Demographic history and genetic adaptation in the Himalayan region

Open access Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations, by Arciero et al. Mol. Biol. Evol (2018), accepted manuscript (msy094).

Abstract (emphasis mine):

We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India or Tibet at over 500,000 SNPs, and analysed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively-selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 (EPAS1) and Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.

Population samples analysed in this study. A. Map of South and East Asia, highlighting the four regions examined, and the colour assigned to each. B. Samples from the Tibetan Plateau. C.Samples from Nepal. D. Samples from Bhutan and India. The circle areas are proportional to the sample sizes. The three letter population codes in B-D are defined in supplementary table S1.

Relevant excerpts:

Genetic affinity to ancestral populations

We explored the genetic affinity between the Himalayan populations and five ancient genomes using f3-outgroup statistics. Himalayans show greater affinity to Eurasian hunter-gatherers (MA-1, a 24,000- year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya, than to European farmers (5,500-4,800 years ago; Fig. 5A) or to European hunter-gatherers (La Braña, 7,000 years ago; Fig. 5B), like other South and East Asian populations. We further explored the affinity of Himalayan populations by comparing them with the 45,000-year-old Upper Palaeolithic hunter-gatherer (Ust’-Ishim) and each of MA-1, La Braña, or Yamnaya. Himalayan individuals cluster together with other East Asian populations and show equal distance from Ust’-Ishim and the other ancient genomes, probably because Ust’-Ishim belongs to a much earlier period of time (supplementary fig. S15). We also explored genetic affinity between modern Himalayan populations and five ancient Himalayans (3,150 1,250 years old) from Nepal. The ancient individuals cluster together with modern Himalayan populations in a worldwide PCA (supplementary fig. S16), and the f3-outgroup statistics show modern high-altitude populations have the closest affinity with these ancient Himalayans, suggesting that these ancient individuals could represent a proxy for the first populations residing in the region (supplementary fig. S17 and supplementary table S4). Finally, we explored the genetic affinity of Himalayan samples with the archaic genomes of Denisovans and Neanderthals (Skoglund and Jakobsson 2011), and found that they show a similar sharing pattern with Denisovans and Neanderthals to the other South and East Asian populations. Individuals belonging to four Nepalese, one Cambodian, and three Chinese populations show the highest Denisovan sharing (after populations from Australia and Papua New Guinea) but these values are not significantly greater than other South and East Asian populations (supplementary figs. S18 and S19).

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. A. PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. B. PCA of the Himalayan populations alone. Each dot represents a sample, coded by country or region as indicated. Most samples lie on an arc between Bhutanese and Nepalese samples; Toto (India) are seen as extreme outlier in the bottom left corner, while Dhimal (Nepal) and Bodo (India) also form outliers.

NOTE. The variance explained in the PCA graphics seems to be too high. This happened recently also with the Damgaard et al. (2018) papers (see here the comment by Iosif Lazaridis).

Similarities and differences between high-altitude Himalayan

The most striking example is provided by the Toto from North India, an isolated tribal group with the lowest genetic diversity of the Himalayan populations examined here, indicated by the smallest long-term Ne (supplementary fig. S5), and a reported census size of 321 in 1951 (Mitra 1951), although their numbers have subsequently increased. Despite this extreme substructure, shared common ancestry among the high-altitude populations (Fig. 2C and Fig. 3) can be detected, and the Nepalese in general are distinguished from the Bhutanese and Tibetans (Fig. 2C) and they also cluster separately (Fig. 3). In a worldwide context, they share an ancestral component with South Asians (supplementary fig. S2). On the other hand, the Tibetans do not show detectable population substructure, probably due to a much more recent split in comparison with the other populations (Fig. 2C and supplementary fig. S6). The genetic similarity between the high-altitude populations, including Tibetans, Sherpa and Bhutanese, is also supported by their clustering together on the phylogenetic tree, the PCA generated from the co-ancestry matrix generated by fineSTRUCTURE (supplementary fig. S10 and S11), the lack of statistical significance for most of the D-statistics tests (Yoruba, Han; high-altitude Himalayan 1, high-altitude Himalayan 2), and the absence of correlation between the increased genetic affinity to lowland East Asians and the spatial location of the Himalayan populations (supplementary figs. S12 and S13). Together, these results suggest the presence of a single ancestral population carrying advantageous variants for high-altitude adaptation that separated from lowland East Asians, and then spread and diverged into different populations across the Himalayan region. (…)

Recent admixture events

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. C. ADMIXTURE (K values of 2 to 6, as indicated) analysis of the Himalayan samples. Note that most increases in the value of K result in single population being distinguished. Population codes in C are defined in supplementary table S1.

Himalayan populations show signatures of recent admixture events, mainly with South and East Asian populations as well as within the Himalayan region itself. Newar and Lhasa show the oldest signature of admixture, dated to between 2,000 and 1,000 years ago. Majhi and Dhimal display signatures of admixture within the last 1,000 years. Chetri and Bodo show the most recent admixture events, between 500 and 200 years ago (Fig. 4, supplementary tables S3). The comparison between the genetic tree and the linguistic association of each Himalayan population highlights the agreement between genetic and linguistic sub-divisions, in particular in the Bhutanese and Tibetan populations. Nepalese populations show more variability, with genetic sub-clusters of populations belonging to different linguistic affiliations (Fig. 3B). Modern high-altitude Himalayans show genetic affinity with ancient genomes from the same region (supplementary fig. S17), providing additional support for the idea of an ancient high-altitude population that spread across the Himalayan region and subsequently diverged into several of the present-day populations. Furthermore, Himalayan populations show a similar pattern of allele sharing with Denisovans as other South-East Asian populations (supplementary fig. S18 and S19). Overall, geographical isolation, genetic drift, admixture with neighbouring populations and linguistic subdivision played important roles in shaping the genetic variability we see in the Himalayan region today.


Copenhagen group: Germanic and Balto-Slavic from Bell Beaker; Indo-Anatolian homeland in the Caucasus

Article of general knowledge in Der Spiegel, Invasion from the Steppe, with comments from Willerslev and Kristiansen, appeared roughly at the same time as the Damgaard et al. Nature (2018) and Science (2018) papers were published.

NOTE. You can read the article (in German) from Kristiansen’s account.

Excerpts translated from German (emphasis mine):

On the Y-DNA data

Particularly striking is the genetic signature from the steppe on the Y chromosome. From this the researchers conclude that the majority of migrants were males. Kristian Kristiansen, chief archaeologist in the Willerslev team, also has an idea of ​​how this could be explained: “Maybe it’s a rite of initiation, as it was spread among the steppe peoples,” he says.

The younger sons of the Yamnaya herders, who were excluded from the succession, had to seek their fortune on their own. As part of a solemn ritual, they threw themselves to wolves’ skins and then swarmed in warlike gangs to buy their own herds by cattle-stealing.


An ally that they seem to have brought from their homeland may also have contributed to the genetic success of the steppe people: Yersinia pestis, the plague bacterium. Its genes were found by researchers from the Max Planck Institute in Jena – and apparently it emerged exactly at the same time as the Yamnaya thrust began.

About the Hittites

(…) And yet now, where Asia and Europe meet geographically, there is no trace of the Yamnaya genes. The wander-loving people from the Pontic-Caspian steppe apparently found neither the way across the Balkans nor through the Caucasus mountains.

Now the researchers are puzzled: How can it be that a language goes on a walk, without the accompanying speakers coming along? Is it possible that the Indo-European seeped into Anatolia, much like the English language spread today without the need for Englishmen?

Archaeologist Kristiansen does not believe it. The researchers would find it hard to reconsider their theories, he says: “Especially the first chapter of the story has to be rewritten.”

He suspects that there was a predecessor of the Yamnaya culture, in which a kind of Proto-Proto-Indo-European was spoken. And he also has a suspicion, where this people could have drifted around: The Caucasus, says Kristiansen, was their homeland. But that remains unproven: “There’s another hole left,” he admits.

Spread of Indo-European languages

About the Botai

The study of [the Botai] genome revealed that it was genetically radically different from the members of the Yamnaya culture. The Botai, it seems, consistently avoided any contact with their neighbors – even though they must have crossed the territory of the Botai on their migratory waves.

Willerslev assumes that the art of keeping horses from the Yamnaya steppe nomads was adopted from these peoples, and then they developed it further. At some point, the Botai could then have itself become doomed by its groundbreaking innovation: While the descendants of the Yamnaya spread over half of Eurasia, the Botai disappeared without leaving a trace.

Even more interesting than the few words that set the Copenhagen group’s views for future papers (such as the expected Maykop samples with EHG ancestry) is the artistic sketch of the Indo-European migrations, probably advised by the group.

A simple map does not mean that all members of the Danish workgroup have changed their view completely, but I would say it is a great improvement over the previous “arrows of migration” (see here), and it is especially important that they show a more realistic picture of ancient migrations to general readers.

NOTE. Especially absurd is the identification of the ‘Celtic’ expansion with the first Bell Beakers in the British Isles (that idea is hold by few, such as Koch and Cunliffe in their “Celtic from the West” series). Also inexact, but not so worrying, are the identification of ‘Germanic’ in Germany/Únětice, or the spread of ‘Baltic’ and ‘Slavic’ directly to East Europe (i.e. I guess Mierzanowice/Nitra -> Trzciniec), which is probably driven by the need to assert a close connection with early Iranians and thus with their satemization trends.

Also, as we know now thanks to Narasimhan et al. (2018), there is no need to support that convoluted west arrow (representing CWC) from West Yamna to Central Europe, and then to East Yamna, since the Proto-Indo-Iranian community – represented by the Steppe MLBA cloud that later expanded Indo-Aryan and Iranian languages – has a more direct connection with the in situ admixture of Poltavka/Abashevo within the Volga-Ural region.

I think we can keep this from the article:

Their results, as well as those of the competition labs at Harvard University and Jena’s Max Planck Institute for the History of Humanity, leave no doubt: Yes, the legendary herdsmen in the Pontic-Caspian steppe really existed. They belonged to the so-called Yamnaya culture, and they spread, as linguists had predicted, in massive migrations towards Central Europe and India – a later triumph for linguists.

This can be added to a recent comment by de Barros Damgaard:

The project has been an extremely enriching and exciting process. We were able to direct many very different academic fields towards a single coherent approach. By asking the right questions, and keeping limitations of the data in mind, contextualizing, nuancing, and keeping dialogues open between scholars of radically different backgrounds and approaches, we have carved out a path for a new field of research. We have already seen too many papers come out in which models produced by geneticists working on their own have been accepted without vital input from other fields, and, at the other extreme, seen archaeologists opposing new studies built on archaeogenetic data, due to a lack of transparency between the fields.

Data on ancient DNA is astonishing for its ability to provide a fine-grained image of early human mobility, but it does stand on the shoulders of decades of work by scholars in other fields, from the time of excavation of human skeletons to interpreting the cultural, linguistic origins of the samples. This is how cold statistics are turned into history.


Mitogenomes show discontinuity in Gotland’s LN – EBA transition

New paper (behind paywall) The stone cist conundrum: A multidisciplinary approach to investigate Late Neolithic/Early Bronze Age population demography on the island of Gotland, by Fraser et al. J. Archaeol. Sci. (2018) 20:324-337.

Interesting excerpts (emphasis mine):

Unfortunately, due to poor preservation, mitochondrial haplotype calls were only obtained from the EBA individuals in this study. However, some interesting findings were observed. We find two adult local individuals with unique haplogroup lineages [H1a, H1e], and two juvenile individuals with haplogroup lineages [H2a and T1a] previously found exclusively in the CWC individuals analyzed here, all four dated to BA I showing that new lineages had already been established on Gotland at this time period. Another unique haplogroup lineage [K1b] is found in the child dated to BA III at Suderkvie, indicating continued migration to the island. Additionally, the two nonlocal individuals [LN II; ans010 and BA I; hgb010], were adding to the already existing haplogroup lineages [U5b and T2b, respectively] previously found in the PWC individuals analyzed here. The T2b lineage has also been found in the TRB individuals from the dolmen (Table S4).

Our ancestral contribution modeling for the maternal lineages showed that, among the models tested, the only models with a good fit were 55/45 CWC/TRB contribution (Fig. 6), or a 3-way mixture of 55% CWC, 40% TRB, and 5% PWC (Fig. S15). All other models had poor support, including the models with 100% contribution from either group present on Gotland in the preceding period. The PWC group had the weakest fit of all models which is quite surprising as the PWC was the only preceding group that was established on the island in the beginning of the LN period. Although separated temporally by more than 500 years, the individuals from the Hägur burial seems to have been well established in the Eksta area which previously was inhabited by PWC groups. However, the new haplogroup lineages [H1a and H2a] in the Hägur burial suggest some migration to Gotland in a period succeeding the PWC. Archaeologically, it is difficult to reconcile a 55/45 CWC/TRB contribution on Gotland as the temporal range of the TRB culture ends around c. 2700 cal BCE, and presently there is little archaeological evidence of assimilation of TRB and BAC/CWC on Gotland during the latter part of the MN period (e.g. Andersson, 2016). The apparent decline of human activity on the island post TRB, and also later postPWC is intriguing. As we do not see cultural assimilation of TRB and PWC on Gotland one can only speculate as to why TRB disapears from the archaeological record.

The introduction of new female lineages and the mtDNA haplogroup variation within these stone cist burials, together with an increase of nonlocal individuals, and a dietary shift, indicates that a demographic event has happened. The LN period shows traces of activity all over the island compared to the MN period with ten TRB, and eighteen PWC sites (e.g. Bägerfeldt, 1992; Luthander, 1988; Wallin, 2010; Österholm, 1989). This pattern seems to continue into the EBA as seen by the well-established local groups identified by their Sr-signals, as well as the monumental burials.

Fig. 1. Map indicating distribution of TRB-North group megalithic tombs (Blomqvist, 1989; Midgley, 2008; Sjögren, 2003; Tilley, 1999) and PWC areas (Larsson, 2009) modified from (Malmström et al., 2009). Swedish megalithic TRB burial sites included in the analyses: 1. Gökhem passage grave, Falköping, Västergötland, 2. Alvastra dolmen, Östergötland, 3. Mysinge passage grave, Resmo, Öland, 4. Ansarve dolmen, Tofta, Gotland, and 5. the Ostorf TRB burial ground, Mecklenburg-Vorpommern, Germany. From another recent paper by Fraser et al. (2017)

From the conclusions:

We find a shift in population demography compared to the preceding cultural developments on the island recorded from the Neolithic TRB, and sub-Neolithic PWC groups. We find that these burials were used by local groups that were well established in the regions where the burials were situated. These individuals also displayed a different dietary pattern than that noted for the preceding TRB and PWC groups on the island. We also detect sporadic reuse of the MN TRB dolmen in the LN period by nonlocal individuals, who also shows deviating dietary patterns to the LN/EBA individuals in the stone cist burials.

We see an increase of new mitochondrial lineages in the EBA individuals, of which some also were noted in the CWC reference dataset used in this study. Our modeling for maternal ancestry suggests a 3-way model of 55% CWC, 40% TRB, and 5% PWC. Given the broad absence of archaeological evidence for the typical BAC/CWC burials, as well as no archaeological evidence of assimilation of TRB and PWC during the latter part of the MN period on Gotland, it seems probable that the major process of admixture did not occur on the island. Instead, the data indicates an admixture process that occurred elsewhere and prior to migrating to Gotland. Thus, our results suggest later migration to the island during the LN period by people with a new economy, as well as new burial customs. A likely scenario, taking all these factors into account, is a sizable migration of people, with a ~50/50 (maternal) ancestry in TRB and CWC associated groups, possibly admixing with much smaller local groups of PWC associated individuals on the island.

A. Gotland cultural timelines (Apel et al., 2018; Fraser et al., 2018). B: Approximate dates for the Scandinavian Early Neolithic to Early Bronze Age time
divisions; EN: onset of TRB, MN A: onset of PWC, MN B: onset of BAC, LN-EBA time division from Vankilde (1996).

A quite interesting study that supports the predicted greater mobility during the Nordic Early Bronze Age, compared to earlier periods.

Obviously, the use of previous CWC and TRB mtDNA samples (dated necessarily before 2300 BC) to assert that the picture found during the EBA (ca. 1700-1100 BC) is due to the admixture of both cultures is not tenable.

It was more likely a mixture of descendant populations in Scandinavia, after the arrival of the Bell Beaker elites (ca. 2400 BC) and their admixture with the local population, bringing maritime integration and unifying trends to Scandinavia.


Earliest evidence for equid riding in the ancient Near East is a donkey from the Early Bronze Age

Open access Earliest evidence for equid bit wear in the ancient Near East: The “ass” from Early Bronze Age Tell eṣ-Ṣâfi/Gath, Israel, by Greenfield et al. PLOS One


Analysis of a sacrificed and interred domestic donkey from an Early Bronze Age (EB) IIIB (c. 2800–2600 BCE) domestic residential neighborhood at Tell eṣ-Ṣâfi/Gath, Israel, indicate the presence of bit wear on the Lower Premolar 2 (LPM2). This is the earliest evidence for the use of a bit among early domestic equids, and in particular donkeys, in the Near East. The mesial enamel surfaces on both the right and left LPM2 of the particular donkey in question are slightly worn in a fashion that suggests that a dental bit (metal, bone, wood, etc.) was used to control the animal. Given the secure chronological context of the burial (beneath the floor of an EB IIIB house), it is suggested that this animal provides the earliest evidence for the use of a bit on an early domestic equid from the Near East.

Interesting excerpts:

In contrast to what is known about the use of donkeys for transportation, relatively little is known about their use for riding during this early period [37]. Riding is possible, but fast riding is difficult without some kind of bridle with reins to grasp. Thus, the development of the bit becomes an essential part of the mechanism to control and ride an equid, whether horse, donkey or otherwise [38–41]. While some have tried to argue based on cave art for the presence of bridles (including cheek straps and potentially bits) on equids as far back as the Upper Palaeolithic [42, 43], this perspective has not been accepted [44, 45]. Instead, the weight of the evidence for bridles points toward the Eneolithic and Bronze Age of Kazakhstan and Russia, c. 3500 BCE for horses, not donkeys [38, 40, 46–50]. But, horses are not the earliest domestic equids to appear in the Near East. This role is reserved for the ass/donkey [20, 32, 51].

Photograph of donkey burial from the E5c Stratum of Area E at Tell eṣ-Ṣâfi/Gath in Area E as it was being uncovered; facing north.

The earliest unambiguous evidence for bridles and bits in equids in the Near East appear only in the Middle Bronze Age [52, 62, 63], and horses become common only in cuneiform texts and the archaeological record after the turn of the second millennium BC [44]. For example, at the Middle Bronze Age site of Tel Haror, a metal bit was found associated with a donkey burial [63].

Beginning in the Middle Bronze Age, there is a variety of sources that demonstrate that asses were being ridden. In fact, they seem to be the preferred animal ridden for elites in the Early and Middle Bronze Age of Mesopotamia. The earliest clear association of asses being ridden by elites comes from the Old Babylonian period (MBA, 18th century BCE—the Kings of Mari, Syria) [64]. Similarly, by the beginning of the Middle Kingdom of Egypt, various texts and iconographic images (e.g. the stela of Serabit el-Khadem) from Egypt and petroglyphs from southern Sinai unambiguously depict and/or describe elites riding asses [5, 65, 66]. The later biblical narrative depicts donkeys carrying the biblical Patriarchs (Abraham), various leaders (such as Saul before he became king), prophets, and judges of Israel [16, 67, 68].

Horses became the standard royal riding animal during the Late Bronze and Iron Ages as they became more prevalent. In later periods, donkeys became associated with humility and the lower classes, and leaders emanating from it (e.g. Jesus).

These finds suggest that bit use on donkeys was already present in the early to mid-3rd millennium BCE, long before the appearance of horses in the ancient Near East. Thus, the appearance of bit use in donkeys in the ancient Near East is not connected to appearance of the horse, contrary to previous suggestions (as already noted by [62]). As such, the impact of the domestic donkey on the cultures of this region and the evolution of early complex societies cannot be underestimated. As with plant and animal domestication, the use of donkeys created a surplus of human labor that allowed for the easy transport of people and goods across the entire Near East. These changes continue to permeate the economic, social, and political aspects of even modern life in many third world countries [3, 8, 9, 93, 94].

So, the first case of equid riding in the Near East, near two of the cradles of civilization (Sumeria and Egypt), is a donkey from the early third millennium BC. Not much in favour of horse domestication (and still less for horse riding) expanding from Norh Iran or the Southern Caucasus to the north.

We already know about domesticated animals in Eneolithic steppe cultures, and there is a clear connection between the appearance of horse riding in Khvalynsk in the early 5th millennium and the expansion of this culture, including Suvorovo-Novodanilovka chiefs as Proto-Anatolians via the Balkans in the second half of the 5th millennium BC, and of Late Proto-Indo-Europeans with late Khvalynsk/Yamna in the late 4th millennium BC.

NOTE. The recent papers of the Copenhagen group made yet another controversial interpretation of genomic findings (see here): they support multiple simultaneous origins for horse-riding technique, in Khvalynsk and Botai, based on the lack of genetic connection between both human populations, with which I can’t agree. Based on the similar time of appearance and the geographic proximity, I think the most likely explanation is expansion of the technique from one to the other, probably – as supported by Anthony’s investigation – from Khvalynsk to neighbouring cultures.


The unique elite Khvalynsk male from a Yekaterinovskiy Cape burial

Recent paper (behind paywall) The Unique Burial of the Ekaterinovsky Cape Early Eneolithic Cemetery in the Middle Volga Region, by Korolev et al. Stratum Plus (2018) Nº2.

Abstract (official, in English):

This is the first time we published the results of a comprehensive study of burial 45 of the eneolithic cemetery called Ekaterinovsky Cape. The burial contains the skeleton of a young man with traumatic injuries of the skull, leg and hand bones of other individuals, skeleton of a young specimen of a domestic goat (Capra hircus) that was abundantly sprinkled with red ocher. Grave goods include three stone scepters of different types, a large item made of horn in the shape of a bird’s head, a stone adze, knife-like plates of quartzite, beads from the flaps of the shells (Unio), marmot cutters, decoration made from a beaver’s tooth. The uniqueness of the burial is determined by the combination of the composition of the grave goods and traces of ritual practices. To conclude, we suggest the buried man could belong to the elite of the society that left this burial ground.

NOTE. About my terminology, Russian has a lenited pronunciation of E in this case, hence the “Ye-” transliteration of the name of the town (and the site) in Google as Yekaterinovka. The “more etymological” transliteration is with “E”, as they use here, although Russians paradoxically use phonetic transliterations of foreign terms. I prefer the lenited transliteration to distinguish the Russian site from other Ekaterinovkas, though.

Schematic view from burial 45. Male of 20-25 years, ca. 4400-4200 BC.

Interesting excerpt (translated from Russian):

Perhaps, we should correlate three very closely related damages [on the skull] with certain rituals, with which scepters could be associated. Each scepter could be a symbolic expression of a part of society, a type of activity, reaching a certain age and social status. This assumption does not seem incredible in combination with other extant, no less impressive, details of the funeral rite. Of great interest is the ornithomorphic rod of the horn. The location of the wand in the head and right half of the breast emphasizes its special significance in ritual practice and in funeral rites. Direct analogies to this product in other burial places of the cemetery are absent, and outside it authors are not known.

NOTE. Although the paper is in Russian and is behind paywall, it is really cheap, and can be easily translated with Google Translate if you can’t read Russian, so – unlike usual papers from the big publishing companies – you could support the journal by paying for it. You can read more about this burial at Pikabu, too. Photos and text in that post are not the same as in the paper, though, so it seems that the author of the text got the information either directly or from another source.

On the genetic data

Here is what I could gather about the report I shared of R1b-L51 lineages in Samara:

1) Yes, the comment at contains a more or less accurate summary of the oral communication actually given. And no, no more interesting data – from a genetic point of view – was presented.

2) What A.A. Khokhlov reported was preliminary genetic information from some samples, and an outside lab shared this information with him.

NOTE. It is well-known that David Anthony, also part of the Samara Valley project, provided the Reich Lab with Khvalynsk and Yamna samples from the region, so it would not be a surprise that these had been in fact assessed by the Reich Lab, too. This is my assumption, though, and I may be wrong.

3) What the report conveys is that “all samples investigated” belonged to R1b-P312 and R1b-U106, so I understand there are in principle more than two samples, whatever Google Translate says.

4) As R. Rocca said in Anthrogenica, the reported R1b1a1a2a1a1c2b2b1a2 (U106 subclade) is exactly the same one reported in Narasimhan et al. (2018) for the sample from the Iron Age site Loebanr 1 (Swat proto-historic graves) ca. 950 BC.

NOTE. That would be another hint at the origin of the preliminary data, together with the timing of the report (January), probably coinciding with the final assessment of samples which appeared in Narasimhan et al. (2018). That would explain the similar weird Y-SNP calls from software yHaplo (as reported by Narasimhan in Twitter). This is all again conjecture, though.

R1b-P312 is not reported in Narasimhan et al. (2018) for any sample (that would be “R1b1a1a2a1b”, following the standard used in their tables). Because the V88 sample in Khvalynsk, as well as other previously known V88 samples, are correctly reported as within the V88 branch, we may be talking about anything in the R1b tree from L754 (xV88) on. Most likely at or beyond the subclade of the Zvejnieki sample of hg R1b1a1 (classified as of R1b1a1a2a1), i.e. from P297 on.

NOTE. Since R1b-Z2103 samples are correctly reported, it is unlikely that the reported samples are from this branch, either.

Graphic reconstruction from the elite male of grave 45, by R. M. Galeev.

It is possible, then, that we will have haplogroup R1b-M269 or L23 instead of L51, after all, and there would be then no major corrections to be made, either to the estimated dates from McDonald or Yfull (with their current differences), or to my predictions for early and late Khvalynsk, Repin, and Yamna

NOTE. In fact, the appearance of R1b-M269* and/or L23* linked to expanding Khvalynsk could be the perfect end to the resurging theories on Armenian or Western European origin of this haplogroup.

5) The full official genetic data is expected within a year (precise date unknown), so unless someone knows of a related draft in the making (which could publish them earlier), I would keep my expectations low for an official confirmation of the precise subclade any time soon.

NOTE. The best likely proxy for the reported data, if the above assumptions on Y-SNP calls and the software used are correct, is therefore to check out – whenever the corrected tables are published – the samples in Narasimhan et al. (2018) now classified as of R1b1a1a2a1(-) subclades. Or to experiment with the software and available BAM files to see which ones give this result…

6) I don’t know if Khokhlov’s book on Samaran archaeology will contain a reference to the samples, but I doubt it could contribute much more to the genetic data.

The meaning of Yekaterinovka

Of course, the Yekaterinovskiy Cape burials are just a tiny sampling of the dozens of settlements known from Khvalynsk, and the known ones represent just a tiny part of the hundreds that the culture probably had while it developed for more than a thousand years. In that sense, you may say that it is statistically not significant.

Nevertheless, as Anthony’s team recently said when explaining the relevance of their findings at Radzorskoe, the potential implications of any discovery at any of the few studied sites are very important. In this case, by confirming that late Khvalynsk became dominated early by R1b-M269, as was later Yamna, and as were early Yamna offshoots like Afanasevo and Bell Beaker.

I really don’t have anything more to add, whether in comments or per email. That’s as much information and speculation as you can get from me (or from them, I guess). If you want more, you can write to the team members yourselves.


The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna


Open access The genetic prehistory of the Greater Caucasus, by Wang et al. bioRxiv (2018).

The Caucasus Mountains as a prehistoric barrier

I think the essential message we can extract from the paper is that the Caucasus was a long-lasting cultural and genetic barrier, although (obviously) it was not insurmontable.

Our results show that at the time of the eponymous grave mound of Maykop, the North Caucasus piedmont region was genetically connected to the south. Even without direct ancient DNA data from northern Mesopotamia, the new genetic evidence suggests an increased assimilation of Chalcolithic individuals from Iran, Anatolia and Armenia and those of the Eneolithic Caucasus during 6000-4000 calBCE23, and thus likely also intensified cultural connections. Within this sphere of interaction, it is possible that cultural influences and continuous subtle gene flow from the south formed the basis of Maykop.

The zoomed map shows the location of sites in the Caucasus. The size of the circle reflects number of individuals that produced genome-wide data. The dashed line illustrates a hypothetical geographic border between genetically distinct Steppe and Caucasus clusters.

Also, unlike more recent times, the North Caucasian piedmont and foothill of the Caucasus region was more strongly connected to Northern Iran than to the steppe, at least until the Bronze Age.

(…) our data shows that the northern flanks were consistently linked to the Near East and had received multiple streams of gene flow from the south, as seen e.g. during the Maykop, Kura-Araxes and late phase of the North Caucasus culture.

Northern Caucasus dominated by R1b, southern Caucasus by J and G2

Comparison of Y-chromosome (A) 1123 and mitochondrial (B) haplogroup distribution in the Steppe and Caucasus cluster.

The first samples from the Eneolithic (one ca. 4300 BC?, the other ca. 4100 BC) are R1b1, without further subclades, so it is difficult to say if they were V88. On the PCA, they seem to be an important piece of the early Khvalynsk -> early Yamna transition period, since they cluster closer to (or even among) subsequent Yamna samples.

From 3000 BC onwards, all samples from the Northern Caucasus group of Yamna are R1b-M269, which right now is probably no surprise for anyone.

The Catacomb culture is dominated by R1b-Z2103, which agrees with what we saw in the unclassified Ukraine Eneolithic sample. However, the new samples (clustering close to Yamna, but with slightly ‘to the south’ of it) don’t seem to cluster closely to that first sample, so that one may still remain a real ‘outlier’, showing incoming influence (through exogamy) from the north.

If anyone was still wondering, no R1a in any of the samples, either. This, and the homogeneous R1b-Z2103 community in Catacomb (a culture in an intermediate region between Late Yamna to the West, and Poltavka to the East), together with Poltavka dominated by R1b-Z2103, too, should put an end to the idea that Steppe MLBA (Sintashta-Petrovka/Potapovka) somehow formed in the North Pontic steppe and appeared directly in the Volga-Ural region. A Uralic/Indo-Iranian community it is, then.

The admixed population from the Caucasus probably points to an isolated region of diverse peoples and languages even in this period, which justifies the strong differences among the historic language families attested in the Caucasus.

So, not much space for Anatolian migrating with those expected Maykop samples with EHG ancestry, unless exogamy is proposed as a source of language change.

ADMIXTURE and PCA results, and chronological order of ancient Caucasus individuals. Samples from Hungary are surrounded by red circles (see below for ADMIXTURE data) (a) ADMIXTURE results (k=12) of the newly genotyped individuals (fillbred symbols with black outlines) sorted by genetic clusters (Steppe and Caucasus) and in chronological order (coloured bars indicate the relative archaeological dates, (b) white circles the mean calibrated radiocarbon date and the errors bars the 2-sigma range. (d) shows these projected onto a PCA of 84 modern-day West Eurasian populations (open symbols).

Yamna Hungary, and the previous Yamna “outliers”

Those western “Yamna outliers”, as I expected, were part of some late Khvalynsk/early Yamna groups that cluster “to the south” of eastern Yamna samples:

Another important observation is that all later individuals in the steppe region, starting with Yamnaya, deviate from the EHG-CHG admixture cline towards European populations in the West. This documents that these individuals had received Anatolian farmer-related ancestry, as documented by quantitative tests and recently also shown for two Yamnaya individuals from Ukraine (Ozera) and one from Bulgaria24. For the North Caucasus region, this genetic contribution could have occurred through immediate contact with groups in the Caucasus or further south. An alternative source, explaining the increase in WHG-related ancestry, would be contact with contemporaneous Chalcolithic/EBA farming groups at the western periphery of the Yamnaya culture distribution area, such as Globular Amphora and Tripolye (Cucuteni–Trypillia) individuals from Ukraine, which also have been shown to carry Anatolian Neolithic farmer-derived ancestry24.

On the other hand, it is interesting that – although no information is released about these samples – Yamna Bulgaria is now a clear outlier, among very “Yamnaya”-like Yamna settlers from Hungary, most likely from the Carpathian basin, and new Yamna LCA/EBA samples, possibly from Late Yamna (see them also marked in the PCA above):

Modified image, with red rectangles surrounding (unexplained) Hungarian samples (c) ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)

The important admixture of Yamna settlers with native populations, seen in expanding East Bell Beakers of R1b-L23 lineages from ca. 2500 BC on, must have therefore happened at the same time as the adoption of the proto-Bell Beaker package, i.e. precisely during the Carpathian Basin / Lower Danube settlements, and not in West Yamna.

Modified image, with red rectangles surrounding (unexplained) Yamna samples Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups

So, it can’t get clearer that Late Neolithic Baltic and Corded Ware migrants, sharing R1a-Z645 lineages and a different admixture, related to Eneolithic North Pontic groups such as Sredni Stog (see above ADMIXTURE graphics of CWC and Eneolithic Ukraine samples), did not come from West Yamna migrants, either.

So much for the R1a/R1b Yamna community that expanded Late PIE into Corded Ware.

NOTE. Andrew Gelman has coined a term for a curious phenomenon (taken from an anonymous commenter): “Eureka bias”, which refers not only to how researchers stick to previously reported incorrect results or interpretations, but also to how badly they react to criticism, even if they understand that it is well-founded. Directly applicable to the research groups that launched the Yamna-CWC idea (and the people who followed them) based on the fallacious “Yamnaya ancestry” concept, and who are still rooting for some version of it, from now on with exogamy, patron-client relationships, Eneolithic Indo-Slavonic, and whatnot. Unless, that is, Anthony’s latest model is right, and Yamna Hungary is suddenly full of R1a-Z645 samples…

Images used are from the article. They are available under a CC-BY-NC-ND 4.0 International license. (Yes, I know, I modified them. To mark special newly reported samples from Yamna Hungary and Yamna LCA/EBA. I expect this to count as fair use).


Haplogroup J spread in the Mediterranean due to Phoenician and Greek colonizations


Open access A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean, by Finocchio et al. Scientific Reports (2018) Nº 7465.

Abstract (emphasis mine):

In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.

J2-L397. The star indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

Interesting excerpts:

Two features of our tree are at odds with the simplistic idea of a dispersal of Hg J as a whole from the Middle East towards Greece and Italy and an accompanying radiation26. First, there is little evidence of sudden diversification between 15 and 5 kya, a period of likely population increase and pressure for range expansion, due to the Agricultural revolution in the Fertile Crescent. Second, within each subclade, lineages currently sampled in Turkey do not show up as preferentially ancestral. Both findings are replicated and reinforced by examining the previous landmark studies. Our Turkish samples do not coalesce preferentially to ancestral nodes when mapped onto these studies’ trees.

Additional relevant information on the entire Hg J comes from the discontinuous distribution of J2b-M12. The northern fringe of our sample is enriched in the J2b-M241 subclade, which reappears in the gulf of Bengal38,45, with low frequencies in the intervening Iraq46 and Iran47. No J2b-M12 carriers were found among 35 modern Lebanese, as contrasted to one of two ancient specimens from the same region35.

In summary, a first conclusion of our sequencing effort and merge with available data is that the phylogeography of Hg J is complex and hardly explained by the presence of a single population harbouring the major lineages at the onset of agriculture and spreading westward. A unifying explanation for all the above inconsistencies could be a centre of initial radiation outside the area here sampled more densely, i.e. the Caucasus and regions North of it, from which different Hg J subclades may have later reached mainland Italy, Greece and Turkey, possibly following different routes and times. Evidence in this direction comes from the distribution of J2a-M41045,48 and the early-49 or mid-Holocene50 southward spread of J1.

Supplemental Figure 7. Maps of sampling locations for the carriers of the derived allele (white triangle point down) at the indicated SNP vs carriers of the ancestral allele (black triangle point-up), conditioned on identical genotype at the same most terminal marker. Coastlines were drawn with the R packages18 “map” and “mapproj” v. 3.1.3 (, and additional features added with default functions. The star triangle indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

The lineage defined by rs779180992, belonging to J2b-M205, and dated at 4–4.5 kya, has a radically different distribution, with derived alleles in Continental Italy, Greece and Northern Turkey, and two instances in a Palestinian and a Jew. The interpretation of the spread of this lineage is not straightforward. Tentative hypotheses are linked to Southward movements that occurred in the Balkan Peninsula from the Bronze Age29,53, through the Roman occupation and later54.

The slightly older (5.6–6.3 kya) branch 98 lineage displays a similar trend of a Eastward positioning of derived alleles, with the notable difference of being present in Sardinia, Crete, Cyprus and Northern Egypt. This feature and the low frequency of the parental J2a-M92 lineage in the Balkans27 calls for an explanation different from the above.

Finally, we explored the distribution of J2a-L397 and three derived lineages within it. J2a-L397 is tightly associated with a typical DYS445 6-repeat allele. This has been hypothesized as a marker of the Greek colonizations in the Mediterranean55, based on its presence in Greek Anatolia and Provence (France), a region with attested Iron Age Greek contribution. All of our chromosomes in this clade were characterized also by DYS391(9), confirming their Anatolian Greek signature. We resolved the J2a-L397 clade to an unprecedented precision, with three internal markers which allow a finer discrimination than STRs. The ages of the three lineages (2.0–3.0 kya) are compatible with the beginning of the Greek colonial period, in the 8th century BCE. The three subclades have different distributions (Fig. 2B), with two (branches 57, 59) found both East and West to Greece, and one only in Italy (branch 58). As to Mediterranean Islands, J2a-L397 was found in Cyprus56 and Crete43. Its presence as one of the three branches 57–59 will represent an important test. In Italy all three variants were found mainly along the Western coast (18/25), which hosted the preferred Greek trade cities. The finding of all three differentiated lineages in Locri excludes a local founder effect of a single genealogy. Interestingly, an important Greek colony was established in this location, with continuity of human settlement until modern times. The sample composed of the same subjects displayed genetic affinities with Eastern Greece and the Aegean also at autosomal markers57. In summary, the distributions of branches 57–59 mirror the variety of the cities of origin and geographic ranges during the phases of the colonization process58.

So, there you have it, another proof that haplogroup J and CHG-related ancestry in the Mediterranean was mainly driven by different (and late) expansions of historic peoples.


Sintashta-Petrovka and Potapovka cultures, and the cause of the Steppe EMBA – MLBA differences

Interesting recent papers on Sintashta and related Volga-Ural MLBA communities, with relevant excerpts (emphasis mine):

Social Organization of the Sintashta-Petrovka Groups of the Late Bronze Age and a Cause for Origin of Social Elites (Based on Materials of the Settlement of Kamenny Ambar), by Chechushkov et al. Stratum Plus (2018) Nº2.

Abstract (official, in English):

The formation of social complexity often unfolded in non-unilineal ways in those regions of the world where the surplus product remained low enough to support institutionalized power and state bureaucracy. The Bronze Age of Northern Eurasia is a vivid example where social complexity arose based on herding economy, while population density remained low enough not to form territorially separate competing groups. Studying of such societies sheds light on how and under what conditions the social elite emerged. The undertaken analysis suggests that the formation, development, and decline of social complexity in the Bronze Age steppe societies were directly related to the intensification of subsistence practices and colonization of new territories. At the same time, some members of the society took upon themselves the role of community life’s managers, and, in return, received privileged statuses. The environment and the economy changing, the need for such functions disappeared. As a result, the Bronze Age social elites dissolved in the mass and lost their privileged statuses.

Open access Sintashta as a transcultural phenomenon, by N.B. Vinogradov, Архив Поволжская археология №1 (23) 2018.

Abstract (official, in English)

The paper features a substantiation of the understanding of Sintashta-type monuments dating back to the boundary of the Middle and Late Bronze Ages in the Southern Trans- Urals as a transcultural phenomenon, the establishment and operation of which has been associated with the clans of miners, smelters and smiths of the Southern Ural cultures of the studied period. In the author’s opinion, the variety of ceramic complexes from Sintashta burial mounds suggest a reconsideration of several cultural traditions and the peculiar nature of family and marriage relations practiced by the clans of Sintashta-type communities.

Interesting excerpts, from the conclusion (translated from Russian):

1. In contrast to the pastoral cattle-breeding cultures of the Alakul cultural-historical community, the Sintashta clan-communities, in the author’s opinion, were a more specific transcultural phenomenon with an original model of life organization, uniting clans of miners, metallurgists, blacksmiths and casters, sometimes from several neighboring archaeological cultures (my italics – N.V.), in particular, the Abashevo culture of the South Urals, some “proto-Srubna” culture of the Southern Urals and quasi-Eneolithic cultures of the Southern Urals and of Northern Kazakhstan.

2. The Sintashta phenomenon as a community of clans of miners – metallurgists – smiths functioned relatively independently, outside or under conditions of partial jurisdiction (?) Of the elites of the above mentioned cultures.

3. At the historical level, the facts presented by the author concerning both funeral rites and ceramics can be understood as a reflection of the characteristics, first of all, of the family-marriage relations system within the specialized communities. And it is not by chance that the ceramics of Sintashta cemeteries carry in themselves often reinterpreted (especially in the case of ornamentation) traces of several cultural traditions. The variety of ceramic complexes of Sintashta monuments and the rethinking, reworking of marker elements of ornament on vessels testify, in the author’s view, about the distinctiveness, the specifics of family relations in Sintashta communities.

Paleoanthropological Data as a Source of Reconstruction of the Process of Social Formation and Social Stratifi cation (based on the Sintashta and Potapovo sites of the Bronze Age), by Kitov et al. Stratum Plus (2018) Nº 2.

Abstract (official, in English):

The paper is devoted to the analysis of craniological materials from the cemeteries of the Bronze Age of the Volga-Ural region (Sintashta and Potapovo assemblages). The characteristic feature of the physical appearance of this population is the combination of different morphological variations with a dominant and the presence of the Uraloid components. At the same time, a group of individuals with a specific, different from other individuals, skull structure is distinguished: maturized, broad-faced men with a set of striking features in the face. Analysis of the funerary rites of these individuals indicates their high social status in the Sintashta-Potapovo society. The addition of such an anthropological complex occurred in the Eneolithic on the territory of modern Kazakhstan as a result of contacts of steppe sharply profiled Europeoid populations and groups of Uraloid origin. This led to the formation of a population, originally of metisic origin, conventionally called “steppe Kazakhstan”, which took part in the process of morphogenesis, and, indirectly, the cultural genesis of Sintashta and Potapovo communities.

While this paper reports mainly athropometric data, the team forms part of the Samara Valley project – including Khokhlov.

Here are interesting excerpts from the general conclusions (translated from Russian):

Summing up, it can be noted that the distinguishing feature of the carriers of the Sintashta and Potapovka traditions is the sharp heterogeneity of the anthropological features, the cause of which were active ethno- and culturogenetic processes in the Volga-Ural region at the turn of the 3rd/2nd millennium BC. One of the active components of these processes was probably a population group with specific craniological data, distinct from the rest of the craniocomplexes. These included mature, broad-leaning male individuals with a set of vivid signs in the structure of the face, such as unfolded and flattened cheekbones, and a strong nose protrusion.

The peculiarities of the burial rite speak about their high social position in the society: burials were made in large central burial pits, accompanied by abundant sacrificial remains in the form of skulls and limbs of horses, large and small cattle, rich funeral complements including bronze tools and weapons, artifacts of metal production, attributes of the chariot complex. It should be noted that such a craniological type is present in every mound of the Sintashta-Potapovka circle of monuments, and is found on the wide territory of the steppes and forest-steppes of the Volga region, the Southern Urals, and the Trans-Urals. The addition of the similar anthropological complex occurred in the Eneolithic due to the contacts, on the one hand, of steppe sharply profiled Europoid populations that extended to the east and, on the other hand, encountered groups of uraloid origin, which led to the formation of a population, originally of metisic origin, which can be conditionally called “steppe Kazakhstan”.


Linguistic continuity despite genetic replacement in Remote Oceania


Review of recent papers on East Asia, quite relevant these days: Human Genetics: Busy Subway Networks in Remote Oceania? by Anders Bergström & Chris Tyler-Smith, Current Biology (2018) 28.

Interesting excerpts (emphasis mine):

Ancient DNA is transforming our understanding of the human past by forcing geneticists to confront its real complexity [1]. Historians and archaeologists have long known that the development of human societies was complex and often haphazard, but geneticists have persistently tried to explain present-day patterns of genetic variation using simple models.

Early genetic analyses of present-day populations revealed a mix of Asian (Taiwanese) and Papuan (New Guinea or nearby) ancestries throughout Remote Oceania, with maternally-inherited mitochondrial DNA being predominantly Asian, paternally-inherited Y chromosomes mainly Papuan, and autosomes intermediate [7]. This led to the simple model mentioned above of an Austronesian-speaking population starting out from Taiwan, developing the Lapita culture in the islands near New Guinea while mixing with local Papuans, and then boldly launching out into the unknown Pacific.

The surprise came with the first studies of ancient DNA, when early Lapita people from Vanuatu and Tonga (ca. 2,500-3,000 yBP) showed completely Asian genetic ancestry, so the Papuan genetic component must have entered later.

This is what the most recent ancient DNA papers found:


There thus seems to have been a migration of Papuan-ancestry people from the Bismarck archipelago off the coast of New Guinea, into the islands of Remote Oceania, shortly after those very islands were first settled by people from Asia. Few traces of such a migration and its cultural or technological underpinnings have been found in the archaeological record or in linguistic relationships, which is why it comes as such a surprise. The fact that these Near Oceanian people made the long journey to Vanuatu so soon after the Asian seafarers arrived in their neighbourhood, having had tens of thousands of years to do so previously, strongly suggest that the migration was somehow triggered by interactions with the new Austronesian-speaking arrivals and adoption of their sophisticated seafaring technology. The excess of Y chromosomes of Papuan origin in Remote Oceania, somewhat difficult to explain under the traditional model, might also make sense in the light of an active expansion of people from Near Oceania, as such expansions have often found to be male-biased [10]. Both studies speculate that the arrival of these Papuan-ancestry people might have contributed to the end of the Lapita period and its cultural unity.

The very first settlers of Vanuatu would have spoken Austronesian languages, and the Papuan-ancestry people who arrived shortly after would very likely have spoken Papuan languages. Yet today, all languages of Vanuatu are Austronesian. The arrivals from Near Oceania thus seem to have largely replaced the first settlers but adopted their languages. Posth and colleagues [5] argue that the languages of Vanuatu actually contain some elements of Papuan origin, and that the ancient DNA results are compatible with a more gradual process of cultural interaction and genetic mixing, rather than sudden replacement. Nonetheless, linguistic continuity in the face of this almost complete genetic replacement is extremely unusual in human history, perhaps even unprecedented as Posth and colleagues [5] suggest.

We are seeing now from the Anatolian expansion and in the formation of the Indo-Iranian community that such processes were actually not as unusual as some had previously thought…


Consequences of Damgaard et al. 2018 (II): The late Khvalynsk migration waves with R1b-L23 lineages


This post should probably read “Consequences of Narasimhan et al. (2018),” too, since there seems to be enough data and materials published by the Copenhagen group in Nature and Science to make a proper interpretation of the data that will appear in their corrected tables.

The finding of late Khvalynsk/early Yamna migrations, identified with early LPIE migrants almost exclusively of R1b-L23 subclades is probably one of the most interesting findings in the recent papers regarding the Indo-European question.

Although there are still few samples to derive fully-fledged theories, they begin to depict a clearer idea of waves that shaped the expansion of Late Proto-Indo-European migrants in Eurasia during the 4th millennium BC, i.e. well before the expansion of North-West Indo-European, Palaeo-Balkan, and Indo-Iranian languages.

Late Khvalynsk expansions and archaic Late PIE

Like Anatolian, Tocharian has been described as having a more archaic nature than the rest of Late PIE. However, Pre-Tocharian belongs to the Late PIE trunk, clearly distinguishable phonetically and morphologically from Anatolian.

It is especially remarkable that – even though it expanded into Asia – it has more in common with North-West Indo-European, hence its classification (together with NWIE) as part of a Northern group, unrelated to Graeco-Aryan.

The linguistic supplement by Kroonen et al. accepts that peoples from the Afanasevo culture (ca. 3000-2500 BC) are the most likely ancestors of Tocharians.

NOTE. For those equating the Tarim Mummies (of R1a-Z93 lineages) with Tocharians, you have this assertion from the linguistic supplement, which I support:

An intermediate stage has been sought in the oldest so-called Tarim Mummies, which date to ca. 1800 BCE (Mallory and Mair 2000; Wáng 1999). However, also the language(s) spoken by the people(s) who buried the Tarim Mummies remain unknown, and any connection between them and the Afanasievo culture on the one hand or the historical speakers of Tocharian on the other has yet to be demonstrated (cf. also Mallory 2015; Peyrot 2017).

New samples of late Khvalynsk origin

These are are the recent samples that could, with more or less certainty, correspond to migration waves from late Khvalynsk (or early Yamna), from oldest to most recent:

  • The Namazga III samples from the Late Eneolithic period (in Turkmenistan), dated ca. 3360-3000 BC (one of haplogroup J), potentially showing the first wave of EHG-related steppe ancestry into South Asia. Not related to Indo-Iranian migrations.

NOTE. A proper evaluation with further samples from Narasimhan et al. (2018) is necessary, though, before we can assert a late Khvalynsk origin of this ancestry.

  • Afanasevo samples, dated ca. 3081-2450 BC, with all samples dated before ca. 2700 BC uniformly of R1b-Z2103 subclades, sharing a common genetic cluster with Yamna, showing together the most likely genomic picture of late Khvalynsk peoples.

NOTE 1. Anthony (2007) put this expansion from Repin ca. 3300-3000 BC, while his most recent review (2015) of his own work put its completion ca. 3000-2800. While the migration into Afanasevo may have lasted some time, the wave of migrants (based on the most recent radiocarbon dates) must be set at least before ca. 3100 BC from Khvalynsk.

NOTE 2. I proposed that we could find R1b-L51 in Afanasevo, presupposing the development of R1b-L51 and R1b-Z2103 lineages with separating clans, and thus with dialectal divisions. While finding this is still possible within Khvalynsk regions, it seems we will have a division of these lineages already ca. 4250-4000 BC, which would require a closer follow-up of the different inner late Khvalynsk groups and their samples. For the moment, we don’t have a clear connection through lineages between North-West Indo-European groups and Tocharian.

Early Copper Age migrations in Asia ca. 3300-2800, according to Anthony (2015).
  • Subsequent and similar migration waves are probably to be suggested from the new sample of Karagash, beyond the Urals (attributed to the Yamna culture, hence maintaining cultural contacts after the migration waves), of R1b-Z2103 subclade, ca. 3018-2887 BC, potentially connected then to the event that caused the expansion of Yamna migrants westward into the Carpathians at the same time. Not related to Indo-Iranian migrations.
  • The isolated Darra-e Kur sample, without cultural adscription, ca. 2655 BC, of R1b-L151 lineage. Not related to Indo-Iranian migrations.
  • The Hajji Firuz samples: I4243 dated ca. 2326 BC, of haplogroup I1b, with a clear inflow of steppe ancestry; and I2327 (probably to be dated to the late 3rd millennium BC or after that), of R1b-Z2103 lineage. Not related to Indo-Iranian migrations.

NOTE. A new radiocarbon dating of I2327 is expected, to correct the currently available date of 5900-5000 BC. Since it clusters nearer to Chalcolithic samples from the site than I4243 (from the same archaeological site), it is possible that both are part of similar groups receiving admixture around this period, or maybe I2327 is from a later period, coinciding with the Iron Age sample F38 from Iran (Broushaki et al. 2016), with which it closely clusters. Also, the finding of EHG-related ancestry in Maykop samples dated ca. 3700-3000 BC (maybe with R1b-L23 subclades) offers another potential source of migrants for this Iranian group.

NOTE. Samples from Narasimhan et al. (2018) still need to be published in corrected tables, which may change the actual subclades shown here.

These late Khvalynsk / early Yamna migration waves into Asia are quite early compared to the Indo-Iranian migrations, whose ancestors can only be first identified with Volga-Ural groups of Yamna/Poltavka (ca. 3000-2400 BC), with its fully formed language expanding only with MLBA waves ca. 2300-1200 BC, after mixing with incoming Abashevo migrants.

While the authors apparently forget to reference the previous linguistic theories whereby Tocharian is more archaic than the rest of Late PIE dialects, they refer to the ca. 1,000-year gap between Pre-Tocharian and Proto-Indo-Iranian migrations, and thus their obvious difference:

The fact that Tocharian is so different from the Indo-Iranian languages can only be explained by assuming an extensive period of linguistic separation.

Potential linguistic substrates in the Middle East

A few words about relevant substrate language proposals.

Euphratic language

What Gordon Whittaker proposes is a North-West Indo-European-related substratum in Sumerian language and texts ca. 3500 BC, which may explain some non-Sumerian, non-Semitic word forms. It is just one of many theories concerning this substratum.

Diachronic map of Eneolithic migrations ca. 4000-3100 BC

This is a summary of his findings from his latest writing on the subject (a chapter of a book on Indo-European phonetics, from the series Copenhagen Studies in Indo-European):

In Sumerian and Akkadian vocabulary, the cuneiform writing system, and the names of deities and places in Southern Mesopotamia a body of lexical material has been preserved that strongly suggests influence emanating from a superstrate of Indo-European origin. his Indo-European language, which has been given the name Euphratic, is, at present, attested only indirectly through the filters of Sumerian and Akkadian. The attestations consist of words and names recorded from the mid-4th millennium BC (Late Uruk period) onwards in texts and lexical lists. In addition, basic signs that originally had a recognizable pictorial structure in proto-cuneiform preserve (at least from the early 3rd millennium on) a number of phonetic values with no known motivation in Sumerian lexemes related semantically to the items depicted. This suggests that such values are relics from the original logographic values for the items depicted and, thus, that they were inherited from a language intimately associated with the development of writing in Mesopotamia. Since specialists working on proto-cuneiform, most notably Robert K. Englund of the Cuneiform Digital Library Initiative, see little or no evidence for the presence of Sumerian in the corpus of archaic tablets, the proposed Indo-European language provides a potential solution to this problem. It has been argued that this language, Euphratic, had a profound influence on Sumerian, not unlike that exerted by Sumerian and Akkadian on each other, and that the writing system was the primary vehicle of this influence. he phonological sketch drawn up here is an attempt to chart the salient characteristics of this influence, by comparing reconstructed Indo-European lexemes with similarly patterned ones in Sumerian (and, to a lesser extent, in Akkadian).

His original model, based on phonetic values in basic proto-cuneiform signs, is quite imaginative and a very interesting read, if you have the time. His account hosts most of his papers on the subject.

We could speculate about the potential expansion of this substrate language with the commercial contacts between Uruk and Maykop (as I did), now probably more strongly supported because of the EHG found in Maykop samples.

NOTE. We could also put it in relation with the Anatolian language of Mari, but this would require a new reassessment of its North-West Indo-European nature.

Nevertheless, this theory is far from being mainstream, anywhere. At least today.

NOTE. The proposal remains still hypothetic, because of the flaws in the Indo-European parallels – similar to Koch’s proposal of Indo-European in Tartessian inscriptions. A comprehensive critic approach to the theory is found in Sylvie Vanséveren’s A “new” ancient Indo-European language? On assumed linguistic contacts between Sumerian and Indo-European “Euphratic”, in JIES (2008) 36:3&4.

Gutian language

References to Gutian are popping up related to the Hajji Firuz samples of the mid-3rd millennium.

The hypothesis was put forward by Henning (1978) in purely archaeological terms.

This is the relevant excerpt from the book:

(…) Comparativists have asserted that, in spite of its late appearance, Tokharian is a relatively archaic form of Indo-European.3 This claim implies that the speakers of this group separated from their Indo-European brethren at a comparatively early date. They should accordingly have set out on their migrations rather early, and should have appeared within the Babylonian sphere of influence also rather early. Earlier, at any rate, than the Indo-Iranians, who spoke a highly developed (therefore probably later) form of Indo-European. Moreover, as some of the Indo-Iranians after their division into Iranians and Indo-Aryans4 appeared in Mesopotamia about 1500 B.C., we should expect the Proto-Tokharians about 2000 B.C. or even earlier.

If, armed with these assumptions as our working hypothesis, we look through the pages of history, we find one nation – one nation only – that perfectly fulfills all three conditions, which, therefore, entitles us to recognize it as the “Proto-Tokharians”. Tis name was Guti; the intial is also spelled with q (a voiceless back velar or pharyngeal), but the spelling with g is the original one. The closing -i is part of the name, for the Akkadian case-endings are added to it, nom. Gutium etc. Guti (or Gutium, as some scholars prefer) was valid for the nation, considered as an entity, but also for the territory it occupied.

The text goes on to follow the invasion of Babylonia by the Guti, and further eastward expansions supposedly connected with these, to form the attested Tocharians.

The referenced text by Thorkild Jakobsen offers the interesting linguistic data:

Among the Gutian rulers is one Elulumesh, whose name is evidently Akkadian Elulum slightly “Gutianized” by the Gutian case(?) ending -eš.40 This Gutian ruler Elulum is obviously the same man whom we find participating in the scramble for power after the death of Shar-kali-sharrii; his name appears there in Sumerian form without mimation as Elulu.

The Gutian dynasty, from ca. 22nd c. BC appears as follows:


I don’t think we could derive a potential relation to any specific Indo-European branch from this simple suffix repeated in Gutian rulers, though.

The hypothesis of the Tocharian-like nature of the Guti (apart from the obvious error of considering them as the ancestors of Tocharians) remains not contrasted in new works since. It was cited e.g. by Gamkrelidze and Ivanov (1995) to advance their Armenian homeland, and by Mallory and Adams in their Encyclopedia (1997).

It lies therefore in the obscurity of undeveloped archaeological-linguistic hypotheses, and its connection with the attested R1b-Z2103 samples from Iran is not (yet) warranted.