Spread of Indo-European and Uralic speakers in ADMIXTURE


The following are updated files for unsupervised ADMIXTURE of most available ancient Eurasian samples with K=7. For reference, see PCA of ancient and modern Eurasian samples.

NOTE. For a precise interpretation of ancestry evolution, be sure to first check the posts on the expansion of “Steppe ancestry”, on the spread of Yamnaya ancestry with Indo-Europeans, and on the evolution of Corded Ware ancestry typical of modern Uralic populations.

ADMIXTURE timeline

This is a YouTube video similar to the one on Indo-Europeans and Y-DNA evolution:


Some comments

  • I have tried running supervised ADMIXTURE models by selecting distant populations based on PCAs and qpAdm results. The most accurate approximations to what the software should offer appear with a small K number, between K=5 and K=7, whether supervised or unsupervised, and adding more ancestral populations gives some weird results the more distant (in time) populations are from these selected samples.
  • Labels for ancestral components are used following those commonly referred to in the literature, although supervised ADMIXTURE using corresponding available samples (viz. Anatolia Neolithic for AHG, Iran Hotu and/or CHG for IHG, AG2, AG3 and Mal’ta for ANE, etc.) offer slightly different, less smooth outputs for some periods, especially among more recent populations.
  • Outputs depend on many different factors, and these files are intended as an overview of the evolution of these simplistic components. The number of available samples per period, the potential ancestry changes within each conventionally selected period, or whether or not each available sample is representative of the territory they were recovered from, among many other factors, influence the outputs and the maps.
Unsupervised ADMIXTURE (K=7). See full image.

NOTE. In summary, ADMIXTURE results like these below might be used to develop new ideas, to be then formally tested; they cannot be used to support anything. Don’t be like the Copenhagen group, randomly selecting “Steppe ancestry” with K=4, identifying this component as “Indo-Europeans”, and correlating its evolution with changes in vegetation composition in yet another obvious correlation = causation argument among many confounding factors left unaccounted for…

Static ADMIXTURE + culture maps

Colours correspond to the components as labelled in the video and in the files below.

  1. Anatomically Modern Humans (PDF)
  2. Upper Palaeolithic (PDF)
  3. Epipalaeolithic (PDF)
  4. Early Mesolithic (PDF)
  5. Late Mesolithic (PDF)
  6. Neolithic and hunter-gatherer pottery (PDF)
  7. Early Eneolithic (PDF)
  8. Late Eneolithic (PDF)
  9. Early Chalcolithic (PDF)
  10. Late Chalcolithic (PDF)
  11. Early Bronze Age (PDF)
  12. Middle Bronze Age (PDF)
  13. Late Bronze Age (PDF)
  14. Early Iron Age (PDF)
  15. Late Iron Age (PDF)
  16. Antiquity (PDF)
  17. Middle Ages (PDF)

Natural interpolation maps of ADMIXTURE

The following maps offer natural neighbour interpolations of ancestral components in ancient DNA samples grouped by periods (conventionally selected following the same pattern as in the Prehistory Atlas).

  • Extrapolation (inferred ancestry beyond the frame created by available samples per map) is obtained by adding distant external locations (such as Greenland, Arctic, Alaska…) with a value of 0.
  • Videos offer a dynamic timeline.
  • Click on the images to see a version with higher resolution.

WHG ancestry


AHG ancestry


ANE ancestry


“Siberian” ancestry

This ancestry peaks among Baikal HG, Ust’Belaya, Nganasans, or Ulchi, hence the different labels used.


Iran HG ancestry


ADMIXTURE maps by period

Click on each image for a higher resolution version.





Early Eneolithic


Late Eneolithic


Early Chalcolithic


Late Chalcolithic


Early Bronze Age


Middle Bronze Age


Late Bronze Age


Early Iron Age


Late Iron Age




Middle Ages


Modern populations



These are the samples used for interpolations in each period (except for modern populations, which are those included in the Reich Lab curated dataset):

See also

Intense but irregular NWIE and Indo-Iranian contacts show Uralic disintegrated in the West


Open access PhD thesis Indo-Iranian borrowings in Uralic: Critical overview of sound substitutions and distribution criterion, by Sampsa Holopainen, University of Helsinki (2019), under the supervision of Forsberg, Saarikivi, and Kallio.

Interesting excerpts (emphasis mine):

The gap between Russian and Western scholarship

Many scholars in the Soviet Union and later the Russian Federation also have researched this topic over the last five decades. Notably the eminent Eugene Helimski dealt with this topic in several articles: his 1992 article (republished in Helimski 2000) on the emergence of Uralic consonantal stems used Indo-Iranian and other Indo-European loans as key evidence, and it was one of the first serious attempts to stratify the loanwords, paying attention to the non-initial syllables as well. Helimski (1997b) discusses Indo-Iranian loanwords more generally, but it is especially notable for the introduction of the “Andronovo Aryan” idea: Helimski argues that some loanwords in Ob-Ugric and Permic are derived from an unattested, third branch of Indo-Iranian. Helimski’s idea has been supported by at least Mikhail Zhivlov in a 2013 article, but otherwise it has not received wide acceptance. Helimski was also known for his criticism (see especially Helimski 2001) of Jorma Koivulehto’s etymological work: although the main targets of Helimski’s criticism were Koivulehto’s writings on Proto-Indo-European and Germanic borrowings (which fitted poorly with Helimski’s ideas of the Nostratic roots of Proto-Uralic and his other theories on Uralic linguistic prehistory), also some of his Indo-Iranian ideas received unnecessarily sharp criticism in Helimski (2001).

Vladimir Napol’skikh is another important Russian scholar who has written on several occasions about Indo-Iranian–Uralic contacts. His 2014 article is notable for its criticism on Helimski’s Andronovo Aryan theory and his arguments in favour of Indo-Aryan loanwords. Napol’skikh also considered some of the traditional Indo-Iranian loanwords to be borrowings from Tocharian (see below) in some of his earlier works, an idea which has been criticized by Kallio (2004) and Widmer (2002) and which Napol’skikh himself has since dropped in later publications (2010, 2014), where many of these alleged Tocharian loans are again considered Indo-Iranian.

Some of the main characteristics of Russian research is that the earliest Indo-European loanwords are usually considered to represent an inheritance from the Nostratic proto-language (Helimski [2001]; Kassian, Zhivlov & Starostin [2015]), an idea which is not widely accepted by scholars of Uralic in the West. Although this often does not concern the Indo-Iranian loanwords at all, or it concerns only a part of them, the works of Jorma Koivulehto, who dealt with both earlier Indo-European and Indo-Iranian loans, receive so much criticism from the Russian scholars that his important ideas are often totally rejected or left unmentioned in Russian research.

This kind of rejection of central etymological research literature can be considered one of the most pressing problems in Uralic loanword studies, and it leaves a regrettable gap between Russian and Western European scholars in this perspective.




Among the Indo-Iranian loanwords in Uralic, one can easily mention examples that follow the classification of semantic change as described above. For widening or generalization, vasara ‘hammer’ is a good example: the Indo-Iranian original denotes ‘the weapon of the god Indra’ in Indic and ‘the weapon of the god Mithra’ in Avestan, whereas Finnish ‘hammer’ (and the Mordvin meaning ‘axe’) are more general meanings of tools. Fi huhta is a good example of narrowing: Iranian *tsuxta- means simply ‘burned’, whereas in Finnic huhta means specifically ‘a burned patch used in slash-and-burn agriculture’. Metonomy has taken place in Mordvin, where čuvto denotes simply ‘tree’; this probably developed through the meaning ‘wood burned for agriculture’. Khanty (South) wǟrəs denotes ‘horse’s mane’, but its Iranian original probably had a more general meaning of hair (cf. Avestan varəsa- ‘hair of human and animal, mostly hair of the head’).

An interesting example of degeneration is the etymology of Finnic orja ‘slave’, probably borrowed from the Indo-Iranian ethnonym *(H)ārya- ‘Aryan’ (for the original semantics of this word, see the entry *orja in Chapter 2). A similar development is seen in English slave which is etymologically connected to the ethnonym Slav.

Distribution as a criterion in the dating of loanwords

(…) some of the Indo-Iranian loans seem to have a wide distribution, but upon a closer look it becomes clear that they include phonological irregularities, which can only be explained by assuming that they are parallel loans. The ability to recognize parallel borrowings is extremely important in Uralic loanword studies, and it has been developed with success in the research of Germanic and Baltic loanwords (see Junttila 2015).

Interestingly, K. Häkkinen (1983: 207) argues that although words disappear from languages, the most basic words often remain stable and are maintained for longer periods. Although this is probably true, here the notion of “basicness” is something that is open to different interpretations. Many central concepts in culture and livelihoods are often described with prestige words that are borrowed, and these central words can be very easily replaced. In determining the age of the loanwords one has to always keep in mind that a reflex of a very early cultural borrowing from Indo-Iranian to Proto-Uralic/Proto- West Uralic etc. can easily have been lost in some daughter language, if a later prestige loan for the same concept has been borrowed from some later contact language (such as from some form of Germanic or Baltic into Finnic or from some Turkic language into Udmurt, Mari or Mordvin).

In Uralic linguistics the common loanword layers shared by some intermediary proto-language have often been seen as giving support to the reconstruction of these stages, but K. Häkkinen (100–108) considers this problematic. It should also be noted that the distribution of Indo-Iranian loanwords very rarely matches the assumed taxonomic divisions: there are some loanwords confined to the Finno-Permic, Finno-Volgaic or Ugric languages, but very few loanwords that would be Finno-Permic, Finno-Volgaic or Ugric in the way that the word is found in all the languages that belong to the branch.



There are only very few possible examples of a consonantal substitution of the word-initial laryngeal. It seems probable that the word-initial laryngeal, if it was retained, was not substituted in any way in Uralic. *karšV (> Fi karhu), an uncertain etymology, is the only possible example.

(…) Even if *k was a result of laryngeal hardening, the development would probably be earlier than Proto-Indo-Iranian, meaning that by the time the word was borrowed, the Indo-Iranian word simply had the stop *k that was regularly substituted by Uralic *k.

Evidence for Andronovo Aryan and Indo-Aryan loanwords?

None of the loanwords have to be considered as Andronovo Aryan or Proto-Indo-Aryan based on the criteria that were presented in the Introduction. The Uralic palatal affricate *ć or sibilant *ś can in all cases be explained from Proto-Indo-Iranian *ć, and there is no need to assume that it should reflect Andronovo Aryan *ć or PIA *ś. In the etymological material of this study, no further positive evidence was found for the distinction of PU *ś and *ć as substitutions of the Proto-Indo-Iranian affricates. This means that at least in word-initial position there probably was no difference between *ć and *ś, and even though we do not know what this sound was phonetically, it is safe to assume that Uralic words showing *ś reflect a sound substitution of Indo-Iranian *ć and *Ʒ́.

Regarding the distribution of the etymologies within Indo-Iranian, all the loanwords which cannot be from Iranian because of the lack of attested Iranian cognates have a more or less secure Proto-Indo-Iranian etymology, and nothing prevents us from assuming that these words reflect Proto-Indo-Iranian borrowings. It is also possible that some words with solid Proto-Indo-Iranian etymologies were present in Iranian but were lost before the first Old Iranian texts were composed.



List of Indo-European and Indo-Iranian Etymologies


*ertä ‘side’, *kekrä ‘wheel’, *kečrä ‘spindle’, *mekši ‘bee’, (*meti ‘honey’), *ońća ‘part’, (*orpa ‘orphan’), *peijas ‘feast’, *pejmä ‘milk’, Pre-P *pertä ‘wing’, *repä ‘fox’, *rećmä ‘rope’, *sejti ‘bridge’


*aćtara ‘whip’, *anti/onta, *ora ‘awl’, *orja ‘slave; south’, (*orpa ‘orphan’), *pośi ‘penis’, *śaŋka ‘handle’, Pre-Md *śaγa ‘goat’, *śarwi ‘horn’, *śaδa- ‘to rain’, śara- ‘shit’, *śi̮ta ‘hundred’, Pre-P *śVta ‘hundred’, *śasra ‘thousand’, *śišta ‘wax’, *śoma- ‘sad’, *waćara ‘hammer’, *woraći ‘boar’

Ambiguous early loans (can be either from PII or PI)

*ajša ‘shaft’, *asVra ‘lord’, *iha ‘yearning. passion’, *ihta ‘lust’, *jama ‘twin’, *jawi/jowa (> Mo juv) ‘awn’, *jawi (> PS *jäə̑) ‘flour’, *ji̮ni ‘way, path’, *juma ‘god’, *kana- ‘to dig’, *kara- ‘to dig’, *kata- ‘to graze’, *kertä- ‘to bind’, *ki̮ntaw ‘tree stump’, *kürtńV ‘iron’, PKh *kǟrtV ‘iron’, *kärtä ‘iron’, *martas ‘dead’, *ńātV- ‘to help’, *pakas ‘god’, *para ‘good’, Kh pĕnt ‘way’, PMs *pē̮ńtV ‘brother-in-law’, *pora ‘old’, *poči- ‘to boil’, Pre-P *porta ‘vessel’, *puntaksi ‘bottom’, Pre-Ma *pänti- ‘to bind’, PMa *pärća ‘ear of corn’, *pätäri- ‘to flee’, *saγi- ‘to get, obtain’, *sampas ‘pillar’, *saŋka ‘old’, *sara ‘lake’, *sasara ‘sister’, *säptä ‘seven’, *tajwas ‘sky’, *takra ‘piece of flesh’, *tarna ‘grass’, *tojwV ‘wish’, *toraksi ‘through’, *tora- ‘to fight’, *täjV ‘milk’, *täjinV ‘cow’, *täši, *uška ‘bull’, *wakša- (> PS *wåtå-) ‘to grow’, *wajna- ‘to see’, *wojna- ‘to see’, *wiša ‘venom’, *wi̮rna ‘wool’, *wärkä ‘kidney’, PS *wǝ̑rkǝ̑ ‘wolf’, *wirtV- ‘to hold, raise’, *äŋkärä ‘coal’

List of uncertain Indo-Iranian etymologies

PFi *aiwa (← Germanic ?), Ma *arša ‘mane’, PMs *ǟrV ‘fire’, *aštira ‘barren earth’, POug *ćakV ‘hammer’, *ćara- ‘brown; ? to dawn’, *ćero ‘hill-top’, *ćerti ‘group’, *itä- ‘to appear’, Pre-Fi *karšV ‘bear’, PMs *kīrV ‘iron’, *kota ‘chum’, Pre-Sa *kupa ‘pit’, PFi *kärsä ‘snout’, *maksa- ‘to pay’, PFi *mana-, PUg ? *mańći, Ma marij ‘Mari; man; husband’, *mē̮ja ‘wedding’, *mykkä ‘dumb’, PP *oč ‘corn’, *orpV ‘relative’, PFi *paksu ‘thick’, *peji- ‘to milk’, *pi̮ŋka ‘psychedelic mushroom’ POUg *porV ‘phratry’, Pre-Sa *poti ‘against’, Pre-Fi *šatas ‘germ’, *sentü- ‘to be born’, *šerä- ‘to wake up’, Ms šVšwǝŋ ‘hare’, PUg *śeŋkV ‘nail’, Pre-Sa *soma/sami ‘some’, PP *sur ‘beer’, PFi *süte- ‘to hit’ (< ? *sewči-), Hu szekér ‘wagon’, Kh ʌīkər ‘Narte’ PUg *taja- ‘secret’, Pre-Fi *terni ‘young’, *terwV ‘healthy’, ? *towkV ‘spring’, PWU *utarV ‘udder’ (← Germanic ?; Mari *waδar ← II), *waŋka ‘hook’, Mo E v́eŕges, M vərǵas ‘wolf’

Etymologies that were probably borrowed from another Indo-European source (PIE, PBSl, Germanic, Baltic)

*aisa ‘shaft’ ← Balto-Slavic, PFi *aiwa (← Germanic ?), *apV ‘help’ ← Germanic, *jewä ‘grain’ ← Balto-Slavic, Ma karaš etc. ‘honeycomb’ ← Baltic, (*meti ‘honey’ ← ? PIE,) Fi *ojas ‘shaft’ ← Slavic, *ola ← Baltic, *oŋki ← Germanic, *porćas ← Balto-Slavic, Pre-Sa *porta ‘vessel’ ← Germanic, *salV ‘salt’ (cannot be reconstructed for PU, various later parallel loans), *śi̮lkaw ← Balto-Slavic, *sammu- ← Germanic, *śuka ← Balto-Slavic, Mari *šŭžar ← Baltic/Balto-Slavic or Slavic, *tejniš ‘pregnant animal’ ← Baltic/Balto-Slavic, PWU *utarV ‘udder’ (? ← Germanic)

Early loans into differentiated branches

Proto-West Uralic

Only in Finnic:

*aćnas ‘voracious’, *iha ‘wish’, *ihta ‘lust’, PFi *isV ‘appetite’, *martas ‘dead’, *očra ‘barley’, *peijas ‘feast’, *pejmä ‘milk’, *pe̮rna ‘spleen’, *sampas ‘pillar’, *sooja ‘shelter’, *tajwas ‘sky’, *takra ‘piece of flesh’, *terwV ‘healthy’, *tojwV ‘wish’

All of these words, with the exception of *sooja ‘shelter’, were clearly borrowed into Early Proto-Finnic (Pre-Finnic) at the latest. Formally most of the loans could be from PII or PI.

Only in Saami:

*kata- ‘to graze’, *kertä- ‘to bind’, *pora ‘old’, *wojna- ‘to see’

All of the loans were acquired before the Saami vowel changes. Formally all could be either from Proto-Indo-Iranian or Proto-Iranian.

Only in Finnic and Saami:

*asma ‘voracious’, *jama ‘twin’, *kekrä ‘wheel’, *mača ‘insect’

*asma ‘voracious’, *jama ‘twin’, *kekrä ‘wheel’, *mača ‘insect’ Of these, *mača from Proto-Iranian and *jama is ambiguous. As the -sm- in asma does not point to Proto-Indo-Iranian *ć, this is probably an Iranian loan too. It is possible that these words were borrowed into Proto-West Uralic, as there is no general support for a Finno-Saamic proto-language today. As the cognates within Finnic and Saami are regular, there is no need to assume parallel borrowings. *kekrä has to be from Proto-Indo-Iranian.

NOTE. Based on the discussion of stages of borrowing from Indo-Iranian, and of the distribution of *kekrä among Uralic dialects in particular, Holopainen probably means Pre-Indo-Iranian for this example.

Only in Mordvin and/or Finnic and/or Saami (can point to a borrowing into Proto-West Uralic):

*ji̮ni ‘way’, *kečrä ‘spindle’, *rećmä ‘rope’, *śaŋka, *waćara ‘hammer’, *warsa ‘foal’, *wasa ‘calf’, *woraći ‘pig’

Based on phonological criteria, these loans do not form a chronologically coherent layer, but probably their modern distribution is accidental (their original distribution can have been wider). *kečrä ‘spindle’ and *rećmä ‘rope’ are from Pre-II, *śaŋka, *waćara and *woraći from PII, *warsa and *wasa from later Iranian (Alanic). *ji̮ni is ambiguous. Also the loans confined to Finnic and Saami mentioned above probably were borrowed into Proto-West Uralic, as it is a more convincing taxonomic entity than Proto-Finno-Saamic.


Only in Mordvin, Finnic and/or Saami and Mari

*juma ‘good’

This loan can be either from PII or PI. As it is obvious that these four branches do not form any taxonomical entity (Salminen 2002; J. Häkkinen 2009), it is only logical that there are no other loanwords with a “Finno-Volgaic” distribution.

Only in Mari:

*kVrtnV ‘metal’ (← PII, PI or later), Pre-Ma *pänti- ‘to bind’, PMa *pärća ‘ear of corn’, *si̮rńa ‘gold’ (← Old Iranian)

Only very few early Indo-Iranian loans can be found in Mari and in no other Uralic language. It is unclear what the reason for this is. It is, of course, possible that some uncertain loanwords like marij ‘man; Mari’ turn out to be correct after all, but even that does not make the number of loans in Mari very high. The situation has to be explained either with loss of vocabulary and replacement by later loans (from Turkic, and also perhaps from Permic) or with Mari’s location on the periphery at the time of the later contacts with the Iranian languages. Agyagási (2019: 254–258) argues that the current area where Mari is spoken was formed only relatively late, after the Mongol invasion in the High Middle Ages. If this is indeed correct, and Mari was spoken in more northern areas before that, it can be assumed that Pre-Mari had only sporadic contacts with the Iranian languages after it split off from Proto-Uralic.

Only in Permic (early loans; for later loans confined to Permic)

*a(č)wa ‘stallion’, PP *ju ‘awn’, *kertä ‘house’, *kärtä ‘metal’, *kada- ~ *gada- ‘to steal’, *karka ‘chicken’, *parśa ~ *barśa ‘mane’, *parta ‘knife’, *pertä ‘wing’, *poči- ‘to boil’, *porta ‘vessel’, *dura ‘long’, *domV ‘to tame’, PP *śumi̮s ‘band’, PP *šud‘luck’, *uška ‘bull’, *wi̮rna ‘wool’, *wirä ‘man, husband’, *äŋkärä ‘coal’

The number of loanwords in Permic is relatively high, and many of these can be considered to be Iranian loanwords. Technically many loans are ambiguous, but as some of the words were borrowed late due to historical reasons (‘iron’), and some were borrowed into a Pre-Permic which already had a phonological system that was different from Proto-Uralic (*šud- has d which cannot reflect PU *δ).

It is probable that the Permic languages were in continuous contact with the Indo-Iranian languages from the time they split from Proto-Uralic until the early mediaeval era.


Only in Khanty and Mansi (regular cases):

POUg *ēräɣ ‘song’, POUg *eträ ‘clear sky’, POug *mɔ̈ŋki ‘forest-spirit’, *ńātV- ‘to help’, *päčäɣ ‘reindeer’

The number of these etymologies is so low that it is very difficult to determine whether these words were borrowed into Proto-Ob-Ugric or some earlier proto-language, such as Proto-Ugric.

Only in Khanty and/or Mansi and/or Hungarian (regular cases):

*säptä ‘seven’ (Khanty + Hungarian regular), *sara ‘lake’

There are so few convincing loanwords with a “Ugric” distribution that they provide very little evidence. Either of these loans could be from Proto-Indo-Iranian or Proto-Iranian, if we assume that *s > *h was a common Iranian sound change. Both loans were acquired

Only in Samoyed:

*jäwi (> PS *jäə̑), PS *pulə̑ ~ *pi̮lə̑ ‘bridge’, *täjki ‘spear’, PS *wǝ̑rkə̑ ‘wolf’, Pre-S *täši (> PS *tät), *wakša- (> PS *wåtå) ‘to grow’

Of these, only *wåtå- has to be a very early loan because of *s > *t. *jäwi (> PS *jäə̑) and PS *wə̑rkə̑ were possibly acquired before the Proto-Samoyed vowel developments, making them probably early loanwords too. Formally all of them could be either from PII or PI. *pulə̑ ~ *pi̮lə̑ could have been borrowed into Proto-Samoyed (with Iranian *u corresponding to Samoyed *u), and because of the *l the word is probably from a relatively late, Middle Iranian language.

The following loanwords have a distribution with a cognate in both Samoyed and some other branch:

*śaδa- ‘to rain’, *tora- ‘to fight’ (also *itä-, which is more uncertain, belongs here)

Pan-Uralic loans

The following loanwords have a distribution with regular cognates with at least one Ugric branch and some other branch, which points to early borrowing. Although formally *kana- and *kara- are ambiguous, they are probably from Proto-Indo-Iranian because of their distribution. The rest of the loans are from Pre-II or PII.

*kana- ‘to dig’, *kara- ‘to dig’, *meti ‘honey’, *mekši ‘bee’, *orpV ‘orphan’, *ora ‘awl’, *peji- ‘to milk’, *pätäri- ‘to flee’, *śara- ‘shit’, *śoma- ‘sad’

The following loanwords are found in at least two non-adjacent branches of Uralic (the ones listed in the above categories are not counted). As there are no widely accepted criteria for a word to be considered “Uralic”, all of these could be considered loanwords into Proto-Uralic, in this case probably from Proto-Indo-Iranian or Pre-Indo-Iranian.

*ajša ‘shaft’, *anti/onta ‘grass’, *ertä ‘side’, *ki̮ntaw ‘tree stump’, *mertä ‘human’, *orja ‘slave’, *para ‘good’, *počaw ‘reindeer’, *puntaksi ‘bottom’, *saγi- ‘to get, obtain’, *repä ‘fox’, *si̮ŋka ‘old’, *sasara ‘sister’, *sejti ‘bridge’, *śišta ‘wax’, *tarna ‘grass’, *toraksi ‘through’, *wiša ‘venom’



Discussion about the distribution and its impact on Uralic taxonomy

(…) there are Proto-Iranian loanwords which were borrowed simultaneously into several early branches of Uralic, making it likely that Uralic had split into several branches by the time of these contacts.

Also the fact that many of the Proto-Indo-Iranian loanwords either show a restricted distribution (such as West Uralic *waćara, *woraći) or irregular correspondences (*asVra, *śasra, *śi̮ta) can point to the conclusion that Proto-Uralic was fragmenting by the time when contacts with Proto-Indo-Iranian took place.

The earlier, Pre-Indo-Iranian loanwords usually show a wider distribution and regular sound correspondences. Although the number of these earliest loans is quite small, based on their distribution and regular correspondences it can be assumed that the Pre-Indo-Iranian stage (after RUKI, *l > *r and the merger of velars and labiovelars but before the merger of non-high vowels) was concurrent with Proto-Uralic, with the changes leading to Proto-Indo-Iranian happening after the dispersal of Proto-Uralic.

The distribution of loanwords reinforces the old idea that Samoyed is a lexical outlier, as only few convincing Indo-Iranian etymologies for Proto-Uralic words (*saδa- ‘to rain’, *tora- ‘to fight’) have a convincing reflex in Samoyed. However, the fact that such etymologies exist means rather that the situation is due to lexical loss in Samoyed, and that the earliest contact occurred before Samoyed split off from Proto-Uralic.

There are very few loanwords that have a Ugric distribution (being found in at least one Ob-Ugric branch and Hungarian), and likewise rather few in Ob-Ugric. The few loans that have a distribution confined to Ugric were borrowed before the change *s > *θ took place. This means that the Ugric distribution does not mean much from the point of view of chronology or taxonomy, as the words were borrowed into a language that was still identical to Proto-Uralic. Even some loans borrowed into Khanty and Mansi have to be so early.

Impacts on dating and the location of the contact zones

Because of the very limited number of convincing etymologies found only in Finnic or Saami, it is probable that there were not (extensive) contacts with Pre-Finnic or Pre-Saami after the split of Proto-West Uralic.

The great number of loanwords of varying ages in Permic inevitably points to the conclusion that the pre-form of the Permic branch had been constantly spoken in an area that was adjacent to the Iranian languages. The different layers of loanwords in Permic clearly point to chronological differences in the donor languages, but it also seems that Permic was in contact with various forms of Iranian and not with different diachronic stages of the same language.

In general, the words that have been borrowed are typical cultural words, and the contacts between Indo-Iranian and Uralic seems to have been a typical contact situation in which a culturally less-advanced language group borrows various cultural terms from a more “advanced” group. The words in various loanword layers related to horse and cattle breeding show obvious cultural influence in the field of domesticated animals, and the borrowing of some names of grains points to agricultural influence from the Indo-Iranians on the speakers of Uralic.

Needless to say, many of the borrowings I listed in A Song of Sheep and Horses suffer from the same ailment attributed to Indo-Europeanists in general:

With slight exaggeration one can agree with the remark by Koivulehto (1999a: 209–210) that the Indo-Europeanists often use outdated sources or are simply uninterested in the topic. The problem is further complicated by the various and often obsolete views expressed in even relatively modern Uralicist works, such as those of Rédei (1986c; 1988) or Katz (2003); (…) Mallory & Adams (2006) adequately refer to the importance of the early loanwords, but they use mostly Rédei’s outdated reconstructions and stratigraphy in support of their theories.

I need to review all related texts with this thesis and the works recently published by Kümmel, as well as the recent book of the Leiden school on Indo-Uralic.

Also, does anyone know the (traditional?) why of the resistance to the Indo-Uralic concept among Uralicists? Maybe it’s a reaction against the Nostraticist and Siberian views of Uralic espoused by the Soviets?


Samoyedic shows Yeniseic substrate; both influenced Tocharian


Open access paper The deviant typological profile of the Tocharian branch of Indo-European may be due to Uralic substrate influence by Peyrot, Indo-European Linguistics (2019).

NOTE. This seems to be part of the master’s thesis by Abel Warries, but the paper is authored only by Peyrot.

Interesting excerpts (emphasis mine):

1. The stop system

The loss in Tocharian of the Proto-Indo-European obstruent distinctions conventionally noted as voice and aspiration is a very strong indication of foreign influence. Since Proto-Indo-European roots mostly have at least one stop, and often two, the merger of all three stop series into one must have led to massive homonymy and subsequently to heavy restructuring of the lexicon. It is difficult to see how these changes could be motivated language-internally.


It is this innovative typological feature of Tocharian that is the strongest indication of Uralic influence (cf. e.g. Bednarczuk 2015:56). A single stop series as found in Tocharian is reconstructed for Proto-Uralic as well as for Proto-Samoyedic, while other possibly relevant languages all show a system with a contrast between voiced and unvoiced stops, i.e. Proto-Yeniseian, Old Iranian and Yukaghir, or, in Proto-Turkic, a contrast between strong and weak obstruents (see also below).

For Proto-Uralic, Janhunen (1982:23) reconstructs the following obstruents: *k, *c, *t, *p; *δ, *δ´; and *ś, *s. With the development of *s to *t, *ś to *s, *δ to *r and *δ´ to *j, the Proto-Samoyedic obstruent system had become: *k, *c, *t, *p, *s (a secondary *ś arose later). The Tocharian obstruent system is much closer to both these reconstructed obstruent systems than to the Proto-Indo-European system that is commonly assumed.


Interestingly, from the perspective of a two-velar series reconstructed for the parent Late Proto-Indo-European, Tocharian shows thus a satemization trend and Uralic influence similar to (but qualitatively different than) the one seen in Balto-Slavic and Indo-Iranian, probably due to the less marked population replacement evidenced by the continuity of Afanasievo-related ancestry among Iron Age Common Tocharians.

2. The vowel system

(…) the development of the Tocharian vowel system can be understood very well in light of a South Siberian vowel system today represented by the Yeniseian language Ket. This South Siberian vowel system is different from both the Proto-Tocharian and the Proto-Uralic and Proto-Samoyedic vowel systems. However, a successful comparison is possible when intermediate phases are taken into account: a Pre-Proto-Tocharian phase between Proto-Indo-European and Proto-Tocharian; and a Pre-Proto-Samoyedic phase between Proto-Uralic and Proto-Samoyedic. For a Pre-Proto-Tocharian phase, a vowel system identical to that of Ket can be reconstructed. For Proto-Samoyedic, several different reconstructions of the vowel system have been proposed. Depending on which reconstruction turns out to be correct, a Pre-Proto-Samoyedic vowel system can be reconstructed that is close to the Ket system or perhaps even identical to it.

The basic vowel changes from Proto-Indo-European to Proto-Tocharian are the following (Ringe 1996; Hackstein 2017):


It is the seven-vowel system of Pre-Proto-Tocharian stage 5 above that is structurally identical to the South Siberian system represented by Ket. According to Vajda (2004:5), Ket ɨ and ə are further back than IPA central [ɨ] and [ə], but not as far back as the unrounded back vowels [ɯ] and [ɤ] of IPA. The allophonic variation in the mid vowels e, ə, o is correlated with tone: they are pronounced as high-mid [e, ə, o] with high-even tone, and as low-mid [ɛ, ʌ, ɔ] elsewhere (Vadja l.c.).

Obviously, this parallel with Ket can only be meaningful for Tocharian linguistic prehistory if the same vowel system can be reconstructed for earlier stages. Indeed, Vajda assumes an original Pre-Proto-Yeniseian five-vowel system with i, a, ʌ, o, u that was in Common Yeniseian enlarged with *e and *ɨ (2010:78–79).



Of the eleven vowels reconstructed for Proto-Samoyedic by Janhunen and Sammallahti, the following arose in the course of Pre-Proto-Samoyedic:

  • *ö is rare and was clearly added at a late stage;
  • *ü arose secondarily, amongst others from PU *i, while PU *ü changed to PSam. *i;
  • *ä arose secondarily, while PU *ä changed to PSam. *e;
  • *ə in first syllables, or back *ə̑ and front *ə̈, arose secondarily from *u and *i.

Since these four vowels arose secondarily, the following seven-vowel system can be assumed for a very early stage of Pre-Proto-Samoyedic. This system is structurally identical to the system of Ket and to that reconstructed for Pre-Proto-Tocharian:


The vowel system of Ket, which has also been reconstructed for Pre-Proto-Tocharian, and which may possibly be reconstructed for Pre-Proto-Samoyedic as well, has a further parallel in Siberia: it is very close to that reconstructed for Proto-Yukaghir by Nikolaeva (2006:57).

It is attractive to think that the imbalances of the Yukaghir vowel system and vowel harmony reflect the adaptation of an original system with front rounded *ü and *ö to a system very similar to that seen in Yeniseian, Pre-Proto-Samoyedic and Pre-Proto-Tocharian.

Location of contemporary speakers of Ket (shown in black) and of Yeniseian groups in
1600 as well as Yeniseian substrate river names (marked by labels such as -ses)

3. Agglutinative case marking and case functions

Although other Indo-European languages also occasionally show agglutinative case markers, one of the most striking typological characteristics of Tocharian are the agglutinative so-called “secondary” cases. It is obvious that for such a major shift in language type substrate influence must be considered as a serious option.

The key to identifying the model of the Tocharian case system is to be found in the functions of the cases. On the functional level, the Tocharian case system shows the following non-Indo-European peculiarities: it lacks a dative, whose functions are fulfilled by the genitive; and it has a local case termed “perlative” which denotes movement along, through or over something, as well as a comitative case denoting accompaniment.

Another interesting functional phenomenon is the lack of a dative in Tocharian. Here the best match is offered by Uralic, where nominative, accusative and genitive are generally analysed as being the “grammatical cases,” while the remaining cases are the “local cases.”

Tocharian, in spite of its comitative, agrees better with the Samoyedic case system than with the more elaborate sets of e.g. Finnish and Hungarian: there is no inessive : adessive or ablative : elative contrast. The Ket system, too, is more elaborate than the Tocharian set.

Evaluation and interpretation of the parallels

I consider the evidence from the stop system (§ 2.1), the vowel system (§ 2.2) and the agglutinative case system (§ 2.3) as the strongest indications of language contact. The Tocharian stop system with only voiceless stops is the best evidence for Uralic influence. The vowel system shows neat parallels with Yeniseian and Pre-Proto-Samoyedic. Taken together, this suggests that the Uralic variety with which Tocharian was in contact was a form of Pre-Proto-Samoyedic. Agglutinative case systems are widely found in Siberia and Eastern Central Asia, but the case functions, in particular the Tocharian perlative, best match Uralic and comparable systems in South Siberia.

The perlative is the strongest indication of Siberian, and most probably Uralic or Pre-Proto-Samoyedic influence. A similar local case is widely found across Uralic and in Samoyedic, and also in Yukaghir and Ket, but not in Turkic.




The author ends by trying to fit the relative chronology of a Samoyedic and Tocharian spread from the Cis-Urals with the ideas set forth (mainly) by the Copenhagen group, with which he has participated in the past interpreting their results from a linguistic perspective. Hence the difficulties in finding potentially fitting settings to the proposed contacts.

I think it is self-evident that the push of the Abashevo-related, Seima-Turbino-mediated Andronovo-like cultural horizon perfectly explains the expansion of Pre-Proto-Samoyedic into the previous Afanasievo territory, strongly influencing the Chemurchek and related populations that most likely represent the evolving Tocharian-speaking community.

My recent video of expansion of Indo-Europeans illustrates this linguistic evolution quite accurately (although, admittedly, I didn’t put much effort in the maps to follow Palaeosiberian languages).



The finding of Afanasievo-like population in Iron Age Tian Shan, including haplogroup replacement (among them hg. R1a-M417, proper of Disintegrating Uralians), as well as the finding of R1a-Z645 subclades up to the Deer Stone-Khirigsuur Complex in northern Mongolia, confirms this setting of a sudden expansion of (originally) Uralic-speaking populations through northern Eurasia up to Lake Baikal, disrupting the Afanasievo-like Tocharian-speaking community.

Similarly, the highly divergent genetic make-up of the Samoyedic population relative to other Uralic groups is consistent with the dilution of their typically Uralic Corded Ware ancestry among Siberian populations, on top of the multiple acculturation events of traditionally multilingual North Siberian populations (especially among Northern Samoyeds, similar to other Circum-Arctic groups).

This paper is not the first, and certainly not the last to confirm strong language contacts between Uralic and Indo-European dialects with the previous native speakers of Siberia, such as Palaeosiberians and Altaic peoples, causing the aberrant (but seemingly closely related) traits of Samoyedic and Tocharian, proper of European languages introduced into an area foreign to Indo-Uralic languages.


The expansion of Indo-Europeans in Y-chromosome haplogroups


I have compiled for two years now the reported Y-DNA and mtDNA haplogroups of ancient DNA samples published, including also SNPs from analysis of the BAM files by hobbyists.

Y-DNA timeline

Here is a video with a timeline of the evolution of Indo-European speakers, according to what is known today about reconstructed languages, prehistoric cultures and ancient DNA:


NOTE. The video is best viewed in HD 1080p (1920×1080) with a display that allows for this or greater video quality, and a screen big enough to see haplogroup symbols, i.e. tablet or greater. The YouTube link is here. The Facebook link is here.

Based on the results of the past 5 years or so, which have been confirming this combined picture every single time, I doubt there will be much need to change it in any radical way, as only minor details remain to be clarified.

GIS maps

I wanted to publish a GIS tool of my own for everyone to have an updated reference of all data I use for my books.

The most complex GIS tools consume too many resources when used online in a client-server model, so I have to keep that to myself, but there are some ways to publish low quality outputs.

The files below include the possibility to zoom some levels to be able to see more samples, and also to check each one for more information on their ID, attributed culture and label, archaeological site, source paper, subclade (and people responsible for SNP inferences if any), etc.

Some usage notes:

  • Files are large (ca. 20 Mb), so they still take some time to load.
  • For the meaning of symbols and colors (for Y-DNA haplogroups), if there is any doubt, check the video above.
  • Pop-ups with sample information will work on desktop browsers by clicking on them, apparently not on smartphone and related tactile OS. I have changed the settings to show pop-ups on hover, so that it now works (to some extent) on tactile OS.
  • The search tool can look for specific samples according to their official ID, and works by highlighting the symbol of the selected individual (turning it into a bright blue dot), and leading the layer view to the location, but it seems to work best only with some browser and OS settings – in other browsers, you need to zoom out to see where the dot is located. The specific sample with its information could paradoxically disappear in search mode, so you might need to reload and look again for the same site that was highlighted.
  • Latitude and longitude values have been randomly modified to avoid samples overcrowding specific sites, so they are not the original ones.

Y-DNA GIS tool

There are three versions:

  1. Labels with more specific subclades (including negative SNPs), using YTree for R1b samples (whenever it conflicts with YFull).
  2. Labels with YFull nomenclature.
  3. Simbols without labels (more symbols visible per layer).


mtDNA GIS tool

There are two versions:

  1. Symbols with labels.
  2. Symbols without labels.

NOTE. Because there are too many samples at the starting view, depending on the file you should zoom some levels to start seeing symbols.


Static Maps

The following maps offer a timeline of Y-DNA and mtDNA evolution, divided into static periods corresponding to the Prehistoric Atlas.

Y-DNA + culture maps

The following files use the YTree or otherwise more comprehensive nomenclature than YFull. Symbols have a similar value as those from the GIS tools.

  1. Anatomically Modern Humans (PDF)
  2. Upper Palaeolithic (PDF)
  3. Epipalaeolithic (PDF)
  4. Early Mesolithic (PDF)
  5. Late Mesolithic (PDF)
  6. Neolithic and hunter-gatherer pottery (PDF)
  7. Early Eneolithic (PDF)
  8. Late Eneolithic (PDF)
  9. Early Chalcolithic (PDF)
  10. Late Chalcolithic (PDF)
  11. Early Bronze Age (PDF)
  12. Middle Bronze Age (PDF)
  13. Late Bronze Age (PDF)
  14. Early Iron Age (PDF)
  15. Late Iron Age (PDF)
  16. Antiquity (PDF)
  17. Middle Ages (PDF)

mtDNA + culture maps

Colours have been assigned randomly to each macro-haplogroup.

  1. Anatomically Modern Humans (PDF)
  2. Upper Palaeolithic (PDF)
  3. Epipalaeolithic (PDF)
  4. Early Mesolithic (PDF)
  5. Late Mesolithic (PDF)
  6. Neolithic and hunter-gatherer pottery (PDF)
  7. Early Eneolithic (PDF)
  8. Late Eneolithic (PDF)
  9. Early Chalcolithic (PDF)
  10. Late Chalcolithic (PDF)
  11. Early Bronze Age (PDF)
  12. Middle Bronze Age (PDF)
  13. Late Bronze Age (PDF)
  14. Early Iron Age (PDF)
  15. Late Iron Age (PDF)
  16. Antiquity (PDF)
  17. Middle Ages (PDF)

See also

R1b-L23-rich Bell Beaker-derived Italic peoples from the West vs. Etruscans from the East


New paper (behind paywall) Ancient Rome: A genetic crossroads of Europe and the Mediterranean, by Antonio et al. Science (2019).

The paper offers a lot of interesting data concerning the Roman Empire and more recent periods, but I will focus on Italic and Etruscan origins.

NOTE. I have updated prehistoric maps with Y-DNA and mtDNA data, and also the PCA of ancient Eurasian samples by period including the recently published samples, now with added sample names to find them easily by searching the PDFs.

Apennine homeland problem

The traditional question of Italic vs. Etruscan origins from a cultural-historical view* lies in the opposition of the traditional way of life during the Bronze Age as opposed to increasingly foreign influences in the Final Bronze Age, which eventually brought about a proto-urban period in the Apennine Peninsula.

* From a modern archaeological perspective, as well as from the (unrelated) nativist view, “continuity” of ancient cultures, languages, and peoples is generally assumed, so this question is a no-brainer. Seeing how population genomics has essentially supported the cultural-historical view, dismissing the concepts of unscathed genomic or linguistic continuity, we have to assume that different cultures potentially represent different languages, and that genetic shift coupled with radical cultural changes show a strong support for linguistic change, although the later Imperial Roman period is an example of how this is not necessarily the case.

Early Bronze Age cultures ca. 2200 – 1750 BC. See full maps.

A little background to the Italic vs. Etruscan homeland problem, from Forsythe (2006) (emphasis mine):

While the material culture of the Po Valley developed in response to influences from central Europe and the Aegean, peninsular Italy during the late Bronze Age lagged somewhat behind for the most part. Inhumation continued to be the funerary practice of this region. Although agriculture doubtless remained the mainstay of human subsistence, other evidence (the occupation of mountainous sites not conducive to farming, the remains of cattle, sheep, pigs, and goats, and ceramic vessels used for boiling milk and making cheese) indicates that pastoralism was also very widespread. This suggests that transhumance was already a well-established pattern of human existence. In fact, since the material culture of central and southern Italy was relatively uniform at this time, it has been conjectured that this so-called Apennine Culture of c. 1600–1100 B.C. owed its uniformity in part to the migratory pattern characteristic of ancient Italian stockbreeding.

During the first quarter of the twelfth century B.C. the Bronze-Age civilizations of the eastern Mediterranean came to an abrupt end. The royal palaces of Pylos, Tiryns, and Mycenae in mainland Greece were destroyed by violence, and the Hittite kingdom that had ruled over Asia Minor was likewise swept away. The causes and reasons for this major catastrophe have long been debated without much scholarly consensus (see Drews 1993, 33–96). Apart from the archaeological evidence indicating the violent destruction of many sites, the only ancient accounts relating to this phenomenon come from Egypt. The most important one is a text inscribed on the temple of Medinet Habu at Thebes, which accompanies carved scenes portraying the pharaoh’s military victory over a coalition of peoples who had attempted to enter the Nile Delta by land and sea.


Iron metallurgy did not reach Italy until the ninth century B.C., and even then it was two or more centuries before iron displaced bronze as the most commonly used metal. Thus, archaeologists date the beginning of the Iron Age in Italy to c. 900 B.C.; and although the Italian Bronze Age is generally assigned to the period c. 1800–1100 B.C. and is subdivided into early, middle, and late phases, the 200-year interval between the late Bronze Age and early Iron Age has been labeled the Final Bronze Age.

During this period the practice of cremation spread south of the Po Valley and is attested at numerous sites throughout the peninsula. Since this cultural tradition developed into the Villanovan Culture which prevailed in Etruria and much of the Po Valley c. 900–700 B.C., modern archaeologists have devised the term “Proto-Villanovan” to describe the cremating cultures of the Italian Final Bronze Age.

The fact that some of the earliest urnfield sites of peninsular Italy are located on the coast (e.g. Pianello in Romagna and Timmari in Apulia) is interpreted by some archaeologists as an indication that cremating people had come into Italy by sea, and that their migration was part of the larger upheaval which affected the eastern Mediterranean at the end of the Bronze Age (so Hencken 1968, 78–90). On the other hand, the same data can be explained in terms of indigenous coastal settlements adopting new cultural traits as the result of commercial interaction with foreigners. In any case, by the end of the Final Bronze Age inhumation had reemerged as the dominant funerary custom of southern Italy, but cremation continued to be an integral aspect of the Villanovan Culture of northern and much of central Italy.

Diffusion of the Villanovan culture (after M. Torelli, ed., Gli Etruschi, Milan, 2000, p. 45). Modified from The Etruscan World (2013), by Turfa.

There is a myriad of linguistic reasons why eastern foreign influences can be attributed to Indo-European (mainly Anatolian, including a hypothetic influence on Latino-Faliscan) or Tyrsenian – as well as many other less credible models – and there is ground in archaeology to support any of the linguistic models proposed, given the long-lasting complex interactions of Italy with other Mediterranean cultures.

NOTE. The lack of theoretical schemes including integral archaeological-linguistic cultural-historical models due to the radical reaction against the excesses of the early 20th century have paradoxically allowed anyone (from archaeologists or linguists to laymen) to posit infinite population movements often based on the simplest similarities in vase decoration, burial practices, or shared vocabulary.

However, recent studies in population genomics have simplified the picture of Bronze Age population movements, identifying radical changes related to population replacements as opposed to more subtle admixture events. As of today, (France Bell Beaker-like) Urnfield stands as the most likely vector of Celtic languages; NW Iberian Bell Beakers as the vector of Galaico-Lusitanian; NW Mediterranean Beakers as the most likely ancestors of Elymian; the Danish Late Neolithic as representative of expanding Proto-Germanic; or Central-East Bell Beakers of Proto-Balto-Slavic.

With this in mind, the most logical conclusion is to assume that Alpine Bell Beakers (close to the sampled Italian Beakers from Parma or from southern Germany) spread Italo-Venetic languages, which is deemed to have split in the early to mid-2nd millennium BC, with dialects found widespread from the Alps to Sicily by the early 1st millennium BC.

Therefore, the two main remaining models of Italian linguistic prehistory – with the information that we already had – were as follows, concerning Tyrsenian (the ancestor of Etruscan and Rhaetian):

  1. It is a remnant language of the Italian (or surrounding) Chalcolithic, which survived in some pockets isolated from the Bell Beaker influence;
  2. It was a foreign language that arrived and expanded at the same time as the turmoil that saw the emergence of the Sea Peoples.

NOTE. Read more on Italo-Venetic evolution and on the likely distribution of Old European and Tyrsenian in the Bronze Age.

Languages of pre-Roman Italy and nearby islands. Italo-Venetic languages surrounded with shadowed red border. I1, South Picene; I2, Umbrian; I3, Sabine; I4, Faliscan; I5, Latin; I6, Volscian and Hernican; I7, Central Italic (Marsian, Aequian, Paeligni, Marrucinian, Vestinian); I8, Oscan, Sidicini, Pre-Samnite; I9, Sicel; IE1, Venetic; IE2, North Picene; IE3, Ligurian; IE4, Elymian; IE5, Messapian; C1, Lepontic; C2, Gaulish; G1-G2-G3, Greek dialects (G1: Ionic, G2: Aeolic, G3: Doric); P1, Punic; N1, Rhaetian; N2, Etruscan; N3, Nuragic. Image modified from Davius Sanctex.


A Proto-Villanovan female from Martinsicuro in the Abruzzo coast (ca. 890 BC), of mtDNA hg. U5a2b, is the earliest mainland sample available showing foreign (i.e. not exclusively Anatolia_N ± WHG) ancestry:

Martinsicuro is a coastal site located on the border of Le Marche and Abruzzo on central Italy’s Adriatic coast. It is a proto-Villanovan village, situated on a hill above the Tronto river, dating to the late Bronze Age and Early Iron Age (…) finds from the site indicate an affinity with contemporaries in the Balkans, suggesting direct trade contacts and interaction across the Adriatic. In particular, the practice of decorating ceramics with bronze elements was shared between the Nin region in Croatia and Picene region of Italy, including Martinsicuro.

NOTE. These are just some of the models I have tried, most of them unsuccessfully. The standard errors that I get are too high, but I am not much interested in this sample that seems (based on its position in the PCA and the available qpAdm results) mostly unrelated to Italic and Etruscan ethnogenesis.

The sample clusters close to the Early Iron Age sample from Jazinka (ca. 780 BC), from the central Dalmatian onomastic region, on the east Adriatic coast opposite to Abruzzo, possibly related to the south-east Dalmatian (or Illyrian proper) onomastic region to the south. However, there is no clear boundary between hydrotoponymic regions for the Bronze Age, and it is quite close to the (possibly Venetic-related) Liburnian onomastic region to the north, so the accounts of Martinsicuro belonging to the Liburni in proto-historical times can probably be extrapolated to the Final Bronze Age.

NOTE. Based on feminine endings in -ona in the few available anthroponyms, Liburnian may have shared similarities with personal names of the Noricum province, which doesn’t seem to be related to the more recent (Celtic- or Germanic-related?) Noric language. On the other hand, anthroponyms are known to show the most recent hydrotoponymic layer of a region, so these personal names might be unrelated to the ancestral language behind place and river names.

Toponyms ending in -ona (after S. Čače 2007).


A Villanovan sample from the powerful Etruscan city-state of Veio in the Tyrrhenian coast (ca. 850 BC), to the north of Rome, shows a cluster similar to later Etruscans and some Latins. Veio features prominently in the emergence of the Etruscan society. From The Etruscan World (2013) by Turfa:

In the final phase of the Bronze Age (mid-twelfth to tenth century bc) the disposition of settlements appears to be better distributed, although they are no longer connected to the paths of the tratturi (drove roads for transhumance of flocks and herds) as they had been during the Middle Bronze Age. As evidence of the intensive exploitation of land and continuous population growth there are now known in Etruria at least 70 confirmed settlements, and several more sites with indications of at least temporary occupation. The typical town of this chronological phase generally occupies high ground or a tufa plateau of more than five hectares, isolated at the confluence of two watercourses. These small plateaus, naturally or artificially protected, are not completely built up: non-residential areas within the defenses were probably intended as collecting points for livestock or zones reserved for cultivation, land used only by certain groups, or areas designated for shelter in case of enemy attack.

Taken together, the data seem to indicate the presence of individuals or families at the head of different groups. And in the final phase of the Bronze Age, there must have begun the process that generated (at least two centuries later) a tribal society based on families and the increasingly widespread ownership of land.

In the ninth century bc the territory is divided instead into rather large districts, each belonging to a large village, divided internally into widely spaced groups of huts, and into a small number of isolated villages located in strategic positions, for which we can assume some form of dependence upon the larger settlements.

Schematic reconstruction of the birth of a proto-urban center (after P. Tamburini, II Museo
territoriale del Lago di Bolsena. Vol 1. Dalle origini alperiodo etrusco, Bolsena 2007). Modified from The Etruscan World (2013), by Turfa.

Compared to the preceding period, this type of aggregation is characterized by a higher concentration of the population. To the number of villages located mostly on inaccessible plateaus, with defensive priority assigned to the needs of agriculture, are added settlements over wide plains where the population was grouped into a single hilltop location. It is a sort of synoikistic process, so, for example, at Vulci people were gathered from the district of the Fiora and Albegna Rivers, while to Veii came the communities that inhabited the region from the Tiber River to Lake Bracciano, including the Faliscan and Capenate territories. The reference to Halesos, son of Saturn, the mythical founder of Falerii in the genealogy of Morrius the king of Veii (Servius, Commentary on Aeneid 8.285) may conceal this close relationship between Veii and the Ager Faliscus (the territory of the historical Faliscans).

The great movement of population that characterizes this period is unthinkable without political organizations that were able to impose their decisions on the individual village communities: the different groups, undoubtedly each consisting of nuclei linked by bonds of kinship, located within or outside the tufa plateaus that would be the future seats of the Etruscan city-states, have cultural links between them, also attested to by the analysis of craft production, such as to imply affiliation to the same political unit and enabling us to speak of such human concentrations as “proto-urban”.

Map of Etruria Padana. Left: From 9th to 8th century BC. Right: From 6th to 4th century BC. Dipartimento di Archeologia di Bologna. Modified from The Etruscan World (2013), by Turfa.

Italic vs. Etruscan origins

Four out of five sampled Latins show Yamnaya-derived R1b-L23 lineages, including three R1b-U152 subclades, and one hg. R1b-Z2103 (in line with the variability found among East Bell Beakers), while one from Ardea shows hg. T1a-L208. A likely Volscian (i.e. Osco-Umbrian-speaking) sample from Boville Ernica also shows hg. R1b-Z2118*, an ‘archaic’ subclade within the P312 tree. These R1b-L23 subclades are also found later during the Imperial period, although in lesser proportion compared to East Mediterranean ones.

Among Etruscans, the only male sampled shows hg. J2b-CTS6190* (formed ca. 1800 BC, TMRCA ca. 1100 BC), sharing parent haplogroup J2b-Y15058 (formed ca. 2400 BC, TMRCA ca. 1900 BC) with a Croatian MBA sample from Veliki Vanik (ca. 1580 calBCE), who also clusters close to the IA sample from Jazinka.

Given the position of Latins and Etruscans in the PCA and the likely similar admixture, it is not striking that differences are subtle. From Antonio et al. (2019):

Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.

On the other hand, there are 3 clear outliers among 11 Iron Age individuals, and all Iron Age samples taken together form a wide Etrurian cluster, so it seems natural to test them in groups divided geographically:

Results seem inconsistent, especially for Italic peoples, due to their wide cluster. It could be argued that the samples with ‘northern’ admixture – a Latin from Palestrina Colombella (of hg. R1b-Z56) and the Volscian sample – might represent better the Italic-speaking population before the proto-urban development of Latium, especially given the reported strong Etruscan influences among the Rutuli in Ardea, which might explain the common cluster with Etruscans and the outlier with reported ‘eastern’ admixture.

Languages of Central Italy at the beginning of Roman expansion. Image modified from original by Susana Freixeiro at Wikipedia.

It makes sense then to test for a group of Etruscans (adding the Villanovan sample) and another of Italic peoples, to distinguish between a hypothetic ancestral Italic ancestry from a Tyrrhenian one:

NOTE. Fine-tuning groups based on the position of samples in the PCA or the amount of this or that component, or – even worse – based on the good or bad fits relative to the tested populations risks breaking the rules of subgroup analysis, eventually obtaining completely useless results, so interpretations for the Italic cluster need to be taken with a pinch of salt (until more similar Italic samples are published). The lack of proper rules regarding what can and cannot be done with this combined archaeological – genomic research is already visible to some extent in genetic papers which use brute force qpAdm tests for all available sampled populations, instead of selecting those potentially ancestral to the studied groups.

Tabs are organized from ‘better’ to ‘worse’ fits. In this case, as a general guide to the spreadsheets, the first tabs (to the left) show better fits for Italic peoples, and as tabs progress to the right they show ‘better’ fits for Etruscans, until it reaches the ‘infeasible’ or otherwise bad models.

This is what can be inferred from the models:

1) Steppe ancestry: Italic peoples seem to show better fits for north-western Alpine sources, closest to Bell Beakers from France or South Germany; whereas Etruscans show a likely Transdanubian source, closest to late Bell Beakers from Hungary (excluding Steppe- and WHG-related outliers).

To see if Bell Beakers from the south-west could be related, I tried the same model as in Fernandes et al. (2019), selecting Iberian BBC samples with more Steppe ancestry – to simplify my task, I selected them according to their PCA position. In a second attempt, I tried adding those intermediate with Iberia_CA, and it shows decreasing p-values, suggesting that the most likely source is close to high Steppe-related Bell Beaker populations. In both cases, models seem worse than France or Germany Bell Beakers.

Since Celtic spread with France BBC-like Urnfield peoples, and Italic peoples appear to be also ancestrally connected to this ancestry, the most plausible explanation is that they share an origin close to the Danubian EBA culture, which would probably be easily detectable by selecting precise Bell Beaker groups from South Germany.

Hypothetic expansion of Celtic-speaking peoples during the La Tène period (source). Image used in Udolph (2009) because it reflects a homeland roughly coincident with the oldest Celtic hydrotoponymy.

2) Anatolia_Neolithic ancestry: different tests seem to show that fits for EEF-related ancestry get warmer the closer the source population selected is to North-West Anatolian farmers, in line with the apparent shift from the East Bell Beaker cluster toward the Anatolia Neolithic cluster in the PCA:

These analyses suggest that there was a renewed Anatolia_N-like contribution during the Bronze Age, older than these Iron Age populations, but later than the rebound of WHG ancestry found among Late Neolithic and Chalcolithic samples from Italy, Sicily, or Sardinia, reflected in their shift in the PCA towards the WHG cluster.

From a range of chronologically closer groups clustering near Anatolia_N, the source seems to be closest to Neolithic samples from the Peloponnese. The direct comparison of Greece_Peloponnese_N against Italy_CA in the analyses labelled “Strict” shows that the sampled Greece Late Neolithic individuals are closer to the source of Neolithic ancestry of Iron Age Etrurians than the Chalcolithic samples from Remedello, Etruria, or Sardinia.

NOTE. Most qpAdm analyses are done with a model similar to Ning et al. (2019), using Corded_Ware_Germany.SG as an outgroup instead of Italy_Villabruna, because I expected to test all models against Yamnaya, too, but in the end – due to the many potential models and my limited time – I only tested those with ‘better’ fits:

Using Yamnaya_Kalmykia as outgroup gives invariably ‘worse’ results, as expected from Bell Beaker-derived populations who are directly derived from Yamnaya, despite their potential admixture with local Corded Ware peoples through exogamy during their expansion in Central Europe. The differences between Italic and Etruscan peoples have to be looked for mainly in EEF-related contributions, not in Steppe-related populations.

Detail of the PCA of Eurasian samples, including Italian samples from Antonio et al. (2019) with the selected clusters of Italic vs. Etruscans, as well as Bell Beaker and Balkan BA and related clusters and outliers. Also marked are Peloponnese Late Neolithic (Greece_N), Minoans, Mycenaeans and Armenian BA samples. See image with better resolution.

Etruscans and Sea Peoples

The sister clade of the Etruscan branch, J2b-PH1602 (TMRCA ca. 1100 BC), seems to have spread in different directions based on its modern distribution, and their global parent clade J2b-Y15058 (TMRCA ca. 1900 BC) was previously found in Veliki Vanik. J2b-L283 appears related to Neolithic expansions through the Mediterranean, based on its higher diversity in Sardinia, although its precise origin is unclear.

Based on the modern haplogroup distribution and on the TMRCA, it can be assumed that a community spread with hg. J2b-Z38240 from somewhere close to the Balkans coinciding with the population movements of the Final Bronze Age. Whether this haplogroup’s Middle Bronze Age area, probably close to the Adriatic, was initially Indo-European-speaking or was related to a regional survival of Etruscan-speaking communities remains unclear.

Greece Late Neolithic is probably the closest available population (from those sampled to date) geographically and chronologically to the Bronze Age North-Western Anatolian region, where the Tyrsenian language family is hypothesized to have expanded from.

We only have a few Iron Age samples from Etruria, dating from a period of complex interaction in the Mediterranean – evidenced by the relatively high proportion of outliers – so it is impossible to discard the existence of some remnant Bronze Age population closer to the Adriatic – from either the Italian (Apulia?) or the Balkan coasts – expanding with the Proto-Villanovan culture and responsible for the Greece_LN-like ancestry seen among the sampled Final Bronze / Iron Age populations from central Italy.

On the other hand, taking into account the ancestry of available Italian, Sardinian and Sicilian Neolithic, Chalcolithic and Bronze Age samples, the current genetic picture suggests an expansion of a different North-West Anatolia Neolithic-related population after the arrival of Bell Beakers from the north, hence probably through the Adriatic rather than through the Tyrrhenian coast, whether the common language group formed with Lemnian had a more distant origin in Bronze Age North-West Anatolian groups or in some isolated coastal community of the Adriatic.

NOTE. Admittedly, the ancestry of the Proto-Villanovan sample seems different from that of Etruscans, although a contribution of the most likely sources for Etruscans cannot be rejected for the Proto-Villanovan individual (see ‘reciprocal’ models of admixture here). In any case, I doubt that the main ancestry of the Proto-Villanovan from Abruzzo is directly related to the population that gave rise to Etruscans, and is more likely related to recent, intense bilateral exchanges in the Adriatic between (most likely) Indo-European-speaking populations.

The distribution of violin bow fibula from thirteenth century onward showing the movement of people between northern Italy, Illyria and the Aegean, Crete, and the parallel distribution of “foreign” darksurfaced handmade pottery (based on Kasuba 2008 : abb. 15; Lis 2009 ). Modified from Kristiansen (2018).

Northern Adriatic

This Adriatic connection could in turn be linked to wider population movements of the Final Bronze Age. Proto-Villanova represents the introduction of oriental influences coinciding with the demise of the local Terramare culture (see e.g. Cremaschi et al. 2016), whereas the Villanovan culture shows partial continuity with many Proto-Villanovan settlements where Etruscan-speaking communities later emerge. From Nicolis (2013):

Founded in the LBA, the village of Frattesina extended over around 20 hectares along the ‘Po di Adria’, a palaeochannel of the Po. It experienced its greatest development between the twelfth and eleventh centuries BC, when it had a dominant economic role thanks to an extraordinary range of artisan production (metalworking, working of bone and deer horn, glass) and major commercial influence due to trading with the Italian Peninsula and the eastern Mediterranean.

This is demonstrated by the presence of exotic objects and raw materials, such as Mycenaean pottery, amber, ivory, ostrich eggs, and glass paste. For the Mycenaean sherds found in settlements in the Verona valleys and the Po delta, analysis of pottery fabrics has shown that some of them very probably come from centres in Apulia where there were Aegean craftsmen and workers, whereas others would seem to have originated on the Greek mainland (Vagnetti 1996; Vagnetti 1998; Jones et al. 2002).

Reconstruction of Acqua Fredda archaeological site, Passo del Redebus, where a group of 9 smelting furnaces has been discovered dating back to the Late Bronze Age (8-9th century BC). Image modified from Trentino Cultura.

In this context a particular system of relations seems to link one specific Alpine region with the social and economic structure of the groups settling between the Adige and the Po and the eastern Mediterranean trading system. In eastern Trentino, at Acquafredda, metallurgical production on a proto-industrial scale has been demonstrated between the end of the LBA and the FBA (twelfth–eleventh centuries BC) (Cierny 2008) (Fig. 38.3). These products must have supplied markets stretching beyond the local area, linked to the Luco/Laugen culture typical of the central Alpine environment. According to Pearce and De Guio (1999), such extensive production must have been destined for the supply of metal to other markets, first of all to other centres on the Po plain, where transactions for materials of Mediterranean origin also took place.

The picture of the Final Bronze Age of these regions, which seems to be coherent with the development of the cultural setting of the Early Iron Age, shows that the birth of the proto-urban Villanovan centres of Bologna in Emilia and Verucchio in Romagna, at the beginning of the Iron Age, seems to follow a line of continuity starting with the role played by Frattesina in the Final Bronze Age (Bietti Sestieri 2008).

Reconstruction of pan-European communication network represented by the geographical spread of archaeological objects. The network nodes represent sites that have yielded an above-average number of relevant finds. The links are direct connections between neighbouring nodes. Modified from Suchowska-Ducke (2015).


The close similarities shared by Rhaetian with the oldest Etruscan inscriptions – but not with the language of later periods, when Etruscan expanded further north – together with increased ‘foreign’ contacts in the Final Bronze Age and the ‘foreign’ ancestry of Etruscans (relative to Italian Chalcolithic and to near-by Bell Beakers) support a language split close to the Adriatic, and not long before they started using the Euboean-related Old Italic alphabet. All this is compatible with an expansion associated with the Proto-Villanovan period, possibly starting along the Po and the Adige.

From Nicolis (2013):

In this geographical context the most important morphological features are the Alps and the alluvial plain of the River Po. Since Roman times the former have always been considered a geographical limit and thus a cultural barrier. In actual fact the Alps have never really represented a barrier, but instead have played an active role in mediating between the central European and Mediterranean cultures. Some of the valleys have been used since the Mesolithic as communication routes, to establish contacts and for the exchange of materials and people over considerable distances. The discovery of Ötzi the Iceman high in the Alps in 1991 demonstrated incontrovertibly that this environment was accessible to individuals and groups from the end of the fourth millennium BC.

From the Early Neolithic period the plain of the Po Valley provided favourable conditions for the population of the area by human groups from central and eastern Europe, who found the wide flat spaces and fertile soils an ideal environment for developing agricultural techniques and animal husbandry. Lake Garda represents a very important morphological feature, benefiting among other things from a Mediterranean-type microclimate, the influence of which can already be seen in the Middle Neolithic. Situated between the plain and the mountains, the hills have always offered an alternative terrain for demographic development, equally important for the exploitation of economic and environmental resources.

As documented for previous periods, in the late and final phases of the Bronze Age the northern Adriatic coast would also seem to represent an important geographical feature, above all in terms of possible long-distance trading contacts with the Aegean and eastern Mediterranean coasts. However, the geographical and morphological characteristics and the river network in this area were very different to the way they are today, and the preferred communications routes must always have been the rivers, particularly the Po and the Adige.

Map of inscriptions of Northern Italy. In green, Rhaetian inscriptions; in Pink, Etruscan inscriptions. Arrows show potential language movements through the Po and the Adige based on the relationship between both language. Image modified from Raetica.


Although it seems superfluous at this point, finding mostly Yamnaya-derived R1b-L23 lineages among speakers of another early North-West Indo-European dialect – and also the earliest to have split into its attested dialects – gives still more support to Yamnaya steppe herders as the vector of expansion of Late PIE, and their continuity up to the Iron Age also supports the strong patrilineal ties of Indo-Europeans.

This, in turn, further supports the nature of Afanasievo as the earliest separated branch from a Late Proto-Indo-European trunk, and of Khvalynsk as the Indo-Anatolian community, while a confirmation of R1b-L23 among early Greeks (speaking the earliest attested Graeco-Aryan dialect) will indirectly confirm East Yamnaya/Poltavka as the early Proto-Indo-Iranian community.

As it often happens with genetic sampling, due to many uncontrollable factors, there is a conspicuous lack of a proper regional and chronological transect of Bell Beaker and Bronze Age samples from Italy, which makes it impossible to determine the origin of each group’s ancestral components. Even though the sampled Italian Beakers don’t seem to be the best fit for Iron Age Italic-speaking peoples from Etruria, they still might have formed part of the migration waves that eventually developed the Apennine culture together with those of prevalent West-Central European Bell Beaker ancestry.

Similarly, the visible radical change from the increasingly WHG-shifted Italian farmers up to the sampled Chalcolithic individuals, including Parma Bell Beakers, to the Anatolia_N-shifted ancestry found in Iron Age Etruscans and Latins might be related to earlier population movements associated with Middle or Late Bronze Age contacts, and not necessarily to the radical social changes seen in the Final Bronze Age. The Etruscan subclade with a likely origin in the Balkans, on the other hand, suggests recent migrations from the Adriatic into Etruria.

Middle Bronze Age cultures of Italy and its surroundings ca. 1750-1250 BC. Potential source of the Greece_N-like admixture found widespread during the Iron Age. See full maps.

Until there is more data about these ancestry changes in Italy, the Balkans, and North-West Anatolia, I prefer to leave the Tyrsenian origins up in the air, so I deleted the Lemnian -> Etruscan arrow of the map of Late Bronze Age migrations, if only because an arrival through the Tyrrhenian Sea has become much less likely. An East -> West movement is still the most likely explanation for the common Tyrsenian language, culture, and ancestry, but the only Y-DNA haplogroup available seems to have an origin closer to the Adriatic.

The recent study of Sea Peoples showed – based on the previous hypothesis of the language and culture of the Philistines – that a minority of incoming elites must have imposed the language as their genetic ancestry (including haplogroups) became diluted among a majority of local peoples. Similarly, the original genetic pool of Tyrsenian speakers might have become diluted among different groups due to their more complex social organization, similar to what happened to Italic peoples during the Imperial period.

One of the most interesting aspects proven in the paper – and strongly suspected before it – is the reflection in population genomics of the change in the social system of the Italian Peninsula during the Roman expansion, and even before it during the Etruscan polity. In fact, it was not only Romans who spread and genetically influenced other European regions, but other regions – especially the more numerous Eastern Mediterranean populations – who became incorporated into a growing Etrurian community which nevertheless managed to spread its language.

In other words, Tyrsenian spread through central and northern Italy, and Latin throughout the whole Mediterranean area and mainland Europe, not (only) through population movements, but through acculturation, in a growing international system of more complex political organizations that can be inferred for most population and language expansions since the Early Iron Age. East Mediterranean populations, Scythians and other steppe peoples, East Germanic peoples, Vikings, or North-Eastern Europeans are other clear examples known to date.


“Steppe ancestry” step by step (2019): Mesolithic to Early Bronze Age Eurasia


The recent update on the Indo-Anatolian homeland in the Middle Volga region and its evolution as the Indo-Tocharian homeland in the Don–Volga area as described in Anthony (2019) has, at last, a strong scientific foundation, as it relies on previous linguistic and archaeological theories, now coupled with ancient phylogeography and genomic ancestry.

There are still some inconsistencies in the interpretation of the so-called “Steppe ancestry”, though, despite the one and a half years that have passed since we first had access to the closest Pontic–Caspian steppe source populations. Even my post “Steppe ancestry” step by step from a year ago is already outdated.


The population selection process for models shown below included (1) plausibility of potential influences in the particular geographic and archaeological context; (2) looking for their clusters or particular samples in the PCA; and (3) testing with qpAdm for potential source populations that might have been involved in their development.

The results and graphics posted are therefore intended to simplistically show potential admixture events between populations potentially close to the actual sources of the target samples, whenever such mating networks could be supported by archaeology.

NOTE. This is an informal post and I am not a geneticist, so I am turning this flexibility to my advantage. If any reader is – for some strange reason – looking for a strict hypothesis testing, for the use of a full set of formal stats (as used e.g. in Ning et al. 2019 for Proto-Tocharians), and correctly redacted and peer-reviewed text, this is not the right place to find them.

An example pedigree (a) of a focal individual sampled in the modern day, placed in its geographic context to make the spatial pedigree (b). Dashed lines denote matings, and solid lines denote parentage, with red hues for the maternal ancestors and blue hues for the paternal ancestors. In the spatial pedigree, each plane represents a sampled region in a discrete (nonoverlapping) generation, and each dot shows the birth location of an individual. The pedigree of the focal individual is highlighted back through time and across space. Image modified from Bradburd and Ralph (2019).

Despite the natural impulse to draw straight mixture trajectories (see e.g. Wang et al. 2019), simply adding or subtracting samples used for a PCA shows how the plot is affected by different variables (see e.g. what happens by including more South Asian samples to the PCA below), hence the need to draw curved arrows – not necessarily representing a sizable drift; at least not in recent prehistoric admixture events for which we have a reasonable chronological transect.

Representation of mixture events between European prehistoric peoples in the PCA. Image modified from David Reich‘s Who We Are and How We Got Here (2018).

Ethnolinguistic identification is a risky business that brings back memories of an evil use of cultural history and its consequences (at least in Western Europe, where this tradition was discontinued after WWII), but it seems necessary for those of us who want to find some confirmation of proposed dialectal schemes and language contacts.

Eneolithic Steppe vs. Steppe Maykop

First things first: I tested Bronze Age Eurasian peoples for the only two true steppe populations sampled to date, as potential sources of their “Steppe ancestry” – conventionally described as an EHG:CHG admixture, similar to that found in the first sampled Yamnaya individuals. I used the rightpops of Wang et al. (2018), but with a catch: since authors used WHG as a leftpop and Villabruna as a rightpop, and I find that a little inconsequential*, I preferred the strategy in Ning et al. (2019), contrasting as outgroup Eneolithic_Steppe (ca. 4300 BC) vs. Steppe_Maykop (ca. 3500 BC) when testing for WHG as a source population.

*WHG usually includes samples from a ‘western’ cluster (Loschbour and La Braña) and an ‘eastern’ cluster (Villabruna and Koros), see Lipson et al. (2017). Therefore, it doesn’t make much sense to include the same (or a very similar) population as a source AND an outgroup.

NOTE. For all other qpAdm analyses below, where WHG was not used as leftpop, I have used Villabruna as rightpop following Wang et al. (2019).

Map of samples and sites mentioned in Wang et al. (2019), modified from the original to include labels of Eneolithic_Steppe and Steppe_Maykop samples. See PCA and ADMIXTURE grahpic for the identification of specific samples.

Results are not much different from what has been reported. In general, Yamnaya and related groups such as Bell Beakers and Steppe-related Chalcolithic/Bronze Age populations show good fits for Eneolithic_Steppe as their closest source for Steppe ancestry, and bad fits for Steppe_Maykop, whereas Corded Ware groups show the opposite, supporting their known differences.

This trend seems to be tempered in some groups, though, most likely due the influence of Samara_LN-like admixture in Circum-Baltic Late Neolithic and Eastern Corded Ware groups, and the influence of Anatolia_N/EEF-like admixture in Balkan and late European CWC or BBC groups. In fact, the more EEF-related ancestry in a populatoin, the less reliable these generic models (and even specific ones) seem to become when distinguishing the Steppe-related source.

NOTE. For more on this, see the discussion on Circum-Baltic Corded Ware peoples, and the discussion on Mycenaeans and their potential source populations.

These are just broad strokes of what might have happened around the Pontic–Caspian steppes before and during the Early Bronze Age expansions. The most relevant quest right now for Indo-European studies is to ascertain the chain of admixture events that led to the development and expansion of Indo-Uralic and its offshoots, Indo-European and Uralic.

Eastern European Mesolithic with the expansion of Post-Swiderian cultures. See full map.

A history of Steppe ancestry

This post is divided in (more or less accurate) chronological developments as follows:

  1. Hunter-gatherer pottery and the steppes
  2. Khvalynsk and Sredni Stog
  3. Post-Stog and Proto-Corded Ware
  4. Yamnaya and Afanasievo

1. Hunter-gatherer pottery and the steppes

I laid out in the ASOSAH book series the general idea – based on attempts to reconstruct the linguistic ancestor of Indo-Uralic – that Eurasiatic speakers might have expanded with the North-Eastern Techno-Complex that spread through north-eastern Europe during the warm period represented by the transition of the Palaeolithic to the Mesolithic.

If one were to trust the traditional migrationist view, a post-Swiderian population expanded from central-eastern Europe (potentially related originally to Epi-Gravettian peoples, represented by WHG ancestry) into north-eastern Europe, and then further east into the Trans-Urals, to then reappear in eastern Europe as a back-migration represented by the spread of hunter-gatherer pottery.

The marked shift from WHG-like towards EHG-related ancestry from Baltic Mesolithic (ca. 30%) to Combed Ware cultures (ca. 65%-100%) supports this continuous westward expansion, that is possibly best represented in the currently available sampling by the ‘south-eastern’ shift (CHG:ANE-related) of the hunter-gatherer from Lebyazhinka IV (5600 BC) relative to the older one from Sidelkino (9300 BC), both from the Samara region in the Middle Volga:

Mesolithic-Neolithic transition ca. 7000-6000 BC, with hunter-gatherer pottery groups spreading westwards. See full map.

From Anthony (2019):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair-Shak III and Varfolomievka, they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

Given the lack of a proper geographical and chronological transect of ancient DNA from eastern European groups, and the discontinuous appearance of both R1b-M73 and R1b-M269 lineages on both sides of the Urals within the WHG:ANE cline, where EHG appears to have formed, it is impossible at this point to assert anything with enough degree of certainty. For simplicity purposes, though, I risked to equate the expansion of R1b-M73 in West Siberia as potentially associated with Micro-Altaic, and the expansion of hg. R1b-M269 with the spread of Indo-Uralic on both sides of the Urals.

NOTE. For incrementally speculative associations of languages with prehistoric cultures and their potential link to ancestry ± haplogroup expansions, you can check sections on Early Indo-Europeans and Uralians, Indo-Uralians, Altaic peoples, Eurasians, or Nostratians. I explained why I made these simplistic choices here.

While this identification of the Indo-Uralic expansion with hg. R1b is more or less straightforward for the Cis-Urals, given the available ancient DNA samples, it will be very difficult (if at all possible) to trace the migration of these originally R1b-M269-rich populations into Trans-Uralian groups that could eventually be linked to Yukaghir speakers. The sheer number of potential admixture events and bottlenecks in Siberian forest, taiga, and tundra regions since the Mesolithic until Yukaghirs were first attested is guaranteed to give more than one headache in upcoming years…

Spread of hunter-gatherer pottery in eastern Europe ca. 6000-5000 BC. See full map.

The slight increase in WHG-related ancestry in Ukraine Neolithic groups relative to Mesolithic ones questions the arrival of this eastern influence in the north Pontic area, or at least its relevance in genomic terms, although the cluster formed is similar to the previous one and to Combed Ware groups – despite the Central European and Baltic influences in the north Pontic region – with some samples showing 0% change relative to Mesolithic groups.

Structure and change in hunter-gatherer-related populations, from Mathieson et al. (2018). Inferred ancestry proportions for populations modelled as a mixture of WHG, EHG and CHG. Dashed lines show populations from the same geographic region. Percentages indicate proportion of WHG + EHG ancestry. Standard errors range from 1.5 to 8.3%.

NOTE. For more on Indo-Uralic and its reconstruction from a linguistic point of view, check out its dedicated section on ASOSAH, or the recently published (behind paywall) The Precursors of Proto-Indo-European, edited by Kloekhorst and Pronk, Brill (2019). Authors of specific chapters have posted their contributions to Academia.edu, where they can be downloaded for free.

2. Khvalynsk and Sredni Stog

The cluster formed by the three available samples of the Khvalynsk culture (early 5th millennium BC) might be described, as expected from its position in the PCA, as a mixture of EHG-like populations of the Middle Volga with CHG-like ancestry close to that represented by samples from Progress-2 and Vonyuchka, in the North Caucasus Piedmont (ca. 4300 BC):

This variable CHG-like admixture shown in the wide cluster formed by the available Khvalynsk-related samples support the interpretation of a recently created CHG mating network in Anthony (2019):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

Detail of the PCA of Eurasian samples, including Neolithic clusters with the hypothesized gene flows related to (1) the formation and (2) expansion of Khvalynsk and the (3) emergence of late Sredni Stog. See full image.

The richest copper assemblage found in all Khvalynsk burials belongs to an individual of hg. R1b-V1636 and intermediate Samara_HG:Eneolithic_Steppe ancestry, while full Eneolithic_Steppe-like admixture in the Middle Volga is represented by the commoner of Khvalynsk II, of hg. Q1. The finding of hg. R1b-V1636 in the North Caucasus Piedmont – and R1b-P297 in the Samara region (probably including Yekaterinovka) begs the question of the origin of hg. R1b-V1636 in the Khvalynsk community. Based on its absence in ancient samples from the forest zone, it is tempting to assign it to steppe hunter-gatherers down the Lower Volga and possibly to the east of it, who infiltrated the Samara region precisely during these population movements described by Anthony (2019).

Suvorovo-related samples from the Balkans, including the Varna and Smyadovo outliers of Steppe ancestry, are closely related to the Khvalynsk expansion:

Similarly, the ancestry of late Sredni Stog samples from Dereivka seem to be directly related to the expansion of Mariupol-like individuals over populations of Suvorovo-Novodanilovka-like admixture, as suggested by the resurgence of typical Ukraine Neolithic haplogroups, the shift in the PCA, and the models of Eneolithic_Steppe vs. Steppe_Maykop above:

#EDIT (11 Nov 2019): In fact, the position of the unpublished Greece_Neolithic outlier that appeared in the Wang et al. (2018) preprint (see full PCA and ADMIXTURE) show that the expanding Suvorovo chiefs from the Balkans formed a tight cluster close to the two published outliers with Steppe ancestry from Bulgaria.

The Ukraine_Neolithic outlier, possibly a Novodanilovka-related sample suggests, based on its position in the PCA close to the late Trypillian outlier of Steppe-related ancestry, that Ukraine_Eneolithic samples from Dereivka are a mixture of Ukraine_Neolithic and a Novodanilovka-like community similar to Suvorovo.

The Trypillian_Eneolithic-like admixture found among Proto-Corded Ware peoples (see below) would then feature potentially a small Steppe_Eneolithic-like component already present in the north Pontic area, too.

Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Furthermore, whereas Anthony (2019) mentions a long-lasting predominance of hg. R1b in elite graves of the Eneolithic Volga basin, not a single sample of hg. R1a is mentioned supporting the community formed by the Alexandria individual, supposedly belonging to late Sredni Stog groups, but with a Corded Ware-like genetic profile (suggesting yet again that it is possibly a wrongly dated sample).

NOTE. A lack of first-hand information rather than an absence of R1a-M417 samples in the north Pontic forest-steppes would not be surprising, since Anthony is involved in the archaeology of the Middle Volga, but not in that of the north Pontic area.

Khvalynsk expansion through the Pontic–Caspian steppes in the early 5th millennium BC. See full map.

3. Post-Stog and Proto-Corded Ware

The origin of the Pre-Corded Ware ancestry is still a mystery, because of the heterogeneity of the sampled groups to date, and because the only ancestral sample that had a compatible genetic profile – I6561 from Alexandria – shows some details that make its radiocarbon date rather unlikely.

The most likely explanation for the closest source population of Corded Ware groups, found in the three core samples of Steppe_Maykop and in Trypillian Eneolithic samples from the first half of the 4th millennium BC, is still that a population of north Pontic forest-steppe hunter-gatherers hijacked this kind of ancestry, that was foreign to the north Pontic region before the Late Eneolithic period, later expanding east and west through the Podolian–Volhynian upland, due to the complex population movements of the Late Eneolithic.

NOTE. The idea of Trypillia influencing the formation of the Steppe_MLBA ancestry proper of Uralic peoples has been around for quite some time already, since the publication of Narasimhan et al. (2018) (see here or here).

Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers, with hypothesized gene flows related to the (1) formation and (2) initial expansion of Pre-Corded Ware ancestry, as well as (3) later regional admixture events. See full image.

The specifics of how the Proto-Corded Ware community emerged remain unclear at this point, despite the simplistic description by Rassamakin (1999) of the Late Eneolithic north Pontic population movements as a two-stage migration of 1) late Trypillian groups (Usatovo) west → east, and (2) Late Maykop–Novosvobodnaya east → west. So, for example, Manzura (2016) on the Zhivotilovka “cultural-historical horizon” (emphasis mine):

Indeed, the very complex combination of different cultural traits in the burial sites of the Zhivotilovka type is able to generate certain problems in the search for the origins of this phenomenon. The only really consistent attribute is the burial rite in contracted position on the left or right side. Yu. Rassamakin is correct in asserting that this position of the deceased can be considered as new in the North Pontic region (Rassamakin 1999, 97). However, this opinion can be accepted only partially for the territory between Dniester and Lower Don. This position is well known in the Usatovo culture in the Northwest Pontic region, although skeletons on the right side are evidenced there only in double burials, whereas single burials contain the deceased only in a contracted position on the left side. On the other hand, the southern and western orientation of the deceased, which is one of the main burial traits of the Zhivotilovka type, is not characteristic of the Usatovo culture. Nevertheless, it is possible to suppose that at least part of the Usatovo population could have played a part in the formation of the cultural type under consideration here. One aspect of this cultural tradition, for instance, could be represented by skeletons on the left side and oriented in north-eastern and eastern directions.

Especially close ties can be traced between the Zhivotilovka and Maykop-Novosvobodnaya traditions, as exemplified by similar burial customs and various grave goods. It is beyond any doubt that the Maykop-Novosvobodnaya population was actively involved in the spread of the main Zhivotilovka cultural traits. The influence of North Caucasian traditions can be well observed, at least as far as the Dnieper Basin, but farther west influence is not manifested pronouncedly. The role of cultural units situated between the Dniester and Don rivers in the process of emergence of the Zhivotilovka type looks somewhat vague. Now, it can be quite confidently asserted that at the end of the 4th millennium BC this territory was settled by migrants from the North Caucasus and Carpathian-Dniester region. This event in theory had to stimulate cultural transformations in the Azov-Black Sea steppes and, thus, bearers of local cultural traditions perhaps could have participated in forming the culture under consideration. In any event, the Zhivotilovka type can be regarded as a complex phenomenon that emerged within the regime of intensive cultural dialogue and that it absorbed totally diff erent cultural traditions. The spread of the Zhivotilovka graves across the Pontic steppes from the Carpathians to the Lower Don or even to the Kuban Basin clearly signalizes a rapid dissolution of former cultural borders and the beginning of active movements of people, things and ideas over vast territories.


What were the factors or reasons that could have provoked this event? In the beginning of the second half of the 4th millennium BC two advanced cultural centers emerged in the south of Eastern Europe. These were the Maykop-Novosvobodnaya and Usatovo cultures, which in spite of their separation by great distances were structurally very alike. This is expressed in similar monumental burial architecture, complex burial rites, even the composition of grave goods, developed bronze metallurgy, high standards of material culture, etc. Both cultures in a completely formed state exemplify prosperous societies with a high level of economic and social organization, which can correspond to the type of ranked or early complex societies. Normally, the social elite in such polities tends to rigidly control basic domains social, economic and spiritual life using different mechanisms, even open compulsion (Earle 1987, 294-297). To some extent similar social entities can be found at this moment in the forest-steppe zone of the Carpathian-Dniester region, as reflected by the well organized settlement of Brânzeni III and the Vykhatitsy cemetery (Маркевич 1981; Дергачев 1978). In spite of their complex character, such societies represent rather friable structures, which could rapidly disintegrate due to unfavourable inner or external factors.

The societies in question emerged and existed during a time of favourable natural climatic conditions, which is considered to be a transitional period from the Atlantic to the Subboreal period, lasting approximately from 3600 to 3300 cal BC, or a climatic optimum for the steppe zone (Иванова и др. 2011, 108; Спиридонова, Алешинская 1999, 30-31). These conditions to a large degree could guarantee a stable exploitation of basic resources and support existing social hierarchies. However, after 3300 cal BC significant climatic changes occurred, accompanied by an increasing aridization and fall in temperature. This event is usually termed the “Piora oscillation” or “Rapid Climatic Event”, and is regarded as having been of global character (Magny, Haas 2004). These rapid changes could have seriously disturbed existing economic and social relations and finally provoked a similar rapid disintegration of complex social structures. In this case the sites of the Zhivotilovka type could represent mere fragments of former prosperous societies, which under conditions of the absence of centralized social control and stable cultural borders tried to recombine social and economic ties. However, the population possessed the necessary social experience and important technological resources, such as developed stock-breeding based on the breeding of small cattle and wheeled transport, so they were ready for opening new territories in their search for a better life.

Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

For more on chronology and the potentially larger, longer-lasting Zhivotilovka–Volchansk–Gordineşti cultural horizon and its expansion through the Podolian–Volhynian upland, read e.g. on the Yampil Complex in the latest volume 22 of Baltic-Pontic Studies (2017):

In the forest-steppe zone of the North-West Pontic area, important data concerning the chronological position of the Zhivotilovka-Volchansk group have been produced by the exploration of the Bursuceni kurgan, which is still awaiting full publication [Yarovoy 1978; cf. also Demcenko 2016; Manzura 2016]. Burials linked with the mentioned group were stratigraphically the eldest in the kurgan, and pre-dated a burial in the extended position and [Yamnaya culture] graves. Two of these burials (features 20 and 21) produced radiocarbon dates falling around 3350-3100 BC [Petrenko, Kovaliukh 2003: 108, Tab. 7]. Similar absolute age determinations were obtained for Podolia kurgans at Prydnistryanske [Goslar et al. 2015]. These dates, falling within the Late Eneolithic, mark the currently oldest horizon of kurgan burials in the forest-steppe zone of the North-West Pontic area. The Podolia graves linked with other, older traditions of the steppe Eneolithic seem to represent a slightly later horizon dated to the transition between the Late Eneolithic and Early Bronze Age.

The presence on the left bank of the Dniester River of kurgans associated with the Eneolithic tradition, which at the same time reveals connections with the Gordineşti-Kasperovce-Horodiştea complex, raises questions about the western range of the new trend in funerary rituals, and its potential connection with the expansion of the late Trypilia culture to the West Podolia and West Volhynia Regions. The data potentially suggesting the attribution of kurgans from the upper Dniester basin to this period is patchy and difficult to verify [e.g. Liczkowce – see Sulimirski 1968: 173]. In this context, the discovery of vessels in the Gordineşti style in a kurgan at Zawisznia near Sokal is inspiring [Antoniewicz 1925].

Burials representing funerary traditions of Zhivotilovka-Volchansk group in Podolie kurgans: 1 – Porohy, grave 3A/7, 2 – Kuzmin, grave 2/2 [after Klochko et al. 2015b, Bubulich, Khakhey 2001]

Another interesting aspect of potential source populations, in combination with those above for Eneolithic_Steppe vs. Steppe_Maykop, are groups with worse fits for Steppe_Maykop_core, which include Potapovka and Srubnaya, as reported by Wang et al. (2018), but also Sintastha_MLBA (although not Andronovo). This is compatible with the long-term admixture of Abashevo chiefs dominating over a majority of Poltavka-like herders in the Don-Volga-Ural steppes during the formation of the Sintashta-Potapovka-Filatovka community, also visible in the typical Yamnaya lineages and Yamnaya-like ancestry still appearing in the region centuries after the change in power structures had occurred.

NOTE. If you feel tempted to test for mixtures of Khvalynsk_EN, Eneolithic_Steppe, Yamnaya, etc. as a source population for Corded Ware, go for it, but it’s almost certain to give similar ‘good’ fits – whatever the model – in some Corded Ware groups and not in others. It is still unclear, as far as I know, how to formally distinguish a mixture of Corded Ware-related from a Yamnaya-related source in the same model, and the results obtained with a combination of Steppe_Maykop-related + Eneolithic_Steppe-related sources will probably artificially select either one or the other source, as it probably happened in Ning et al. (2019) with Proto-Tocharian samples (see qpAdm values) that most likely had a contribution of both, based on their known intense interactions in the Tarim Basin.

Expansion of north Pontic cultures and related groups during the Late Eneolithic. See full map.

#EDIT (22 NOV 2019): New preprint Gene-flow from steppe individuals into Cucuteni-Trypillia associated populations indicates long-standing contacts and gradual admixture, by Immel et al. bioRxiv (2019), on Gordinești samples from Moldova ca. 3500-3100 BC. Relevant excerpts (emphasis mine):

A principal component analysis of the four Moldova females together with previously published data sets of ancient Eurasians showed that Gordinești, Pocrovca 1 and Pocrovca 3 grouped with later dating Bell Beakers from Germany and Hungary close to the four CTC males from Verteba, while Pocrovca 2 fell into the LBK cluster next to Neolithic farmers from Anatolia and Starčevo individual.

When looking at various proxies for steppe-related ancestry (Yamnaya Samara, Ukraine Mesolithic, Caucasian hunter-gatherer (CHG), Eastern hunter gatherer (EHG)), we did not observe any significant difference in genetic influx from either Yamnaya Samara, EHG or Ukraine Mesolithic. However, relative to CHG, we detected a substantial shift towards Yamnaya Samara steppe-related ancestry. Consequently, Yamnaya Samara, Ukraine Mesolithic and EHG appear to be equally suitable proxies for steppe-related ancestry in the Moldovan CTC individuals.

We did not obtain feasible models when running qpAdm on the X-chromosome in order to test for male-biased admixture from hunter-gatherers or individuals with steppe-related ancestry.

It is not surprising that Gordinești, Pocrovca 1 and Pocrovca 3 showed genetic affinities with later dating Bronze Age or Bell Beaker individuals. The common link among them is the considerable steppe-related ancestry, which each group likely received independently from different parental populations.

Principal component analysis of the CTC individuals from Moldova (Gordinești, Pocrovca 1, Pocrovca 2, Pocrovca 3) in red and the CTC individuals from Verteba Cave (I1926, I2110, I2111, I3151) in blue together with 23 selected ancient populations/individuals projected onto a basemap of 58 modern-day West Eurasian populations (not shown). HG=hunter-gatherer, LBK=Linearbandkeramik, PU=Proto-Unetice, TRB=Trichterbecher (Funnel Beaker Culture, FBC). PC1 is shown on the x-axis and PC2 on the y-axis.

4. Yamnaya and Afanasievo

I don’t think it makes much sense to test for GAC (or Iberia_CA, for that matter) as Wang et al. (2019) did, given the implausibility of them taking part in the formation of late Repin during the mid-4th millennium BC around the Don-Volga interfluve (represented by its offshoots Yamnaya and Afanasievo), whether these or other EEF-related populations show ‘better’ fits or not. Therefore, I only tested for more or less straightforward potential source populations:

Detail of the PCA of Eurasian samples, including Yamnaya groups and related clusters, as well as outliers, with hypothesized gene flows related to its (1) formation and (2) expansion. Also included is the inferred position of the admixed sample Yamnaya_Hungary_EBA1. See full image.

Quite unexpectedly – for me, at least – it appears that Afanasievo and Yamnaya invariably prefer Khvalynsk_EN as the closest source rather than a combination including Eneolithic_Steppe directly. In other words, late Repin shows largely genetic continuity with the Steppe ancestry already shown by the three sampled individuals from the Khvalynsk II cemetery, in line with the known strong bottlenecks of Khvalynsk-related groups under R1b lineages, visible also later in Afanasievo and Yamnaya and derived Indo-European-speaking groups under R1b-L23 subclades.

NOTE. This explains better the reported bad fits of models using directly Eneolithic_Steppe instead of Khvalynsk_EN for Afanasievo and Yamnaya Kalmykia, as is readily evident from the results above, instead of a rejection of an additional contribution to an Eneolithic_Steppe-like population, as I interpreted it, based on Anthony (2019).

Map of major sites of the Zhivotilovka-Volchansk group (A) and Repin culture (B), by Rassamakin (see 1994 and 2013). (A) 1 – Primorskoye; 2 – Vasilevka; 3 – Aleksandrovka; 4 – Boguslav; 5 – Pavlograd; 6 – Zhivotilovka; 7 – Podgorodnoye; 8 – Novomoskovsk; 9- Sokolovo; 10 – Dneprelstan; 11- Razumovka; 12 – Pologi; 13 – Vinogradnoye; 14 – Novo-Filipovka; 15 – Volchansk; 16 – Yuryevka; 17 – Davydovka; 18 – Novovorontsovka; 19 – Ust-Kamenka; 20 – Staroselye; 21- Velikaya Aleksandrovka; 22- Kovalevka; 23 – Tiraspol; 24 – Cura-Bykuluy; 25 – Roshkany; 26 – Tarakliya; 27 – Kazakliya; 28 – Bolgrad; 29 – Sarateny; 30 – Bursucheny; 31 – Novye Duruitory; 232 – Kosteshty. (B) 1 – Podgorovka; 2 – Aleksandria; 3 – Volonterovka; 4 – Zamozhnoye; 5 – Kremenevka; 6 – Ogorodnoye; 7 – Boguslav; 8 – Aleksandrovka; 9 – Verkhnaya Mayevka; 10 – Duma Skela; 11 – Zamozhnoye; 12 – Mikhailovka II.

This might suggest that the Steppe ancestry visible in samples from Progress-2 and Vonyuchka, sharing the same cluster with the Khvalynsk II cemetery commoner of hg. Q1, most likely represents North Caspian or Black Sea–Caspian steppe hunter-gatherer ancestry that increased as Khvalynsk settlers expanded to the south-west towards the Greater Caucasus, probably through female exogamy. That would mean that Steppe_Maykop potentially represents the ‘original’ ancestry of steppe hunter-gatherers of the North Caucasus steppes, which is also weakly supported by the available similar admixture of the Lola culture. The chronology, geographical location and admixture of both clusters seemed to indicate the opposite.

Modelling results for the Steppe and Caucasus cluster. Additional ‘eastern’ AG-Siberian gene flow in Steppe Maykop relative to Eneolithic Steppe. From Wang et al. (2019).

Due to the limitations of the currently available sampling and statistical tools, and barring the dubious Alexandria outlier, it is unclear how much of the late Trypillian-related admixture of late Repin (as reflected in Yamnaya and Afanasievo) corresponds to late Trypillian, Post-Stog, or Proto-Corded Ware groups from the north Pontic area. A mutual exchange suggestive of a common mating network (also supported by the mixed results obtained when including Khvalynsk_EN as source for early Corded Ware groups) seem to be the strongest proof to date of the Late Proto-Indo-European – Uralic contacts reflected in the period when post-laryngeal vocabulary was borrowed (with some samples predating the merged laryngeal loss), before the period of intense borrowing from Pre- and Proto-Indo-Iranian.

Between-group differences of Yamnaya samples are caused – like those between Corded Ware groups – by the admixture of a rapidly expanding society through exogamy with regional populations, evidenced by the inconstant affinities of western or southern outliers for previous local populations of the west Pontic or Caucasus area. This explanation for the gradual increase in local admixture is also supported by the strong, long-term patrilineal system and female exogamy practiced among expanding Proto-Indo-Europeans.

Groups of the Yamnaya culture and its western expansion after ca. 3100 BC, and Corded Ware after ca. 2900 BC See full map.

Bell Beakers and Mycenaeans

This Eneolithic_Steppe ancestry is also found among Bell Beaker groups (see above). More specifically, all Bell Beaker groups prefer a source closest to a combination of Yamnaya from the Don and Baden LCA individuals from Hungary, rather than with Corded Ware and GAC, despite the quite likely admixture of western Yamnaya settlers with (1) south-eastern European (west Pontic, Balkan) Chalcolithic populations during their expansion through the Lower Danube and with (2) late Corded Ware groups (already admixed with GAC-like populations) during their expansion as East Bell Beakers:

Similarly, Mycenaeans show good fits for a source close to the Yamnaya outlier from Bulgaria:

Detail of the PCA of Eurasian samples, including Bell Beaker and Balkan EBA groups and related clusters, as well as outliers, including ancestral Yamnaya samples from Hungary (position inferred) and Bulgaria. Also marked are Minoans, Mycenaeans and Armenian BA samples. See full image.

You can read more on Yamnaya-related admixture of Bell Beakers and Mycenaeans, and on Afanasievo-related admixture of Iron Age Proto-Tocharians.


The use of the concept of “Yamnaya ancestry”, then “Steppe ancestry” (and now even “Yamnaya Steppe ancestry“?) has already permeated the ongoing research of all labs working with human population genomics. Somehow, the conventional use of Yamnaya_Samara samples opposed to a combination of other ancient samples – alternatively selected among WHG, EHG, CHG/Iran_N, Anatolia_N, or ANE – has spread and is now unquestionably accepted as one of the “three quite distinct” ancestral groups that admixed to form the ancestry of modern Europeans, which is a rather odd, simplistic and anachronistic description of prehistory…

It has now become evident that authors involved with the Proto-Indo-European homeland question – and the tightly intertwined one of the Proto-Uralic homeland – are going to dedicate a great part of the discussion of many future papers to correct or outright reject the conclusions of previous publications, instead of simply going forward with new data.

The most striking argument to mistrust the current use of “Steppe ancestry” (as an alternative name for Yamnaya_Samara, and not as ancestry proper of steppe hunter-gatherers) is not the apparent difference in direct Eneolithic sources of Steppe ancestry for Corded Ware and Yamnaya-related peoples – closer to the available samples classified as Steppe_Maykop and Eneolithic_Steppe, respectively – or their different evolution under marked Y-DNA bottlenecks.

It is not even the lack of information about the distant origin of these Pontic–Caspian steppe hunter-gatherers of the 5th and 4th millennium BC, with their shared ancestral component potentially separated during the warmer Palaeolithic-Mesolithic transition, when the steppes were settled, without necessarily sharing any meaningful recent history before the formation of the Proto-Indo-Uralic community.

NOTE. I have raised this question multiple times since 2017 (see e.g. here or here).

The most striking paradox about simplistically misinterpreting “Steppe ancestry” as representative of Indo-European expansions is that those sub-Neolithic Pontic–Caspian steppe hunter-gatherers that had this ancestry in the 6th millennium BC were probably non-Indo-European-speaking communities, most likely related to the North(West) Caucasian language family, based on the substrate of Indo-Anatolian that sets it apart from Uralic within the Indo-Uralic trunk, and on later contacts of Indo-Tocharian with North-West Caucasian and Kartvelian, the former probably represented by Maykop and its contact with the Repin and early Yamnaya cultures.

NOTE. For more on this, see Allan Bomhard’s recent paper on the Caucasian substrate hypothesis and its ongoing supplement Additional Proto-Indo-European/Northwest Caucasian Lexical Parallels.

“Spatiotemporal kriging of YAM steppe ancestry during the Holocene, using 5000 spatial grid points. The colors represent the predicted ancestry proportion at each point in the grid.” Image with evolution from ca. 2800 BC until the present day, modified from Racimo et al. (2019). The Copenhagen group considers the expansion of this component as representative of expanding Indo-Europeans…

This kind of error happens because we all – hence also authors, peer reviewers, and especially journal editors – love far-fetched conclusions and sensational titles, forgetting what a paper actually shows and – always more importantly in scientific reports – what it doesn’t show. This is particularly true when more than one field is involved and when extraordinary claims involve aspects foreign to the journal’s (and usually the own authors’) main interests. One would have thought that the glottochronological fiasco published in Science in 2012 (open access in PMC) should have taught an important lesson to everyone involved. It didn’t, because apparently no one has felt the responsibility or the shame to retract that paper yet, even in the age of population genomics.

If anything, the excesses of mathematical linguistics – using computational methods to try and reconstruct phylogenetic trees – have perpetuated a form of misunderstood Scientism which blindly relies on a simple promise made by authors in the Materials and Method section (rarely if ever kept beyond it) to use statistics rather than resorting to the harder, well-informed, comprehensive reasoning that is needed in the comparative method. After all, why should anyone invest hundreds of hours (or simply show an interest in) learning about historical linguistics, about ancient Indo-European or Uralic languages, carefully argumenting and discussing each and every detail of the reconstruction, when one can simply rely on the own guts to decide what is Science and what isn’t? When one can trust a promise that formulas have been used?

The conservative, null hypothesis when studying prehistoric Eurasian samples related to evolving cultures was universally understood as no migration, or “pots not people” (as most western archaeologists chose to believe until recently), whereas the alternative one should have been that there were in fact migration events, some of them potentially related to the expansion of Eurasian languages ancestral to the historically attested ones. Beyond this migrationist view there were obviously dozens of thorough theories concerning potential linguistic expansions associated with specific prehistoric cultures, and a myriad of less developed alternatives, all of which deserved to be evaluated after the null hypothesis had been rejected.

Despite the shortcomings of the 2015 papers and their lack of testing or discussion of different language expansion models, the spread of the so-called “Yamnaya ancestry” – an admixture especially prevalent (after the demise of the Yamnaya) among the most likely ancient Uralic-speaking groups as well as among modern Uralic speakers and recently acculturated groups from Eastern Europe – has been nevertheless invariably concluded by each lab to support the theories of their leading archaeologist, often combined with pre-aDNA theories of geneticists based on modern haplogroup distributions. This is as evident a case of confirmation bias, circular reasoning, and jumping to conclusions as it gets.

Why many researchers of other labs have chosen to follow such conclusions instead of challenging or simply ignoring them is difficult to understand.


Corded Ware and Bell Beaker related groups defined by patrilocality and female exogamy


Two new interesting papers concerning Corded Ware and Bell Beaker peoples appeared last week, supporting yet again what is already well-known since 2015 about West Uralic and North-West Indo-European speakers and their expansion.

Below are relevant excerpts (emphasis mine) and comments.

#UPDATE (27 OCT 2019): I have updated Y-DNA and mtDNA maps of Corded Ware, Bell Beaker, EBA, MBA, and LBA migrations. I have also updated PCA plots, which now include the newly reported samples and those from the Tollense valley, and I have tried some qpAdm models (see below).

I. Corded Ware and Battle Axe cultures

Open access The genomic ancestry of the Scandinavian Battle Axe Culture people and their relation to the broader Corded Ware horizon, by Malmström, Günther, et al. Philos. Trans. R. Soc. (2019).

I.1. Origins of Corded Ware peoples

The discovery of the Alexandria outlier represented a clear support for a long-lasting genomic difference between the two distinct cultural groups, Yamnaya and Corded Ware, already visible in an opposition Khvalynsk vs. late Sredni Stog ca. 4000 BC, i.e. well before the formation of both Late Eneolithic/Early Bronze Age groups.

However, the realization that it may not have been an Eneolithic individual, but rather a (Middle?) Bronze Age one, suggests that Sredni Stog was possibly not directly related to Corded Ware, and a potential direct connection with Yamnaya might have to be reevaluated, e.g. through the Carpathian Basin, as Anthony (2017) proposed.

Principal component analysis of modern Europeans (grey) and projected ancient Europeans.

This new paper shows two early Corded Ware individuals from Obłaczkowo, Poland (ca. 2900-2600 BC) – hence close to the supposed original Proto-Corded Ware community – with an apparently (almost) full “Steppe-like” ancestry, clustering (almost) with Yamnaya individuals:

Similar to the BAC individuals, the newly sequenced individuals from the present-day Karlova in Estonia and Obłaczkowo in Poland appear to have strong genetic affinities to other individuals from BAC and CWC contexts across the Baltic Sea region. Some individuals from CWC contexts, including the two from Obłaczkowo, cluster closely with the potential source population of steppe-related ancestry, the Yamnaya herders. Notably, these individuals appear to be those with the earliest radiocarbon dates among all genetically investigated individuals from CWC contexts. Overall, for CWC-associated individuals, there is a clear trend of decreasing affinity to Yamnaya herders with time.

NOTE. Interestingly, this sample is almost certainly attributed to the skeleton E8-A, which had been supposedly already investigated by the Copenhagen group as the RISE1 sample:

We note that RISE1 is also described as the individual from Obłaczkowo feature E8-A. However, their genetic results differ from ours. They present this individual as a molecularly determined male that belongs to Y-chromosomal haplogroup (hg) R1b and to mtDNA hg K1b1a1 while our results show this individual to be female, carrying a mtDNA hg U3a’c profile

Since the typical Steppe_MLBA ancestry of Corded Ware groups does not show good fits for (Pre-)Yamnaya-derived ancestry, it is almost certain that these individuals will show no (or almost no) direct Yamnaya-related contribution, but rather a contribution of East European sub-Neolithic groups, more or less close to the steppe-forest region.

NOTE. They might show contributions from Pre-Yamnaya-influenced Sredni Stog, though, but if they show a contribution of Yamnaya, then they are probably outliers, related to Yamnaya vanguard groups (see image below). And for them to show it, then both sources, Yamnaya and Corded Ware, should be clearly distinguishable from each other and their relative contribution quantifiable in formal stats, something difficult (if not impossible) to ascertain today.

Trypillian routes of influence and Yamnaya culture influences in Central and Central-East Europe during the Late Eneolithic / Early Bronze Age. Images by Klochko (2009).

Their position in the published PCA – a plot apparently affected by projection bias – suggests a cluster in common with early Baltic samples, which are known to show contributions from East European sub-Neolithic populations (see qpAdm values for Baltic CWC samples).

NOTE. Results for previous samples labelled as Poland CWC are unreliable due to their low coverage.

The most interesting aspect about the ancestry shown by these early samples is their further support for an origin of the culture different than Sredni Stog, and for a rejection of the Alexandria outlier as ancestral to them, hence for a Volhynian-Podolian homeland of Proto-Corded Ware peoples, with an ancestry probably more closely related to the late Maykop Steppe- and Trypillian/GAC groups admixed with sub-Neolithic populations of the Eastern European Late Eneolithic.

NOTE. That is, unless there is a reason for the apparent increase in so-called “Steppe-ancestry” during the northward and westward migration of CWC peoples that represents another thing entirely…

#UPDATE (27 OCT 2019): Apparently, the PCA was actually not affected by projection bias:

Sample poz44 clusters ‘to the south’, with other early German ones, but also close to Yamnaya. Its poor coverage makes qpAdm results unreliable, but its common cluster close to central European and eastern CWC groups – despite belonging to the same Obłaczkowo site – supports that it is more representative of the Proto-CWC population than poz81.

Sample poz81 clusters with Yamnaya samples – or at least with the wider, Steppe-related cluster. Nevertheless, analyses with qpAdm – in combination with values obtained for other early Baltic samples – support that the ancestry of poz81 is more closely related to a core Corded Ware population admixed with sub-Neolithic peoples (similar to Samara LN).

NOTE. I have selected Czech CWC as a potential source closer to the Proto-CWC population, similar to models with Baltic samples. Since Czech CWC samples are later than these from Obłaczkowo, I have also checked the reverse model, with Poz81 and GAC Poland as a source for Czech CWC, and the fits are slightly worse. Anyway, ‘better’ or ‘worse’ p-values can’t determine the direction of migration

Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers. Also marked is poz81.

I.2. CWC expansion under R1a bottlenecks

The two males in our dataset (ber1 and poz81) belonged to Y-chromosome R1a haplogroups, as do the majority of males (16/24) from the previously published CWC contexts, while a smaller fraction belonged to R1b [3/24] or I2a [3/24] lineages. The R1a haplogroup has not been found among Neolithic farmer populations nor in hunter–gatherer groups in central and western Europe, but it has been reported from eastern European hunter–gatherers and Eneolithic groups. Individuals from the Pontic–Caspian steppe, associated with the Yamnaya Culture, carry mostly R1b and not R1a haplotypes.

Sample poz81 is of basal hg. R1a-CTS4385*, an R1a-M417 subclade, supporting once again that most Corded Ware individuals from western and central European groups expanded under R1a-M417 (xZ645) lineages. The Battle Axe sample from Bergsgraven (ca. 2620-2470 BC) shows a basal hg. R1a-Y2395*, a R1a-Z283 subclade leading to the typically Fennoscandian R1a-Z284.

Both findings further support that typical lineages of West CWC groups, including R1a-M417 (xZ645) subclades, were fully replaced by incoming East Bell Beakers, and that the limited expansion of R1a-Z284 and I1 (the latter found in one newly reported Late Neolithic sample from Sweden) was the outcome of later regional bottlenecks within Scandinavia, after the creation of a maritime dominion by the Bell Beaker elites during the Dagger Period.

I.3. CWC and lactase persistence

(…) one of these individuals (kar1) carried at least one allele (-13910 C->T) associated with lactose tolerance, while the other two individuals (ber1 and poz81) carried at least one ancestral variant each, consistent with previous observations of low levels of lactose tolerance variants in the Neolithic and a slight increase among individuals from CWC contexts.

The fact that two early CWC individuals carry ancestral variants could be said to support the improbability of the individual from Alexandria representing a community ancestral to the Corded Ware community. On the other hand, the late CWC individual from Estonia carries one allele, but it still seems that only Bell Beakers and Steppe-related groups show the necessary two alleles during the Early Bronze Age, which is in line with a late Repin/early Yamnaya-related origin of the successful selection of the trait, consistent with the expansion of their specialized semi-nomadic cattle-breeding economy through the steppe biome during the Late Eneolithic.

Maps part of the public data used for the post by Iain Mathieson on Lactase Persistence. “By 2500 BP, the allele is present over a band stretching from Ireland to Central Asia at around 50 degrees latitude. This probably reflects the spread of Steppe ancestry populations in which the allele originated. However, the allele is still rare (say less than 1% frequency) over this entire range. It does not become common anywhere until some time in the past 2500 years – when it reaches its present-day high frequency in Britain and Central Europe”.

I.4. West Uralic spread from the East

The BAC groups fit as a sister group to the CWC-associated group from Estonia but not as a sister group to the CWC groups from Poland or Lithuania (|Z| > 3), indicating some differences in ancestry between these CWC groups and BAC. Supervised admixture modelling suggests that BAC may be the CWC-related group with the lowest YAM-related ancestry and with more ancestry from European Neolithic groups.

While the results of the paper are compatible with a migration from either the Eastern or the Western Baltic into Scandinavia, phylogeography and archaeology support that Battle Axe peoples emerged as a Baltic Corded Ware group close to the Vistula that expanded first to the north-east, and then to the west from Finland, continuing mostly unscathed during the whole Bronze Age mostly in eastern Fennoscandia with the development of Balto-Finnic- and Samic-speaking communities.

Correlation between f4(Chimp, LBK, YAM, X), where X is a CWC or BAC individual, and the date (BCE) of each individual. This statistic measures shared drift between CWC and Linear Pottery Culture (LBK) as opposed to YAM and should increase with the higher proportion of Neolithic farmer ancestry in CWC and BAC.

Radiocarbon dating showed that the three individuals from the Öllsjö megalithic tomb derived from later burials, where oll007 (2860–2500 cal BCE) overlaps with the time interval of the BAC, and oll009 and oll010 (1930–1650 cal BCE) fall within the Scandinavian Late Neolithic and Early Bronze Age

For more on how the Pitted Ware culture may have influenced Uralic-speaking Battle Axe peoples earlier than Indo-European-speaking Bell Beakers in Scandinavia, read more about Early Bronze Age Scandinavia and about the emergence of the Pre-Proto-Germanic community.

II. Bell Beakers through the Bronze Age

New paper (behind paywall) Kinship-based social inequality in Bronze Age Europe, by Mittnik et al. Science (2019).

II.1. Yamnaya vanguard settlers

In my last post, I showed how the ancestry of Corded Ware from Esperstedt is consistent with influence by incoming Yamnaya vanguard settlers or early Bell Beakers, stemming ultimately from the Carpathian Basin, something that could be inferred from the position of the Esperstedt outlier in the PCA, and by the knowledge of Yamnaya archaeological influences up to Saxony-Anhalt.

Yamnaya settlers are strongly suspected to have migrated in small so-called vanguard groups to the west and north of the Carpathians in the first half of the 3rd millennium BC, well before the eventual adoption of the Proto-Beaker package and their expansion ca. 2500 BC as East Bell Beakers.

Tauber Valley infiltration

As I mentioned in the books, one of the known – among the many more unknown – sites displaying Yamnaya-related traits and suggesting the expansion of Yamnaya settlers into Central Europe is Lauda-Königshofen, in the Tauber Valley.

From Diet and Mobility in the Corded Ware of Central Europe, by Sjögren, Price, & Kristiansen PLoS One (2017):

A series of CW cemeteries have been excavated in the Tauber valley. There are three large cemeteries known and some 30 smaller sites. The larger ones are Tauberbischofsheim-Dittingheim with 62 individuals, Tauberbischofsheim-Impfingen with 40 individuals, and Lauda-Königshofen with 91 individuals. The cemeteries are dispersed rather regularly along the Tauber valley, on both sides of the river, suggesting a quite densely settled landscape.

The Lauda-Königshofen graves consisted mostly of single inhumations in contracted position, usually oriented E-W or NE-SW. A total of 91 individuals were buried in 69 graves. At least 9 double graves and three graves with 3–4 individuals were present. In contrast to the common CW pattern, sexes were not distinguished by body position, only by grave goods. This trait is common in the Tauber valley and suggests a local burial tradition in this area. Stone axes were restricted to males, pottery to females, while other artifacts were common to both sexes. About a third of the graves were surrounded by ring ditches, suggesting palisade enclosures and possibly over-plowed barrows.

In particular, Frînculeasa, Preda, & Heyd (2015) used Lauda-Königshofen as representative of the mobility of horse-riding Yamnaya nomadic herders migrating into southern Germany, referring to the findings in Trautmann (2012) about the nomadic herders from the Tauber Valley, and their already known differences with other Corded Ware groups.

The likely influence of Yamnaya in the region has been reported at least since the 2000s, repeatedly mentioned by Jozef Bátora (2002, 2003, 2006), who compiled Yamnaya influences in a map that has been copied ever since, with little improvement over time. Heyd believes that there are potentially many Yamnaya remains along the Middle and Lower Danube and tributaries not yet found, though.

NOTE. Looking for this specific site, I realized that Bátora (and possibly many after him who, like me, copied his map) located Lauda-Königshofen in a more south-western position within Baden-Württemberg than its actual location. I have now corrected it in the maps of Chalcolithic migrations.

Yamnaya influences in Central Europe suggestive of vanguard settlements, contemporary with Corded Ware groups. See full map.

Althäuser Hockergrab…Bell Beakers

Unfortunately, though, it is very difficult to attribute the reported R1b-L51 sample from the Tauber valley to a population preceding the arrival of East Bell Beakers in the region, so there is no uncontroversial smoking gun of Yamnaya vanguard settlers – yet. Reasons to doubt a Pre-Beaker origin are as follows:

1. This family of the Tauber valley shows a late radiocarbon date (ca. 2500 BC), i.e. from a time where East Bell Beakers are known to have been already expanding in all directions from the Middle and Upper Danube and its tributaries.

Crouched burial from Althausen (Althäuser Hockergrab), dated ca. 2500 BC.

2. Archaeological information is scarce. Remains of these four individuals were discovered in 1939 and officially reported together with other findings in 1950, without any meaningful data that could distinguish between Bell Beakers and Corded Ware individuals.

This site is located in the Tauber valley, ca. 100 km to the northwest of the Lech valley. The site was discovered during the construction of a sports field in 1939 and was subsequently excavated by G. Müller and O. Paret. Four individuals in crouched position were found in the burial pit of a flat grave. The burial did not contain any grave goods, but due to the type of grave and positioning of the bodies (with heads pointing towards southwest) the site was attributed to the Corded Ware complex.

The classification of this burial as of CWC and not BBC seems to have been based entirely on the numerous CWC findings in the Tauber valley, rather than on its particular burial orientation following a regional custom (foreign to the described standard of both cultures), and on its grave type that was also found among Bell Beaker groups. Like many human remains recovered in dubious circumstances in the 20th century, these samples should have probably been labelled (at least in the genetic paper) more properly as Tauber_LN or Tauber_EBA.

Changes in ancestry over time. (A) Median ages of individuals plotted against z scores of f4 (Mbuti, Test; Yamnaya_Samara, Anatolia_Neolithic) show increase of Anatolian farmer-related ancestry (indicated by more positive z-scores) and decrease of variation in ancestry over time. Grey shading indicates significant z scores, red line shonw near correlation (r = -0.35971; P = 0.003) and dotted lines the 95% confidence interval. (B) ancestry proportions on autosomes calculated with qpAdm. (C) Sex-bias z scores between autosomes and X chromosomes show significant male bias for steppe-related ancestry in the Tauber samples. Image modified from the paper: Surrounded with a blue circle in (A) are females with more Steppe-related ancestry, and in (C) surrounded by squares are the distinct sex biases found in the earliest BBC from the Tauber valley vs. later groups from the Lech valley.

3. In terms of ancestry, there seem to be no gross differences between the Lech Valley BBC individuals and previously reported South German Beakers, originally Yamnaya-like settlers admixing through exogamy with locals, including Corded Ware peoples, as the sex bias of the Lech Valley Beakers proves (see PCA plot below). In other words, northern and eastern Beakers admixed with regional (Epi-)Corded Ware females during their respective expansions, similar to how southern and western Beakers admixed with regional EEF-related females.

The two available Tauber Valley samples (“Tauber_CWC”) show the same pattern: a quite recent Steppe-related male bias and Anatolia_Neolithic-related female bias. Nevertheless, the male sample clusters ‘to the south’ in the PCA relative to all sampled Corded Ware individuals (see PCA plot below), and shows less Yamnaya-like ancestry than what is reported (or can be inferred) for Yamnaya from Hungary or early Bell Beakers of elevated Steppe-related ancestry.

Table S9. Three-way qpAdm admixture model for European MN/Chalcolithic group+Yamnaya_Samara. P-values greater than 0.05 (model is not rejected) marked in green.

The ancestry and position of the Althäuser male in the PCA is thus fully compatible with recently incoming East Bell Beakers admixing with local peoples (including Corded Ware) through exogamy, but not so much with a sample that would be expected from Yamanaya vanguard + Corded Ware-related ancestry (more like the Esperstedt outlier or the early France Beaker). Compared to the more ‘northern’ (fully Corded Ware-like) position ancestry of his female counterpart, there is little to support that both are part of the same native Tauber valley community after generations of ancestry levelling…

#UPDATE (27 OCT 2019): The PCA shows that the Althäuser male clusters, in fact, ‘to the north’ of the female one, almost on the same spot as a Bell Beaker sample from the Lech Valley.

Despite their reported damage and poor coverage, there seems to be a trend for qpAdm values to prefer a source population for the male (Alt_4) close to Germany Beakers, whereas the female sample (Alt_3) shows ‘better’ fits when a Corded Ware source is selected.

Also relevant is the Corded Ware ancestry of the male – closer to a Czech rather than German CWC source – compatible with an eastern origin, hence supporting a recent arrival via the Danube, in contrast to the local source of the CWC admixture of the female. The poorer coverage of the female sample makes these results questionable, though.

Detail of the PCA of Eurasian samples, including Bell Beaker groups and related clusters, as well as outliers. Also marked are the Tauber Valley male (M) and female (F).

4. The haplogroup inference is also unrevealing: whereas the paper reports that it is R1b-P310* (xU106, xP312), there is no data to support a xP312 call, so it may well be even within the P312 branch, like most sampled Bell Beaker males. Similarly, the paper also reports that HUGO_180Sk1 (ca. 2340 BC) shows a positive SNP for the U106 trunk, which would make it the earliest known U106 sample and originally from Central Europe, but there is no clear support for this SNP call, either. At least not in their downloadable BAM files, as far as I can tell. Even if both were true, they would merely confirm the path of expansion of Yamnaya / East Bell Beakers through the Danube, already visible in confirmed genomic data:

Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from the Tauber Valley and one from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

II.2. Proto-Celts and the Tumulus culture

The most interesting data from Mittnik et al. (2019) – overshadowed by the (at first sight) striking “CWC” label of the Althäuser male – is the finding that the most likely (Pre-)Proto-Celtic community of Southern Germany shows, as expected, major genetic continuity over time with Yamnaya/East Bell Beaker-derived patrilineal families, which suggests an almost full replacement of other Y-chromosome haplogroups in Southern German Bronze Age communities, too.

Sampled families form part of an evolving Bell Beaker-derived European BA cluster in common with other Indo-European-speaking cultures from Western, Southern, and Northern Europe, also including early Balto-Slavs, clearly distinct from the Corded Ware-related clusters surviving in the Eastern Baltic and the forest zone.

This Central European Bronze Age continuity is particularly visible in many generations of different patrilocal families practising female exogamy, showing patrilineal inheritance mainly under R1b-P312 (mostly U152+) lineages proper of Central European bottlenecks, all of them apparently following a similar sociopolitical system spanning roughly a thousand years, since the arrival of East Bell Beakers in the region (ca. 2500 BC) until – at least – the end of the Middle Bronze Age (ca. 1300 BC):

Here, we show a different kind of social inequality in prehistory, i.e., complex households that consisted of i) a higher-status core family, passing on wealth and status to descendants, ii) unrelated, wealthy and high-status non-local women and iii) local, low-status individuals. Based on comparisons of grave goods, several of the high-status non-local females could have come from areas inhabited by the Unetice culture, i.e., from a distance of at least 350 km. As the EBA evidence from most of Southern Germany is very similar to the Lech valley, we suggest that social structures comparable to our microregion existed in a much broader area. The EBA households in the Lech valley, however, seem similar to the later historically known oikos, the household sphere of classic Greece, as well as the Roman familia, both comprising the kin-related family and their slaves.

Genetic structure of Late Neolithic and Bronze Age individuals from southern Germany. (A) Ancient individuals (covered at 20,000 or more SNPs) projected onto principal components defined by 1129 present day west Eurasians (shown in fig. S6); individuals in this study shown with outlines corresponding to their 87Sr/86Sr isotope value (black: consistent with local values, orange: uncertain/intermediate, red: inconsistent with local values). Selected published ancient European individuals are shown without outlines. Image modified from the paper. Surrounded by triangles in cyan, Corded Ware-like females; with a blue triangle, Yamnaya/Early BBC-like sample from the Tauber valley.

NOTE. For those unfamiliar with the usual clusters formed by the different populations in the PCA, you can check similar graphics: PCA with Bell Beaker communities, PCA with Yamnaya settlers from the Carpathians, a similar one from Wang et al. (2019) showing the Yamnaya-Hungary cline, or the chronological PCAs prepared by me for the books.

The gradual increase in local EEF-like ancestry among South Germany EBA and MBA communities over the previous BBC period offers a reasonable explanation as to how Italic and Celtic communities remained in loose contact (enough to share certain innovations) despite their physical separation by the Alps during the Early Bronze Age, and probably why sampled Bell Beakers from France were found to be the closest source of Celts arriving in Iberia during the Urnfield period.

Furthermore, continued contacts with Únětice-related peoples through exogamy also show how Celtic-speaking communities closer to the Danube might have influenced (and might have been influenced by) Germanic-speaking communities of the Nordic Late Neolithic and Bronze Age, helping explain their potentially long-lasting linguistic exchange.

Like other previous Neolithic or Chalcolithic groups that Yamnaya and Bell Beakers encountered in Europe, ancestry related to the Corded Ware culture became part of Bell Beaker groups during their expansion and later during the ancestry levelling in the European Early Bronze Age, which helps us distinguish the evolution of Indo-European-speaking communities in Europe, and suggests likely contacts between different cultural groups separated hundreds of km. from each other.

All in all, there is nothing to support that (epi-)Corded Ware groups might have survived in any way in Central or Western Europe: whether through their culture, their Y-chromosome haplogroups, or their ancestry, they followed the fate of other rapidly expanding groups before them, viz. Funnelbeaker, Baden, or Globular Amphorae cultural groups. This is very much unlike the West Uralic-speaking territory in the Eastern Baltic and the Russian forests, where Corded Ware-related cultures thrived during the Bronze Age.

f4-statistics showing differences in ancestry in populations grouped by period. An increase in affinity to ancestry related to Anatolia Neolithic over time. Males and females grouped together shown as upward and downward pointing triangles, respectively.


It was about time that geneticists caught up with the relevance of Y-DNA bottlenecks when assessing migrations and cultural developments.

From Malmström et al. (2019):

The paternal lineages found in the BAC/CWC individuals remain enigmatic. The majority of individuals from CWC contexts that have been genetically investigated this far for the Y-chromosome belong to Y-haplogroup R1a, while the majority of sequenced individuals of the presumed source population of Yamnaya steppe herders belong to R1b. R1a has been found in Mesolithic and Neolithic Ukraine. This opens the possibility that the Yamnaya and CWC complexes may have been structured in terms of paternal lineages—possibly due to patrilineal inheritance systems in the societies — and that genetic studies have not yet targeted the direct sources of the expansions into central and northern Europe.

From Gibbons (2019), a commentary to Mittnik et al. (2019):

Some of the early farmers studied were part of the Neolithic Bell Beaker culture, named for the shape of their pots. Later generations of Bronze Age men who retained Bell Beaker DNA were high-ranking, buried with bronze and copper daggers, axes, and chisels. Those men carried a Y chromosome variant that is still common today in Europe. In contrast, low-ranking men without grave goods had different Y chromosomes, showing a different ancestry on their fathers’ side, and suggesting that men with Bell Beaker ancestry were richer and had more sons, whose genes persist to the present.

There was no sign of these women’s daughters in the burials, suggesting they, too, were sent away for marriage, in a pattern that persisted for 700 years. The only local women were girls from high-status families who died before ages 15 to 17, and poor, unrelated women without grave goods, probably servants, Mittnik says. Strontium levels from three men, in contrast, showed that although they had left the valley as teens, they returned as adults.

Also, from Scientific American:

(…) it has long been assumed that prior to the Athenian and Roman empires,—which arose nearly 2,500 and more than 2,000 years ago, respectively—human social structure was relatively straightforward: you had those who were in power and those who were not. A study published Thursday in Science suggests it was not that simple. As far back as 4,000 years ago, at the beginning of the Bronze Age and long before Julius Caesar presided over the Forum, human families of varying status levels had quite intimate relationships. Elites lived together with those of lower social classes and women who migrated in from outside communities. It appears early human societies operated in a complex, class-based system that propagated through generations.

It seems wrong (to me, at least) that the author and – as he believes – archaeologists and historians had “assumed” a different social system for the European Bronze Age, which means they hadn’t read about how Indo-European societies were structured. For example, long ago Benveniste (1969) already drew some coherent picture of these prehistoric peoples based on their reconstructed language alone: regarding their patrilocal and patrilineal family system; regarding their customs of female exogamy and marriage system; and regarding the status of foreigners and slaves as movable property in their society.

A long-lasting and pervasive social system of Bronze Age elites under Yamnaya lineages strikingly similar to this Southern German region can be easily assumed for the British Isles and Iberia, and it is likely to be also found in the Low Countries, Northern Germany, Denmark, Italy, France, Bohemia and Moravia, etc., but also (with some nuances) in Southern Scandinavia and Central-East Europe during the Bronze Age.

Therefore, only the modern genetic pool of some border North-West Indo-European-speaking communities of Europe need further information to describe a precise chain of events before their eventual expansion in more recent times:

  1. the relative geographical isolation causing the visible regional founder effects in Scandinavia, proper of the maritime dominion of the Nordic Late Neolithic (related thus to the Island Biogeography Theory); and
  2. the situation of the (Pre-)Proto-Balto-Slavic community close to the Western Baltic which, I imagine, will be shown to be related to a resurge of local lineages, possibly due to a shift of power structures similar to the case described for Babia Góra.

NOTE. Rumour has it that R1b-L23 lineages have already been found among Mycenaeans, while they haven’t been found among sampled early West European Corded Ware groups, so the westward expansion of Indo-European-speaking Yamnaya-derived peoples mainly with R1b-L23 lineages through the Danube Basin merely lacks official confirmation.


Bell Beakers and Mycenaeans from Yamnaya; Corded Ware from the forest steppe


I have recently written about the spread of Pre-Yamnaya or Yamnaya ancestry and Corded Ware-related ancestry throughout Eurasia, using exclusively analyses published by professional geneticists, and filling in the gaps and contradictory data with the most reasonable interpretations. I did so consciously, to avoid any suspicion that I was interspersing my own data or cherry picking results.

Now I’m finished recapitulating the known public data, and the only way forward is the assessment of these populations using the available datasets and free tools.

Understanding the complexities of qpAdm is fairly difficult without a proper genetic and statistical background, which I won’t pretend to have, so its tweaking to get strictly correct results would require an unending game of trial and error. I have sadly little time for this, even taking my tendency to procrastination into account… so I have used a simple model akin to those published before – in particular, the outgroup selection by Ning, Wang et al. (2019), who seem to be part of the only group interested in distinguishing Yamnaya-related from Corded Ware-related ancestry, probably the most relevant question discussed today in population genomics regarding the Proto-Indo-European and Proto-Uralic homelands.

Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

I have used for all analyses below a merged dataset including the curated one of the Reich Lab, the latest on Central and South Asia by Narasimhan, Patterson et al. (2019), on Iberia by Olalde et al. (2019), and on the East Baltic by Saag et al. (2019), as well as datasets including samples from Wang et al. (2019) and Lamnidis et al. (2018). I used (and intend to use) the same merged dataset in all cases, despite its huge size, to avoid adding one more uncontrolled variable to the analyses, so that all results obtained can be compared.

I try to prepare in advance a bunch of relevant files with left pops and right pops for each model:

  1. It seems a priori more reasonable to use geographically and chronologically closer proxy populations (say, Trypillia or GAC for Steppe-related peoples) than hypothetic combinations of ancestral ones (viz. Anatolian farmer, WHG, and EHG).
  2. This also means using subgroups closer to the most likely source population, such as (Don-Volga interfluve) Yamnaya_Kalmykia rather than (Middle Volga) Yamnaya_Samara for the western expansion of late Repin/early Yamnaya, or the early Germany_Corded_Ware.SG or Czech_Corded Ware for the group closest to the Proto-Corded Ware population (see below), likely neighbouring the Upper Vistula region.
  3. I usually test two source populations for different targets, which seems like a much more efficient way of using computer resources, whenever I know what I want to test, since I need my PC back for its normal use; whenever I don’t know exactly what to test, I use three-way admixture models and look for subsets to try and improve the results.

I have probably left out some more complex models by individualizing the most relevant groups, but for the time being this would have to do. Also, no other formal stats have been used in any case, which is an evident shortcoming, ruling out an interpretation drawn directly and only from the results below.

Full qpAdm results for each batch of samples are presented in a Google Spreadsheet, with each tab (bottom of the page) showing a different combination of sources, usually in order of formally ‘best’ (first to the left) to ‘worst’ (last to the right) fits, although the order is difficult to select in highly heterogeneous target groups, as will be readily visible.

Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

Corded Ware origins

The latest publications on the Yampil barrow complex have not improved much our understanding of the complexity of Corded Ware origins from an archaeological point of view, involving multiple cultural (hence likely population) influences. This bit is from Ivanova et al., Baltic-Pontic Studies (2015) 20:1, and most hypotheses of the paper remain unanswered (except maybe for the relevance of the Złota group):

In the light of the above outline therefore one should argue that the ‘architecture of barrows’ associated in the ‘Yampil landscape’ of the Middle Dniester Area with the Eneolithic (specifically, mainly with the TC), precedes the development of a similar phenomenon that can be observed from 2900/2800 BC in the Upper Dniester Area and drainage basin of the Upper Vistula, associated with the CWC [Goslar et al. 2015; Włodarczak 2006; 2007; 2008; Jarosz, Włodarczak 2007]. The most consuming research question therefore is whether ritual customs making use of Eneolithic (Tripolye) ‘barrow architecture’ could have penetrated northwards along the Dniester route, where GAC communities functioned. One could also ask what role the rituals played among the autochthons [Kośko 2000; Włodarczak 2008; 2014: 335; Ivanova, Toshchev 2015b].

This issue has already been discussed with a resulting tentative systemic taxonomy in the studies of Włodarczak, arguing for the Złota culture (ZC) in the Vistula region as an illustration of one of the (Małopolska) reception centres of civilization inspirations from the oldest Pontic ‘barrow culture’ circle associated with the Eneolithic and Early Bronze Age [Włodarczak 2008]. Notably, it is in the ZC that one can notice a set of cultural traits (catacomb grave construction, burial details, forms and decoration of vessels) analogous to those shared by the north-western Black Sea Coast groups of the forest-steppe Eneolithic (chiefly Zhyvotilovka-Volchansk) and the Late Tripolye circle (chiefly Usatovo-Gordinești-Horodiștea-Kasperovtsy).

Globular Amphorae culture „exodus” to the Danube Delta: a – Globular Amphorae culture; b – GAC (1), Gorodsk (2), Vykhvatintsy (3) and Usatovo (4) groups of Trypillia culture; c – Coţofeni culture; d – northern border of the late phase of Baden culture;red arrows – direction of Globular Amphora culture expansion; blue arrow – direction of „reflux” of Globular Amphora culture (apud Włodarczak, 2008, with changes).

Taking into account that I6561 might be wrongly dated, we cannot include the Corded Ware-like sample of the end-5th millennium BC in the analysis of Corded Ware origins. That uncertainty in the chronology of the appearance of “Steppe ancestry” in Proto-Corded Ware peoples complicates the selection of any potential source population from the CHG cline.

Nevertheless, the lack of hg. R1a-M417 and sizeable Pre-Yamnaya-related ancestry in the sampled Pontic forest-steppe Eneolithic populations (represented exclusively by two samples from Dereivka ca. 3600-3400 BC) would leave open the interesting possibility that a similar ancestry got to the forest-steppe region between modern Poland and Ukraine during the known complex population movements of the Late Eneolithic.

It is known that Corded Ware-derived groups and Steppe Maykop show bad fits for Pre-Yamnaya/Yamnaya ancestry, and also that Steppe Maykop is a potential source of “Steppe-related ancestry” within the Eneolithic CHG mating network of the Pontic-Caspian steppes and forest-steppes. Testing Corded Ware for recent Trypillia and Maykop influences, proper of Late Trypillia and Late Maykop groups in the North Pontic area (such as Zhyvotylivka–Vovchans’k and Gordineşti) side by side with potential Pre-Yamnaya and Yamnaya sources makes thus sense:

Now, the main obvious difference between Khvalynsk-Yamnaya and Corded Ware is the long-lasting, pervasive Y-chromosome bottlenecks under R1b lineages in the former, compared to the haplogroup variability and late bottleneck under R1a-M417 in the latter, which speaks in favour – on top of everything else – of a different community of sub-Neolithic hunter-gatherers including hg. R1a-M417 hijacking the expansion of Steppe_Maykop-related ancestry around the Volhynian-Podolian Upland.

Akin to how Yamnaya patrilineal descendants hijacked regional EEF (±CWC) ancestry components mainly through exogamy, dragging them into the different expanding Bell Beaker groups (see below), but kept their Indo-European languages, these hunter-gatherers that admixed with peoples of “Steppe ancestry” were the most likely vector of expansion of Uralic languages in Eastern Europe.

PCA of ancient Eurasian samples. Marked likely Proto-Corded Ware samples and potential origin of its PCA cluster based on qpAdm results. See full PCA and more related files.

Baltic Corded Ware

One of the most interesting aspects of the results above is the surprising heterogeneity of the different regional groups, which is also reflected in the Y-DNA variability of early Corded Ware samples.

Seeing how Baltic CWC groups, especially the early Latvia_LN sample, show particularly bad fits with the models above, it seems necessary to test how this population might have come to be. My first impression in 2017 was that they could represent early Corded Ware groups admixed with Yamnaya settlers through their interactions along the Dnieper-Dniester corridor.

However, I recently predicted that the most likely admixture leading to their ancestry and PCA cluster would involve a Corded Ware-like group and a group related to sub-Neolithic cultures of eastern Europe, whose best proxy to date are EHG-like Khvalynsk samples (i.e. excluding the outlier with Pre-Yamnaya ancestry, I0434):

Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Late Corded Ware + Yamnaya vanguard

Relevant are also the mixtures of Corded Ware from Esperstedt, and particularly those of the sample I0104, which I have repeated many times in this blog I suspected to be influenced by vanguard Yamnaya settlers:

The infeasible models of CWC + Yamnaya_Kalmykia ± Hungary_Baden (see below for Bell Beakers) and the potential cluster formed with other samples from the Baltic suggest that it could represent a more complex set of mixtures with sub-Neolithic populations. On the other hand, its location in Germany, late date (ca. 2500 BC or later), and position in the PCA, together with the good fits obtained for Germany_Beaker as a source, suggest that the increase in Steppe-related ancestry + EEF makes it impossible for the model (as I set it) to directly include Yamnaya_Kalmykia, despite this excess Steppe-related ancestry actually coming from Yamnaya vanguard groups.

I think it is very likely that the future publication of EEF-admixed Yamnaya_Hungary samples (or maybe even Yamnaya vanguard samples) will improve the fits of this model.

These results confirm at least the need to distrust the common interpretation of mixtures including late Corded Ware samples from Esperstedt (giving rise to the “up to 75% Yamnaya ancestry of CWC” in the 2015 papers) as representative of the Corded Ware culture as a whole, and to keep always in mind that an admixture of European BA groups including Corded Ware Esperstedt as a source also includes East BBC-like ancestry, unless proven otherwise.

Yamnaya vanguard groups in Corded Ware territory before the expansion of Bell Beakers (ca. 2500 BC). See full map.

Bell Beaker expansion

A hotly (re)debated topic in the past 6 months or so, and for all the wrong reasons, is the origin of the Bell Beaker folk. Archaeology, linguistics, and different Y-chromosome bottlenecks clearly indicate that Bell Beakers were at the origin of the North-West Indo-European expansion in Europe, while the survival of Corded Ware-related groups in north-eastern Europe is clearly related to the expansion of Uralic languages.

NOTE. For the interesting case of Proto-Indo-Iranians expanding with Corded Ware-like ancestry, see more on the formation of Sintashta-Potapovka-Filatovka from East Uralic-speaking Abashevo and Pre-Proto-Indo-Iranian-speaking Poltavka herders. See also more on R1a in Indo-Iranians and on the social complexity of Sintashta.

Nevertheless, every single discarded theory out there seems to keep coming back to life from time to time, and a new wave of interest in “Bell Beaker from the Single Grave culture” somehow got revived in the process, too, because this obsession – unlike the “Bell Beakers from Iberia Chalcolithic” – is apparently acceptable in certain circles, for some reason.

We know that Iberian Beakers, British Beakers, or Sicilian EBA – representing the most likely closest source population of speakers of Proto-Galaico-Lusitanian, Pre-Celtic Indo-European, and Proto-Elymian, respectively – have already been successfully tested for a direct origin among Western European Beakers in Olalde et al. (2018), Olalde et al. (2019), and Fernandes et al. (2019).

This success in ascertaining a closer Beaker source is probably due to the physical isolation of the specific groups (related to Germany_Beaker, Netherlands_Beaker, and NE_Mediterranean_Beaker samples, respectively) after their migration into regions dominated by peoples without Steppe-related ancestry. Furthermore, Celtic-speaking populations expanding with Urnfield south of the Pyrenees also show a good fit with a source close to France_Beaker.

So I decided to test sampled Bell Beaker populations, to see if it could shed light to the most likely source population of individual Beaker groups and the direction of migration within Central Europe, i.e. roughly eastwards or westwards. As it was to be expected for closely related populations (see the relevant discussion here), an attempt to offer a simplistic analysis of direction based on formal stats does not make any sense, because most of the alternative hypotheses cannot be rejected:

Not only because of the similar values obtained, but because it is absurd to take p-values as a measure of anything, especially when most of these conflicting groups with slightly ‘better’ or ‘worse’ p-values represent multiple different mixtures of the type (Yamnaya + EEF) + (Corded Ware + EEF ± Yamnaya), impossible to distinguish without selecting proper, direct ancestral populations…

A further example of how explosive the Bell Beaker expansion was into different territories, and of their extensive local admixture, is shown by the unsuccessful attempt by Olalde et al. (2018) to obtain an origin of the EEF source for all Beaker groups (excluding Iberian Beakers):

Investigating the genetic makeup of Beaker-complex-associated individuals. Testing different populations as a source for the Neolithic ancestry component in Beaker-complex-associated individuals. The table shows P values (* indicates values > 0.05) for the fit of the model: ‘Steppe_EBA + Neolithic/Copper Age’ source population.
Map of attested Yamnaya pit-grave burials in the Hungarian plains; superimposed in shades of blue are common areas covered by floods before the extensive controls imposed in the 19th century; in orange, cumulative thickness of sand, unfavourable loamy sand layer. Marked are settlements/findings of Boleráz (ca. 3500 BC on), Baden (until ca. 2800 BC), Kostolac (precise dates unknown), and Yamna kurgans (from ca. 3100/3000 BC on).

Now, there is a simpler way to understand what kind of Steppe-related ancestry is proper of Bell Beakers. I tested two simple models for some Beaker groups: Yamnaya + Hungary Baden vs. Corded Ware + GAC Poland. After all, the Bell Beaker folk should prefer a source more closely related to either Yamnaya Hungary or Central European Corded Ware:

Interestingly, models including Yamnaya + Baden show good fits for the most important groups related to North-West Indo-Europeans, including Bell Beakers from Germany, the Netherlands, Italy, and Poland, representing the most likely closest source populations of speakers of Pre-Proto-Celtic, Pre-Proto-Germanic, Proto-Italo-Venetic, and Pre-Proto-Balto-Slavic, respectively.

The admixed Yamnaya samples from Hungary that will hopefully be published soon by the Jena Lab will most likely further improve these fits, especially in combination with intermediate Chalcolithic populations of the Middle and Upper Danube and its tributaries, to a point where there will be an absolute chronological and geographical genomic trail from the fully Yamnaya-like Yamnaya settlers from Hungary to all North-West Indo-European-speaking groups of the Early Bronze Age.

The only difference between groups will be the gradual admixture events of their source Beaker group with local populations on their expansion paths, including peoples of mainly EEF, CWC+EEF, or CWC+EEF+Yamnaya related ancestry. There is ample evidence beyond ancestry models to support this, in particular continued Y-DNA bottlenecks under typical Yamnaya paternal lineages, mainly represented by R1b-L51 subclades.

Distribution of the Bell Beaker East Group, with its regional provinces, as of c. 2400 cal BC (after Heyd et al. 2004, modified). See full maps.

European Early Bronze Age

European EBA groups that might show conflicting results due to multiple admixture events with Corded Ware-related populations are the Únětice culture and the Nordic Late Neolithic.

The results for Únětice groups seem to be in line with what is expected of a Central European EBA population derived from Bell Beakers admixed with surrounding poulations of East Bell Beaker and/or late (Epi-)Corded Ware descent.

Potential models of mixture for Nordic Late Neolithic samples – despite the bad fits due to the lack of direct ancestral CWC and BBC groups from Denmark – seem to be impossible to justify as derived exclusively from Single Grave or (even less) from Battle Axe peoples, supporting immigration waves of Bell Beakers from the south and further admixture events with local groups through maritime domination.

PCA of ancient European samples. Marked are Bronze Age clusters. See full PCAs.

Balkans Bronze Age

The potential origin of the typical Corded Ware Steppe-related ancestry in the social upheaval and population movements of the Dnieper-Dniester forest-steppe corridor during the 4th millennium BC raises the question: how much do Balkan Bronze Age groups owe their ancestry to a population different than the spread of Pre-Yamnaya-like Suvorovo-Novodanilovka chieftains? Furthermore, which Bronze Age groups seem to be more likely derived exclusively from Pre-Yamnaya groups, and which are more likely to be derived from a mixture of Yamnaya and Pre-Yamnaya? Do the formal stats obtained correspond to the expected results for each group?

Since the expansion of hg. I2a-L699 (TMRCA ca. 5500 BC) need not be associated with Yamnaya, some of these values – together with the assessment of each individual archaeological culture – may question their origin in a Yamnaya-related expansion rather than in a Khvalynsk-related one.

NOTE. These are the last ones I was able to test yesterday, and I have not thought these models through, so feel free to propose other source and target groups. In particular, complex movements through the North Pontic area during the Late Eneolithic would suggest that there might have been different Steppe-ancestry-related vs. EEF-related interactions in the north-west and west Pontic area before and during the expansion of Yamnaya.


One of the key Indo-European populations that should be derived from Yamnaya to confirm the Steppe hypothesis, together with North-West Indo-Europeans, are Proto-Greeks, who will in turn improve our understanding of the preceding Palaeo-Balkan community. Unfortunately, we only have Mycenaean samples from the Aegean, with slight contributions of Steppe-related ancestry.

Still, analyses with potential source populations for this Steppe ancestry show that the Yamnaya outlier from Bulgaria is a good fit:

The comparison of all results makes it quite evident the why of the good fits from (Srubnaya-related) Bulgaria_MLBA I2163 or of Sintashta_MLBA relative to the only a priori reasonable Yamnaya and Catacomb sources: it is not about some hypothetical shared ancestor in Graeco-Aryan-speaking East Yamnaya– or even Catacomb-Poltavka-related groups, because all available Yamnaya-related peoples are almost indistinguishable from each other (at least with the sampling available today). These results reflect a sizeable contribution of similar EEF-related populations from around the Carpathians in both Steppe-related groups: Corded Ware and Yamnaya settlers from the Balkans.

Cultural groups in and around the Balkans during the Early Bronze Age. See full maps.

qpAdm magic

In hobby ancestry magic, as in magic in general, it is not about getting dubious results out of thin air: misdirection is the key. A magician needs to draw the audience attention to ‘remarkable’ ancestry percentages coupled with ‘great’ (?) p-values that purportedly “prove” what the audience expects to see, distracting everyone from the true interesting aspects, like statistical design, the data used (and its shortcomings), other opposing models, a comparison of values, a proper interpretation…you name it.

I reckon – based on the examples above – that the following problems lie at the core of bad uses of qpAdm:

  1. In the formal aspect, the poor understanding of what p-values and other formal stats obtained actually mean, and – more importantly – what they don’t mean. The simplistic trend to accept results of a few analyses at face value is necessarily wrong, in so far as there is often no proper reasoning of what is being assessed and how, and there is never a previous opinion about what could be expected if the alternative hypotheses were true.
  2. In the interpretation aspect, the poor judgement of accompanying any results with simplistic, superficial, irrelevant, and often plainly wrong archaeological or linguistic data selected a posteriori; the inclusion of some racial or sociopolitical overtones in the mixture to set a propitious mood in the target audience; and a sort of ritualistic theatrics with the main theme of ‘winning’, that is best completed with ad hominems.

If you get rid of all this, the most reasonable interpretation of the output of a model proposed and tested should be similar to Nick Patterson’s words in his explanation of qpWave and qpAdm use:

Here we see that, at least in this analysis there are reasonable models with CordedWareNeolithic is a mix of either WHG or LBKNeolithic and YamnayaEBA. (…) The point of this note is not to give a serious phylogenetic analysis but the results here certainly support a major Steppe contribution to the Corded Ware population, which is entirely concordant with the archaeology [?].

Very far, as you can see, from the childish “Eureka! I proved the source!”-kind of thinking common among hobbyists.

The Mycenaean case is an illustrative example: if the Yamnaya outlier from Bulgaria were not available, and if one were not careful when designing and assessing those mixture models, the interpretation would range from erroneous (viz. a Graeco-Aryan substrate, as I initially thought) to impossible (say, inventing migration waves of Sintashta or Srubnaya peoples into Crete). The models presented above show that a contribution of Yamnaya to Mycenaeans couldn’t be rejected, and this alone should have been enough to accept Yamnaya as the most likely source population of “Steppe ancestry” in Proto-Greeks, pending intermediate samples from the Balkans. In other words, one could actually find that ‘the best’ p-values for source populations of Mycenaeans is a combination of modern Poles + Turks, despite the impracticality of such a model…

I haven’t been able to reproduce results which supposedly showed that Corded Ware is more likely to be derived from (Pre-)Yamnaya than other source population, or that Corded Ware is better suited as the ancestral population of Bell Beakers. The analyses above show values in line with what has been published in recent scientific papers, and what should be expected based on linguistics and archaeology. So I’ll go out on a limb here and say that it’s only through a careful selection of outgroups and samples tested, and of as few compared models as possible, that you could eventually get this kind of results and interpretation, if at all.

Whether that kind of special care for outgroups and samples is about (a) an acceptable fine-tuning of the analyses, (b) a simplistic selection dragged from the first papers published and applied indiscriminately to all models, or (c) cherry picking analyses until results fit the expected outcome, is a question that will become mostly irrelevant when future publications continue to support an origin of the expansion of ancient Indo-European languages in Khvalynsk- and Yamnaya-related migrations.

Feel free to suggest (reasonable) modifications to correct some of these models in the comments. Also, be sure to check out other values such as proportions, SD or SNPs of the different results that I might have not taken into account when assessing ‘good’ or ‘bad’ fits.