Aquitanians and Iberians of haplogroup R1b are exactly like Indo-Iranians and Balto-Slavs of haplogroup R1a

eba-indo-iranian-balto-slavs

The final paper on Indo-Iranian peoples, by Narasimhan and Patterson (see preprint), is soon to be published, according to the first author’s Twitter account.

One of the interesting details of the development of Bronze Age Iberian ethnolinguistic landscape was the making of Proto-Iberian and Proto-Basque communities, which we already knew were going to show R1b-P312 lineages, a haplogroup clearly associated during the Bell Beaker period with expanding North-West Indo-Europeans:

From the Bronze Age (~2200–900 BCE), we increase the available dataset from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period, albeit with less impact in the south. The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry. These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups. Y-chromosome turnover was even more pronounced, as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269.

iberia-admixture-y-dna
Proportion of ancestry derived from central European Beaker/Bronze Age populations in Iberians from the Middle Neolithic to the Iron Age (table S15). Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The arrival of East Bell Beakers speaking Indo-European languages involved, nevertheless, the survival of the two non-IE communities isolated from each other – likely stemming from south-western France and south-eastern Iberia – thanks to a long-lasting process of migration and admixture. There are some common misconceptions about ancient languages in Iberia which may have caused some wrong interpretations of the data in the paper and elsewhere:

NOTE. A simple reading of Iberian prehistory would be enough to correct these. Two recent books on this subject are Villar’s Indoeuropeos, iberos, vascos y otros parientes and Vascos, celtas e indoeuropeos. Genes y lenguas.

Iberian languages were spoken at least in the Mediterranean and the south (ca. “1/3 of Iberia“) during the Bronze Age.

Nope, we only know the approximate location of Iberian culture and inscriptions from the Late Iron Age, and they occupy the south-eastern and eastern coastal areas, but before that it is unclear where they were spoken. In fact, it seems evident now that the arrival of Urnfield groups from the north marks the arrival of Celtic-speaking peoples, as we can infer from the increase in Central European admixture, while the expansion of anthropomorphic stelae from the north-west must have marked the expansion of Lusitanian.

Vasconic was spoken in both sides of the Pyrenees, as it was in the Middle Ages.

Wrong. One of the worst mistakes I am seeing in many comments since the paper was published, although admittedly the paper goes around this problem talking about “Modern Basques”. Vasconic toponyms appear south of the Pyrenees only after the Roman conquests, and tribes of the south-western Pyrenees and Cantabrian regions were likely Celtic-speaking peoples. Aquitanians (north of the western Pyrenees) are the only known ancient Vasconic-speaking population in proto-historic times, ergo the arrival of Bell Beakers in Iberia was most likely accompanied by Indo-European languages which were later replaced by Celtic expanding from Central Europe, and Iberian expanding from south-east Iberia, and only later with Latin and Vasconic.

Ligurian is non-Indo-European, and Lusitanian is Celtic-like, so Iberia must have been mostly non-Indo-European-speaking.

The fragmentary material available on Ligurian is enough to show that phonetically it is a NWIE dialect of non-Celtic, non-Italic nature, much like Lusitanian; that is, unless you follow laryngeals up to Celtic or Italic, in which case you can argue anything about this or any other IE language, as people who reconstruct laryngeals for Baltic in the common era do.

EDIT (19 Mar 2019): It was not clear enough from this paragraph, because Ligurian-like languages in NE Iberia is just a hypothesis based on the archaeological connection of the whole southern France Bell Beaker region. My aim was to repeat the idea that Old European topo-hydronymy is older in NE Iberia (as almost anywhere in Iberia) than Iberian toponymy, so the initial hypothesis is that:

  1. a Palaeo-European language (as Villar puts it) expanded into most regions of Iberia in ancient times (he considered at some point the Mesolithic, but that is obviously wrong, as we know now); then
  2. Celts expanded at least to the Ebro River Basin; then
  3. Iberians expanded to the north and replaced these in NE Iberia; and only then
  4. after the Roman invasion, around the start of the Common Era, appear Vasconic toponyms south of the Pyrenees.

Lusitanian obviously does not qualify as Celtic, lacking the most essential traits that define Celticness…Unless you define “(Para-)Celtic” as Pre-Proto-Celtic-like, or anything of the sort to support some Atlantic continuity, in which case you can also argue that Pre-Italic or Pre-Germanic are Celtic, because you would be essentially describing North-West Indo-European

If Basques have R1b, it’s because of a culture of “matrilocality” as opposed to the “patrilocality” of Indo-Europeans

So wrong it hurts my eyes every time I read this. Not only does matrilocality in a regional group have few known effects in genetics, but there are many well-documented cases of population replacement (with either ancestry or Y-DNA haplogroups, or both) without language replacement, without a need to resort to “matrilineality” or “matrilocality” or any other cultural difference in any of these cases.

In fact, it seems quite likely now that isolated ancient peoples north of the Pyrenees will show a gradual replacement of surviving I2a lineages by neighbouring R1b, while early Iberian R1b-DF27 lineages are associated with Lusitanians, and later incoming R1b-DF27 lineages (apart from other haplogroups) are most likely associated with incoming Celts, which must have remained in north-central and central-east European groups.

NOTE. Notice how R1a is fully absent from all known early Indo-European peoples to date, whether Iberian IE, British IE, Italic, or Greek. The absence of R1a in Iberia after the arrival of Celts is even more telling of the origin of expanding Celts in Central Europe.

I haven’t had enough time to add Iberian samples to my spreadsheet, and hence neither to the ASoSaH texts nor maps/PCAs (and I don’t plan to, because it’s more efficient for me to add both, Asian and Iberian samples, at the same time), but luckily Maciamo has summed it up on Eupedia. Or, graphically depicted in the paper for the southeast:

iberia-haplogroups
Y chromosome haplogroup composition of individuals from southeast Iberia during the past 2000 years. The general Iberian Bronze and Iron Age population is included for comparison. Modified from Olalde et al. (2019).

Does this continued influx of Y-DNA haplogroups in Iberia with different cultures represent permanent changes in language? Are, therefore, modern Iberian languages derived from Lusitanian, Sorothaptic/Celtic, Greek, Phoenician, East or West Germanic, Hebrew, Berber, or Arabic languages? Obviously not. Same with Italy (see the recent preprint on modern Italians by Raveane et al. 2018), with France, with Germany, or with Greece.

If that happens in European regions with a known ancient history, why would the recent expansions and bottlenecks of R1b in modern Basques (or N1c around the Baltic, or R1a in Slavs) in the Middle Ages represent an ancestral language surviving into modern times?

Indo-Iranians

If something is clear from Narasimhan, Patterson, et al. (2018), is that we know finally the timing of the introduction and expansion of R1a-Z645 lineages among Indo-Iranians.

We could already propose since 2015 that a slow admixture happened in the steppes, based on archaeological finds, due to settlement elites dominating over common peoples, coupled with the known Uralic linguistic traits of Indo-Iranian (and known Indo-Iranian influence on Finno-Ugric) – as I did in the first version of the Indo-European demic diffusion model.

The new huge sampling of Sintashta – combined with that of Catacomb, Poltavka, Potapovka, Andronovo, and Srubna – shows quite clearly how this long-term admixture process between Uralic peoples and Indo-Iranians happened between forest-steppe CWC (mainly Abashevo) and steppe groups. The situation is not different from that of Iberia ca. 2500-2000 BC; from Narasimhan, Patterson, et al. (2018):

We combined the newly reported data from Kamennyi Ambar 5 with previously reported data from the Sintashta 5 individuals (10). We observed a main cluster of Sintashta individuals that was similar to Srubnaya, Potapovka, and Andronovo in being well modeled as a mixture of Yamnaya-related and Anatolian Neolithic (European agriculturalist-related) ancestry.

Even with such few words referring to one of the most important data in the paper about what happened in the steppes, Wang et al. (2018) help us understand what really happened with this simplistic concept of “steppe ancestry” regarding Yamna vs. Corded Ware differences:

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

As with Iberia (or any prehistoric region), the details of how exactly this language change happened are not evident, but we only need a plausible explanation coupled with archaeology and linguistics. Poltavka, Potapovka, and Sintashta samples – like the few available Iberian ones ca. 2500-2000 BC – offer a good picture of the cohabitation of R1b-L23 (mainly Z2103) and R1a-Z645 (mainly Z93+): a glimpse at the likely presence of R1a-Z93 within settlements – which must have evolved as the dominant elites – in a society where the majority of the population was initially formed by nomad herders (probably most R1b-Z2103), who were usually buried outside of the main settlements.

Will the upcoming Narasimhan, Patterson et al. (2019) deal with this problem of how R1a-M417 replaced R1b-M269, and how the so-called “Steppe_MLBA” (i.e. Corded Ware) ancestry admixed with “Steppe_EMBA” (i.e. Yamnaya) ancestry in the steppes, and which one of their languages survived in the region (that is, the same the Reich Lab has done with Iberia)? Not likely. The ‘genetic wars’ in Iberia deal with haplogroup R1b-P312, and how it was neither ‘native’ nor associated with Basques and non-Indo-European peoples in general. The ‘genetic wars’ in South Asia are concerned with the steppe origin of R1a, to prove that it is not a ‘native’ haplogroup to India, and thus neither are Indo-Aryan languages. To each region a politically correct account of genetic finds, with enough care not to fully dismiss national myths, it seems.

NOTE. Funnily enough, these ‘genetic wars’ are the making of geneticists since the 1990s and 2000s, so we are still in the midst of mostly internal wars caused by what they write. Just as genetic papers of the 2020s will most likely be a reaction to what they are writing right now about “steppe ancestry” and R1a. You won’t find much change to the linguistic reconstruction in this whole period, except for the most multicolored glottochronological proposals…

The first author of the paper has engaged, as far as I could see in Twitter, in dialogue with Hindu nationalists who try to dismiss the arrival of steppe ancestry and R1a into South Asia as inconclusive (to support the potential origin of Sanskrit millennia ago in the Indus Valley Civilization). How can geneticists deal with the real problem here (the original ethnolinguistic group expanding with Corded Ware), when they have to fend off anti-steppists from Europe and Asia? How can they do it, when they themselves are part of the same societies that demand a politically correct presentation of data?

This is how the data on the most likely Indo-Iranian-speaking region should be presented in an ideal world, where – as in the Iberia paper – geneticists would look closely to the Volga-Ural region to discover what happened with Proto-Indo-Iranians from their earliest to their latest stage, instead of constantly looking for sites close to the Indus Valley to demonstrate who knows what about modern Indian culture:

indo-iranian-admixture-similar-iberians
Tentative map of the Late PIE and Indo-Iranian community in the Volga-Ural steppes since the Eneolithic. Proportion of ancestry derived from central European Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

Now try and tell Hindu nationalists that Sanskrit expanded from an Early Bronze Age steppe community of R1b-rich nomadic herders that spoke Pre-Indo-Iranian, which was dominated and eventually (genetically) mostly replaced by elite Uralic-speaking R1a peoples from the Russian forest, hence the known phonetic (and some morphological) traits that remained. Good luck with the Europhobic shitstorm ahead..

Balto-Slavic

Iberian cultures, already with a majority of R1b lineages, show a clear northward expansion over previously Urnfield-like groups of north-east Iberia and Mediterranean France (which we now know probably represent the migration of Celts from central Europe). Similarly, Eastern Balts already under a majority of R1a lineages expanded likely into the Baltic region at the same time as the outlier from Turlojiškė (ca. 1075 BC), which represents the first obvious contacts of central-east Europe with the Baltic.

Iberia shows a more recent influx of central and eastern Mediterranean peoples, one of which eventually succeeded in imposing their language in Western Europe: Romans were possibly associated mainly with R1b-U152, apart from many other lineages. Proto-Slavs probably expanded later than Celts, too, connected to the disintegration of the Lusatian culture, and they were at some point associated with R1a-M458 and R1a-Z280(xZ92) lineages, apart from others already found in Early Slavs.

pca-balto-slavs-tollense-valley
PCA of central-eastern European groups which may have formed the Balto-Slavic-speaking community derived from Bell Beaker, evident from the position ‘westwards’ of CWC in the PCA, and surrounding cultures. Left: Early Bronze Age. Right: Tollense Valley samples.

This parallel between Iberia and eastern Europe is no coincidence: as Europe entered the Bronze Age, chiefdom-based systems became common, and thus the connection of ancestry or haplogroups with ethnolinguistic groups became weaker.

What happened earlier (and who may represent the Pre-Balto-Slavic community) will be clearer when we have enough eastern European samples, but basically we will be able to depict this admixture of NWIE-speaking BBC-derived peoples with Uralic-speaking CWC-derived groups (since Uralic is known to have strongly influenced Balto-Slavic), similar to the admixture found in Indo-Iranians, more or less like this:

iberian-admixture-balto-slavic
Tentative map of the North-West Indo-European and Balto-Slavic community in central-eastern Europe since the East Bell Beaker expansion. Proportion of ancestry derived from Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The Early Scythian period marked a still stronger chiefdom-based system which promoted the creation of alliances and federation-like groups, with an earlier representation of the system expanding from north-eastern Europe around the Baltic Sea, precisely during the spread of Akozino warrior-traders (in turn related to the Scythian influence in the forest-steppes), who are the most likely ancestors of most N1c-V29 lineages among modern Germanic, Balto-Slavic, and Volga-Finnic peoples.

Modern haplogroup+language = ancient ones?

It is not difficult to realize, then, that the complex modern genetic picture in Eastern Europe and around the Urals, and also in South Asia (like that of the Aegean or Anatolia) is similar to the Iron Age / medieval Iberian one, and that following modern R1a as an Indo-European marker just because some modern Indo-European-speaking groups showed it was always a flawed methodology; as flawed as following R1b for ancient Vasconic groups, or N1c for ancient Uralic groups.

Why people would argue that haplogroups mean continuity (e.g. R1b with Basques, N1c with Finns, R1a with Slavs, etc.) may be understood, if one lives still in the 2000s. Just like why one would argue that Corded Ware is Indo-European, because of Gimbutas’ huge influence since the 1960s with her myth of “Kurgan peoples”. Not many denied these haplogroup associations, because there was no reason to do it, and those who did usually aligned with a defense of descriptive archaeology.

However, it is a growing paradox that some people interested in genetics today would now, after the Iberian paper, need to:

  • accept that ancient Iberians and probably Aquitanians (each from different regions, and probably from different “Basque-Iberian dialects” in the Chalcolithic, if both were actually related) show eventually expansions with R1b-L23, the haplogroup most obviously associated with expanding Indo-Europeans;
  • acknowledge that modern Iberians have many different lineages derived from prehistoric or historic peoples (Celts, Phoenicians, Greeks, Romans, Jews, Goths, Berbers, Arabs), which have undergone different bottlenecks, the last ones during the Reconquista, but none of their languages have survived;
  • realize that a similar picture is to be found everywhere in central and western Europe since the first proto-historic records, with language replacement in spite of genetic continuity, such as the British Isles (and R1b-L21 continuity) after the arrival of Celts, Romans, Anglo-Saxons, Vikings, or Normans;
  • but, at the same time, continue blindly asserting that haplogroup R1a + “steppe ancestry” represent some kind of supernatural combination which must show continuity with their modern Indo-Iranian or Balto-Slavic language from time immemorial.
sintashta-y-dna
Replacement of R1b-L23 lineages during the Early Bronze Age in eastern Europe and in the Eurasian steppes: emergence of R1a in previous Yamnaya and Bell Beaker territories. Modified from EBA Y-DNA map.

Behave, pretty please

The ‘conservative’ message espoused by some geneticists and amateur genealogists here is basically as follows:

  • Let’s not rush to new theories that contradict the 2000s, lest some people get offended by granddaddy not being these pure whatever wherever as they believed, and let’s wait some 5, 10, or 20 years, as long as necessary – to see if some corner of the Yamna culture shows R1a, or some region in north-eastern Europe shows N1c, or some Atlantic Chalcolithic sample shows R1b – to challenge our preferred theories, if we actually need to challenge anything at all, because it hurts too much.
  • Just don’t let many of these genetic genealogists or academics of our time be unhappy, pretty please with sugar on top, and let them slowly adapt to reality with more and more pet theories to fit everything together (past theories + present data), so maybe when all of them are gone, within 50 or 70 years, society can smoothly begin to move on and propose something closer to reality, but always as politically correct as possible for the next generations.
  • For starters, let’s discuss now (yet again) that Bell Beakers may not have been Indo-European at all, despite showing (unlike Corded Ware) clearly Yamna male lineages and ancestry, because then Corded Ware and R1a could not have been Indo-European and that’s terrible, so maybe Bell Beakers are too brachycephalic to speak Indo-European or something, or they were stopped by the Fearsome Tisza River, or they are not pure Dutch Single Grave in The South hence not Indo-European, or whatever, and that’s why Iron Age Iberians or Etruscans show non-Indo-European languages. That’s not disrespectful to the history of certain peoples, of course not, but talking about the evident R1a-Uralic connection is, because this is The South, not The North, and respect works differently there.
  • Just don’t talk about how Slavs and Balts enter history more than 1,500 years later than Indo-European peoples in Western and Southern Europe, including Iberia, and assume a heroic continuity of Balts and Slavs as pure R1a ‘steppe-like’ peoples dominating over thousands of kms. in the Baltic, Fennoscandia, eastern Europe, and northern Asia for 5,000 years, with multiple Balto-Slavs-over-Balto-Slavs migrations, because these absolute units of Indo-European peoples were a trip and a half. They are the Asterix and Obelix of white Indo-European prehistory.
  • Perhaps in the meantime we can also invent some new glottochronological dialectal scheme that fits the expansion of Sredni Stog/Corded Ware with (Germano-?)Indo-Slavonic separated earlier than any other Late PIE dialect; and Finno-Volgaic later than any other Uralic dialect, in the Middle Ages, with N1c.
balto-slavic-pca
Genetic structure of the Balto-Slavic populations within a European context according to the three genetic systems, from Kushniarevich et al. (2015). Pure Balto-Slavs from…hmm…yeah this…ancient…region…or people…cluster…Whatever, very very steppe-like peoples, the True Indo-Europeans™, so close to Yamna…almost as close as Finno-Ugrians.

To sum up: Iberia, Italy, France, the British Isles, central Europe, the Balkans, the Aegean, or Anatolia, all these territories can have a complex history of periodic admixture and language replacement everywhere, but some peoples appearing later than all others in the historical record (viz. Basques or Slavs) apparently cannot, because that would be shameful for their national or ethnic myths, and these should be respected.

Ignorance of the own past as a blank canvas to be filled in with stupid ethnolinguistic continuity, turned into something valuable that should not be challenged. Ethnonationalist-like reasoning proper of the 19th century. How can our times be called ‘modern’ when this kind of magical thinking is still prevalent, even among supposedly well-educated people?

Related

ASoSaH Reread (II): Y-DNA haplogroups among Uralians (apart from R1a-M417)

corded-ware-yamna-ancestry

This is mainly a reread of from Book Two: A Game of Clans of the series A Song of Sheep and Horses: chapters iii.5. Early Indo-Europeans and Uralians, iv.3. Early Uralians, v.6. Late Uralians and vi.3. Disintegrating Uralians.

“Sredni Stog”

While the true source of R1a-M417 – the main haplogroup eventually associated with Corded Ware, and thus Uralic speakers – is still not known with precision, due to the lack of R1a-M198 in ancient samples, we already know that the Pontic-Caspian steppes were probably not it.

We have many samples from the north Pontic area since the Mesolithic compared to the Volga-Ural territory, and there is a clear prevalence of I2a-M223 lineages in the forest-steppe area, mixed with R1b-V88 (possibly a back-migration from south-eastern Europe).

R1a-M459 (xR1a-M198) lineages appear from the Mesolithic to the Chalcolithic scattered from the Baltic to the Caucasus, from the Dniester to Samara, in a situation similar to haplogroups Q1a-M25 and R1b-L754, which supports the idea that R1a, Q1a, and R1b expanded with ANE ancestry, possibly in different waves since the Epipalaeolithic, and formed the known ANE:EHG:WHG cline.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version.

The first confirmed R1a-M417 sample comes from Alexandria, roughly coinciding with the so-called steppe hiatus. Its emergence in the area of the previous “early Sredni Stog” groups (see the mess of the traditional interpretation of the north Pontic groups as “Sredni Stog”) and its later expansion with Corded Ware supports Kristiansen’s interpretation that Corded Ware emerged from the Dnieper-Dniester corridor, although samples from the area up to ca. 4000 BC, including the few Middle Eneolithic samples available, show continuity of hg. I2a-M223 and typical Ukraine Neolithic ancestry.

NOTE. The further subclade R1a-Z93 (Y26) reported for the sample from Alexandria seems too early, given the confidence interval for its formation (ca. 3500-2500 BC); even R1a-Z645 could be too early. Like the attribution of the R1b-L754 from Khvalynsk to R1b-V1636 (after being previously classifed as of Pre-V88 and M73 subclade), it seems reasonable to take these SNP calls with a pinch of salt: especially because Yleaf (designed to look for the furthest subclade possible) does not confirm for them any subclade beyond R1a-M417 and R1b-L754, respectively.

The sudden appearance of “steppe ancestry” in the region, with the high variability shown by Ukraine_Eneolithic samples, suggests that this is due to recent admixture of incoming foreign peoples (of Ukraine Neolithic / Comb Ware ancestry) with Novodanilovka settlers.

The most likely origin of this population, taking into account the most common population movements in the area since the Neolithic, is the infiltration of (mainly) hunter-gatherers from the forest areas. That would confirm the traditional interpretation of the origin of Uralic speakers in the forest zone, although the nature of Pontic-Caspian settlers as hunter-gatherers rather than herders make this identification today fully unnecessary (see here).

EDIT (3 FEB 2019): As for the most common guesstimates for Proto-Uralic, roughly coinciding with the expansion of this late Sredni Stog community (ca. 4000 BC), you can read the recent post by J. Pystynen in Freelance Reconstruction, Probing the roots of Samoyedic.

eneolithic-ukraine-corded-ware
Late Sredni Stog admixture shows variability proper of recent admixture of forest-steppe peoples with steppe-like population. See full version here.

NOTE. Although my initial simplistic interpretation (of early 2017) of Comb Ware peoples – traditionally identified as Uralic speakers – potentially showing steppe ancestry was probably wrong, it seems that peoples from the forest zone – related to Comb Ware or neighbouring groups like Lublyn-Volhynia – reached forest-steppe areas to the south and eventually expanded steppe ancestry into east-central Europe through the Volhynian Upland to the Polish Upland, during the late Trypillian disintegration (see a full account of the complex interactions of the Final Eneolithic).

The most interesting aspect of ascertaining the origin of R1a-M417, given its prevalence among Uralic speakers, is to precisely locate the origin of contacts between Late Proto-Indo-European and Proto-Uralic. Traditionally considered as the consequence of contacts between Middle and Upper Volga regions, the most recent archaeological research and data from ancient DNA samples has made it clear that it is Corded Ware the most likely vector of expansion of Uralic languages, hence these contacts of Indo-Europeans of the Volga-Ural region with Uralians have to be looked for in neighbours of the north Pontic area.

sredni-stog-repin-contacts
Sredni Stog – Repin contacts representing Uralic – Late Indo-European contacts were probably concentrated around the Don River.

My bet – rather obvious today – is that the Don River area is the source of the earliest borrowings of Late Uralic from Late Indo-European (i.e. post-Indo-Anatolian). The borrowing of the Late PIE word for ‘horse’ is particularly interesting in this regard. Later contacts (after the loss of the initial laryngeal) may be attributed to the traditionally depicted Corded Ware – Yamna contact zone in the Dnieper-Dniester area.

NOTE. While the finding of R1a-M417 populations neighbouring R1b-L23 in the Don-Volga interfluve would be great to confirm these contacts, I don’t know if the current pace of more and more published samples will continue. The information we have right now, in my opinion, suffices to support close contacts of neighbouring Indo-Europeans and Uralians in the Pontic-Caspian area during the Late Eneolithic.

Classical Corded Ware

After some complex movements of TRB, late Trypillia and GAC peoples, Corded Ware apparently emerged in central-east Europe, under the influence of different cultures and from a population that probably (at least partially) stemmed from the north Pontic forest-steppe area.

Single Grave and central Corded Ware groups – showing some of the earliest available dates (emerging likely ca. 3000/2900 BC) – are as varied in their haplogroups as it is expected from a sink (which does not in the least resemble the Volga-Ural population):

Interesting is the presence of R1b-L754 in Obłaczkowo, potentially of R1b-V88 subclade, as previously found in two Central European individuals from Blätterhole MN (ca. 3650 and 3200 BC), and in the Iron Gates and north Pontic areas.

Haplogroups I2a and G have also been reported in early samples, all potentially related to the supposed Corded Ware central-east European homeland, likely in southern Poland, a region naturally connected to the north Pontic forest-steppe area and to the expansion of Neolithic groups.

corded-ware-haplogroups
Y-DNA samples from early Corded Ware groups and neighbouring cultures. See full version.

The true bottlenecks under haplogroup R1a-Z645 seem to have happened only during the migration of Corded Ware to the east: to the north into the Battle Axe culture, mainly under R1a-Z282, and to the south into Middle Dnieper – Fatyanovo-Balanovo – Abashevo, probably eventually under R1a-Z93.

This separation is in line with their reported TMRCA, and supports the split of Finno-Permic from an eastern Uralic group (Ugric and Samoyedic), although still in contact through the Russian forest zone to allow for the spread of Indo-Iranian loans.

This bottleneck also supports in archaeology the expansion of a sort of unifying “Corded Ware A-horizon” spreading with people (disputed by Furholt), the disintegrating Uralians, and thus a source of further loanwords shared by all surviving Uralic languages.

Confirming this ‘concentrated’ Uralic expansion to the east is the presence of R1a-M417 (xR1a-Z645) lineages among early and late Single Grave groups in the west – which essentially disappeared after the Bell Beaker expansion – , as well as the presence of these subclades in modern Central and Western Europeans. Central European groups became thus integrated in post-Bell Beaker European EBA cultures, and their Uralic dialect likely disappeared without a trace.

NOTE. The fate of R1b-L51 lineages – linked to North-West Indo-Europeans undergoing a bottleneck in the Yamna Hungary -> Bell Beaker migration to the west – is thus similar to haplogroup R1a-Z645 – linked to the expansion of Late Uralians to the east – , hence proving the traditional interpretation of the language expansions as male-driven migrations. These are two of the most interesting genetic data we have to date to confirm previous language expansions and dialectal classifications.

It will be also interesting to see if known GAC and Corded Ware I2a-Y6098 subclades formed eventually part of the ancient Uralic groups in the east, apart from lineages which will no doubt appear among asbestos ware groups and probably hunter-gatherers from north-eastern Europe (see the recent study by Tambets et al. 2018).

Corded Ware ancestry marked the expansion of Uralians

Sadly, some brilliant minds decided in 2015 that the so-called “Yamnaya ancestry” (now more appropriately called “steppe ancestry”) should be associated to ‘Indo-Europeans’. This is causing the development of various new pet theories on the go, as more and more data contradicts this interpretation.

There is a clear long-lasting cultural, populational, and natural barrier between Yamna and Corded Ware: they are derived from different ancestral populations, which show clearly different ancestry and ancestry evolution (although they did converge to some extent), as well as different Y-DNA bottlenecks; they show different cultures, including those of preceding and succeeding groups, and evolved in different ecological niches. The only true steppe pastoralists who managed to dominate over grasslands extending from the Upper Danube to the Altai were Yamna peoples and their cultural successors.

corded-ware-yamna-pca
Corded Ware admixture proper of expanding late Sredni Stog-like populations from the forest-steppe. See full version here.

NOTE. You can also read two recent posts by FrankN in the blog aDNA era, with detailed information on the Pontic-Caspian cultures and the formation of “steppe ancestry” during the Palaeolithic, Mesolithic and Neolithic: How did CHG get into Steppe_EMBA? Part 1: LGM to Early Holocene and How did CHG get into Steppe_EMBA? Part 2: The Pottery Neolithic. Unlike your typical amateur blogger on genetics using few statistical comparisons coupled with ‘archaeolinguoracial mumbo jumbo’ to reach unscientific conclusions, these are obviously carefully redacted texts which deserve to be read.

I will not enter into the discussion of “steppe ancestry” and the mythical “Siberian ancestry” for this post, though. I will just repost the opinion of Volker Heyd – an archaeologist specialized in Yamna Hungary and Bell Beakers who is working with actual geneticists – on the early conclusions based on “steppe ancestry”:

[A]rchaeologist Volker Heyd at the University of Bristol, UK, disagreed, not with the conclusion that people moved west from the steppe, but with how their genetic signatures were conflated with complex cultural expressions. Corded Ware and Yamnaya burials are more different than they are similar, and there is evidence of cultural exchange, at least, between the Russian steppe and regions west that predate Yamnaya culture, he says. None of these facts negates the conclusions of the genetics papers, but they underscore the insufficiency of the articles in addressing the questions that archaeologists are interested in, he argued. “While I have no doubt they are basically right, it is the complexity of the past that is not reflected,” Heyd wrote, before issuing a call to arms. “Instead of letting geneticists determine the agenda and set the message, we should teach them about complexity in past human actions.

Related

Minimal gene flow from western pastoralists in the Bronze Age eastern steppes

jeong-steppes-mongolia

Open access paper Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Jeong et al. PNAS (2018).

Interesting excerpts (emphasis mine):

To understand the population history and context of dairy pastoralism in the eastern Eurasian steppe, we applied genomic and proteomic analyses to individuals buried in Late Bronze Age (LBA) burial mounds associated with the Deer Stone-Khirigsuur Complex (DSKC) in northern Mongolia. To date, DSKC sites contain the clearest and most direct evidence for animal pastoralism in the Eastern steppe before ca. 1200 BCE.

Most LBA Khövsgöls are projected on top of modern Tuvinians or Altaians, who reside in neighboring regions. In comparison with other ancient individuals, they are also close to but slightly displaced from temporally earlier Neolithic and Early Bronze Age (EBA) populations from the Shamanka II cemetry (Shamanka_EN and Shamanka_EBA, respectively) from the Lake Baikal region. However, when Native Americans are added to PC calculation, we observe that LBA Khövsgöls are displaced from modern neighbors toward Native Americans along PC2, occupying a space not overlapping with any contemporary population. Such an upward shift on PC2 is also observed in the ancient Baikal populations from the Neolithic to EBA and in the Bronze Age individuals from the Altai associated with Okunevo and Karasuk cultures.

pca-eurasians-karasuk-khovsgol
Image modified from the article. Karasuk cluster in green, closely related to sample ARS026 in red. Principal Component Analysis (PCA) of selected 2,077 contemporary Eurasians belonging to 149 groups. Contemporary individuals are plotted using three-letter abbreviations for operational group IDs. Group IDs color coded by geographic region. Ancient Khövsgöl individuals and other selected ancient groups are represented on the plot by filled shapes. Ancient individuals are projected onto the PC space using the “lsqproject: YES” option in the smartpca program to minimize the impact of high genotype missing rate.

(…) two individuals fall on the PC space markedly separated from the others: ARS017 is placed close to ancient and modern northeast Asians, such as early Neolithic individuals from the Devil’s Gate archaeological site (22) and present-day Nivhs from the Russian far east, while ARS026 falls midway between the main cluster and western Eurasians.

Upper Paleolithic Siberians from nearby Afontova Gora and Mal’ta archaeological sites (AG3 and MA-1, respectively) (25, 26) have the highest extra affinity with the main cluster compared with other groups, including the eastern outlier ARS017, the early Neolithic Shamanka_EN, and present-day Nganasans and Tuvinians (Z > 6.7 SE for AG3). Main cluster Khövsgöl individuals mostly belong to Siberian mitochondrial (A, B, C, D, and G) and Y (all Q1a but one N1c1a) haplogroups.

mongolia-botai-ehg-ane-cline
The genetic affinity of the Khövsgöl clusters measured by outgroup-f3 and -f4 statistics. (A) The top 20 populations sharing the highest amount of >genetic drift with the Khövsgöl main cluster measured by f3(Mbuti; Khövsgöl, X). (B) The top 15 populations with the most extra affinity with each of the three Khövsgöl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f4(Mbuti, X; Tuvinian/Khövsgöl, Khövsgöl/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f4 statistic.

Previous studies show a close genetic relationship between WSH populations and ANE ancestry, as Yamnaya and Afanasievo are modeled as a roughly equal mixture of early Holocene Iranian/ Caucasus ancestry (IRC) and Mesolithic Eastern European hunter-gatherers, the latter of which derive a large fraction of their ancestry from ANE. It is therefore important to pinpoint the source of ANE-related ancestry in the Khövsgöl gene pool: that is, whether it derives from a pre-Bronze Age ANE population (such as the one represented by AG3) or from a Bronze Age WSH population that has both ANE and IRC ancestry.

The amount of WSH contribution remains small (e.g., 6.4 ± 1.0% from Sintashta). Assuming that the early Neolithic populations of the Khövsgöl region resembled those of the nearby Baikal region, we conclude that the Khövsgöl main cluster obtained ∼11% of their ancestry from an ANE source during the Neolithic period and a much smaller contribution of WSH ancestry (4–7%) beginning in the early Bronze Age.

khovsgol-shamanka-sintashta
Admixture modeling of Altai populations and the Khövsgöl main cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA and (B and C) Khövsgöl, each colored block represents the proportion of ancestry derived from a corresponding ancestry source in the legend. Error bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN and AG3. The Khövsgöl main cluster is modeled as (B) a two-way admixture of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+AG3+Sintashta.

Apparently, then, the first individual with substantial WSH ancestry in the Khövsgöl population (ARS026, of haplogroup R1a-Z2123), directly dated to 1130–900 BC, is consistent with the first appearance of admixed forest-steppe-related populations like Karasuk (ca. 1200-800 BC) in the Altai. Interestingly, haplogroup N1a1a-M178 pops up (with mtDNA U5a2d1) among the earlier Khövsgöl samples.

I will repeat what I wrote recently here: Samoyedic arrived in the Altai with Karasuk and hg R1a-Z645 + Steppe_MLBA-like ancestry, admixed with Altai populations, clustering thus within an Ancient Altai cline. Only later did N1a1a subclades infiltrate Samoyedic (and Ugric) populations, bringing them closer to their modern Palaeo-Siberian cline. The shared mtDNA may support an ancestral EHG-“Siberian” cline, or else a more recent Afanasevo-related origin.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals. Read more.

Also interesting, Q1a2 subclades and ANE ancestry making its appearance everywhere among ancestral Eurasian peoples, as Chetan recently pointed out.

Related

Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions

haplogroup-uralians

This is the fourth of four posts on the Corded Ware—Uralic identification:

Let me begin this final post on the Corded Ware—Uralic connection with an assertion that should be obvious to everyone involved in ethnolinguistic identification of prehistoric populations but, for one reason or another, is usually forgotten. In the words of David Reich, in Who We Are and How We Got Here (2018):

Human history is full of dead ends, and we should not expect the people who lived in any one place in the past to be the direct ancestors of those who live there today.

Haplogroup N

Another recurrent argument – apart from “Siberian ancestry” – for the location of the Uralic homeland is “haplogroup N”. This is as serious as saying “haplogroup R1” to refer to Indo-European migrations, but let’s explore this possibility anyway:

Ancient haplogroups

We have now a better idea of how many ancient migrations (previously hypothesized to be associated with westward Uralic migrations) look like in genetic terms. From Damgaard et al. (Science 2018):

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

The only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, which – together with the Bronze Age sample from the Kola peninsula, and the medieval sample from Ust’Ida – gives a good idea of the overall expansion of N subclades and Siberian ancestry among the Circum-Arctic peoples of Eurasia, speakers of Palaeo-Siberian languages.

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

Modern haplogroups

What we should expect from Uralic peoples expanding with haplogroup N – seeing how Yamna expands with R1b-L23, and Corded Ware expands with R1a-Z645 – is to find a common subclade spreading with Uralic populations. Let’s see if it works like that for any N-X subclade, in data from Ilumäe et al. (2016):

haplogroup_n1
Geographic-Distribution Map of hg N3 / N1c / N1a.

Within the Eurasian circum-Arctic spread zone, N3 and N2a reveal a well-structured spread pattern where individual sub-clades show very different distributions:

N1a1-M46 (or N-TAT), formed ca. 13900 BC, TMRCA 9800 BC

   N1a1a2-B187, formed ca. 9800 BC, TMRCA 1050 AD:

The sub-clade N3b-B187 is specific to southern Siberia and Mongolia, whereas N3a-L708 is spread widely in other regions of northern Eurasia.

     N1a1a1a-L708, formed ca. 6800 BC, TMRCA 5400 BC.

       N1a1a1a2-B211/Y9022, formed ca. 5400 BC, TMRCA 1900 BC:

The deepest clade within N3a is N3a1-B211, mostly present in the Volga-Uralic region and western Siberian Khanty and Mansi populations.

         N1a1a1a1a-L392/L1026), formed ca. 4400 BC, TMRCA 2800 BC:

The neighbor clade, N3a3’6-CTS6967, spreads from eastern Siberia to the eastern part of Fennoscandia and the Baltic States

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders.

           N1a1a1a1a1a-CTS2929/VL29, formed ca. 2100 BC, TMRCA 1600 BC:

In Europe, the clade N3a3-VL29 encompasses over a third of the present-day male Estonians, Latvians, and Lithuanians but is also present among Saami, Karelians, and Finns (Table S2 and Figure 3). Among the Slavic-speaking Belarusians, Ukrainians, and Russians, about three-fourths of their hg N3 Y chromosomes belong to hg N3a3.

In the post on Finno-Permic expansions, I depicted what seems to me the most likely way of infiltration of N1c-L392 lineages with Akozino warrior-traders into the western Finno-Ugric populations, with an origin around the Barents sea.

This includes the potential spread of (a minority of) N1c-B211 subclades due to contacts with Anonino on both sides of the Urals, through a northern route of forest and forest-steppe regions (equivalent to the distribution of Cherkaskul compared to Andronovo), given the spread of certain subclades in Ugric populations.

NOTE. An alternative possibility is the association of certain B211 subclades with a southern route of expansion with Pre-Scythian and Scythian populations, under whose influence the Ananino culture emerged -which would imply a very quick infiltration of certain groups of haplogroup N everywhere among Finno-Ugrics on both sides of the Urals – , and also the expansion of some subclades with Turkic-speaking peoples, who apparently expanded with alliances of different peoples. Both (Scythian and Turkic) populations expanded from East Asia, where haplogroup N (including N1c) was present since the Neolithic. I find this a worse model of expansion for upper clades, but – given the YFull estimates and the presence of this haplogroup among Turkic peoples – it is a possibility for many subclades.

           N1a1a1a1a2-Z1936, formed ca. 2800 BC, TMRCA 2400 BC:

The only notable exception from the pattern are Russians from northern regions of European Russia, where, in turn, about two-thirds of the hg N3 Y chromosomes belong to the hg N3a4-Z1936—the second west Eurasian clade. Thus, according to the frequency distribution of this clade, these Northern Russians fit better among other non-Slavic populations from northeastern Europe. N3a4 tends to increase in frequency toward the northeastern European regions but is also somewhat unexpectedly a dominant hg N3 lineage among most Turcic-speaking Volga Tatars and South-Ural Bashkirs.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

The expansion of N1a-Z1936 in Fennoscandia is most likely associated with the expansion of Saami into asbestos ware-related territory (like the Lovozero culture) during the Late Iron Age – and mixture with its population – , and with the later Fennic expansion to the east and north, replacing their language.

           N1a1a1a1a4-M2019 (previously N3a2), formed ca. 4400 BC, TMRCA 1700 BC:

Sub-hg N3a2-M2118 is one of the two main bifurcating branches in the nested cladistic structure of N3a2’6-M2110. It is predominantly found in populations inhabiting present-day Yakutia (Republic of Sakha) in central Siberia and at lower frequencies in the Khanty and Mansi populations, which exhibit a distinct Y-STR pattern (Table S7) potentially intrinsic to an additional clade inside the sub-hg N3a2

The second widespread sub-clade of hg N is N2a. (…):

   N1a2b-P43 (B523/FGC10846/Y3184), formed ca. 6800 BC, TMRCA ca. 2700 BC:

The absolute majority of N2a individuals belong to the second sub-clade, N2a1-B523, which diversified about 4.7 kya (95% CI = 4.0–5.5 kya). Its distribution covers the western and southern parts of Siberia, the Taimyr Peninsula, and the Volga-Uralic region with frequencies ranging from from 10% to 30% and does not extend to eastern Siberia (…)

haplogroup_n2
Geographic-Distribution Map of hg N2a1 / N1a2b-P43

The “European” branch suggested earlier from Y-STR patterns turned out to consist of two clades

     N1a2b2a-Y3185/FGC10847, formed ca. 2200 BC, TMRCA 800 BC:

N2a1-L1419, spread mainly in the northern part of that region.

     N1a2b2b1-B528/Y24382, formed ca. 900 BC, TMRCA ca. 900 BC:

N2a1-B528, spread in the southern Volga-Uralic region.

Haplogroup R1a

We also have a good idea of the distribution of haplogroup R1a-Z645 in ancient samples. Its subclades were associated with the Corded Ware expansion, and some of them fit quite well the early expansion of Finno-Permic, Ugric, and Samoyedic peoples to the east.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

This is how the modern distribution of R1a among Uralians looks like, from the latest report in Tambets et al. (2018):

  • Among Fennic populations, Estonians and Karelians (ca. 1.1 million) have not suffered the greatest bottleneck of Finns (ca. 6-7 million), and show thus a greater proportion of R1a-Z280 than N1c subclades, which points to the original situation of Fennic peoples before their expansion. To trust Finnish Y-DNA to derive conclusions about the Uralic populations is as useful as relying on the Basque Y-DNA for the language spread by R1b-P312
  • Among Volga-Finnic populations, Mordovians (the closest to the original Uralic cluster, see above) show a majority of R1a lineages (27%).
  • Hungarians (ca. 13-15 million) represent the majority of Ugric (and Finno-Ugric) peoples. They are mainly R1a-Z280, also R1a-Z2123, have little N1c, and lack Siberian ancestry, and represent thus the most likely original situation of Ugric peoples in 4th century AD (read more on Avars and Hungarians).
  • Among Samoyedic peoples, the Selkup, the southernmost ones and latest to expand – that is, those not heavily admixed with Siberian populations – , also have a majority of R1a-Z2123 lineages (see also here for the original Samoyedic haplogroups to the south).

To understand the relevance of Hungarians for Ugric peoples, as well as Estonians, Karelians, and Mordovians (and northern Russians, Finno-Ugric peoples recently Russified) for Finno-Permic peoples, as opposed to the Circum-Arctic and East Siberian populations, one has to put demographics in perspective. Even a modern map can show the relevance of certain territories in the past:

population-density
Population density (people per km2) map of the world in 1994. From Wikipedia.

Summary of ancestry + haplogroups

Fennic and Samic populations seem to be clearly influenced by Palaeo-Laplandic peoples, whereas Volga-Finnic and especially Permic populations may have received gene flow from both, but essentially Palaeo-Siberian influence from the north and east.

The fact that modern Mansis and Khantys offer the highest variation in N1a subclades, and some of the highest “Siberian ancestry” among non-Nganasans, should have raised a red flag long ago. The fact that Hungarians – supposedly stemming from a source population similar to Mansis – do not offer the same amount of N subclades or Siberian ancestry (not even close), and offer instead more R1a, in common with Estonians (among Finno-Samic peoples) and Mordvins (among Volga-Finnic peoples) should have raised a still bigger red flag. The fact that Nganasans – the model for Siberian ancestry – show completely different N1a2b-P43 lineages should have been a huge genetic red line (on top of the anthropological one) to regard them as the Uralian-type population.

We know now that ethnolinguistic groups have usually expanded with massive (usually male-biased) migrations, and that neighbouring locals often ‘resurge’ later without changing the language. That is seen in Europe after the spread of Bell Beakers, with the increase of previous ancestry and lineages in Scandinavia during the formation of the Nordic ethnolinguistic community; in Central-West Europe, with the resurgence of Neolithic ancestry (and lineages) during the Bronze Age over steppe ancestry; and in Central-East Europe (with Unetice or East European Bronze Age groups like Mierzanowice, Trzciniec, or Lusatian) showing an increase in steppe ancestry (and resurge of R1a subclades); none of them represented a radical ethnolinguistic change.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

It is not hard to model the stepped arrival, infiltration, and/or resurge of N subclades and “Siberian ancestries”, as well as their gradual expansion in certain regions, associated with certain migrations first – such as the expansions to the Circum-Arctic region, and later the Scythian- and Turkic-related movements – , as well as limited regional developments, like the known bottleneck in Finns, or the clear late expansion of Ugric and Samoyedic languages to the north among nomadic Palaeo-Siberians due to traditions of exogamy and multilingualism. This fits quite well with the different arrival of N (N1c and xN1c) lineages to the different Uralic-speaking groups, and to the stepped appearance of “Siberian ancestry” in the different regions.

The aternative

It is evident that a lot of people were too attached to the idea of Palaeolithic R1b lineages ‘native’ to western Europe speaking Basque languages; of R1a lineages speaking Indo-European and spreading with Yamna; and N lineages ‘native’ to north-eastern Europe and speaking Uralic, and this is causing widespread weeping and gnashing of teeth (instead of the joy of discovering where one’s true patrilineal ancestors come from, and what language they spoke in each given period, which is the supposed objective of genetic genealogy…)

Since an Indo-Germanic branch (as revived now by some in the Copenhaguen group to fit Kristiansen’s theory of the 1980s with recent genetic data) does not make any sense in linguistics, the finding of R1a in Yamna would not have led where some think it would have, because North-West Indo-European would still be the main Late PIE branch in Europe. Don’t take my word for it; take James P. Mallory’s (2013).

mallory-adams-tree
The levels of Indo-European reconstruction, from Mallory & Adams (2006).

If an (unlikely) Indo-Slavonic group were posited, though, such a group would still be bound (with Indo-Iranian) to the steppes with East Yamna/Poltavka (admixing with Abashevo migrants, but retaining its language), developing Sintashta/Potapovka → Srubna/Andronovo, and R1a lineages would have equally undergone the known bottlenecks of the steppes where they replaced R1b-Z2103 – which this eastern group shares with Balkan languages, a haplogroup that links therefore together the Graeco-Aryan group.

As far as I know – and there might be many other similar pet theories out there – there have been proposals of “modern Balto-Slavic-like” populations (in an obvious circular reasoning based on modern populations) in some Scythian clusters of the Iron Age.

NOTE. I will not enter into “Balto-Slavic-like R1a” of the Late Bronze Age or earlier because no one can seriously believe at this point of development of Population Genetics that autosomal similarity predating 1,500+ years the appearance of Slavs equates to their (ethnolinguistic) ancestral population, without a clear intermediate cultural and genetic trail – something we lack today in the Slavic case even for the late Roman period…

finno-saamic-palaeo-germanic-substratum
The Finnic and Saamic separation looks shallower than it actually is. Invisible convergence can be ‘triangulated’ with the help of Germanic layers of mutual loanwords (Häkkinen 2012).

We also know of R1a-Z280 lineages in Srubna, probably expanding to the west. With that in mind, and knowing that Palaeo-Germanic was in close contact with Finno-Samic while both were already separated but still in contact, and that Palaeo-Germanic was also in contact and closely related to a ‘Temematic’ distinct from Balto-Slavic (and also that early Proto-Baltic and Proto-Slavic from the Roman Iron Age and later were in contact with western Uralic) this will be the linguistic map of the Iron Age if R1a is considered to expand Indo-European from some kind of “patron-client” relationship with west Yamna:

palaeo-germanic-italo-celtic
Eastern European language map during the Late Bronze Age / Iron Age, if R1a spread Indo-European languages and Eastern Yamna spoke Indo-Slavonic. Palaeo-Germanic (i.e. Pre- to Proto-Germanic) needs to be in contact with both the Samic Lovozero population and the Fennic west Circum-Arctic one. Italic and Celtic in contact with Pre-Germanic. Germanic in contact with Temematic. Balto-Slavic in contact with Iranian, and near Fennic to allow for later loanwords. For Germanic and Temematic, see Kortlandt (2018).

You might think I have some personal or political reason against this kind of proposals. I haven’t. We have been proposing Indo-European to be the language of the European Union for more than 10 years, so to support R1b-Italo-Celtic in the whole Western Europe, R1a-Germanic in Central and Eastern Europe, and R1a-Indo-Slavonic in the steppes (as the Danish group seems to be doing) has nothing inherently bad (or good) for me. If anything, it gives more reason to support the revival of North-West Indo-European in Europe.

My problem with this proposal is that it is obviously beholden to the notion of the uninterrupted cultural, historic and ethnic continuity in certain territories. This bias is common in historiography (von Falkenhausen 1993), but it extends even more easily into the lesser known prehistory of any territory, and now more than ever some people feel the need to corrupt (pre)history based on their own haplogroups (or the majority haplogroups of their modern countries). However, more than on philosophical grounds, my rejection is based on facts: this picture is not what the combination of linguistic, archaeological, and genetic data shows. Period.

Nevertheless, if Yamna + Corded Ware represented the “big and early expansion” of Germanic and Italo-Celtic peoples proper of the dream Nazi’s Lebensraum and Fascist’s spazio vitale proposals; Uralians were Siberian hunter-gatherers that controlled the whole eastern and northern Russia, and miraculously managed to push (ethnolinguistically) Neolithic agropastoralists to the west during and after the Iron Age, with gradual (and often minimal) genetic impact; and Balto-Slavic peoples were represented by horse riders from Pokrovka/Srubna, hiding then somewhere around the forest-steppe until after the Scythian expansion, and then spreading their language (without much genetic impact) during the early Middle Ages…so be it.

Related

Corded Ware—Uralic (III): “Siberian ancestry” and Ugric-Samoyedic expansions

siberian-ancestry-tambets

This is the third of four posts on the Corded Ware—Uralic identification. See

An Eastern Uralic group?

Even though proposals of an Eastern Uralic (or Ugro-Samoyedic) group are in the minority – and those who support it tend to search for an origin of Uralic in Central Asia – , there is nothing wrong in supporting this from the point of view of a western homeland, because the eastward migration of both Proto-Ugric and Pre-Samoyedic peoples may have been coupled with each other at an early stage. It’s like Indo-Slavonic: it just doesn’t fit the linguistic data as well as the alternative, i.e. the expansion of Samoyedic first, different from a Finno-Ugric trunk. But, in case you are wondering about this possibility, here is Häkkinen’s (2012) phonological argument:

ugro-samoyedic-uralic

The case of Samoyedic is quite similar to that of Hungarian, although the earliest Palaeo-Siberian contact languages have been lost. There were contacts at least with Tocharian (Kallio 2004), Yukaghir (Rédei 1999) and Turkic (Janhunen 1998). Samoyedic also:

a) has moved far from the related languages and has been exposed to strong foreign influence

b) shares a small number of common words with other branches (from Sammallahti 1988: only 123 ‘Uralic’ words, versus 390 ‘Uralic’ + ‘Finno-Ugric’ words found in other branches than Samoyedic = 31,5 %)

c) derives phonologically from the East Uralic dialect.

The phonological level is taxonomically more reliable, since it lacks the distortion caused by invisible convergence and false divergence at the lexical level. Thus we can conclude that the traditional taxonomic model, according to which Samoyedic was the first branch to split off from the Proto-Uralic unity, is just as incorrect as the view that Hungarian was the first branch to split off.

Seima-Turbino

Late Uralic can be traced back to metallurgical cultures thanks to terms like PU *wäśka ‘copper/bronze’ (borrowed from Proto-Samoyedic *wesä into Tocharian); PU *äsa and *olna/*olni, ‘lead’ or ‘tin’, found in *äsa-wäśka ‘tin-bronze’; and e.g. *weŋći ‘knife’, borrowed into Indo-Iranian (through the stage of vocalization of nasals), appearing later as Proto-Indo-Aryan *wāćī ‘knife, awl, axe’.

It is known that the southern regions of the Abashevo culture developed Proto-Indo-Iranian-speaking Sintashta-Petrovka and Pokrovka (Early Srubna). To the north, however, Abashevo kept its Uralic nature, with continuous contacts allowing for the spread of lexicon – mainly into Finno-Ugric – , and phonetic influence – mainly Uralisms into Proto-Indo-Iranian phonology (read more here).

The northern part of Abashevo (just like the south) was mainly a metallurgical society, with Abashevo metal prospectors found also side by side with Sintashta pioneers in the Zeravshan Valley, near BMAC, in search of metal ores. About the Seima-Turbino phenomenon, from Parpola (2013):

From the Urals to the east, the chain of cultures associated with this network consisted principally of the following: the Abashevo culture (extending from the Upper Don to the Mid- and South Trans-Urals, including the important cemeteries of Sejma and Turbino), the Sintashta culture (in the southeast Urals), the Petrovka culture (in the Tobol-Ishim steppe), the Taskovo-Loginovo cultures (on the Mid- and Lower Tobol and the Mid-Irtysh), the Samus’ culture (on the Upper Ob, with the important cemetery of Rostovka), the Krotovo culture (from the forest steppe of the Mid-Irtysh to the Baraba steppe on the Upper Ob, with the important cemetery of Sopka 2), the Elunino culture (on the Upper Ob just west of the Altai mountains) and the Okunevo culture (on the Mid-Yenissei, in the Minusinsk plain, Khakassia and northern Tuva). The Okunevo culture belongs wholly to the Early Bronze Age (c. 2250–1900 BCE), but most of the other cultures apparently to its latter part, being currently dated to the pre-Andronovo horizon of c. 2100–1800 BCE (cf. Parzinger 2006: 244–312 and 336; Koryakova & Epimakhov 2007: 104–105).

post-eneolithic-steppe-asia
Schematic map of the Middle Bronze Age cultures (steppe and foreststeppe
zone)

The majority of the Sejma-Turbino objects are of the better quality tin-bronze, and while tin is absent in the Urals, the Altai and Sayan mountains are an important source of both copper and tin. Tin is also available in southern Central Asia. Chernykh & Kuz’minykh have accordingly suggested an eastern origin for the Sejma-Turbino network, backing this hypothesis also by the depiction on the Sejma-Turbino knives of mountain sheep and horses characteristic of that area. However, Christian Carpelan has emphasized that the local Afanas’evo and Okunevo metallurgy of the Sayan-Altai area was initially rather primitive, and could not possibly have achieved the advanced and difficult technology of casting socketed spearheads as one piece around a blank. Carpelan points out that the first spearheads of this type appear in the Middle Bronze Age Caucasia c. 2000 BCE, diffusing early on to the Mid-Volga-Kama-southern Urals area, where “it was the experienced Abashevo craftsmen who were able to take up the new techniques and develop and distribute new types of spearheads” (Carpelan & Parpola 2001: 106, cf. 99–106, 110). The animal argument is countered by reference to a dagger from Sejma on the Oka river depicting an elk’s head, with earlier north European prototypes (Carpelan & Parpola 2001: 106–109). Also the metal analysis speaks for the Abashevo origin of the Sejma-Turbino network. Out of 353 artefacts analyzed, 47% were of tin-bronze, 36% of arsenical bronze, and 8.5% of pure copper. Both the arsenical bronze and pure copper are very clearly associated with the Abashevo metallurgy.

seima-turbino-phenomenon-parpola
Find spots of artefacts distributed by the Sejma-Turbino intercultural trader network, and the areas of the most important participating cultures: Abashevo, Sintashta, Petrovka. Based on Chernykh 2007: 77.

The Abashevo metal production was based on the Volga-Kama-Belaya area sandstone ores of pure copper and on the more easterly Urals deposits of arsenical copper (Figure 9). The Abashevo people, expanding from the Don and Mid-Volga to the Urals, first reached the westerly sandstone deposits of pure copper in the Volga and Kama basins, and started developing their metallurgy in this area, before moving on to the eastern side of the Urals to produce harder weapons and tools of arsenical copper. Eventually they moved even further south, to the area richest in copper in the whole Urals region, founding there the very strong and innovative Sintashta culture.

Regarding the most likely expansion of Eastern Uralic peoples:

Nataliya L’vovna Chlenova (1929–2009; cf. Korenyako & Ku’zminykh 2011) published in 1981 a detailed study of the Cherkaskul’ pottery. In her carefully prepared maps of 1981 and 1984 (Figure 10), she plotted Cherkaskul’ monuments not only in Bashkiria and the Trans-Urals, but also in thick concentrations on the Upper Irtysh, Upper Ob and Upper Yenissei, close to the Altai and Sayan mountains, precisely where the best experts suppose the homeland of Proto-Samoyed to be.

cherkaskul-andronovo
Distribution of Srubnaya (Timber Grave, early and late), Andronovo (Alakul’ and Fëdorovo variants) and Cherkaskul’ monuments. After Parpola 1994: 146, fig. 8.15, based on the work of N. L. Chlenova (1984: map facing page 100).

Ugric

The Cherkaskul’ culture was transformed into the genetically related Mezhovka culture (c. 1500–1000 BCE), which occupied approximately the same area from the Mid-Kama and Belaya rivers to the Tobol river in western Siberia (cf. Parzinger 2006: 444–448; Koryakova & Epimakhov 2007: 170–175). The Mezhovka culture was in close contact with the neighbouring and probably Proto-Iranian speaking Alekseevka alias Sargary culture (c. 1500–900 BCE) of northern Kazakhstan (Figure 4 no. 8) that had a Fëdorovo and Cherkaskul’ substratum and a roller pottery superstratum (cf. Parzinger 2006: 443–448; Koryakova & Epimakhov 2007: 161–170). Both the Cherkaskul’ and the Mezhovka cultures are thought to have been Proto-Ugric linguistically, on the basis of the agreement of their area with that of Mansi and Khanty speakers, who moreover in their Fëdorovo-like ornamentation have preserved evidence of continuity in material culture (cf. Chlenova 1984; Koryakova & Epimakhov 2007: 159, 175).

mezhovska-sargary-irmen
Cultures of the Final Bronze Age of the Urals and western Siberia (steppe
and forest-steppe zone).

The Mezhovka culture was succeeded by the genetically related Gamayun culture (c. 1000–700 BCE) (cf. Parzinger 2006: 446; 542–545).

From the Gamayun culture descend Trans-Urals cultures in close contact with Finno-Permic populations of the Cis-Ural region:

  • [Proto-Mansi] Itkul’ culture (c. 700–200 BCE) distributed along the eastern slope of the Ural Mountains (cf. Parzinger 2006: 552–556). Known from its walled forts, it constituted the principal Trans-Uralian centre of metallurgy in the Iron Age, and was in contact with both the Anan’ino and Akhmylovo cultures (the metallurgical centres of the Mid-Volga and Kama-Belaya region) and the neighbouring Gorokhovo culture.
    • [Proto-Hungarian] via the Vorob’evo Group (c. 700–550 BCE) (cf. Parzinger 2006: 546–549), to the Gorokhovo culture (c. 550–400 BCE) of the Trans-Uralian forest steppe (cf. Parzinger 2006: 549–552). For various reasons the local Gorokhovo people started mobile pastoral herding and became part of the multicomponent pastoralist Sargat culture (c. 500 BCE to 300 CE), which in a broader sense comprized all cultural groups between the Tobol and Irtysh rivers, succeeding here the Sargary culture. The Sargat intercommunity was dominated by steppe nomads belonging to the Iranian-speaking Saka confederation, who in the summer migrated northwards to the forest steppe
  • [Proto-Khanty] Late Bronze Age and Early Iron Age cultures related to the Gamayunskoe and Itkul’ cultures that extended up to the Ob: the Nosilovo, Baitovo, Late Irmen’, and Krasnoozero cultures (c. 900–500 BCE). Some were in contact with the Akhmylovo on the Mid-Volga.
sargat-gorokhovo-bolscherechye
Cultural groups of the Iron Age in the forest-steppe zone of western
Siberia. (

Samoyedic

Parpola (2012) connects the expansion of Samoyedic with the Cherkaskul variant of Andronovo. As we know, Andronovo was genetically diverse, which speaks in favour of different groups developing similar material cultures in Central Asia.

Juha Janhunen, author of the etymological dictionary of the Samoyed languages (1977), places the homeland of Proto-Samoyedic in the Minusinsk basin on the Upper Yenissei (cf. Janhunen 2009: 72). Mainly on the basis of Bulghar Turkic loanwords, Janhunen (2007: 224; 2009: 63) dates Proto-Samoyedic to the last centuries BCE. Janhunen thinks that the language of the Tagar culture (c. 800–100 BCE) ought to have been Proto-Samoyedic (cf. Janhunen 1983: 117– 118; 2009: 72; Parzinger 2001: 80 and 2006: 619–631 dates the Tagar culture c. 1000–200 BCE; Svyatko et al. 2009: 256, based on human bone samples, c. 900 BCE to 50 CE). The Tagar culture largely continues the traditions of the Karasuk culture (c. 1400–900 BCE), (…)

chicha-irmen-tagar-baraba-forest-siberian
Map showing the location of Chicha-1.

For the most recent expansions of Samoyedic languages to the north, into Palaeo-Siberian populations, read more about the traditional multilingualism of Siberian populations.

Genetics

Siberian ancestry

The use of a map of “Siberian ancestry” peaking in the arctic to show a supposedly late Uralic population movement (starting in the Iron Age!) seems to be the latest trend in population genomics:

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018) (see below for ADMIXTURE in specific populations).

I guess that would make this map of Neolithic farmer ancestry represent an expansion of Indo-European from the south, because Anatolia, Greece, Italy, southern France, and Iberia – where this ancestry peaks in modern populations – are among the oldest territories where Indo-European languages were recorded:

reich-farmer-ancestry
Modern genome-wide data shows that the primary gradient of farmer ancestry in Europe does not flow southeast-to-northwest but instead in an almost perpendicular direction, a result of a major migration of pastoralists from the east that displaced much of the ancestry of the first farmers.

Probably not the right interpretation of this kind of simplistic data about modern populations, though…

The most striking thing about the “Siberian ancestry” white whale is that nobody really knows what it is; just like we did not know what “Yamnaya ancestry” was, until the most recent data is making the picture clearer. Its nature is changing with each new paper, and it can be summed up by “some ancestry we want to find that is common to Uralic-speaking peoples, and should not be CWC-related”. Tambets et al. (2018) explain quite well how they “found it”:

Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a).

siberian-ancestry-modern
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). Image from Tambets et al. (2018).

However, this ‘something’ that some people occasionally find in some Uralic populations is also common to other modern and ancient groups, and not so common in some other Uralic peoples. Simply put:

siberian-ancestry-modern-populations
Image modified from Lamnidis et al. (2018). Red line representing maximum “Siberian admixture” in Eastern European hunter-gatherers. In blue, Uralic-speaking groups. “Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.”

I already said this in the recent publication of Siberian samples, where a renamed and radiocarbon dated Finnish_IA clearly shows that Late Iron Age Saami (ca. 400 AD) had little “Siberian ancestry”, if any at all, representing the most likely Fennic (and Samic) ancestral components before their expansion into central and northern Finland, where they admixed with circum-polar peoples of asbestos ware cultures.

I will say that again and again, any time they report the so-called “Siberian ancestry” in Uralic samples, no matter how it is defined each time: it does not seem to be that special something people are looking for, but rather (at least in a great part) a quite old ancestral component forming an evident cline with EHG, whose best proximate source are Baikal_EN (and/or Devil’s Gate) at this moment, and thus also East European hunter-gatherers for Western Uralic peoples:

dzudzuana-baikal-en-admixture
Image modified from Lazaridis et al. (2018). In red: samples with Baikal_EN ancestry in speculative estimates. In pink: samples with Baikal_EN ancestry in conservative estimates (probably marking a recent arrival of Baikal_En ancestry, see here). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

So either Samara_HG, Karelia_HG, and many other groups from eastern Europe all spoke Uralic according to this ADMIXTURE graphic (and the formation of steppe ancestry in the Volga-Ural region brought the Proto-Indo-European language to the steppes through the CHG/ANE expansion), or a great part of this “Siberian ancestry” found in modern Uralic-speaking populations is not what some people would like to think it is…

Modern populations

PCA clines can be looked for to represent expansions of ancient populations. Most recently, Flegontov et al. (2018) are attempting to do this with Asian populations:

For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

jeong-population-clines
Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.

There are potential errors with this approach:

The main one is practical – does a modern cline represent an ancestral language? The answer is: sometimes. It depends on the anthropological context that we have, and especially on the precision of the PCA:

clines-himalayan
Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. (A) PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. From Arciero et al. (2018).

The ‘Europe’, ‘Middle East’, etc. clines of the above PCA do not represent one language, but many. For starters, the PCA includes too many (and modern) populations, its precision is useless for ethnolinguistic groups. Which is the right level? Again, it depends.

The other error is one of detail of the clines drawn (which, in turn, depends on the precision of the PCA). For example, we can draw two paralell lines (or even one line, as in Flegontov et al. above) in one PCA graphic, but we still don’t have the direction of expansion. How do we know if this supposed “Uralic-speaking cline” goes from one region to the other? For that level of detail, we should examine closely modern Uralic-speaking peoples and Circum-Arctic populations:

uralic-cline
Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

The real ancient Uralic cluster (drawn above in blue) is thus probably from a North-East European source (probably formed by Battle Axe / Fatyanovo-Balanovo / Abashevo) to the east into Siberian populations, and to the north into Laplandic populations (see below also on Mezhovska ancestry for the drawn ‘European cline’, which some may a priori wrongly assume to be quite late).

The fact that the three formed clines point to an admixture of CWC-related populations from North-Eastern Europe, and that variation is greater at the Palaeo-Laplandic and Palaeo-Siberian extremities compared to the CWC-related one, also supports this as the correct interpretation.

However, judging by the two main clines formed, one could be alternatively inclined to interpret that Palaeo-Laplandic and Palaeo-Siberian populations formed a huge ancestral “Uralic” ghost cluster in Siberia (spanning from the Palaeo-Laplandic to the Palaeo-Siberian one), and from there expanded Finno-Samic on one hand, and “Volga-Ugro-Samoyed” on the other. That poses different problems: an obvious linguistic and archaeological one – which I assume a lot of people do not really care about – , and a not-so-obvious genetic one (see below for ancient samples and for the expansion of haplogroup N).

To understand the simplest solution better, one can just have a look at the PCA from Bell Beaker samples in Olalde et al. (2018), which (as Reich has already explained many times) expanded directly from Yamna R1b-L23 lineages:

olalde_pca_clines
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions.

Unlike this PCA with ancient samples, where Bell Beaker clines could be a rough approximation to the real sources for each population, and where a cluster spanning all three depicted Early Bronze Age clusters could give a rough proximate source of European Bell Beakers in Hungary (and where one can even distinguish the Y-DNA bottlenecks in the L23 trunk created by each cline) the PCA of modern Uralic populations is probably not suitable for a good estimate of the ancient situation, which may be found shifted up or down of the drawn “Uralic” cluster along East European groups.

After all, we already know that the Siberian cline shows probably as much an ancient admixture event – from the original Uralic expansion to the east with Corded Ware ancestry – as another more recent one – a westward migration of Siberian ancestry (or even more than one). While we know with more or less exactitude what happened with the Palaeo-Laplandic admixture by expanding Proto-Finno-Samic populations (see here), the Proto-Ugric and Pre-Samoyedic populations formed probably more than one cline during the different ancient migrations through central Asia.

Ancient populations

Apparently, the Corded Ware expansion to the east was not marked by a huge change in ancestry. While the final version of Narasimhan et al. (2018) may show a little more detail about other forest-steppe Seima-Turbino/Andronovo-related migrations (and thus also Eastern Uralic peoples), we have already had enough information for quite some time to get a good idea.

mezhovska-pca
Principal component analysis. PCA of ancient individuals (according colours see legend) projected on modern West Eurasians (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European huntergatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.dataset (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European hunter-gatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.

Mezhovska‘s position is similar to the later Pre-Scythian and Scythian populations. There are some interesting details: apart from haplogroup R1a-Z280 (CTS1211+), there is one R1b-M269 (PF6494+), probably Z2103, and an outlier (out of three) in a similar position to the recently described central/southern Scythian clusters.

NOTE. The finding of R1b-M269 in the forest-steppe is probably either 1) from an Afanasevo-Okunevo origin, or 2) from an admixture with neighbouring Andronovo-related populations, such as Sargary. A third, maybe less likely option is that this haplogroup admixed with Abashevo directly (as it happened in Sintashta, Potapovka, or Pokrovka) and formed part of early Uralic migrations. In any case, since Mezhovska is a Bronze Age society from the Urals region, its association with R1b-Z2103 – like the association of R1b-Z2103 in Scythian clusters – cannot be attributed to “Thracian peoples”, a link which is (as I already said) too simplistic.

The drawn “European cline” of Hungarians (see above), leading from ‘west-like’ Mansi to Hungarian populations – and hosting also Finnic and Estonian samples – , cannot therefore be attributed simply to late “Slavic/Balkan-like” admixture.

Karasuk – located further to the east – is basically also Corded Ware peoples showing clearly a recent admixture with local ANE / Baikal_EN-like populations. In terms of haplogroups it shows haplogroup Q, R1a-Z2124, and R1a-Z2123, later found among early Hungarians, and present also in ancient Samoyedic populations now acculturated.

The most interesting aspect of both Mezhovska and Karasuk is that they seem to diverge from a point close to Ukraine_Eneolithic, which is the supposed ancestral source of Corded Ware peoples (read more about the formation of “steppe ancestry”). This means that Eastern Uralians derive from a source closer to Middle Dnieper/Abashevo populations, rather than Battle Axe (shifted to Latvian Neolithic), which is more likely the source prevalent in Finno-Permic peoples.

Their initial admixture with (Palaeo-)Siberian populations is thus seen already starting by this time in Mezhovska and especially in Karasuk, but this process (compared to modern populations) is incomplete:

f4-test-karasuk-mezhovska
Visualization of f-statistics results. f4(Test, LBK; Han, Mbuti) values are plotted on x axis and f4(Test, LBK; EHG, Mbuti) values on y axis, positive deviations from zero show deviations from a clade between Test and LBK. A red dashed line is drawn between Yamnaya from Samara and Ami. Iron Age populations that can be modelled as mixtures of Yamnaya and East Eurasians (like the Ami) are arrayed around this line and appear to be distinct from the main North/South European cline (blue) on the left of the x axis.
karasuk-mezhovska-admixture
ADMIXTURE results for ancient populations. Red arrows point to the Iron Age Scythian individuals studied. LBK_EN: Early Neolithic Linearbandkeramik; EHG: Eastern European hunter-gatherer; Motala_HG: hunter-gatherer from Motala (Sweden); WHG: western hunter-gatherer; CHG: Caucasus hunter-gatherer; IA: Iron Age; EBA: Early Bronze Age; LBA: Late Bronze Age.

We know now that Samic peoples expanded during the Late Iron Age into Palaeo-Laplandic populations, admixing with them and creating this modern cline. Finns expanded later to the north (in one of their known genetic bottlenecks), admixing with (and displacing) the Saami in Finland, especially replacing their male lines.

So how did Ugric and Samoyedic peoples admix with Palaeo-Siberian populations further, to obtain their modern cline? The answer is, logically, with East Asian migrations related to forest-steppe populations of Central Asia after the Mezhovska and Karasuk periods, i.e. during the Iron Age and later. Other groups from the forest-steppe in Central Asia show similar East Asian (“Siberian”) admixture. We know this from Narasimhan et al. (2018):

(…) we observe samples from multiple sites dated to 1700-1500 BCE (Maitan, Kairan, Oy_Dzhaylau and Zevakinsikiy) that derive up to ~25% of their ancestry from a source related to present-day East Asians and the remainder from Steppe_MLBA. A similar ancestry profile became widespread in the region by the Late Bronze Age, as documented by our time transect from Zevakinsikiy and samples from many sites dating to 1500-1000 BCE, and was ubiquitous by the Scytho-Sarmatian period in the Iron Age.

We already have some information about these later migrations:

siberian-genetic-component-chronology
Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

The Ugric-speaking Sargat culture in Western Siberia shows the expected mixture of haplogroups (ca. 500 BC – 500 AD), with 5 samples of hg N and 2 of hg R1a1, in Pilipenko et al. (2017). Although radiocarbon dates and subclades are lacking, N lineages probably spread late, because of the late and gradual admixture of Siberian cultures into the Sargat melting pot.

The Samoyedic-speaking Tagar culture also shows signs of a genetic turnover in Pilipenko et al. (2018):

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains.

Before the Iron Age, the Karasuk and Mezhovska population were probably already somehow ‘to the north’ within the ancient Steppe-Altai cline (see image below9 created by expanding Seima-Turbino- and Andronovo-related populations. During the Iron Age, further Siberian contributions with Iranian expansions must have placed Uralians of the Central Asian forest-steppe areas much closer to today’s Palaeo-Siberian cline.

However, the modern genetic picture was probably fully developed only in historic times, when Samoyedic and Ugric languages expanded to the north, only in part admixing further with Palaeo-Siberian-speaking nomads from the Circum-Arctic region (see here for a recent history of Samoyedic Enets), which justifies their more recent radical ‘northern shift’.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

This late acquisition of the language by Palaeo-Siberian nomads (without much population replacement) also justifies the wide PCA clusters of very small Siberian populations. See for example in the PCA from Tambets et al. (2018):

uralic-ugric-samoyedic-modern-clines
Approximate Ugric and Samoyedic clines (exluding apparent outliers). Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

For their relationship with modern Mansi, we have information on Hungarian conqueror populations from Neparáczki et al. (2018):

Moreover, Y, B and N1a1a1a1a Hg-s have not been detected in Finno-Ugric populations [80–84], implying that the east Eurasian component of the Conquerors and Finno-Ugric people are probably not directly related. The same inference can be drawn from phylogenetic data, as only two Mansi samples appeared in our phylogenetic trees on the side branches (S1 Fig, Networks; 1, 4) suggesting that ancestors of the Mansis separated from Asian ancestors of the Conquerors a long time ago. This inference is also supported by genomic Admixture analysis of Siberian and Northeastern European populations [85], which revealed that Mansis received their eastern Siberian genetic component approximately 5–7 thousand years ago from ancestors of modern Even and Evenki people. Most likely the same explanation applies to the Y-chromosome N-Tat marker which originated from China [86,87] and its subclades are now widespread between various language groups of North Asia and Eastern Europe [88].

The genetic picture of Hungarians (their formed cline with Mansi and their haplogroups) may be quite useful for the true admixture found originally in Mansi peoples at the beginning of the Iron Age. By now it is clear even from modern populations that Steppe_MLBA ancestry accompanied the Uralic expansion to the east (roughly approximated in the graphic with Afanasievo_EBA + Bichon_LP EasternHG_M):

siberian-population-expansions
Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups. From Sikora et al. (2018).

Continue reading the final post of the series: Corded Ware—Uralic (IV): Haplogroups R1a and N in Finno-Ugric and Samoyedic.

Related

  • The traditional multilingualism of Siberian populations
  • Iron Age bottleneck of the Proto-Fennic population in Estonia
  • Y-DNA haplogroups of Tuvinian tribes show little effect of the Mongol expansion
  • Corded Ware—Uralic (I): Differences and similarities with Yamna
  • Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups
  • The Iron Age expansion of Southern Siberian groups and ancestry with Scythians
  • Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)
  • Mitogenomes from Avar nomadic elite show Inner Asian origin
  • On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  • Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia
  • Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region
  • The concept of “Outlier” in Human Ancestry (III): Late Neolithic samples from the Baltic region and origins of the Corded Ware culture
  • Genetic prehistory of the Baltic Sea region and Y-DNA: Corded Ware and R1a-Z645, Bronze Age and N1c
  • More evidence on the recent arrival of haplogroup N and gradual replacement of R1a lineages in North-Eastern Europe
  • Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population
  • New Ukraine Eneolithic sample from late Sredni Stog, near homeland of the Corded Ware culture
  • “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

    dzudzuana_pca-large

    Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

    An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

    anatolia-neolithic-steppe-eneolithic
    Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

    Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

    1. Samara to Early Khvalynsk

    The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

    Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

    PCA-caucasus-steppe-samara

    This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

    steppe-maykop-admixture

    NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

    2. Early Khvalynsk expansion

    We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

    We also have indirect data. First, there is the PCA with outliers:

    PCA-khvalynsk-steppe

    Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

    Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

    3. Proto-Corded Ware expansion

    It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

    Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

    Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

    NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

    PCA-sredni-stog-steppe

    The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

    steppe-ancestry-admixture-sredni-stog

    4. Repin / Early Yamna expansion

    We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

    afanasevo-admixture

    Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

    PCA-repin-yamna

    This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

    yamnaya-admixture

    5. Corded Ware

    Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

    PCA-latvia-ln-steppe

    We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

    sintashta-poltavka-andronovo-admixture

    The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

    NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

    steppe-ancestry-admixture-latvia

    A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

    NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

    Conclusion

    Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

    This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

    If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

    What’s (so much published) ancient DNA useful for, exactly?

    Related

    Eurasian steppe chariots and social complexity during the Bronze Age

    ba-eurasia-abashevo-sintashta

    New paper (behind paywall), Eurasian Steppe Chariots and Social Complexity During the Bronze Age, by Chechushkov and Epimakhov, Journal of World Prehistory (2018).

    Interesting excerpts (emphasis mine):

    Nowadays, archaeologists distinguish at least three Bronze Age pictorial traditions on the basis of style, and demonstrate some parallels in the material culture. The earliest is the Yamna–Afanasievo tradition, which is characterized by the symbolic depiction of sun-headed men and animals. Another tradition is a record of the Andronovo people (Kuzmina 1994; Novozhenov 2012), who depicted in it their everyday life and the importance of wheeled transport (Novozhenov 2014a, b). Although petroglyphs on open-air natural rock surfaces are obviously hard to date, the occurrence of similar carvings on stone grave stelae within some Andronovo culture cemeteries (such as the Tamgaly Cemetery and the Samara Cemetery in Sary Arka, Kazakhstan) provide a level of chronological control. Finally, the finds of petroglyphs depicting chariots in the burials of the Karasuk culture (c. 1400–800 BC) in southern Siberia and Kazakhstan allow us to distinguish the latest tradition (Novozhenov 2014b).

    petroglyphs-chariot
    “Depictions of a chariot on the petroglyphs, the Koksu River valley, Kazakhstan (redrawn after Novozhenov 2012, p. 45, with the author’s permission)”

    The site of Sintashta in the steppe zone of the Southern Trans-Urals (the eastern side of the Ural Mountains) was excavated in the 1970s and yielded abundant Bronze Age material, including unparalleled evidence of six vehicles buried in graves, each with two spoked wheels accompanied by cheekpieces and sacrificial horses (Gening 1977; Gening et al. 1992). (…) Chariot remains from the Middle and Late Bronze Age in the southern Urals are quite abundant compared with early chariot remains from other parts of the world, and allow statistical analysis.

    In contrast, only two wagons and one sledge were found in the Royal Cemetery of Ur (Woolley 1965), and only ten actual chariots and their parts are known from tombs of the New Kingdom of Egypt (1550–1069 BC) (Littauer and Crouwel 1985; James 1974; Herold 2006), with the rest of the information on the Near Eastern chariots coming in other forms. Two chariots and the wheels of a third were also found in the Lchashen Cemetery in Armenia (Yesayan 1960), dated to 1400–1300 BC (Pogrebova 2003, p. 397), and bronze models of chariots were found in the burial sites of neighboring Transcaucasia (Brileva 2012). Over one hundred chariots have been discovered in Shang period tombs in China, but none dates before 1200 BC (Wu 2013).

    Sintashta–Petrovka chariots were functional and used for carrying passengers and, probably, for warfare. Otherwise, one would not expect to see consistency in the measurements and technological solutions (…)

    (1) The technological solutions used to construct a wheel and its dimensions are derived from the measurements of the ‘wheel pits’. They allow such analysis because some had the actual imprints of felloes and spokes. (…) Due to the imprints of spokes and felloes left in the soil, it is clear that the Bronze Age people knew of and utilized the spoked wheel.

    (2) Wheel track is the distance between the centerlines of two wheels on an axle. It can be estimated on the basis of the distance between the central axes of all known wheel pits, in addition to direct measurement of the eight known cases of wheel imprints.(…) the majority of findings with a mean wheel track of 136 ± 12 cm might represent either a single-driver chariot or a vehicle with two passengers who accessed the vehicle from the rear, since one extreme of this wheel-track provides enough space for a standing person, while another is suitable for a driver and passenger.

    (3) The means of traction is the element that connects the vehicle to the yoke of the draft animals (Littauer et al. 2002, p. xvii). It is needed for a vehicle to be pulled by harnessed animals and is constructed as a central draft pole located between the animals, or shafts located on the external sides of the animals, called thills. (…) Using burial chamber size as a proxy, chariots had a maximum estimated length of 327 ± 20 cm, and a maximum estimated width of 205 ± 21 cm. These dimensions suggest a great similarity to six chariots of Tutankhamun that have maximum dimensions of 260 × 236 cm (Crouwel 2013).

    bridle-chariot-horses
    Elements of Bronze Age chariots. Image from Chechushkov (2007).

    Associated individuals

    suggest that this person was a chief, and that the burial context illustrates his significance in the social life of the local community (Logvin and Shevnina 2008, p. 193). However, it also suggests the diverse role of the Sintashta–Petrovka elites, who were likely engaged in a number of different activities, such as warfare, craft production, food production, and a broad social life.

    (…) while weapons are not universally present with chariots, they are present much more often than in non-chariot burials: more than 50% of the chariot burials are accompanied by weapons, with a clear predominance of projectile arms.

    The creation, utilization, and maintenance of the chariots would have required a number of important skills, and some degree of standardization in manufacturing chariots might be related to a very small number of chariot makers. This means that the Sintashta–Petrovka craftsmen were ‘attached specialists’ and made their products following the orders and desires of those who were interested in the competitive use of chariots. Hence, the social group interested in producing and maintaining chariots sponsored all of those processes. While the nature of this social group is unclear, it is reasonable to hypothesize that it could be a group of military elites characterized by aggrandizing behavior. These people shared military identities and values, but also belonged to bigger collectives, presumably diverse kin groups. The competition between these collectives for resources, power, and prestige created the chariot complex.

    Evolution

    Analyzing horse-headed knobs, Kovalevskaya demonstrates the evolution of horse tack from a simple muzzle to a bridle with bits during the 5th and 4th millennia BC (Kovalevskaya 2014). Her analysis correlates well with a study of pathologies in horse teeth conducted by Brown and Anthony, who suggest the appearance of bits and horseback riding at Botai and Tersek (Anthony et al. 2006). Cheekpieces became the next necessary and logical step in the evolution of means of horse control. Their appearance together with the wheeled vehicles is not a coincidence, but the development of preceding tools. After the year 2000 BC, cheekpieces often occur together with sacrificed horses—13 out of 15 Sintashta burials with cheekpieces also contain horse bones (Epimakhov and Berseneva 2012)—showing evolution in the role of horses.

    The whole paper offers an interesting summary of cultural and population events in the Pontic-Caspian steppes since the Early Yamna period. Also, horse-headed knobs!

    NOTE. You can find similar information in other (free) papers from Chechushkov in his account in Academia.edu.

    Related

    Early Iranian steppe nomadic pastoralists also show Y-DNA bottlenecks and R1b-L23

    New paper (behind paywall) Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads, by Krzewińska et al. Science (2018) 4(10):eaat4457.

    Interesting excerpts (emphasis mine, some links to images and tables deleted for clarity):

    Late Bronze Age (LBA) Srubnaya-Alakulskaya individuals carried mtDNA haplogroups associated with Europeans or West Eurasians (17) including H, J1, K1, T2, U2, U4, and U5 (table S3). In contrast, the Iron Age nomads (Cimmerians, Scythians, and Sarmatians) additionally carried mtDNA haplogroups associated with Central Asia and the Far East (A, C, D, and M). The absence of East Asian mitochondrial lineages in the more eastern and older Srubnaya-Alakulskaya population suggests that the appearance of East Asian haplogroups in the steppe populations might be associated with the Iron Age nomads, starting with the Cimmerians.

    scythian-cimmerian-sarmatian-y-dna-mtdna

    #UPDATE (5 OCT 2018): Some Y-SNP calls have been published in a Molgen thread, with:

    • Srubna samples have possibly two R1a-Z280, three R1a-Z93.
    • Cimmerians may not have R1b: cim357 is reported as R1a.
    • Some Scythians have low coverage to the point where it is difficult to assign even a reliable haplogroup (they report hg I2 for scy301, or E for scy197, probably based on some shared SNPs?), but those which can be reliably assigned seem R1b-Z2103 [hence probably the use of question marks and asterisks in the table, and the assumption of the paper that all Scythians are R1b-L23]:
      • The most recent subclade is found in scy305: R1b-Z2103>Z2106 (Z2106+, Y12538/Z8131+)
      • scy304: R1b-Z2103 (M12149/Y4371/Z8128+).
      • scy009: R1b-P312>U152>L2 (P312+, U152?, L2+)?
  • Sarmatians are apparently all R1a-Z93 (including tem002 and tem003);
  • You can read here the Excel file with (some probably as speculative as the paper’s own) results.

    About the PCA

    1. Srubnaya-Alakulskaya individuals exhibited genetic affinity to northern and northeastern present-day Europeans, and these results were also consistent with outgroup f3 statistics.
    2. The Cimmerian individuals, representing the time period of transition from Bronze to Iron Age, were not homogeneous regarding their genetic similarities to present-day populations according to the PCA. F3 statistics confirmed the heterogeneity of these individuals in comparison with present-day populations
    3. The Scythians reported in this study, from the core Scythian territory in the North Pontic steppe, showed high intragroup diversity. In the PCA, they are positioned as four visually distinct groups compared to the gradient of present-day populations:
      1. A group of three individuals (scy009, scy010, and scy303) showed genetic affinity to north European populations (…).
      2. A group of four individuals (scy192, scy197, scy300, and scy305) showed genetic similarities to southern European populations (…).
      3. A group of three individuals (scy006, scy011, and scy193) located between the genetic variation of Mordovians and populations of the North Caucasus (…). In addition, one Srubnaya-Alakulskaya individual (kzb004), the most recent Cimmerian (cim357), and all Sarmatians fell within this cluster. In contrast to the Scythians, and despite being from opposite ends of the Pontic-Caspian steppe, the five Sarmatians grouped close together in this cluster.
      4. A group of three Scythians (scy301, scy304, and scy311) formed a discrete group between the SC and SE and had genetic affinities to present-day Bulgarian, Greek, Croatian, and Turkish populations (…).
      5. Finally, one individual from a Scythian cultural context (scy332) is positioned outside of the modern West Eurasian genetic variation (Fig. 1C) but shared genetic drift with East Asian populations.
    scythian-cimmerian-pca
    Radiocarbon ages and geographical locations of the ancient samples used in this study. Figure panels presented (Left) Bar plot visualizing approximate timeline of presented and previously published individuals. (Right) Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals (table S5) in relation to modern reference panel from the Human Origins data set (41).

    Cimmerians

    The presence of an SA component (as well as finding of metals imported from Tien Shan Mountains in Muradym 8) could therefore reflect a connection to the complex networks of the nomadic transmigration patterns characteristic of seasonal steppe population movements. These movements, although dictated by the needs of the nomads and their animals, shaped the economic and social networks linking the outskirts of the steppe and facilitated the flow of goods between settled, semi-nomadic, and nomadic peoples. In contrast, all Cimmerians carried the Siberian genetic component. Both the PCA and f4 statistics supported their closer affinities to the Bronze Age western Siberian populations (including Karasuk) than to Srubnaya. It is noteworthy that the oldest of the Cimmerians studied here (cim357) carried almost equal proportions of Asian and West Eurasian components, resembling the Pazyryks, Aldy-Bel, and Iron Age individuals from Russia and Kazakhstan (12). The second oldest Cimmerian (cim358) was also the only one with both uniparental markers pointing toward East Asia. The Q1* Y chromosome sublineage of Q-M242 is widespread among Asians and Native Americans and is thought to have originated in the Altai Mountains (24)

    Scythians

    In contrast to the eastern steppe Scythians (Pazyryks and Aldy-Bel) that were closely related to Yamnaya, the western North Pontic Scythians were instead more closely related to individuals from Afanasievo and Andronovo groups. Some of the Scythians of the western Pontic-Caspian steppe lacked the SA and the East Eurasian components altogether and instead were more similar to a Montenegro Iron Age individual (3), possibly indicating assimilation of the earlier local groups by the Scythians.

    Toward the end of the Scythian period (fourth century CE), a possible direct influx from the southern Ural steppe zone took place, as indicated by scy332. However, it is possible that this individual might have originated in a different nomadic group despite being found in a Scythian cultural context.

    scythian-alakul-variation
    Genetic diversity and ancestral components of Srubnaya-Alakulskaya population.(here called “Srubnaya”): (Left) Mean f3 statistics for Srubnaya and other Bronze Age populations. Srubnaya group was color-coded the same as with PCA. (Right) Pairwise mismatch estimates for Bronze Age populations.

    Comments

    I am surprised to find this new R1b-L23-based bottleneck in Eastern Iranian expansions so late, but admittedly – based on data from later times in the Pontic-Caspian steppe near the Caucasus – it was always a possibility. The fact that pockets of R1b-L23 lineages remained somehow ‘hidden’ in early Indo-Iranian communities was clear already since Narasimhan et al. (2018), as I predicted could happen, and is compatible with the limited archaeological data on Sintashta-Potapovka populations outside fortified settlements. I already said that Corded Ware was out of Indo-European migrations then, this further supports it.

    Even with all these data coming just from a north-west Pontic steppe region (west of the Dnieper), these ‘Cimmerians’ – or rather the ‘Proto-Scythian’ nomadic cultures appearing before ca. 800 BC in the Pontic-Caspian steppes – are shown to be probably formed by diverse peoples from Central Asia who brought about the first waves of Siberian ancestry (and Asian lineages) seen in the western steppes. You can read about a Cimmerian-related culture, Anonino, key for the evolution of Finno-Permic peoples.

    Also interesting about the Y-DNA bottleneck seen here is the rejection of the supposed continuous western expansions of R1a-Z645 subclades with steppe tribes since the Bronze Age, and thus a clearest link of the Hungarian Árpád dynasty (of R1a-Z2123 lineage) to either the early Srubna-related expansions or – much more likely – to the actual expansions of Hungarian tribes near the Urals in historic times.

    NOTE. I will add the information of this paper to the upcoming post on Ugric and Samoyedic expansions, and the late introduction of Siberian ancestry to these peoples.

    A few interesting lessons to be learned:

    • Remember the fantasy story about that supposed steppe nomadic pastoralist society sharing different Y-DNA lineages? You know, that Yamna culture expanding with R1b from Khvalynsk-Repin into the whole Pontic-Caspian steppes and beyond, developing R1b-dominated Afanasevo, Bell Beaker, and Poltavka, but suddenly appearing (in the middle of those expansions through the steppes) as a different culture, Corded Ware, to the north (in the east-central European forest zone) and dominated by R1a? Well, it hasn’t happened with any other steppe migration, so…maybe Proto-Indo-Europeans were that kind of especially friendly language-teaching neighbours?
    • Remember that ‘pure-R1a’ Indo-Slavonic society emerged from Sintashta ca. 2100 BC? (or even Graeco-Aryan??) Hmmmm… Another good fantasy story that didn’t happen; just like a central-east European Bronze Age Balto-Slavic R1a continuity didn’t happen, either. So, given that cultures from around Estonia are those showing the closest thing to R1a continuity in Europe until the Iron Age, I assume we have to get ready for the Gulf of Finland Balto-Slavic soon.
    • Remember that ‘pure-R1a’ expansion of Indo-Europeans based on the Tarim Basin samples? This paper means ipso facto an end to the Tarim Basin – Tocharian artificial controversy. The Pre-Tocharian expansion is represented by Afanasevo, and whether or not (Andronovo-related) groups of R1a-Z645 lineages replaced part or eventually all of its population before, during, or after the Tocharian expansion into the Tarim Basin, this does not change the origin of the language split and expansion from Yamna to Central Asia; just like this paper does not change the fact that these steppe groups were Proto-Iranian (Srubna) and Eastern Iranian (Scythian) speakers, regardless of their dominant haplogroup.
    • And, best of all, remember the Copenhagen group’s recent R1a-based “Indo-Germanic” dialect revival vs. the R1b-Tocharo-Italo-Celtic? Yep, they made that proposal, in 2018, based on the obvious Yamna—R1b-L23 association, and the desire to support Kristiansen’s model of Corded Ware – Indo-European expansion. Pepperidge Farm remembers. This new data on Early Iranians means another big NO to that imaginary R1a-based PIE society. But good try to go back to Gimbutas’ times, though.
    olander-classificatoin
    Olander’s (2018) tree of Indo-European languages. Presented at Languages and migrations in pre-historic Europe (7-12 Aug 2018)

    Do you smell that fresher air? It’s the Central and East European post-Communist populist and ethnonationalist bullshit (viz. pure blond R1a-based Pan-Nordicism / pro-Russian Pan-Slavism / Pan-Eurasianism, as well as Pan-Turanism and similar crap from the 19th century) going down the toilet with each new paper.

    #EDIT (5 OCT 2018): It seems I was too quick to rant about the consequences of the paper without taking into account the complexity of the data presented. Not the first time this impulsivity happens, I guess it depends on my mood and on the time I have to write a post on the specific work day…

    While the data on Srubna, Cimmerians, and Sarmatians shows clearer Y-DNA bottlenecks (of R1a-Z645 subclades) with the new data, the Scythian samples remain controversial, because of the many doubts about the haplogroups (although the most certain cases are R1b-Z2103), their actual date, and cultural attribution. However, I doubt they belong to other peoples, given the expansionist trends of steppe nomads before, during, and after Scythians (as shown in statistical analyses), so most likely they are Scythian or ‘Para-Scythian’ nomadic groups that probably came from the east, whether or not they incorporated Balkan populations. This is further supported by the remaining R1b-P312 and R1b-Z2103 populations in and around the modern Eurasian steppe region.

    scythian-peoples-balkans
    Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe groups Basarabi and Scythians. Ďurkovič et al. (2018).

    You can find an interesting and detailed take on the data published (in Russian) at Vol-Vlad’s LiveJournal (you can read an automatic translation from Google). I think that post is maybe too detailed in debunking all information associated to the supposed Scythians – to the point where just a single sample seems to be an actual Scythian (?!) -, but is nevertheless interesting to read the potential pitfalls of the study.

    Related