination with rectangular enclosures within individual cemeteries, referred to by Sokolova (2007: table 2) as hybrid examples. By Okunevo chronological group III, rectangular stone slab enclosures with multi-burials emerged again. This is the dominant form in Qiemu’erqieke Phase I. Okunevo burial traditions changed again to single cist burials in the late stage around chronological group V ( Sokol ova 2007). A specific mortuary rite of decapitated burials exists in both the Qiemu’erqieke and Okunevo traditions (Sokolova 2007, Chen Kwang-tzuu and Hiebert 1995), as does the occasional occurrence of painted designs on the interior of the slabs forming the cists ( e.g., Khavrin 1997: 70, fig. 4; 77: tab. IV.5). Based on these comparisons, the date of Qiemu’erqieke Phase I may well parallel that of the Okunevo from at least chronological group II around 2400 BC (Gorsdorf et al. 2004: fig. 1).

khuh-udzuur-barrow
Khuh Udzuuriin I-1 elite barrow (ca. 2470-2190 BC). Modified from Image modified from Kovalev (2014).

In addition to the pottery making tradition, the anthropomorphic stone stelae may also have earlier antecedents. In the Okunevo assemblage there are anthropomorphic stelae that are longer, thinner and more abstract than those of Qiemu’erqieke. There is no indication of such stelae in the Afanasievo tradition (Gryaznov and Krizhevskaya 1986:15-23). However, further to the west, anthropomorphic stone stelae are associated with the Kemi-Oba and Yamnya cultures around the third millennium BC (Telegin and Mallory 1994; Figure 13). Some major characteristics of these stelae such as the icons on the front face of the stelae (Telegin and Mallory 1994:8-9) also appear on stelae found in Qiemu’erqieke Phase I. Recalling the oil burners that may have been inherited from the Yamnya culture and which are found in the Afansievo, Okunevo and Qiemu’erqieke Phase I, it migh t be possible to speculate that Qiemu’erqieke Phase I has its origins even earlier than the first half of the third millennium BC. This idea has also been suggested by Kovalev ( 1999).

Despite the affinities with the Okunevo cultural tradition, Qiemu’erqieke Phase I appears to be a discrete regional variant. The ceramic assemblage shows traits unique to this cluster of sites, while the anthropomorphic stelae are also distinctive markers of this tradition.

khuh-udzuur-stela
Khuh Udzuur anthropomorphic stone stela, oriented toward the south – south-east. Image modified from Kovalev (2014).

3. Bronze Age Xinjiang

I recently reported on this blog the description of Xiaohe and Gumugou cemeteries from interesting Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

It also offered a full summary of findings from prehistoric sites of Xinjiang related to the arrival of a cultural package from the Altai region, ultimately connected to Afanasievo. Relevant excerpts include the following (emphasis mine):

In Bronze Age Xinjiang, burials were diverse but also show some common features between different geographic sections. The main three mountains, including Kunlun Mountains, Tian Shan (mountains) and Altai Mountains, enclose the Tarim Basin, and the Dzungaria Basin, but leave the eastern part of the Tarim Basin and the south-eastern part of the Dzungaria Basin open (with easy access to the surroundings). The Hami Basin is located at the transitional area, connecting the two basins. Burials are mainly spread along the edge of the mountain ranges.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

3.1. The Lop Nur region

In the Lop Nur region, the Xiaohe cemetery (2000-1450 BCE) and the Gumugou cemetery (1900-1800 BCE) had many common features shared, and so is the Keliyahe northern cemetery:

  • Cemeteries were located in sandy areas;
  • Rectangular/boat-shaped wooden coffins with monuments of wooden planks or poles;
  • Coffins had no bottoms;
  • The dead were placed lying straight on the back;
  • The dead were commonly buried in single graves.

The Gumugou cemetery contained six special sun-radiating-spokes burial pattern in addition to the normal burials, which were similar to the wooden coffin graves of the Xiaohe cemetery.

NOTE. For more on Xiaohe and Gumugou, see the recent post on Proto-Tocharians. See other papers on the Andronovo horizon for other Early to Middle Bronze Age cultural groups less clearly associated with the Xiaohe horizon, like Hazandu, Xintala, or the Chust culture.

From Shuicheng (2006):

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority. The composition of alloy did not show significant change over time. Some colleagues pointed out that the Nulasai 奴拉赛 site at Nileke 尼勒克 County in the Yili 伊犁 River basin of Xinjiang was the pioneer in the use of “sulphuric ore–ice copper–copper”technology. It is also the only early smelting site in Euro-Asia that arsenic ore was added to deliberately produce an alloy

tocharians-bronze-age-middle
Prehistoric cultures of Xinjiang during the Middle Bronze Age. See full culture and ancient DNA maps.

3.2. The Hami Basin-the Balikun Grassland

From Yang (2019):

The Hami Basin-the Balikun Grassland area is located at the eastern part of Tian Shan. The area is divided in a northern basin and a southern basin by the east-west stretch of the Tian Shan. In the Hami Basin-the Balikun Grassland area, the main type of burials were earth-pit graves in the early Bronze Age, and burials of stone-pit with barrows became more common in the late Bronze Age. The Hami-Tianshan-Beilu cemetery is a representative of the earth-pit graves. The features of the Hami-Tianshan-Beilu cemetery (2000-1500 bce) here were:

  • Rectangular earth pit graves;
  • The dead were often in a hocker position lying on one side;
  • Commonly a single dead in one grave.
balikun-grassland
The Balikun grassland today (source).

The Hami-Wubu cemetery (earlier than 1000 bce) and the Yanbulake cemetery (1200-600 bce) are representatives of another common earth-pit graves. Common features here were:

  • Rectangular earth pits, with two storeys and/or roofed with wooden boards;
  • The dead was placed in a hocker position lying on one side;
  • Mostly a single dead in one grave.

Later there appeared more stone-pit graves in this area, and the features can be summarized as:

  • Round burial mounds, commonly constructed by stones or a mix of stones and earth;
  • Burial mounds with a sunken top or a normal (dome) top;
  • The diameter of the burial mounds varied between 3 and 25.4 m (but not necessarily limited in this scope);
  • Circular or rectangular stone kerbs;
  • Rectangular stone pits, constructed by earth, or stones, or a mix of earth and stones;
  • Rectangular stone pits contained wooden coffins (represented by the Yiwu Baiqi’er cemetery).
hami-basin-balikun-grassland-iron-age-burials
Some representatives of stone burials in the Hami Basin – the Balikun Grassland in the Iron Age (Adapted from: Xinjiang 2011, 29-41). Image modified from Yang (2019).

In the Hami Basin, the Bronze Age cemeteries show common burial features like earth pits and hocker position of the dead. With similar pottery styles in the Hami-Tianshan-Beilu cemetery to those in the Machang and Siba cultures (Xinjiang 2011: 17), it suggests possible cultural influence or people’s migrating from the Hexi Corridor in the east.

In the Balikun Grassland, burials in an earlier time contained mostly earth-pit graves but also a small number of stone-pit graves. The pebbles were imbedded in the floors and the walls of the graves in a rectangular shape, e.g. the Balikun-Nanwan cemetery (1600-1000 bce). In a later time, there appeared huge burial mounds with a sunken top, and with the diameters of the burial mounds varying from 3 to 25.4 m, e.g. the Balikun-Dongheigou cemetery and the Balikun-Heigouliang cemetery. The Yiwu-Bai’erqi and the Yiwu-Kuola cemeteries contained either round stone burial mounds or circular stone kerbs on the ground surface. Considering the three burial elements including burial mounds, stone pits and circular kerbs, the later period cemeteries in the Balikun Grassland were actually similar to cemeteries from the southern edge of the Altai Mountain area.

From Shuicheng (2006):

The Nanwan 南湾 cemetery site at Kuisu 奎苏 Town, Balikun 巴里坤 (1600–1100 BC) also yielded an assemblage of early bronzes. The style of its early phase artifacts is similar to that of the burials distributed in the North Tianshan Route. Some sorts of cultural connection should have existed between the two.

The dates of Yanbulake 焉不拉克 Culture (1300–700 BC) are comparatively late. Its metallurgy was a continuation of the western China tradition. Artifact types include a variety of utilitarian tools, weapons and apparels.

tocharians-bronze-age-late
Prehistoric cultures of Xinjiang during the Late Bronze Age. See full culture and ancient DNA maps.

3.3. The Turpan Basin-the middle part of Tian Shan

From Yang (2019):

Turpan Basin is located at the western part of the Hami Basin, and lies at the southern edge of the eastern Tian Shan. In the Turpan Basin-the middle part of Tian Shan area, the main representative of the Bronze Age cemeteries is the Yanghai Nr.1 cemetery. The features here were:

  • Elliptic earth pit graves, commonly covered by round logs on the top;
  • Some graves contained burial beds made of round logs or reeds;
  • The dead were mainly placed lying straight on the back;
  • Mostly a single dead in one grave.

In Iron Age, the stone burials became dominant, but the stone burials varied in different regions of the Turpan Basin-the middle part of Tian Shan area. Graves containing burial mounds, stone pit, and circular stone kerbs are represented by the Shanshan-Ertanggou cemetery, the Tuokexun-Alagou cemetery, the Urumqi-Chaiwobu cemetery and the Urumqi-Yizihu-Sayi cemetery, etc. The stone funeral construction features here are similar to those contemporary cemeteries in the Hami Basin-the Balikun Grassland area.

3.4. The southern edge of the western and middle part of Tian Shan

In the southern edge of the western and middle part of Tian Shan area, the main representatives of the late Bronze Age cemeteries are the Hejing-Chawuhu Nr.4 cemetery (around 1000-500 bce), the Hejing-Xiaoshankou cemetery, the Baicheng-cemetery, etc. The main burial features of the late Bronze Age and the early Iron Age cemeteries (see Fig.12) here were:

  • Burial mounds, constructed by stones or a mix of stones and earth;
  • Irregular circular or rectangular stone kerbs;
  • Stone pit graves in a bell-shape or a rectangular shape;
  • Stone pit graves constructed by imbedding pebbles or stone slabs in walls and floors;
  • The dead were often placed lying on their back with bent legs;
  • The dead were commonly reburied a second time with multiple burials.

From the late Bronze Age to the early Iron Age in this area, the burial traditions tended to be in a more varied way. In the stone burials with stone kerbs, there is a mixture of stone pit and earth pit graves. The burial features of the Iron Age cemeteries in this section were similar to those contemporary both in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area.

From Shuicheng (2006):

The Chawuhu 察吾呼 Culture (1100–500 BC) distributes on the foothills between the middle section of the Tianshan Mountain Ranges and Tarim River. Its bronze assemblage comprises a variety of weapons, utilitarian tools and small apparels. They show no apparent temporal change in form and type through the four cultural phases. In addition, bronzes bear the Chawuhu characteristics were found in Hejing 和静, Baicheng 拜城 and Luntai 轮台 (Bügür). Yet, sites distributed along the Tarim River, such as Heshuo 和硕, Kuga 库车and Aksu 阿克苏, yielded remains of a bronze culture different from that of Chawuhu. Bronzes recovered include double-eared socketed axe, arrowheads, awls, knives, needles and bracelets. Their absolute dates have been estimated to be earlier than that of Chawuhu.

tocharians-iron-age-early
Prehistoric cultures of Xinjiang during the Early Iron Age. See full culture and ancient DNA maps

3.5. The Pamir Plateau

From Yang (2019):

A typical Bronze Age cemetery from the Pamir Plateau area is the Tashenku’ergan-Xiabandi cemetery (around 1000-500 bce). The burial features here were:

  • Mainly inhumations, but also a few cremations;
  • Burial mounds, constructed of stones;
  • Irregular circular or rectangular stone kerbs;
  • Mostly a single dead in one grave;
  • The dead was placed in a hocker position lying on one side.

The adoption of burial customs from the east supports the migration of Afanasievo-related peoples from the Tian Shan up to the Pamir Plateau, strongly influencing the findings of the Xiabandi cemetery, which has been dated from an early Bronze Age phase (ca. 1500-300 BC) to a late date up to ca. 600 BC.

While it is today unclear how far the Afanasievo admixture reached into the western Xinjiang, it seems that the Pamir Plateau remained culturally connected to neighbouring Andronovo-related cultures in pottery and metallurgical innovations, hence their language probably belonged – during most part of the Bronze and Iron Ages – to the Indo-Iranian branch, even though specific dialects might have changed with each new attested group.

In particular, it is possible that the early Andronovo groups related to the Xiaohe Horizon spoke Indo-Aryan or West Iranian dialects, while Saka-related groups replaced them – or an intermediate Tocharian-speaking group – with East Iranian dialects. A close interaction with West Iranian would justify the known ancient borrowings of Tocharian, although they could also be explained by contacts with Chust-related groups farther west. For more on this, see Ged Carling’s work on the different layers of Iranian loans.

Xinjiang BA/IA Summary

From Yang (2019):

In the early Bronze Age, there are distinct regional differences in the burial customs in and surrounding the Tarim Basin. At the southern edge of the Altai Mountains area, the burial customs included stone burial mounds, stone pit graves, circular or rectangular stone kerbs and stone human sculptures; the dead were placed lying straight on the back. In the Hami Basin-the Balikun Grassland area, the burial customs included earth pit graves; the dead were placed in a hocker position lying on one side. In the Turpan Basin-the middle part of Tian Shan area, the burial customs included earth pit graves; the dead were placed lying straight on the back. In the Lop Nur region, the burial customs included wooden coffins buried in sand; the dead were placed lying straight on the back.

But from the late Bronze Age to the early Iron Age, there was a common shift in burial customs from earth pit graves to stone burials in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area. The main features of the stone burials include stone burial mounds, circular or rectangular stone kerbs, and the stone pit graves in the cemeteries. Similar stone burial customs commonly appeared at the southern edge of the western and middle part of Tian Shan area and the Pamir Plateau area in Iron Age. The burial features in most areas are in a mixture of both the earth pit graves and stone pit graves, especially in the Hami Basin-the Balikun Grassland area and the Turpan Basin-the middle part of Tian Shan area.

xinjiang-bronze-age-iron-age

From Shuicheng (2006):

Historians of metallurgy conducted metallographic analyses on a sample of 234 metal specimens recovered from 16 localities in eastern Xinjiang. They concluded that the metallurgic industry in eastern Xinjiang could be roughly partitioned into three developmental phases. The early phase is represented by the burials distributed in the North Tianshan Route. The majority of the metal assemblage was tin-bronzes; however, copper and arsenic-bronzes maintained considerable proportions. The middle phase is represented by the burials at Yanbulake. During this phase, tin-bronze still maintained the majority; the proportion of arsenic-bronze increased, and some of them were high arsenic-bronzes. The late phase is represented by the burials at Heigouliang 黑沟梁. The composition of lead increased in the bronze alloy in the expense of arsenic. In addition, this phase witnessed the appearance of high tin-bronze that composed up to 16% of tin and the appearance of brass, that is, an alloy of copper and zinc. The bronze alloy consistently contained significant amount of impurities regardless of temporal difference. Casting and forging technologies coexisted throughout the three phases. The early bronzes (2000–500 BC) of eastern Xinjiang, in general, contained arsenic; however, the composition of arsenic was usually under 8%, but a few artifacts contained more than 20% arsenic. In all, arsenic had long been used in the alloy-forming of the early bronzes in eastern Xinjiang. Consequently, arsenic-bronzes were widely found in the prehistoric archaeology of the region. The artifact types, chemical compositions and manufacture techniques of the bronze assemblage of the burials of the North Tianshan Route are similar to those of Siba Culture, indicating that eastern Xinjiang had played a significant role in the East-West interactions.

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic-bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority.

tocharians-iron-age-late
Prehistoric cultures of Xinjiang during the Late Iron Age. See full culture and ancient DNA maps.

Tocharians in population genomics

Prehistoric population movements between the Altai and the Tian Shan are difficult to pinpoint, not the least because of the division of these territories among three different countries and their archaeological teams, only recently (more) open to the international scholarship.

The available schematic archaeological picture, where migrations could only be roughly inferred, has been recently updated to a great extent by Ning, Wang et al. (2019), whose genetic analysis of the samples is as thorough as anyone could have asked for, with a level of detail which matches the complex genetic picture of the region by the Iron Age.

As a summary, here is what they described about the samples from Shirenzigou (ca 400-200 BC), corresponding to the Iron Age populations of the Hami Basin-the Balikun Grassland area, and closely related to the preceding Yanbulake Culture:

As shown in Figure S3, the Steppe_MLBA populations including Srubnaya, Andronovo, and Sintashta were shifted toward farming populations compared with Yamnaya groups and the Shirenzigou samples. This observation is consistent with ADMIXTURE analysis that Steppe_MLBA populations have an Anatolian and European farmer-related component that Yamnaya groups and the Shirenzigou individuals do not seem to have. The analysis consistently suggested Yamnaya-related Steppe populations were the better source in modeling the West Eurasian ancestry in Shirenzigou.

biplot-yamnaya-tocharians-shirenzigou
Biplot of f3-outgroup tests illustrating the Kostenki14 and Anatolia_N like ancestries in Shirenzigou individuals. Most Shirenzigou individuals were on a cline with Yamnaya and European hunter-gatherer groups, lacking the European farmer ancestry as compared to the Steppe_MLBA populations such as Andronovo, Srubnaya and Sintashta [S1-S5]. Horizontal and vertical bars represent ± 3 standard errors, corresponding to form of outgroup f3 tests on the x axis and y axis respectively.

We continued to use qpAdm to estimate the admixture proportions in the Shirenzigou samples by using different pairs of source populations, such as Yamnaya_Samara, Afanasievo, Srubnaya, Andronovo, BMAC culture (Bustan_BA and Sappali_ Tepe_BA) and Tianshan_Hun as the West Eurasian source and Han, Ulchi, Hezhen, Shamanka_EN as the East Eurasian source. In all cases, Yamnaya, Afanasievo, or Tianshan_Hun always provide the best model fit for the Shirenzigou individuals, while Srubnaya, Andronovo, Bustan_BA and Sappali_Tepe_BA only work in some cases.

p-values-shirenzigou-samples-han-chinese
Table S2. P values in modelling a two-way (P=rank 1) admixture in Shirenzigou samples using each of the four populations (Bustan_BA, Sappali_Tepe_BA, Andronovo.SG, Srubnaya) together with Han Chinese as two sources [S6], Related to Figure 2. We used the following set of outgroups populations: Dinka, Ust_Ishim, Kostenki14, Onge, Papuan, Australian, Iran_N, EHG, LBK_EN.

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

In the PCA, ADMIXTURE, outgroup f3 statistics [see Figure S4], as well as f4 statistics (Table S3), we observed the Shirenzigou individuals were closer to the present day Tungusic and Mongolic-speaking populations in northern Asia than to the populations in central and southern China, suggesting the northern populations might contribute more to the Shirenzigou individuals. Based on this, we then modeled Shirenzigou as a three-way admixture of Yamnaya_Samara, Ulchi (or Hezhen) and Han to infer the source from the East Eurasia side that contributed to Shirenzigou. We found the Ulchi or Hezhen and Han-related ancestry had a complicated and unevenly distribution in the Shirenzigou samples. The most Shirenzigou individuals derived the majority of their East Eurasian ancestry from Ulchi or Hezhen-related populations, while the following two individuals M820 and M15-2 have more Han related than Ulchi/ Hezhen-related ancestry

It is unclear whether the Chemurchek population will show a sizeable local contribution from neighbouring groups. The fact that Okunevo shows 20% Yamnaya-related ancestry strongly supports the nature of neighbouring stone-grave-building peoples of the Altai and the northern Tian Shan as mostly Afanasievo-like, and the apparent lack of contributions of Srubna/Andronovo-like ancestry in the early Hami-Balikun stone burial builders also speaks for radical population replacement events reaching the areas south of Tian Shan, at least initially.

While ancestry cannot settle linguistic questions, it seems that nomads of the Gansu and Qinghai grasslands retained an ancestry close to Andronovo, whereas nomads of the Hami Basin-Balikun grasslands and related populations of Xinjiang remained closely related to Afanasievo. This doesn’t preclude that the ancestors of the Yuezhi became acculturated under the influence of peoples from eastern Xinjiang, but all data combined suggest an isolation of both populations – relative to other groups and to each other – and it is therefore more likely that they spoke Indo-Iranian-related languages rather than a language of the Tocharian branch.

Haplogroups

In an interesting twist of events, despite the initially reported hg. R1b and Q, Tocharians from Shirenzigou actually show a haplogroup diversity comparable to that attested in other late Iron Age populations: a similar diversity is seen, for example, among Germanic, Baltic, and Balto-Finnic peoples of the Baltic region; among East Germanic or Scythians of the north Pontic region; or among Mediterranean peoples sampled to date. Iron Age peoples show thus a complex sociopolitical setting that overcame the previous patrilineal homogeneity of Bronze Age expansions.

tocharians-pca
PCA and ADMIXTURE for Shirenzigou Samples. Modified from the original to include in black squares samples related to Yamnaya. Modified from the paper to include labels of modern populations and a dotted lines with the cline formed by Shirenzigou, from (Yamnaya-like) Afanasievo to Central and East Asian-like populations. In red circles, samples with best fit for Andronovo-like ancestry. In green circles, samples with Han-related admixture.

M15-2 (with Han-related ancestry) is of the rare haplogroup Q1a-M120, while the samples with highest Steppe_MLBA-related ancestry are of hg. R1b-PH155, which points to their recent origin among Yuezhi, or to Hun-related populations showing an admixture related to the proto-historic nomads of the Gansu and Qinghai grasslands.

The expansion of Chemurchek-related peoples was probably associated more with hg. Q1a (dubious if it’s a Pre-ISOGG 2017 nomenclature, hence possibly Q1b), a haplogroup that might be found in Khvalynsk as a “significant minority” according to Anthony (2019), and it might also be attested in sampled individuals from Afanasievo in its late phase. This might be, therefore, a case similar to the early expansion of Indo-Europeans with R1b-V1636 lineages through the Volga – North Caucasus region, and of the later expansion with I2a-L699 lineages into the Balkans.

Haplogroup Q1a2-M25 is found in individual X3, whose Steppe ancestry is likely a combination of Afanasievo plus Andronovo-like ancestry heavily admixed with Hezhen/Ulchi-like populations, in line with the expected recent contacts with the neighbouring Xiongnu, Yuezhi, and other population movements affecting eastern Xinjiang.

Sample M4, which packs the most Afanasievo-like ancestry, is of hg. R1a-Z645, which – like sample M8R1 of hg. O – is most likely related to haplogroup resurgence events of local populations, which left the predominant Afanasievo-like admixture brought by builders of stone burials essentially intact, evidenced by the almost 100% of R1a found in the Xiaohe cemetery – and in most of the early Andronovo horizon – and among expanding Kangju and Wusun, as well as by the prevalence of hg. O among sampled East Asian populations.

A question that will only be answered with more samples is how and when the prevalent R1b-L23 and Q1b lineages among Afanasievo-related peoples began to be replaced to reach the high variability seen in Shirenzigou. Given the pastoralist nature of peoples around Tian Shan, the succeeding expansions of Proto-Tocharians, and the late isolation of different Common Tocharian groups, it is more than likely that this variability represents a late and local phenomenon within Xinjiang itself.

tocharians-antiquity
Peoples of Xinjiang during Antiquity. See full culture and ancient DNA maps.

Conclusion

Tocharians are one of the main pillars that confirm the Late Proto-Indo-European homeland of the R1b-rich populations of the Don-Volga region. There is already:

Just like the East Bell Beaker expansion from Yamnaya Hungary has confirmed that Corded Ware peoples did not partake in spreading Indo-European languages (spreading Uralic languages instead), data on the expansion of Tocharian speakers from Afanasievo to the Tian Shan was always there; population genomics is merely helping to connect the dots.

In summary, genetic research is supporting the expected linguistic expansions of the Neolithic and Bronze Age step by step, slowly but surely.

Related

Corded Ware ancestry in North Eurasia and the Uralic expansion

uralic-clines-nganasan

Now that it has become evident that Late Repin (i.e. Yamnaya/Afanasevo) ancestry was associated with the migration of R1b-L23-rich Late Proto-Indo-Europeans from the steppe in the second half of the the 4th millennium BC, there’s still the question of how R1a-rich Uralic speakers of Corded Ware ancestry expanded , and how they spread their languages throughout North Eurasia.

Modern North Eurasians

I have been collecting information from the supplementary data of the latest papers on modern and ancient North Eurasian peoples, including Jeong et al. (2019), Saag et al. (2019), Sikora et al. (2018), or Flegontov et al. (2019), and I have tried to add up their information on ancestral components and their modern and historical distributions.

Fortunately, the current obsession with simplifying ancestry components into three or four general, atemporal groups, and the common use of the same ones across labs, make it very simple to merge data and map them.

Corded Ware ancestry

There is no doubt about the prevalent ancestry among Uralic-speaking peoples. A map isn’t needed to realize that, because ancient and modern data – like those recently summarized in Jeong et al. (2019) – prove it. But maps sure help visualize their intricate relationship better:

natural-modern-srubnaya-ancestry
Natural neighbor interpolation of Srubnaya ancestry among modern populations. See full map.
kriging-modern-srubnaya-ancestry
Kriging interpolation of Srubnaya ancestry among modern populations. See full map

Interestingly, the regions with higher Corded Ware-related ancestry are in great part coincident with (pre)historical Finno-Ugric-speaking territories:

uralic-languages-modern
Modern distribution of Uralic languages, with ancient territory (in the Common Era) labelled and delimited by a red line. For more information on the ancient territory see here.

Edit (29/7/2019): Here is the full Steppe_MLBA ancestry map, including Steppe_MLBA (vs. Indus Periphery vs. Onge) in modern South Asian populations from Narasimhan et al. (2018), apart from the ‘Srubnaya component’ in North Eurasian populations. ‘Dummy’ variables (with 0% ancestry) have been included to the south and east of the map to avoid weird interpolations of Steppe_MLBA into Africa and East Asia.

modern-steppe-mlba-ancestry2
Natural neighbor interpolation of Steppe MLBA-like ancestry among modern populations. See full map.

Anatolia Neolithic ancestry

Also interesting are the patterns of non-CWC-related ancestry, in particular the apparent wedge created by expanding East Slavs, which seems to reflect the intrusion of central(-eastern) European ancestry into Finno-Permic territory.

NOTE. Read more on Balto-Slavic hydrotoponymy, on the cradle of Russians as a Finno-Permic hotspot, and about Pre-Slavic languages in North-West Russia.

natural-modern-lbk-en-ancestry
Natural neighbor interpolation of LBK EN ancestry among modern populations. See full map.
kriging-modern-lbk-en-ancestry
Kriging interpolation of LBK EN ancestry among modern populations. See full map

WHG ancestry

The cline(s) between WHG, EHG, ANE, Nganasan, and Baikal HG are also simplified when some of them excluded, in this case EHG, represented thus in part by WHG, and in part by more eastern ancestries (see below).

modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations. See full map.
kriging-modern-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Arctic, Tundra or Forest-steppe?

Data on Nganasan-related vs. ANE vs. Baikal HG/Ulchi-related ancestry is difficult to map properly, because both ancestry components are usually reported as mutually exclusive, when they are in fact clearly related in an ancestral cline formed by different ancient North Eurasian populations from Siberia.

When it comes to ascertaining the origin of the multiple CWC-related clines among Uralic-speaking peoples, the question is thus how to properly distinguish the proportions of WHG-, EHG-, Nganasan-, ANE or BaikalHG-related ancestral components in North Eurasia, i.e. how did each dialectal group admix with regional groups which formed part of these clines east and west of the Urals.

The truth is, one ought to test specific ancient samples for each “Siberian” ancestry found in the different Uralic dialectal groups, but the simplistic “Siberian” label somehow gets a pass in many papers (see a recent example).

Below qpAdm results with best fits for Ulchi ancestry, Afontova Gora 3 ancestry, and Nganasan ancestry, but some populations show good fits for both and with similar proportions, so selecting one necessarily simplifies the distribution of both.

Ulchi ancestry

modern-ulchi-ancestry
Natural neighbor interpolation of Ulchi ancestry among modern populations. See full map.
kriging-modern-ulchi-ancestry
Kriging interpolation of Ulchi ancestry among modern populations. See full map.

ANE ancestry

natural-modern-ane-ancestry
Natural neighbor interpolation of ANE ancestry among modern populations. See full map.
kriging-modern-ane-ancestry
Kriging interpolation of ANE ancestry among modern populations. See full map.

Nganasan ancestry

modern-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among modern populations. See full map.
kriging-modern-nganasan-ancestry
Kriging interpolation of Nganasan ancestry among modern populations. See full map.

Iran Chalcolithic

A simplistic Iran Chalcolithic-related ancestry is also seen in the Altaic cline(s) which (like Corded Ware ancestry) expanded from Central Asia into Europe – apart from its historical distribution south of the Caucasus:

modern-iran-chal-ancestry
Natural neighbor interpolation of Iran Neolithic ancestry among modern populations. See full map.
kriging-modern-iran-neolithic-ancestry
Kriging interpolation of Iran Chalcolithic ancestry among modern populations. See full map.

Other models

The first question I imagine some would like to know is: what about other models? Do they show the same results? Here is the simplistic combination of ancestry components published in Damgaard et al. (2018) for the same or similar populations:

NOTE. As you can see, their selection of EHG vs. WHG vs. Nganasan vs. Natufian vs. Clovis of is of little use, but corroborate the results from other papers, and show some interesting patterns in combination with those above.

EHG

damgaard-modern-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-ehg-ancestry
Kriging interpolation of EHG ancestry among modern populations. See full map.

Natufian ancestry

damgaard-modern-natufian-ancestry
Natural neighbor interpolation of Natufian ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-natufian-ancestry
Kriging interpolation of Natufian ancestry among modern populations. See full map.

WHG ancestry

damgaard-modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Baikal HG ancestry

damgaard-modern-baikalhg-ancestry
Natural neighbor interpolation of Baikal hunter-gatherer ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-baikal-hg-ancestry
Kriging interpolation of Baikal HG ancestry among modern populations. See full map.

Ancient North Eurasians

Once the modern situation is clear, relevant questions are, for example, whether EHG-, WHG-, ANE, Nganasan-, and/or Baikal HG-related meta-populations expanded or became integrated into Uralic-speaking territories.

When did these admixture/migration events happen?

How did the ancient distribution or expansion of Palaeo-Arctic, Baikalic, and/or Altaic peoples affect the current distribution of the so-called “Siberian” ancestry, and of hg. N1a, in each specific population?

NOTE. A little excursus is necessary, because the calculated repetition of a hypothetic opposition “N1a vs. R1a” doesn’t make this dichotomy real:

  1. There was not a single ethnolinguistic community represented by hg. R1a after the initial expansion of Eastern Corded Ware groups, or by hg. N1a-L392 after its initial expansion in Siberia:
  2. Different subclades became incorporated in different ways into Bronze Age and Iron Age communities, most of which without an ethnolinguistic change. For example, N1a subclades became incorporated into North Eurasian populations of different languages, reaching Uralic- and Indo-European-speaking territories of north-eastern Europe during the late Iron Age, at a time when their ancestral origin or language in Siberia was impossible to ascertain. Just like the mix found among Proto-Germanic peoples (R1b, R1a, and I1)* or among Slavic peoples (I2a, E1b, R1a)*, the mix of many Uralic groups showing specific percentages of R1a, N1a, or Q subclades* reflect more or less recent admixture or acculturation events with little impact on their languages.

*other typically northern and eastern European haplogroups are also represented in early Germanic (N1a, I2, E1b, J, G2), Slavic (I1, G2, J) and Finno-Permic (I1, R1b, J) peoples.

ananino-culture-new
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

The problem with mapping the ancestry of the available sampling of ancient populations is that we lack proper temporal and regional transects. The maps that follow include cultures roughly divided into either “Bronze Age” or “Iron Age” groups, although the difference between samples may span up to 2,000 years.

NOTE. Rough estimates for more external groups (viz. Sweden Battle Axe/Gotland_A for the NW, Srubna from the North Pontic area for the SW, Arctic/Nganasan for the NE, and Baikal EBA/”Ulchi-like” for the SE) have been included to offer a wider interpolated area using data already known.

Bronze Age

Similar to modern populations, the selection of best fit “Siberian” ancestry between Baikal HG vs. Nganasan, both potentially ± ANE (AG3), is an oversimplification that needs to be addressed in future papers.

Corded Ware ancestry

bronze-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Bronze Age populations. See full map.

Nganasan-like ancestry

bronze-age-nganasan-like-ancestry
Natural neighbor interpolation of Nganasan-like ancestry among Bronze Age populations. See full map.

Baikal HG ancestry

bronze-age-baikal-hg-ancestry
Natural neighbor interpolation of Baikal Hunter-Gatherer ancestry among Bronze Age populations. See full map.

Afontova Gora 3 ancestry

bronze-age-afontova-gora-ancestry
Natural neighbor interpolation of Afontova Gora 3 ancestry among Bronze Age populations. See full map.

Iron Age

Corded Ware ancestry

Interestingly, the moderate expansion of Corded Ware-related ancestry from the south during the Iron Age may be related to the expansion of hg. N1a-VL29 into the chiefdom-based system of north-eastern Europe, including Ananyino/Akozino and later expanding Akozino warrior-traders around the Baltic Sea.

NOTE. The samples from Levänluhta are centuries older than those from Estonia (and Ingria), and those from Chalmny Varre are modern ones, so this region has to be read as a south-west to north-east distribution from the Iron Age to modern times.

iron-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Iron Age populations. See full map.

Baikal HG-like ancestry

The fact that this Baltic N1a-VL29 branch belongs in a group together with typically Avar N1a-B197 supports the Altaic origin of the parent group, which is possibly related to the expansion of Baikalic ancestry and Iron Age nomads:

iron-age-baikal-ancestry
Natural neighbor interpolation of Baikal HG ancestry among Iron Age populations. See full map.

Nganasan-like ancestry

The dilution of Nganasan-like ancestry in an Arctic region featuring “Siberian” ancestry and hg. N1a-L392 at least since the Bronze Age supports the integration of hg. N1a-Z1934, sister clade of Ugric N1a-Z1936, into populations west and east of the Urals with the expansion of Uralic languages to the north into the Tundra region (see here).

The integration of N1a-Z1934 lineages into Finnic-speaking peoples after their migration to the north and east, and the displacement or acculturation of Saami from their ancestral homeland, coinciding with known genetic bottlenecks among Finns, is yet another proof of this evolution:

iron-age-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among Iron Age populations. See full map.

WHG ancestry

Similarly, WHG ancestry doesn’t seem to be related to important population movements throughout the Bronze Age, which excludes the multiple North Eurasian populations that will be found along the clines formed by WHG, EHG, ANE, Nganasan, Baikal HG ancestry as forming part of the Uralic ethnogenesis, although they may be relevant to follow later regional movements of specific populations.

iron-age-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Iron Age populations. See full map.

Conclusion

It seems natural that people used to look at maps of haplogroup distribution from the 2000s, coupled with modern language distributions, and would try to interpret them in a certain way, reaching thus the wrong conclusions whose consequences are especially visible today when ancient DNA keeps contradicting them.

In hindsight, though, assuming that Balto-Slavs expanded with Corded Ware and hg. R1a, or that Uralians expanded with “Siberian” ancestry and hg. N1a, was as absurd as looking at maps of ancestry and haplogroup distribution of ancient and modern Native Americans, trying to divide them into “Germanic” or “Iberian”…

The evolution of each specific region and cultural group of North Eurasia is far from being clear. However, the general trend speaks clearly in favour of an ancient, Bronze Age distribution of North Eurasian ancestry and haplogroups that have decreased, diluted, or become incorporated into expanding Uralians of Corded Ware ancestry, occasionally spreading with inter-regional expansions of local groups.

Given the relatively recent push of Altaic and Indo-European languages into ancestral Uralic-speaking territories, only the ancient Corded Ware expansion remains compatible with the spread of Uralic languages into their historical distribution.

Related

A Song of Sheep and Horses, revised edition, now available as printed books

cover-song-sheep-and-horses

As I said 6 months ago, 2019 is a tough year to write a blog, because this was going to be a complex regional election year and therefore a time of political promises, hence tenure offers too. Now the preliminary offers have been made, elections have passed, but the timing has slightly shifted toward 2020. So I may have the time, but not really any benefit of dedicating too much effort to the blog, and a lot of potential benefit of dedicating any time to evaluable scientific work.

On the other hand, I saw some potential benefit for publishing texts with ISBNs, hence the updates to the text and the preparation of these printed copies of the books, just in case. While Spain’s accreditation agency has some hard rules for becoming a tenured professor, especially for medical associates (whose years of professional experience are almost worthless compared to published peer-reviewed papers), it is quite flexible in assessing one’s merits.

However, regional and/or autonomous entities are not, and need an official identifier and preferably printed versions to evaluate publications, such as an ISBN for books. I took thus some time about a month ago to update the texts and supplementary materials, to publish a printed copy of the books with Amazon. The first copies have arrived, and they look good.

series-song-sheep-horses-cover

Corrections and Additions

Titles
I have changed the names and order of the books, as I intended for the first publication – as some of you may have noticed when the linguistic book was referred to as the third volume in some parts. In the first concept I just wanted to emphasize that the linguistic work had priority over the rest. Now the whole series and the linguistic volume don’t share the same name, and I hope this added clarity is for the better, despite the linguistic volume being the third one.

Uralic dialects
I have changed the nomenclature for Uralic dialects, as I said recently. I haven’t really modified anything deeper than that, because – unlike adding new information from population genomics – this would require for me to do a thorough research of the most recent publications of Uralic comparative grammar, and I just can’t begin with that right now.

Anyway, the use of terms like Finno-Ugric or Finno-Samic is as correct now for the reconstructed forms as it was before the change in nomenclature.

west-east-uralic-schema

Mediterranean
The most interesting recent genetic data has come from Iberia and the Mediterranean. Lacking direct data from the Italian Peninsula (and thus from the emergence of the Etruscan and Rhaetian ethnolinguistic community), it is becoming clearer how some quite early waves of Indo-Europeans and non-Indo-Europeans expanded and shrank – at least in West Iberia, West Mediterranean, and France.

Finno-Ugric
Some of the main updates to the text have been made to the sections on Finno-Ugric populations, because some interesting new genetic data (especially Y-DNA) have been published in the past months. This is especially true for Baltic Finns and for Ugric populations.

ananino-culture-new

Balto-Slavic
Consequently, and somehow unsurprisingly, the Balto-Slavic section has been affected by this; e.g. by the identification of Early Slavs likely with central-eastern populations dominated by (at least some subclades of) hg. I2a-L621 and E1b-V13.

Maps
I have updated some cultural borders in the prehistoric maps, and the maps with Y-DNA and mtDNA. I have also added one new version of the Early Bronze age map, to better reflect the most likely location of Indo-European languages in the Early European Bronze Age.

As those in software programming will understand, major changes in the files that are used for maps and graphics come with an increasing risk of additional errors, so I would not be surprised if some major ones would be found (I already spotted three of them). Feel free to communicate these errors in any way you see fit.

bronze-age-early-indo-european
European Early Bronze Age: tentative langage map based on linguistics, archaeology, and genetics.

SNPs
I have selected more conservative SNPs in certain controversial cases.

I have also deleted most SNP-related footnotes and replaced them with the marking of each individual tentative SNP, leaving only those footnotes that give important specific information, because:

  • My way of referencing tentative SNP authors did not make it clear which samples were tentative, if there were more than one.
  • It was probably not necessary to see four names repeated 100 times over.
  • Often I don’t really know if the person I have listed as author of the SNP call is the true author – unless I saw the full SNP data posted directly – or just someone who reposted the results.
  • Sometimes there are more than one author of SNPs for a certain sample, but I might have added just one for all.
ancient-dna-all
More than 6000 ancient DNA samples compiled to date.

For a centralized file to host the names of those responsible for the unofficial/tentative SNPs used in the text – and to correct them if necessary -, readers will be eventually able to use Phylogeographer‘s tool for ancient Y-DNA, for which they use (partly) the same data I compiled, adding Y-Full‘s nomenclature and references. You can see another map tool in ArcGIS.

NOTE. As I say in the text, if the final working map tool does not deliver the names, I will publish another supplementary table to the text, listing all tentative SNPs with their respective author(s).

If you are interested in ancient Y-DNA and you want to help develop comprehensive and precise maps of ancient Y-DNA and mtDNA haplogroups, you can contact Hunter Provyn at Phylogeographer.com. You can also find more about phylogeography projects at Iain McDonald’s website.

Graphics
I have also added more samples to both the “Asian” and the “European” PCAs, and to the ADMIXTURE analyses, too.

I previously used certain samples prepared by amateurs from BAM files (like Botai, Okunevo, or Hittites), and the results were obviously less than satisfactory – hence my criticism of the lack of publication of prepared files by the most famous labs, especially the Copenhagen group.

Fortunately for all of us, most published datasets are free, so we don’t have to reinvent the wheel. I criticized genetic labs for not releasing all data, so now it is time for praise, at least for one of them: thank you to all responsible at the Reich Lab for this great merged dataset, which includes samples from other labs.

NOTE. I would like to make my tiny contribution here, for beginners interested in working with these files, so I will update – whenever I have time – the “How To” sections of this blog for PCAs, PCA3d, and ADMIXTURE.

-iron-age-europe-romans
Detail of the PCA of European Iron Age populations. See full versions.

ADMIXTURE
For unsupervised ADMIXTURE in the maps, a K=5 is selected based on the CV, giving a kind of visual WHG : NWAN : CHG/IN : EHG : ENA, but with Steppe ancestry “in between”. Higher K gave worse CV, which I guess depends on the many ancient and modern samples selected (and on the fact that many samples are repeated from different sources in my files, because I did not have time to filter them all individually).

I found some interesting component shared by Central European populations in K=7 to K=9 (from CEU Bell Beakers to Denmark LN to Hungarian EBA to Iberia BA, in a sort of “CEU BBC ancestry” potentially related to North-West Indo-Europeans), but still, I prefer to go for a theoretically more correct visualization instead of cherry-picking the ‘best-looking’ results.

Since I made fun of the search for “Siberian ancestry” in coloured components in Tambets et al. 2018, I have to be consistent and preferred to avoid doing the same here…

qpAdm
In the first publication (in January) and subsequent minor revisions until March, I trusted analyses and ancestry estimates reported by amateurs in 2018, which I used for the text adding my own interpretations. Most of them have been refuted in papers from 2019, as you probably know if you have followed this blog (see very recent examples here, here, or here), compelling me to delete or change them again, and again, and again. I don’t have experience from previous years, although the current pattern must have been evidently repeated many times over, or else we would be still talking about such previous analyses as being confirmed today…

I wanted to be one step ahead of peer-reviewed publications in the books, but I prefer now to go for something safe in the book series, rather than having one potentially interesting prediction – which may or may not be right – and ten huge mistakes that I would have helped to endlessly redistribute among my readers (online and now in print) based on some cherry-picked pairwise comparisons. This is especially true when predictions of “Steppe“- and/or “Siberian“-related ancestry have been published, which, for some reason, seem to go horribly wrong most of the time.

I am sure whole books can be written about why and how this happened (and how this is going to keep happening), based on psychology and sociology, but the reasons are irrelevant, and that would be a futile effort; like writing books about glottochronology and its intermittent popularity due to misunderstood scientist trends. The most efficient way to deal with this problem is to avoid such information altogether, because – as you can see in the current revised text – they wouldn’t really add anything essential to the content of these books, anyway.

Continue reading

Official site of the book series:
A Song of Sheep and Horses: eurafrasia nostratica, eurasia indouralica

Uralic speakers formed clines of Corded Ware ancestry with WHG:ANE populations

steppe-forest-tundra-biomes-uralic

The preprint by Jeong et al. (2018) has been published: The genetic history of admixture across inner Eurasia Nature Ecol. Evol. (2019).

Interesting excerpts, referring mainly to Uralic peoples (emphasis mine):

A model-based clustering analysis using ADMIXTURE shows a similar pattern (Fig. 2b and Supplementary Fig. 3). Overall, the proportions of ancestry components associated with Eastern or Western Eurasians are well correlated with longitude in inner Eurasians (Fig. 3). Notable outliers include known historical migrants such as Kalmyks, Nogais and Dungans. The Uralic- and Yeniseian-speaking populations, as well as Russians from multiple locations, derive most of their Eastern Eurasian ancestry from a component most enriched in Nganasans, while Turkic/Mongolic speakers have this component together with another component most enriched in populations from the Russian Far East, such as Ulchi and Nivkh (Supplementary Fig. 3). Turkic/Mongolic speakers comprising the bottom-most cline have a distinct Western Eurasian ancestry profile: they have a high proportion of a component most enriched in Mesolithic Caucasus hunter-gatherers and Neolithic Iranians and frequently harbour another component enriched in present-day South Asians (Supplementary Fig. 4). Based on the PCA and ADMIXTURE results, we heuristically assigned inner Eurasians to three clines: the ‘forest-tundra’ cline includes Russians and all Uralic and Yeniseian speakers; the ‘steppe-forest’ cline includes Turkic- and Mongolic-speaking populations from the Volga and Altai–Sayan regions and Southern Siberia; and the ‘southern steppe’ cline includes the rest of the populations.

eurasian-clines-uralic-altaic
The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the northsouth cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

For the forest-tundra populations, the Nganasan + Srubnaya model is adequate only for the two Volga region populations, Udmurts and Besermyans (Fig. 5 and Supplementary Table 8).

For the other populations west of the Urals, six from the northeastern corner of Europe are modelled with additional Mesolithic Western European hunter-gatherer (WHG) contribution (8.2–11.4%; Supplementary Table 8), while the rest need both WHG and early Neolithic European farmers (LBK_EN; Supplementary Table 2). Nganasan-related ancestry substantially contributes to their gene pools and cannot be removed from the model without a significant decrease in the model fit (4.1–29.0% contribution; χ2 P ≤ 1.68 × 10−5; Supplementary Table 8).

west-urals-finno-ugrians-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the 13 populations west of the Urals, we present a four-way admixture model, Nganasan+Srubnaya+WHG+LBK_EN, or its minimal adequate subset. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

NOTE. It doesn’t seem like Hungarians can be easily modelled with Nganasan ancestry, though…

For the 4 populations east of the Urals (Enets, Selkups, Kets and Mansi), for which the above models are not adequate, Nganasan + Srubnaya + AG3 provides a good fit (χ2 P ≥ 0.018; Fig. 5 and Supplementary Table 8). Using early Bronze Age populations from the Baikal Lake region (‘Baikal_EBA’; Supplementary Table 2) as a reference instead of Nganasan, the two-way model of Baikal_EBA + Srubnaya provides a reasonable fit (χ2 P ≥ 0.016; Supplementary Table 8) and the three-way model of Baikal_EBA + Srubnaya + AG3 is adequate but with negative AG3 contribution for Enets and Mansi (χ2 P ≥ 0.460; Supplementary Table 8).

east-urals-ugric-samoyedic-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the four populations east of the Urals, we present three admixture models: Baikal_EBA+Srubnaya, Baikal_EBA+Srubnaya+AG3 and Nganasan+Srubnaya+AG3. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Bronze/Iron Age populations from Southern Siberia also show a similar ancestry composition with high ANE affinity (Supplementary Table 9). The additional ANE contribution beyond the Nganasan + Srubnaya model suggests a legacy from ANE-ancestry-rich clines before the Late Bronze Age.

bronze-age-iron-age-karasuk-mezhovska-tagar-qpadm
Supplementary Table 9. QpAdm-based admixture modeling of Bronze and Iron Age populations of southern Siberia. For ancieint individuals associated with Karasuk and Tagar cultures, Nganasan+Srubnaya model is insufficient. For all five groups, adding AG3 as the third ancestry or substituting Nganasan with Baikal_EBA with higher ANE affinity provides an adequate model. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Models with p-value ≥ 0.05 are highlighted in bold face. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Lara M. Cassidy comments the results of the study in A steppe in the right direction (you can read it here):

Even among the earliest available inner Eurasian genomes, east–west connectivity is evident. These, too, form a longitudinal cline, characterized by the easterly increase of a distinct ancestry, labelled Ancient North Eurasian (ANE), lowest in western European hunter-gatherers (WHG) and highest in Palaeolithic Siberians from the Baikal region. Flow-through from this ANE cline is seen in steppe populations until at least the Bronze Age, including the world’s earliest known horse herders — the Botai. However, this is eroded over time by migration from west and east, following agricultural adoption on the continental peripheries (Fig. 1b,c).

Strikingly, Jeong et al. model the modern upper steppe cline as a simple two-way mixture between western Late Bronze Age herders and Northeast Asians (Fig. 1c), with no detectable residue from the older ANE cline. They propose modern steppe peoples were established mainly through migrations post-dating the Bronze Age, a sequence for which has been recently outlined using ancient genomes. In contrast, they confirm a substantial ANE legacy in modern Siberians of the northernmost cline, a pattern mirrored in excesses of WHG ancestry west of the Urals (Fig. 1b). This marks the inhospitable biome as a reservoir for older lineages, an indication that longstanding barriers to latitudinal movement may indeed be at work, reducing the penetrance of gene flows further south along the steppe.

eurasian-clines-uralic-turkic-mongol-altaic
The genomic formation of inner Eurasians. b–d, Depiction of the three main clines of ancestry identified among Inner Eurasians. Sources of admixture for each cline are represented using proxy ancient populations, both sampled and hypothesised, based on the study’s modelling results. The major eastern and western ancestries used to model each cline are shown in bold; the peripheral admixtures that gave rise to these are also shown. Additional contributions to subsections of each cline are marked with dashed lines. b, The northernmost cline, illustrating the legacy of WHG and ANE-related populations. c,d, The upper (c) and lower (d) steppe clines are shown, both of which have substantial eastern contributions related to modern Tungusic speakers. The authors propose these populations are themselves the result of an admixture between groups related to the Nganasan, whose ancestors potentially occupied a wider range, and hunter-gatherers (HGs) from the Amur River Basin. While the upper steppe cline in c can be described as a mixture between this eastern ancestry and western steppe herders, the current model for the southern steppe cline as shown in d is not adequate and is likely confounded by interactions with diverse bordering ancestries. Credit: Ecoregions 2017, Resolve https://ecoregions2017.appspot.com/

Given the findings as reported in the paper, I think it should be much easier to describe different subclines in the “northernmost cline” than in the much more recent “Turkic/Mongolic cline”, which is nevertheless subdivided in this paper in two clines. As an example, there are at least two obvious clines with “Nganasan-related meta-populations” among Uralians, which converge in a common Steppe MLBA (i.e. Corded Ware) ancestry – one with Palaeo-Laplandic peoples, and another one with different Palaeo-Siberian populations:

siberian-clines-uralic-altaic
PCA of ancient and modern Eurasian samples. Ancient Palaeo-Laplandic, Palaeosiberian, and Altai clines drawn, with modern populations labelled. See a version with higher resolution.

The inclusion of certain Eurasian groups (or lack thereof) in the PCA doesn’t help to distinguish these subclines visually, and I guess the tiny “Naganasan-related” ancestral components found in some western populations (e.g. the famous ~5% among Estonians) probably don’t lend themselves easily to further subdivisions. Notice, nevertheless, the different components of the Eastern Eurasian source populations among Finno-Ugrians:

uralic-admixture-qpadm
Characterization of the Western and Eastern Eurasian source ancestries in inner Eurasian populations. [Modified from the paper, includes only Uralic populations]. a, Admixture f3 values are compared for different Eastern Eurasian (Mixe, Nganasan and Ulchi; green) and Western Eurasian references (Srubnaya and Chalcolithic Iranians (Iran_ChL); red). For each target group, darker shades mark more negative f3 values. b, Weights of donor populations in two sources characterizing the main admixture signal (date 1 and PC1) in the GLOBETROTTER analysis. We merged 167 donor populations into 12 groups (top right). Target populations were split into five groups (from top to bottom): Aleuts; the forest-tundra cline populations; the steppe-forest cline populations; the southern steppe cline populations; and ‘others’.

Also remarkable is the lack of comparison of Uralic populations with other neighbouring ones, since the described Uralic-like ancestry of Russians was already known, and is most likely due to the recent acculturation of Uralic-speaking peoples in the cradle of Russians, right before their eastward expansions.

west-eurasian-east-eurasian-ancestry
Supplementary Fig. 4. ADMIXTURE results qualitatively support PCA-based grouping of inner Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”). Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”).

A comparison of Estonians and Finns with Balts, Scandinavians, and Eastern Europeans would have been more informative for the division of the different so-called “Nganasan-like meta-populations”, and to ascertain which one of these ancestral peoples along the ancient WHG:ANE cline could actually be connected (if at all) to the Cis-Urals.

Because, after all, based on linguistics and archaeology, geneticists are not supposed to be looking for populations from the North Asian Arctic region, for “Siberian ancestry”, or for haplogroup N1c – despite previous works by their peers – , but for the Bronze Age Volga-Kama region…

Related

N1c-L392 associated with expanding Turkic lineages in Siberia

haplogroup-n1c-tat

Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

yakutia-haplogroup-n1c
17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

n1c-uralic-altaic-siberia
14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.

Related

The cradle of Russians, an obvious Finno-Volgaic genetic hotspot

pskov-novgorod-russia

First look of an accepted manuscript (behind paywall), Genome-wide sequence analyses of ethnic populations across Russia, by Zhernakova et al. Genomics (2019).

Interesting excerpts:

There remain ongoing discussions about the origins of the ethnic Russian population. The ancestors of ethnic Russians were among the Slavic tribes that separated from the early Indo-European Group, which included ancestors of modern Slavic, Germanic and Baltic speakers, who appeared in the northeastern part of Europe ca. 1,500 years ago. Slavs were found in the central part of Eastern Europe, where they came in direct contact with (and likely assimilation of) the populations speaking Uralic (Volga-Finnish and Baltic- Finnish), and also Baltic languages [11–13]. In the following centuries, Slavs interacted with the Iranian-Persian, Turkic and Scandinavian peoples, all of which in succession may have contributed to the current pattern of genome diversity across the different parts of Russia. At the end of the Middle Ages and in the early modern period, there occurred a division of the East Slavic unity into Russians, Ukrainians and Belarusians. It was the Russians who drove the colonization movement to the East, although other Slavic, Turkic and Finnish peoples took part in this movement, as the eastward migrations brought them to the Ural Mountains and further into Siberia, the Far East, and Alaska. During that interval, the Russians encountered the Finns, Ugrians, and Samoyeds speakers in the Urals, but also the Turkic, Mongolian and Tungus speakers of Siberia. Finally, in the great expanse between the Altai Mountains on the border with Mongolia, and the Bering Strait, they encountered paleo-Asiatic groups that may be genetically closest to the ancestors of the Native Americans. Today’s complex patchwork of human diversity in Russia has continued to be augmented by modern migrations from the Caucasus, and from Central Asia, as modern economic migrations take shape.

pskov-novgorod-pca-eurasia-yakut
Sample relatedness based on genotype data. Eurasia: Principal Component plot of 574 modern Russian genomes. Colors reflect geographical regions of collection; shapes reflect the sample source. Red circles show the location of Genome Russia samples.

In the current study, we annotated whole genome sequences of individuals currently living on the territory of Russia and identifying themselves as ethnic Russian or as members of a named ethnic minority (Fig. 1). We analyzed genetic variation in three modern populations of Russia (ethnic Russians from Pskov and Novgorod regions and ethnic Yakut from the Sakha Republic), and compared them to the recently released genome sequences collected from 52 indigenous Russian populations. The incidence of function-altering mutations was explored by identifying known variants and novel variants and their allele frequencies relative to variation in adjacent European, East Asian and South Asian populations. Genomic variation was further used to estimate genetic distance and relationships, historic gene flow and barriers to gene flow, the extent of population admixture, historic population contractions, and linkage disequilibrium patterns. Lastly, we present demographic models estimating historic founder events within Russia, and a preliminary HapMap of ethnic Russians from the European part of Russia and Yakuts from eastern Siberia.

pskov-novgorod-pca-finno-permic
Sample relatedness based on genotype data. Western Russia and neighboring countries: Principal Component plot of 574 modern Russian genomes. Colors reflect geographical regions of collection; shapes reflect the sample source. Red circles show the location of Genome Russia samples.

The collection of identified SNPs was used to inspect quantitative distinctions among 264 individuals from across Eurasia (Fig. 1) using Principal Component Analysis (PCA) (Fig. 2). The first and the second eigenvectors of the PCA plot are associated with longitude and latitude, respectively, of the sample locations and accurately separate Eurasian populations according to geographic origin. East European samples cluster near Pskov and Novgorod samples, which fall between northern Russians, Finno-Ugric peoples (Karelian, Finns, Veps etc.), and other Northeastern European peoples (Swedes, Central Russians, Estonian, Latvians, Lithuanians, and Ukrainians) (Fig. 2b). Yakut individuals map into the Siberian sample cluster as expected (Fig. 2a). To obtain an extended view of population relationships, we performed a maximum likelihood-based estimation of ancestry and population structure using ADMIXTURE [46](Fig. 2c). The Novgorod and Pskov populations show similar profiles with their Northeastern European ancestors while the Yakut ethnic group showed mixed ancestry similar to the Buryat and Mongolian groups.

pskov-novgorod-yakut-admixture
Population structure across samples in 178 populations from five major geographic regions (k=5). Samples are pooled across three different studies that covered the territory of Russian Federation (Mallick et al. 2016 [36], Pagani et al. 2016 [37], this study). The optimal k-value was selected by value of cross validation error. Russian samples from all studies (highlighted in bold dark blue) show a slight gradient from Eastern European (Ukrainian, Belorussian, Polish) to North European (Estonian Karelian, Finnish) structures, reflecting population history of northward expansion. Yakut samples from different studies (highlighted in bold red) also show a slight gradient from Mongolian to Siberian people (Evens), as expected from their original admixture and northward expansions. The samples originated from this study are highlighted, and plotted in separated boxes below.

Possible admixture sources of the Genome Russia populations were addressed more formally by calculating F3 statistics, which is an allele frequency-based measure, allowing to test if a target population can be modeled as a mixture of two source populations [48]. Results showed that Yakut individuals are best modeled as an admixture of Evens or Evenks with various European populations (Supplemental Table S4). Pskov and Novgorod showed admixture of European with Siberian or Finno-Ugric populations, with Lithuanian and Latvian populations being the dominant European sources for Pskov samples.

direction-expansion-russians
The heatmaps of gene flow barriers show for each point at the geographical map the interpolated differences in allele frequencies (AF) between the estimated AF at the point with AFs in the vicinity of this point. The direction of the maximal difference in allele frequencies is coded by colors and arrows.

So, Russians expanding in the Middle Ages as acculturaded Finno-Volgaic peoples.

Or maybe the true Germano-Slavonic™-speaking area was in north-eastern Europe, until the recent arrival of Finno-Permians with the totally believable Nganasan-Saami horde, whereas Yamna -> Bell Beaker represented Vasconic-Caucasian expanding all over Europe in the Bronze Age. Because steppe ancestry in Fennoscandia and Modern Basques in Iberia.

A really hard choice between equally plausible models.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents (see here) continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

Scytho-Siberians of Aldy-Bel and Sagly, of haplogroup R1a-Z93, Q1b-L54, and N

iron-age-sakas-aldy-bel-scythians

Recently, a paper described Eastern Scythian groups as “Uralic-Altaic” just because of the appearance of haplogroup N in two Pazyryk samples.

This simplistic identification is contested by the varied haplogroups found in early Altaic groups, by the early link of Cimmerians with the expansion of hg. N and Q, by the link of N1c-L392 in north-eastern Europe with Palaeo-Laplandic, and now (paradoxically) by the clear link between early Mongolic expansion and N1c-L392 subclades.

A new paper (behind paywall) offers insight into the prevalent presence of R1a-Z93 among eastern Scytho-Siberian groups (most likely including Samoyedic speakers in the forest-steppes), and a new hint to the westward expansion of haplogroups Q and N (probably coupled with the so-called “Siberian ancestry”) from the east with different groups of Iron Age steppe nomads:

Genetic kinship and admixture in Iron Age Scytho-Siberians, by Mary et al. Human Genetics (2019).

Interesting excerpts (emphasis mine):

From an archeological and historical point of view, the term “Scythians” refers to Iron Age nomadic or seminomadic populations characterized by the presence of three types of artifacts in male burials: typical weapons, specific horse harnesses and items decorated in the so-called “Animal Style”. This complex of goods has been termed the “Scythian triad” and was considered to be characteristic of nomadic groups belonging to the “Scythian World” (Yablonsky 2001). This “Scythian World” includes both the Classic (or European) Scythians from the North Pontic region (7th–3th century BC) and the Southern Siberian (or Asian) populations of the Scythian period (also called Scytho-Siberians). These include, among others, the Sakas from Kazakhstan, the Tagar population from the Minusinsk Basin (Republic of Khakassia), the Aldy-Bel population from Tuva (Russian Federation) and the Pazyryk and Sagly cultures from the Altai Mountains.

mtdna-scytho-siberians
Proportions of Scythian mtDNA haplogroups. Western (blue) and eastern (pink) Eurasian lineages are equally distributed in the Arzhan Scytho-Siberian sample. The U5a2a1 haplogroup shared between the two Scythian groups studied is in bold

In this work, we first aim to address the question of the familial and social organization of Scytho-Siberian groups by studying the genetic relationship of 29 individuals from the Aldy-Bel and Sagly cultures using autosomal STRs. (…) were obtained from 5 archeological sites located in the valley of the Eerbek river in Tuva Republic, Russia (Fig. 1). All the mounds of this archeological site were excavated but DNA samples were not collected from all of them. 14C dates mainly fall within the Hallstatt radiocarbon calibration plateau (ca. 800–400 cal BC) where the chronological resolution is poor. Only one date falls on an earlier segment of calibration curve: Le 9817–2650 ± 25 BP, i.e. 843–792 cal BC with a probability of 94.3% (using the OxCal v4.3.2 program). This sample (Bai-Dag 8, Kurgan 1, grave 10) is not from one of the graves studied but was used to date the kurgan as a whole.

Y-chromosome haplogroups were first assigned using the ISOGG 2018 nomenclature. In order to improve the precision of haplogroup definition, we also analyzed a set of Y-chromosome SNP (Supplementary Table 2). Nine samples belonged to the R1a-M513 haplogroup (defined by marker M513) and two of these nine samples were characterized as belonging to the R1a1a1b2-Z93 haplogroup or one of its subclades. Six samples belonged to the Q1b1a-L54 haplogroup and five of these six samples belonged to the Q1b1a3-L330 subclade. One sample belonged to the N-M231 haplogroup.

haplogroups-scythian-siberians

The distribution of these haplogroups in the population must be confronted with the prevalence of kinship among the samples. Although five individuals belonged to haplogroup Q1b1a3-L330, three of them (ARZ-T18, ARZ-T19 and ARZ-T20) were paternally related (Fig. 2). It must, therefore, be considered that haplogroup Q1b1a3-L330 is present in three independent instances (given that the remaining two instances exhibit no close familial relationship with other samples or one another). All five were buried on the Eki-Ottug 1 archaeological site (although in two different kurgans).

In the same way, although two groups, of two and three individuals, shared haplotypes belonging to the R1a-M513 haplogroup, these groups likely include a father/son pair (ARZ-T2 and ARZ-T12). Therefore, among nine R1a-M513 men, we found six independent haplotypes, one being present in two independent instances. All R1a-M513 haplotypes, however, including those attributed to the R1a1a1b2-Z93 subclade, only differed by one-step mutations, across 5 loci at most. All R1a-M513 individuals were buried on the same site, Eki-Ottug 2, in a single Kurgan.

y-haplogroups-r1a-n-q1b

Haplogroup R1a-M173 was previously reported for 6 Scytho-Siberian individuals from the Tagar culture (Keyser et al. 2009) and one Altaian Scytho-Siberian from the Sebÿstei site (Ricaut et al. 2004a), whereas haplogroup R1a1a1b2-Z93 (or R1a1a1b-S224) was described for one Scythian from Samara (Mathieson et al. 2015) and two Scytho-Siberians from Berel and the Tuva Republic (Unterländer et al. 2017). On the contrary, North Pontic Scythians were found to belong to the R1b1a1a2 haplogroup (Krzewińska et al. 2018), showing a distinction between the two groups of Scythians. (…) The absence of R1b lineages in the Scytho-Siberian individuals tested so far and their presence in the North Pontic Scythians suggest that these 2 groups had a completely different paternal lineage makeup with nearly no gene flow from male carriers between them.

The seven other male individuals studied in this work were found to carry Eastern Eurasian Y haplogroups Q1b1a and one of its subclades (n = 6) and N (n = 1). Haplogroup Q1b1a-L54 was previously described in four males from the Bronze Age in the Altai Mountains (Hollard et al. 2014, 2018) and was clearly associated with Siberian populations (Regueiro et al. 2013).

The N-M231 haplogroup emerged from haplogroup K in Southern Asia around 21,000 years BCE, maybe in Southern China (Shi et al. 2013; Ilumäe et al. 2016). Previous studies attested to its presence in samples from Neolithic and Bronze Age in China (Li et al. 2011; Cui et al. 2013). Waves of northwestern expansion of this haplogroup are described as beginning during the Paleolithic period (Derenko et al. 2006; Shi et al. 2013) but traces of this expansion in archeological samples were reported only in two Scytho-Siberian males from the Altai (Pilipenko et al. 2015).

The sample of haplogroup N comes from the Aldy-Bel culture (ARZ-T15), from the Eerbek site, but has no radiocarbon date. All Q1b-L330 samples come from the Sagly culture, and three are paternally related. The other Q1b-L54 sample is from other tombs in one kurgan at Aldy Bel.

It seems that – exactly as expected – different waves of steppe nomads brought different lineages at a time (the Iron Age) when many regions incorporated different eastern lineages without necessarily changing language. Just like the expansion of N among Ugrians and Samoyeds, and N1c among Finno-Permic peoples, and like many other lineages expanding with federation-like groups in eastern, central, and western Europe

Related