Biparental inheritance of mitochondrial DNA in humans

mtdna-inheritance-paternal

New paper Biparental Inheritance of Mitochondrial DNA in Humans, by Luo et al. PNAS (2018).

Interesting excerpts (emphasis mine):

Abstract

Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent tooffspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.

An example

Compared with Family A, a strikingly similar mtDNA transmission pattern was demonstrated in Families B and C. Taking Family B for illustration, II-3 having 29 heteroplasmic and seven homoplasmic variants should have inherited mtDNA from both his father (I-1, haplogroup of K1b2a) and his mother (I-10, haplogroup of H), who were supposed to possess 34 and nine homoplasmic variants, respectively. II-3 further transmitted his mtDNA that he inherited from I-1 to his son (III-2), who also inherited all of his mother’s mtDNA (II-30, carrying 34 variants and a haplogroup of T2a1a). However, III-2’s sister (III-1) and half-brother (III-5) only inherited the maternal mtDNA. Fresh blood sampling and repeated mtDNA sequencing in a second independent laboratory were also performed to rule out the possibility of sample mix-up for III-2 (III-2, column F-G and H-I). Additionally, these samples were further verified using Pacific Bio single molecular sequencing (see Materials and Methods) and by restriction fragment length polymorphism (RFLP) analysis of Family A, and these results were fully consistent with the previous sequencing.

mtdna-inheritance
Biparental mtDNA inheritance pattern shown in Family B. (A) Pedigree of Family B. The black filled symbols indicate the two family members (II-3 and III-2) showing biparental mtDNA transmission. The IDs of five family members tested by whole mtDNA sequencing analysis have been underlined in the pedigree. (B) Schematic of the mtDNA genotype defined by the homoplasmic and/or heteroplasmic variants aligned from the reference mitochondrial genome. Blue bars represent the genotype of paternally derived mtDNA, whereas purple-red and orange-red bars represent maternally derived mtDNA. Entries labeled (D) represent deduced mtDNA genotypes. (C) Summary of the haplogroup and mtDNA variant numbers in Family B.

A Resurgence of the Paternal Transmission Hypothesis

The results presented in this paper make a robust case for paternal transmission of mtDNA. Here, we report biparental mtDNA inheritance (either directly or indirectly) in 17 members in three multigeneration families. Thirteen of these individuals were identified directly by sequencing of the mitochondrial genome, whereas four could be inferred based on preexisting maternal heteroplasmy caused by biparental inheritance in the previous generation.

To further confirm these remarkable results and to exclude the possibility of sample mix-up and/or contamination, the whole mtDNA sequencing procedure was repeated independently in at least two different laboratories by different laboratory technicians with newly obtained blood samples. All results were reproducible, indicating no artifacts or contamination exist. More importantly, the multiple mtDNA variants that were paternally transmitted differ in both number and position among each of these three families as well as the related haplogroup (R0a1 in Family A, K1b2a in Family B, and K2b1a1a in Family C, respectively), providing two distinct forms of evidence supporting transmission of the paternal mtDNA.

Therefore, we have unequivocally demonstrated the existence of biparental mtDNA inheritance as evidenced by the high number and level of mtDNA heteroplasmy in these three unrelated multigeneration families. Most interestingly, the mixed haplogroups in these samples are very reminiscent of the mixed haplogroups found in the 20 studies that were dismissed by Bandelt et al. as due to contamination or sample mix-up. One is forced to wonder how many other instances of individuals with biparental mtDNA inheritance have been dismissed as technical errors, and whether Schwartz and Vissing’s original discovery has really been given the proper follow-up that it deserves. We suspect that these results will initiate a broader reassessment of the topic.

We propose that the paternal mtDNA transmission in these families should be accompanied by segregation of a mutation in one nuclear gene involved in paternal mitochondrial elimination and that there is a high probability that the gene in question operates through one of the pathways identified above.

If I have to be honest, I was stuck with the paternal transmission hypothesis which we were taught in class long ago. I didn’t know it was controversial or dismissed, I just thought it was really exceptional, and I never thought about learning more on the subject.

This paper proves it may be more complicated than that, especially for population genomics purposes, because biparental mtDNA transmission with autosomal dominant-like inheritance puts a serious barrier to a general, simplistic interpretation of mtDNA.

I don’t think it is a blow to all interpretations based on mtDNA, though, because the traditional interpretation should often work statistically. However, one has to be always very careful when saying “if it’s mtDNA from region X, it’s about female exogamy”, especially when samples are from neighbouring regions and similar periods.

The term “uniparental marker” for mtDNA is obviously misleading and shouldn’t be used, and many research papers and interpretations taking mtDNA as strictly uniparental should be taken with a pinch of salt.

Related

A very “Yamnaya-like” East Bell Beaker from France, probably R1b-L151

bell-beaker-expansion

Interesting report by Bernard Sécher on Anthrogenica, about the Ph.D. thesis of Samantha Brunel from Institut Jacques Monod, Paris, Paléogénomique des dynamiques des populations humaines sur le territoire Français entre 7000 et 2000 (2018).

NOTE. You can visit Bernard Sécher’s blog on genetic genealogy.

A summary from user Jool, who was there, translated into English by Sécher (slight changes to translation, and emphasis mine):

They have a good hundred samples from the North, Alsace and the Mediterranean coast, from the Mesolithic to the Iron Age.

There is no major surprise compared to the rest of Europe. On the PCA plot, the Mesolithic are with the WHG, the early Neolithics with the first farmers close to the Anatolians. Then there is a small resurgence of hunter-gatherers that moves the Middle Neolithics a little closer to the WHGs.

From the Bronze Age, they have 5 samples with autosomal DNA, all in Bell Beaker archaeological context, which are very spread on the PCA. A sample very high, close to the Yamnaya, a little above the Corded Ware, two samples right in the Central European Bell Beakers, a fairly low just above the Neolithic package, and one last full in the package. The most salient point was that the Y chromosomes of their 12 Bronze Age samples (all Bell Beakers) are all R1b, whereas there was no R1b in the Neolithic samples.

Finally they have samples of the Iron Age that are collected on the PCA plot close to the Bronze Age samples. They could not determine if there is continuity with the Bronze Age, or a partial replacement by a genetically close population.

PCA-caucasus-yamna
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are interesting samples; In red, likely position of late Yamna Hungary / early East Bell Beakers An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The sample with likely high “steppe ancestry“, clustering closely to Yamna (more than Corded Ware samples) is then probably an early East Bell Beaker individual, probably from Alsace, or maybe close to the Rhine Delta in the north, rather than from the south, since we already have samples from southern France from Olalde et al. (2018) with high Neolithic ancestry, and samples from the Rhine with elevated steppe ancestry, but not that much.

This specific sample, if confirmed as one of those reported as R1b (then likely R1b-L151), as it seems from the wording of the summary, is key because it would finally link Yamna to East Bell Beaker through Yamna Hungary, all of them very “Yamnaya-like”, and therefore R1b-L151 (hence also R1b-L51) directly to the steppe, and not only to the Carpathian Basin (that is, until we have samples from late Repin or West Yamna…)

NOTE. The only alternative explanation for such elevated steppe ancestry would be an admixture between a ‘less Yamnaya-like’ East Bell Beaker + a Central European Corded Ware sample like the Esperstedt outlier + drift, but I don’t think that alternative is the best explanation of its position in the PCA closer to Yamna in any of the infinite parallel universes, so… Also, the sample from Esperstedt is clearly a late outlier likely influenced by Yamna vanguard settlers from Hungary, not the other way round…

Unexpectedly, then, fully Yamnaya-like individuals are found not only in Yamna Hungary ca. 3000-2500 BC, but also among expanding East Bell Beakers later than 2500 BC. This leaves us with unexplained, not-at-all-Yamnaya-like early Corded Ware samples from ca. 2900 BC on. An explanation based on admixture with locals seems unlikely, seeing how Corded Ware peoples continue a north Pontic cluster, being thus different from Yamna and their ancestors since the Neolithic; and how they remained that way for a long time, up to Sintashta, Srubna, Andronovo, and even later samples… A different, non-Indo-European community it is, then.

olalde_pca2
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions. In red, likely zone of Yamna Hungary and reported early East Bell Beaker individual from France.

Let’s wait and see the Ph.D. thesis, when it’s published, and keep observing in the meantime the absurd reactions of denial, anger, bargaining, and depression (stages of grief) among BBC/R1b=Vasconic and CWC/R1a=Indo-European fans, as if they had lost something (?). Maybe one of these reactions is actually the key to changing reality and going back to the 2000s, who knows…

Featured image: initial expansion of the East Bell Beaker Group, by Volker Heyd (2013).

Related

A Late Proto-Indo-European self-learning language course

guidebook-ie

Fernando López-Menchero has just published the first part of his A Practical Guidebook for Modern Indo-European Explorers (2018).

It is a great resource to learn Late Proto-Indo-European as a modern language, from the most basic level up to an intermediate level (estimated B1–B2, depending on one’s previous background in Indo-European and classical languages).

Instead of working on unending details and discussions of the language reconstruction, it takes Late Proto-Indo-European as a learned, modern language that can be used for communication, so that people not used to study with university manuals on comparative grammar can learn almost everything necessary about PIE in the most comfortable way.

(see also the announcement on Facebook)

NOTE. Even though we help each other with our works, Fernando is not the least interested in genetics (the “steppe ancestry” or the “R1b–R1a” question, or any other issue involving population genomics), or even too much about archaeology or the homeland question (although he uses the mainstream view that Late Proto-Indo-Europeans expanded from Yamna). His only interest is language reconstruction, and I doubt you can find anything else in his works but pure love for linguistics, including this one.

I was starting to call his project of a self-learning method The Winds of Winter, seeing how it appeared to be always in the making, but never actually finished. It seems that the publication of this first part will make my revision of the Indo-European demic diffusion model become the true The Winds of Winter here, in this our common series of books on Late Proto-Indo-European and its dialects…

As you can see, I am publishing less and less in this blog lately, and it’s all just to be able to finish a revision in time (that is, before more new genetic research compels me to delay it again…). It is a very thorough revision, so those of you who liked it are not going to be disappointed.

I hoped to have it ready for mid-December, but, as it turns out, due to different unexpected delays, I am now more confident about a mid-January / February date, and that only if everything goes well.

Related

Genetic landscape and past admixture of modern Slovenians

slovenes-snp

Open access Genetic Landscape of Slovenians: Past Admixture and Natural Selection Pattern, by Maisano Delser et al. Front. Genet. (2018).

Interesting excerpts (emphasis mine):

Samples

Overall, 96 samples ranging from Slovenian littoral to Lower Styria were genotyped for 713,599 markers using the OmniExpress 24-V1 BeadChips (Figure 1), genetic data were obtained from Esko et al. (2013). After removing related individuals, 92 samples were left. The Slovenian dataset has been subsequently merged with the Human Origin dataset (Lazaridis et al., 2016) for a total of 2163 individuals.

Y chromosome

First, Y chromosome genetic diversity was assessed. A total of 52 Y chromosomes were analyzed for 195 SNPs. The majority of individuals (25, 48.1%) belong to the haplogroup R1a1a1a (R-M417) while the second major haplogroup is represented by R1b (R-M343) including 15 individuals (28.8%). Twelve samples are assigned to haplogroup I (I M170): five and two samples belong to haplogroup I2a (I L460) and I1 (I M253), respectively, while the remaining five samples did not have enough information to be further assigned.

pca-slovenes
PCA of Slovenian samples with European populations (Slovenian_HO_EU dataset). For details regarding the populations included, see Supplementary Table 1.

PCA

Considering the unbalanced sample size of the Slovenian population compared to the other populations included in the dataset, a subset of 20 Slovenian individuals randomly sampled was used.

All Slovenian samples group together with Hungarians, Czechs, and some Croatians (“Central-Eastern European” cluster) as also suggested by the PCA. All Basque individuals with few French and Spanish cluster together (“Basque” cluster) while a “Northern-European” cluster is made of the majority of French, English, Icelanders, Norwegians, and Orcadians. Five populations contributed to the “Eastern-European” cluster including Belarusians, Estonians, Lithuanians, Mordovians, and Russians. Western and South Europe is split into two cluster: the first (“Western European” cluster) includes all Spanish individuals, few French, and some Italians (North Italy) while the second (“Southern-European” cluster) groups Sicilians, Greeks, some Croatians, Romanians, and some Italians (North Italy).

Admixture Pattern and Migration

admixture-slovenians
Modified image, from the paper (Central-East Europeans marked). Unsupervised admixture analysis of Slovenians. Results for K = 5 are showed as it represents the lowest cross-validation error. Slovenian samples show an admixture pattern similar to the neighboring populations such as Croatians and Hungarians. The major ancestral components are: the blue one which is shared with Lithuanians and Russians, followed by the dark green one that is mostly present in Greek samples and the light blue which characterizes Orcadians and English. For population acronyms see Supplementary Table 1.

All Slovenian individuals share common pattern of genetic ancestry, as revealed by ADMIXTURE analysis. The three major ancestry components are the North East and North West European ones (light blue and dark blue, respectively, Figure 3), followed by a South European one (dark green, Figure 3). Contribution from the Sardinians and Basque are present in negligible amount. The admixture pattern of Slovenians mimics the one suggested by the neighboring Eastern European populations, but it is different from the pattern suggested by North Italian populations even though they are geographically close.

Using ALDER, the most significant admixture event was obtained with Russians and Sardinians as source populations and it happened 135 ± 9.31 generations ago (Z-score = 11.54). (…) When tested for multiple admixture events (MALDER), we obtained evidence for one admixture event 165.391 ± 17.1918 generations ago corresponding to ∼2620 BCE (CI: 3101–2139) considering a generation time of 28 years (Figure 4), with Kalmyk and Sardinians as sources.

We then modeled the Slovenian population as target of admixture of ancient individuals from Haak et al. (2015) while computing the f3(Ancient 1, Ancient 2, Slovenian) statistic. The most significant signal was obtained with Yamnaya and HungaryGamba_EN (Z-score = -10.66), followed by MA1 with LBK_EN (Z-score -9.7) and Yamnaya with Stuttgart (Z-score = -8.6) used as possible source populations (Supplementary Figure 5).

We found a significant signal of admixture by using both pairs as ancient sources. Specifically, for the pair Yamnaya and Hungary_EN the admixture event is dated at 134.38 ± 23.69 generations ago (Z-score = 5.26, p-value of 1.5e-07) while for Yamnaya and LBK_EN at 153.65 ± 22.19 generations ago (Z-score = 6.92, p-value 4.4e-12). Outgroup f3 with Yamnaya put Slovenian population close to Hungarians, Czechs, and English, indicating a similar shared drift between these population with the Steppe populations (Supplementary Figure 6).

admixture-events-slovenes
Admixture events identified with ALDER and MALDER. The gray dots represent significant admixture events detected with ALDER using Slovenians as target, the solid line represents the single admixture event detected using MALDER, dashed lines represent the confidence interval. Only the significant results after multiple testing correction are plotted. For ALDER results see Supplementary Table 5.

Not that any of this would come as a surprise, but:

  • R1a-M458 and some R1a-Z280 (xR1a-Z92) lineages (found among Slovenes) were associated with the Slavic expansion, likely with the Prague-Korchak culture, originally stemming probably from peoples of the Lusatian culture. Other R1a-Z280 lineages remained associated with Uralic peoples, and some became Slavicized only recently.
  • PCA keeps supporting the common cluster of certain West, South, and East Slavs in a “Central-Eastern European” cluster, distinct from the “North-Eastern European” cluster formed by modern Finno-Ugrians, as well as ancient Finno-Ugrians of north-eastern Europe who were only recently Slavicized.
  • Admixture supports the same ancient ‘western’ (a core West+South+East Slavic) cluster, and the admixture event with Yamna + Hungary_EN is logically a proxy for Yamna Hungary being at the core of ancestral Central-East population movements related to Bell Beakers in the mid- to late 3rd millennium.

The theory that East Slavs are at the core of the Slavic expansion makes no sense, in terms of archaeology (see Florin Curta’s dismissal of those recent eastern ‘Slavic’ finds, his commentary on 19th century Pan-Slavic crap, or his book on Slavic migrations), in terms of ancient DNA (the earliest Slavs sampled cluster with modern West Slavs, distant from the steppe cluster, unlike Finno-Ugrians), or in terms of modern DNA.

I don’t know where exactly this impulse for the theory of Russia being the cradle of Slavs comes from today (although there are some obvious political trends to revive 19th c. ideas), but it was always clear for everyone, including Russians, that East Slavs had migrated to the east and north and assimilated indigenous Finno-Ugrians, apart from Turkic-, Iranian-, and Caucasian-speaking peoples to the east. Genetics is only confirming what was clear from other disciplines long ago.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

Related

R1a-Z280 lineages in Srubna; and first Palaeo-Balkan R1b-Z2103?

herodotus-world-map

Scythian samples from the North Pontic area are far more complex than what could be seen at first glance. From the new Y-SNP calls we have now thanks to the publications at Molgen (see the spreadsheet) and in Anthrogenica threads, I think this is the basis to work with:

NOTE. I understand that writing a paper requires a lot of work, and probably statistical methods are the main interest of authors, editors, and reviewers. But it is difficult to comprehend how any user of open source tools can instantly offer a more complex assessment of the samples’ Y-SNP calls than professionals working on these samples for months. I think that, by now, it should be clear to everyone that Y-DNA is often as important (sometimes even more) than statistical tools to infer certain population movements, since admixture can change within few generations of male-biased migrations, whereas haplogroups can’t…

Srubna

Srubna-Andronovo samples are as homogeneous as they always were, dominated by R1a-Z645 subclades and CWC-related (steppe_MLBA) ancestry.

The appearance of one (possibly two) R-Z280 lineages in this mixed Srubna-Alakul region of the southern Urals and this early (1880-1690 BC, hence rather Pokrovka-Alakul) points to the admixture of R1a-Z93 and R1a-Z280 already in Abashevo, which also explains the wide distribution of both subclades in the forest zones of Central Asia.

If Abashevo is the cornerstone of the Indo-Iranian / Uralic community, as it seems, the genetic admixture would initially be quite similar, undergoing in the steppes a reduction to haplogroup R1a-Z93 (obviously not complete), at the same time as it expanded to the west with Pokrovka and Srubna, and to the east with Petrovka and Andronovo. To the north, similar reductions will probably be seen following the Seima-Turbino phenomenon.

NOTE. Another R1a-Z280 has been found in the recent sample from Bronze Age Poland (see spreadsheet). As it appears right now in ancient and modern DNA, there seems to be a different distribution between subclades:

  • R1a-Z280 (formed ca. 2900 BC, TMRCA ca. 2600 BC) appears mainly distributed today to the east, in the forest and steppe regions, with the most ‘successful’ expansions possibly related to the spread of Abashevo- and Battle Axe-related cultures (Indo-Iranian and Uralic alike).
  • R1a-M458 (formed ca. 2700, TMRCA ca. 2700 BC) appears mainly distributed to the north, from central Europe to the east – but not in the steppe in aDNA, with the most ‘successful’ expansions to the west.

M458 lineages seem thus to have expanded in the steppe in sizeable numbers only after the Iranian expansions (see a map of modern R1a distributions) i.e. possibly with the expansion of Slavs, which supports the model whereby cultures from central-east Europe (like Trzciniec and Lusatian), accompanied mainly by M458 lineages, were responsible for the expansion of Proto-Balto-Slavic (and later Proto-Slavic).

The finding of haplogroup R1a-Z93, among them one Z2123, is no surprise at this point after other similar Srubna samples. As I said, the early Srubna expansion is most likely responsible for the Szólád Bronze Age sample (ca. 2100-1700 BC), and for the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, due to incursions along the central-east European steppe.

cheek-pieces
Map of decorated bone/antler bridle cheek-pieces and whip handle equivalents. They are often local translations that remained faithful to the originals (from data in Piggott, 1965; Kristiansen & Larsson, 2005; David, 2007). Image from Vandkilde (2014).

Cimmerians

Cimmerian samples from the west show signs of continuity with R1a-Z93 lineages. Nevertheless, the sample of haplogroup Q1a-Y558, together with the ‘Pre-Scythian’ sample of haplogroup N (of the Mezőcsát Culture) in Hungary ca. 980-830 BC, as well as their PCA, seem to depict an origin of these Pre-Scythian peoples in populations related to the eastern Central Asian steppes, too.

NOTE. I will write more on different movements (unrelated to Uralic expansions) from Central and East Asia to the west accompanied by Siberian ancestry and haplogroup N with the post of Ugric-Samoyedic expansions.

Scythians

The Scythian of Z2123 lineage ca. 375-203 BC from the Volga (in Mathieson et al. 2015), together with the sample scy193 from Glinoe (probably also R1a-Z2123), without a date, as well as their common Steppe_MLBA cluster, suggest that Scythians, too, were at first probably quite homogeneous as is common among pastoralist nomads, and came thus from the Central Asian steppes.

The reduction in haplogroup variability among East Iranian peoples seems supported by the three new Late Sarmatian samples of haplogroup R1a-Z2124.

Approximate location of Glinoe and Glinoe Sad (with Starosilya to the south, in Ukrainian territory):

This initial expansion of Scythians does not mean that one can dismiss the western samples as non-Scythians, though, because ‘Scythian’ is a cultural attribution, based on materials. Confirming the diversity among western Scythians, a session at the recent ISBA 8:

Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths), by Järve et al.

The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

(…) Our results (…) support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

Detail of the slide with admixture of Scythian groups in Ukraine:

scythians-admixture

The findings of those 31 samples seem to support what Krzewińska et al. (2018) found in a tiny region of Moldavia-south-western Ukraine (Glinoi, Glinoi Sad, and Starosilya).

The question, then, is as follows: if Scythian dominance was “cultural rather than achieved through population replacement”…Where are the R1b-Z2103 from? One possibility, as I said in the previous post, is that they represent pockets of Iranian R1b lineages in the steppes descended from eastern Yamna, given that this haplogroup appears in modern populations from a wide region surrounding the steppes.

The other possibility, which is what some have proposed since the publication of the paper, is that they are related to Thracians, and thus to Palaeo-Balkan populations. About the previously published Thracian individuals in Sikora et al. (2014):

thracian-samples
Geographic origin of ancient samples and ADMIXTURE results. (A) Map of Europe indicating the discovery sites for each of the ancient samples used in this study. (B) Ancestral population clusters inferred using ADMIXTURE on the HGDP dataset, for k = 6 ancestral clusters. The width of the bars of the ancient samples was increased to aid visualization. https://doi.org/10.1371/journal.pgen.1004353.g001

For the Thracian individuals from Bulgaria, no clear pattern emerges. While P192-1 still shows the highest proportion of Sardinian ancestry, K8 more resembles the HG individuals, with a high fraction of Russian ancestry.

Despite their different geographic origins, both the Swedish farmer gok4 and the Thracian P192-1 closely resemble the Iceman in their relationship with Sardinians, making it unlikely that all three individuals were recent migrants from Sardinia. Furthermore, P192-1 is an Iron Age individual from well after the arrival of the first farmers in Southeastern Europe (more than 2,000 years after the Iceman and gok4), perhaps indicating genetic continuity with the early farmers in this region. The only non-HG individual not following this pattern is K8 from Bulgaria. Interestingly, this individual was excavated from an aristocratic inhumation burial containing rich grave goods, indicating a high social standing, as opposed to the other individual, who was found in a pit.

pca-thracians

The following are excerpts from A Companion to Ancient Thrace (2015), by Valeva, Nankov, and Graninger (emphasis mine):

Thracian settlements from the 6th c. BC on:

(…) urban centers were established in northeastern Thrace, whose development was linked to the growth of road and communication networks along with related economic and distributive functions. The early establishment of markets/emporia along the Danube took place toward the middle of the first millennium BCE (Irimia 2006, 250–253; Stoyanov in press). The abundant data for intensive trade discovered at the Getic village in Satu Nou on the right bank of the Danube provides another example of an emporion that developed along the main artery of communication toward the interior of Thrace (Conovici 2000, 75–76).

Undoubtedly the most prominent manifestation of centralization processes and stratification in the settlement system of Thrace arrives with the emergence of political capitals – the leading urban centers of various Thracian political formations.

getic-thracian
Image from Volf at Vol_Vlad LiveJournal.

Their relationships with Scythians and Greeks

The Scythian presence south of the Danube must be balanced with a Thracian presence north of the river. We have observed Getae there in Alexander’s day, settled and raising grain. For Strabo the coastlands from the Danube delta north as far as the river and Greek city of Tyras were the Desert of the Getae (7.3.14), notable for its poverty and tracklessness beyond the great river. He seems to suggest also that it was here that Lysimachus was taken alive by Dromichaetes, king of the Getae, whose famous homily on poverty and imperialism only makes sense on the steppe beyond the river (7.3.8; cf. Diod. 21.12; further on Getic possessions above the Danube, Paus. 1.9 with Delev 2000, 393, who seems rather too skeptical; on poverty, cf. Ballesteros Pastor 2003). This was the kind of discourse more familiarly found among Scythians, proud and blunt in the strength of their poverty. However, as Herodotus makes clear, simple pastoralism was not the whole story as one advanced round into Scythia. For he observes the agriculture practiced north and west of Olbia. These were the lands of the Alizones and the people he calls the Scythian Ploughmen, not least to distinguish them from the Royal Scythians east of Olbia, in whose outlook, he says, these agriculturalist Scythians were their inferiors, their slaves (Hdt. 4.20). The key point here is that, as we began to see with the Getan grain-fields of Alexander’s day, there was scope for Thracian agriculturalists to maintain their lifestyles if they moved north of the Danube, the steppe notwithstanding. It is true that it is movement in the other direction that tends to catch the eye, but there are indications in the literary tradition and, especially, in the archaeological record that there was also significant movement northward from Thrace across the Danube and the Desert of the Getae beyond it.

Greek literary sources were not much concerned with Thracian migration into Scythia, but we should observe the occasional indications of that process in very different texts and contexts. At the level of myth, it is to be remembered that Amazons were regularly considered to be of Thracian ethnicity from Archaic times onward and so are often depicted in Thracian dress in Greek art (Bothmer 1957; cf. Sparkes 1997): while they are most familiar on the south coast of the Black Sea, east of Sinope, they were also located on the north coast, especially east of the Don (the ancient Tanais). Herodotus reports an origin-story of the Sauromatians there, according to which this people had been created by the union of some Scythian warriors with Amazons captured on the south coast and then washed up on the coast of Scythia (4.110). While the story is unhistorical, it is not without importance. First, it reminds us that passage north from the Danube was not the only way that Thracians, Thracian influence, and Thracian culture might find their way into Scythia. There were many more and less circuitous routes, especially by sea, that could bring Thrace into Scythia. Secondly, the myth offered some ideological basis for the Sauromatian settlement in Thrace that Strabo records, for Sauromatians might claim a Thracian origin through their Amazon forebears. Finally, rather as we saw that Heracles could bring together some of the peoples of the region, we should also observe that Ares, whose earthly home was located in Thrace by a strong Greek and Roman tradition, seems also to have been a deity of special significance and special cult among the Scythians. So much was appropriate, especially from a Classical perspective, in associations between these two peoples, whose fame resided especially in their capacity for war.

skythen
Scythians: cultures and findings (ca. 7th-4th/3rd c. BC). Greek colonies marked with concentric circles.

This broad picture of cultural contact, interaction, and osmosis, beyond simple conflict, provides the context for a range of archaeological discoveries, which – if examined separately – may seem to offer no more than a scatter of peculiarities. Here we must acknowledge especially the pioneering work of Melyukova, who has done most to develop thinking on Thracian–Scythian interaction. As she pointed out, we have a good example of Thracian–Scythian osmosis as early as the mid-seventh century bce at Tsarev Brod in northeastern Bulgaria, where a warrior’s burial combines elements of Scythian and Thracian culture (Melyukova 1965). For, while the manner of his burial and many of the grave goods find parallels in Scythia and not Thrace, there are also goods which would be odd in a Scythian burial and more at home in a Thracian one of this period (notably a Hallstatt vessel, an iron knife, and a gold diadem). Also interesting in this regard are several stone figures found in the Dobrudja which resemble very closely figures of this kind (baby) known from Scythia (Melyukova 1965, 37–38). They range in date from perhaps the sixth to the third centuries bce, and presumably were used there – as in Scythia – to mark the burials of leading Scythians deposited in the area. Is this cultural osmosis? We should probably expect osmosis to occur in tandem with the movement of artefacts, so that only good contexts can really answer such questions from case to case. However, the broad pattern is indicated by a range of factors. Particularly notable in this regard is the observable development of a Thraco-Scythian form of what is more familiar as “Scythian animal style,” a term which – it must be understood – already embraces a range of types as we examine the different examples of the style across the great expanse from Siberia to the western Ukraine. As Melyukova observes, Thrace shows both items made in this style among Scythians and, more numerous and more interesting, a Thracian tendency to adapt that style to local tastes, with observable regional distinctions within Thrace itself. Among the Getae and Odrysians the adaptation seems to have been at its height from the later fifth century to the mid-third century (Melyukova 1965, 38; 1979).

The absence of local animal style in Bulgaria before the fifth century bce confirms that we have cultural influences and osmosis at work here, though that is not to say that Scythian tradition somehow dominated its Thracian counterpart, as has been claimed (pace Melyukova 1965, 39; contrast Kitov 1980 and 1984). Of particular interest here is the horse-gear (forehead-covers, cheek-pieces, bridle fittings, and so on) which is found extensively in Romania and Bulgaria as well as in Scythia, both in hoarded deposits and in burials. This exemplifies the development of a regional animal style, not least in silver and bronze, which problematizes the whole issue of the place(s) of its production. Accordingly, the regular designation as “Thracian” of horse-gear from the rich fourth century Scythian burial of Oguz in the Ukraine becomes at least awkward and questionable (further, Fialko 1995). And let us be clear that this is no minor matter, nor even part of a broader debate about the shared development of toreutics among Thracians and Scythians (e.g., Kitov 1980 and 1984). A finely equipped horse of fine quality was a strong statement and striking display of wealth and the power it implied

(…) while Thracian pottery appears at Olbia, Scythian pottery among Thracians is largely confined to the eastern limits of what should probably be regarded as Getic territory, namely the area close to the west of the Dniester, from the sixth century bce. Rather exceptional then is the Scythian pottery noted at Istros, which has been explained as a consequence of the Scythian pursuit of the withdrawing army of Darius and, possibly, a continued Scythian grip on the southern Danube in its aftermath (Melyukova 1965, 34). The archaeology seems to show us, therefore, that the elite Thracians and Scythians were more open to adaptation and acculturation than were their lesser brethren.

palaeo-balkan-languages
Paleo-Balkan languages in Eastern Europe between 5th and 1st century BC. From Wikipedia.

Conclusion

(…) we see distinct peoples and organizations, for example as Sitalces’ forces line up against the Scythians. Much more striking, however, against that general background, are the various ways in which the two peoples and their elites are seen to interact, connect, and share a cultural interface. We see also in Scyles’ story how the Greek cities on the coast of Thrace and Scythia played a significant role in the workings of relationships between the two peoples. It is not simply that these cities straddled the Danube, but also that they could collaborate – witness the honors for Autocles, ca. 300 bce (SEG 49.1051; Ochotnikov 2006) – and were implicated with the interactions of the much greater non-Greek powers around them. At the same time, we have seen the limited reality of familiar distinctions between settled Thracians and nomadic Scythians and the limited role of the Danube too in dividing Thrace and Scythia. The interactions of the two were not simply matters of dynastic politics and the occasional shared taste for artefacts like horse-gear, but were more profoundly rooted in the economic matrix across the region, so that “Scythian” nomadism might flourish in the Dobrudja and “Thracian-style” agriculture and settlement can be traced from Thrace across the Danube as far as Olbia. All of that offers scant justification for the Greek tendency to run together Thracians and Scythians as much the same phenomenon, not least as irrational, ferocious, and rather vulgar barbarians (e.g., Plato, Rep. 435b), because such notions were the result of ignorance and chauvinism. However, Herodotus did not share those faults to any degree, so that we may take his ready movement from Scythians to Thracians to be an indication of the importance of interaction between the two peoples whom he had encountered not only as slaves in the Aegean world, but as powerful forces in their own lands (e.g., Hdt. 4.74, where Thracian usage is suddenly brought into his account of Scythian hemp). Similarly, Thucydides, who quite without need breaks off his disquisition on the Odrysians to remark upon political disunity among the Scythians (Thuc. 2.97, a favorite theme: cf. Hdt. 4.81; Xen., Cyr. 1.1.4). As we have seen throughout this discussion, there were many reasons why Thracians might turn the thoughts of serious writers to Scythians and vice versa.

It seems, following Sikora et al. (2014), that Thracian ‘common’ populations would have more Anatolian Neolithic ancestry compared to more ‘steppe-like’ samples. But there were important differences even between the two nearby samples published from Bulgaria, which may account for the close interaction between Scythians and Thracians we see in Krzewińska et al. (2018), potentially reflected in the differences between the Central, Southern and the South-Central clusters (possibly related to different periods rather than peoples??).

If these R1b-Z2103 were descended from Thracian elites, this would be the first proof of Palaeo-Balkan populations showing mainly R1b-Z2103, as I expect. Their appearance together with haplogroup I2a2a1b1 (also found in Ukraine Neolithic and in the Yamna outlier from Bulgaria) seem to support this regional continuity, and thus a long-lasting cultural and ethnic border roughly around the Danube, similar to the one found in the northern Caucasus.

However, since these samples are some 2,500 years younger than the Yamna expansion to the south, and they are archaeologically Scythians, it is impossible to say. In any case, it would seem that the main expansion of R1a-Z645 lineages to the south of the Danube – and therefore those found among modern Greeks – was mediated by the Slavic expansions centuries later.

krzewinska-scythians-pca
Modified image from Krzewińska et al. (2018), with added Y-DNA haplogroups to each defined Scythian cluster and Sarmatians. Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals in relation to modern reference panel from the Human Origins data set. See image with population references.

On the Northern cluster there is a sample of haplogroup R1b-P312 which, given its position on the PCA (apparently even more ‘modern Celtic’-like than the Hallstatt_Bylany sample from Damgaard et al. 2018), it seems that it could be the product of the previous eastward Hallstatt expansion…although potentially also from a recent one?:

Especially important in the archaeology of this interior is the large settlement at Nemirov in the wooded steppe of the western Ukraine, where there has been considerable excavation. This settlement’s origins evidently owe nothing significant to Greek influence, though the early east Greek pottery there (from ca. 650 bce onward: Vakhtina 2007) and what seems to be a Greek graffito hint at its connections with the Greeks of the coast, especially at Olbia, which lay at the estuary of the River Bug on whose middle course the site was located (Braund 2008). The main interest of the site for the present discussion, however, is its demonstrable participation in the broader Hallstatt culture to its west and south (especially Smirnova 2001). Once we consider Nemirov and the forest steppe in connection with Olbia and the other locations across the forest steppe and coastal zone, together with the less obvious movements across the steppe itself, we have a large picture of multiple connectivities in which Thrace bulks large.

scythian-peoples-balkans
Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe-related groups. Ďurkovič et al. (2018).

While the above description of clear-cut R1a-Steppe and R1b-Balkans is attractive (and probably more reliable than admixture found in scattered samples of unclear dates), the true ancient genetic picture is more complicated than that:

  • There is nothing in the material culture of the published western Scythians to distinguish the supposed Thracian elites.
  • We have the sample I0575, an Early Sarmatian from the southern Urals (one of the few available) of haplogroup R1b-Z2106, which supports the presence of R1b-Z2103 lineages among Eastern Iranian-speaking peoples.
  • We also have DA30, a Sarmatian of I2b lineage from the central steppes in Kazakhstan (ca. 47 BC – 24 AD).
  • Other Sarmatian samples of haplogroup R remain undefined.
  • There is R1a-Z93 in a late Sarmatian-Hun sample, which complicates the picture of late pastoralist nomads further.

Therefore, the possibility of hidden pockets of Iranian peoples of R1b-Z2103 (maybe also R1b-P312) lineages remains the best explanation, and should not be discarded simply because of the prevalent haplogroups among modern populations, or because of the different clusters found, or else we risk an obvious circular reasoning: “this sample is not (autosomically or in prevalent haplogroups) like those we already had from the steppe, ergo it is not from this or that steppe culture.” Hopefully, the upcoming paper by Järve et al. will help develop a clearer genetic transect of Iranian populations from the steppes.

All in all, the diversity among western Scythians represents probably one of the earliest difficult cases of acculturation to be studied with ancient DNA (obviously not the only one), since Scythians combine unclear archaeological data with limited and conflicting proto-historical accounts (also difficult to contrast with the wide confidence intervals of radiocarbon dates) with different evolving clusters and haplogroups – especially in border regions with strong and continued interactions of cultures and peoples.

With emerging complex cases like these during the Iron Age, I am happy to see that at least earlier expansions show clearer Y-DNA bottlenecks, or else genetics would only add more data to argue about potential cultural diffusion events, instead of solving questions about proto-language expansions once and for all…

Related

Resurge of local populations in the final Corded Ware culture period from Poland

poland-kujawy

Open access A genomic Neolithic time transect of hunter-farmer admixture in central Poland, by Fernandes et al. Scientific Reports (2018).

Interesting excerpts (emphasis mine, stylistic changes):

Most mtDNA lineages found are characteristic of the early Neolithic farmers in south-eastern and central Europe of the Starčevo-Kőrös-Criş and LBK cultures. Haplogroups N1a, T2, J, K, and V, which are found in the Neolithic BKG, TRB, GAC and Early Bronze Age samples, are part of the mitochondrial ‘Neolithic package’ (which also includes haplogroups HV, V, and W) that was introduced to Europe with farmers migrating from Anatolia at the onset of the Neolithic17,31.

A noteworthy proportion of Mesolithic haplogroup U5 is also found among the individuals of the current study. The proportion of haplogroup U5 already present in the earliest of the analysed Neolithic groups from the examined area differs from the expected pattern of diversity of mtDNA lineages based on a previous archaeological view and on the aDNA findings from the neighbouring regions which were settled by post-Linear farmers similar to BKG at that time. A large proportion of Mesolithic haplogroups in late-Danubian farmers in Kuyavia was also shown in previous studies concerning BKG samples based on mtDNA only, although these frequencies were derived on the basis of very small sample sizes.

y-dna-poland

A significant genetic influence of HG populations persisted in this region at least until the Eneolithic/Early Bronze Age period, when steppe migrants arrived to central Europe. The presence of two outliers from the middle and late phases of the BKG in Kuyavia associated with typical Neolithic burial contexts provides evidence that hunter-farmer contacts were not restricted to the final period of this culture and were marked by various episodes of interaction between two societies with distinct cultural and subsistence differences.

The identification of both mitochondrial and Y-chromosome haplogroup lineages of Mesolithic provenance (U5 and I, respectively) in the BKG support the theory that both male and female hunter-gatherers became part of these Neolithic agricultural societies, as has been reported for similar cases from the Carpathian Basin, and the Balkans. The identification of an individual with WHG affinity, dated to ca. 4300 BCE, in a Middle Neolithic context within a BKG settlement, provides direct evidence for the regional existence of HG enclaves that persisted and coexisted at least for over 1000 years, from the arrival of the LBK farmers ca. 5400 BCE until ca. 4300 BCE, in proximity with Neolithic settlements, but without admixing with their inhabitants.

poland-pca
Principal component analysis with modern populations greyed out on the background (top), ADMIXTURE results with K = 10 with samples from this study amplified (bottom).

The analysis of two Late Neolithic cultures, the GAC and CWC, shows that steppe ancestry was present only among the CWC individuals analysed, and that the single GAC individual had more WHG ancestry than previous local Neolithic individuals. (…) The CWC’s affinity to WHG, however, contrasts with results from published CWC individuals that identified steppe ancestry related to Yamnaya as the major contributor to the CWC genomes, while here we report also substantial contributions from WHG that could relate to the late persistence of pockets of WHG populations, as supported by the admixture results of N42 and the finding of the 4300-year-old N22 HG individual. These results agree with archaeological theories that suggest that the CWC interaction with incoming steppe cultures was complex and that it varied by region.

Some comments

About the analyzed CWC samples, it is remarkable that, even though they are somehow related to each other, they do not form a tight cluster. Also, their Y-DNA (I2a), and this:

When compared to previously published CWC data, our CWC group (not individuals) is genetically significantly closer to WHG than to steppe individuals (Z = −4.898), a result which is in contrast with those for CWC from Germany (Z = 2.336), Estonia (Z = 0.555), and Latvia (Z = 1.553).

ancestry-proportions-poland
Ancestry proportions based on qpAdm. Visual representation of the main results presented in Supplementary Table S5. Populations from this study marked with an asterisk. Values and populations in brackets show the nested model results marked in green in Supplementary Table S5.

Włodarczak (2017) talks about the CWC period in Poland after ca. 2600 BC as a time of emergence of an allochthnous population, marked by the rare graves of this area, showing infiltrations initially mainly from Lesser Poland, and later (after 2500 BC) from the western Baltic zone.

Since forest sub-Neolithic populations would have probably given more EHG to the typical CWC population, these samples support the resurge of ‘local’ pockets of GAC- or TRB-like groups with more WHG (and also Levant_Neolithic) ancestry.

The known presence of I2a2a1b lineages in GAC groups in Poland also supports this interpretation, and the subsistence of such pockets of pre-steppe-like populations is also seen with the same or similar lineages appearing in comparable ‘resurge’ events in Central Europe, e.g. in samples from the Únětice and Tumulus culture.

About the Bronze Age sample, we have at last official confirmation of haplogroup R1a1a (sadly no subclade*) at the very beginning of the Trzciniec period – in a region between western (Iwno) and eastern (Strzyżów) groups related to Mierzanowice – , which has to be put in relation with the samples from the final Trzciniec period in the Baltic published in Mittnik et al. (2018).

EDIT (8 OCT 2018): More specific subclades have been published, including a R1a-Z280 lineage for the Bronze Age sample (see spreadsheet).

This confirms the early resurge of R1a-Z645 (probably R1a-Z282) lineages at the core of the developing East European Bronze Age, a province of the European Bronze Age that emerged from evolving Bell Beaker groups in Poland.

bell-beakers-poland-kujawy
Arrival of Bell Beakers in Poland after ca. 2400 BC, and their origin in other BBC centres (Czebreszuk and Szmyt 2011).

I don’t have any hope that the Balto-Slavic evolution through BBC Poland → Mierzanowice/Iwno → Trzciniec → Lusatian cultures is going to be confirmed any time soon, until we have a complete trail of samples to follow all the way to historic Slavs of the Prague culture. However, I do think that the current data on central-east Europe – and the recent data we are receiving from north-east Europe and the Iranian steppes, at odds with the Indo-Slavonic alternative – supports this model.

I guess that, in the end, similar to how the Yamna vs. Corded Ware question is being solved, the real route of expansion of Proto-Balto-Slavic (supposedly spoken ca. 1500-1000 BC) is probably going to be decided by the expansion of either R1a-M458 (from the west) or R1a-Z280 lineages (from the east), because the limited precision of genetic data and analyses available today are going to show ‘modern Slavic’-like populations from the whole eastern half of Europe for the past 4,000 years…

Related

Corded Ware—Uralic (II): Finno-Permic and the expansion of N-L392/Siberian ancestry

finno-ugric-samoyedic

This is the second of four posts on the Corded Ware—Uralic identification:

I read from time to time that “we have not sampled Uralic speakers yet”, and “we are waiting to see when Uralic-speaking peoples are sampled”. Are we, though?

Proto-language homelands are based on linguistic data, such as guesstimates for dialectal evolution, loanwords and phonetic changes for language contacts, toponymy for ancient territories, etc. depending on the available information. The trace is then followed back, using available archaeological data, from the known historic speakers and territory to the appropriate potential prehistoric cultures. Only then can genetic analyses help us clarify the precise prehistoric population movements that better fit the models.

uralic-language-family
The traditional family tree of the Uralic branches. Kallio (2014)

The linguistic homeland

We thought – using linguistic guesstimates and fitting prehistoric cultures and their expansion – that Yamna was the Late Proto-Indo-European culture, so when Yamna was sampled, we had Late Proto-Indo-Europeans sampled. Simple deduction.

We thought that north-eastern Europe was a Uralic-speaking area during the Neolithic:

  • For those supporting a western continuity (and assuming CWC was Indo-European), the language was present at least since the Comb Ware culture, potentially since the Mesolithic.
  • For those supporting a late introduction into Finland, Uralic expanded the latest with Abashevo-related movements after its incorporation of Volosovo and related hunter-gatherers.

The expansion to the east must have happened through progressive infiltrations with Seima-Turbino / Andronovo-related expansions.

uralic-time-space
Some datings for the traditional proto-stages from Uralic to Finnic. Kallio (2014).

Finding the linguistic homeland going backwards can be described today as follows:

I. Proto-Fennic homeland

Based on the number of Baltic loanwords, not attested in the more eastern Uralic branches (and reaching only partially Mordvinic), the following can be said about western Finno-Permic languages (Junttila 2014):

The Volga-Kama Basin lies still too far east to be included in a list of possible contact locations. Instead, we could look for the contact area somewhere between Estonia in the west and the surroundings of Moscow in the east, a zone with evidence of Uralic settlement in the north and Baltic on the south side.

The only linguistically well-grounded version of the Stone Age continuation theory was presented by Mikko Korhonen in 1976. Its validity, however, became heavily threatened when Koivulehto 1983a-b proved the existence of a Late Proto-Indo-European or Pre-Baltic loanword layer in Saami, Finnic, and Mordvinic. Since this layer must precede the Baltic one and it was presumably acquired in the Baltic Sea region, Koivulehto posited it on the horizon of the Battle Axe period. This forces a later dating for the Baltic–Finnic contacts.

Today the Battle Axe culture is dated at 3200 to 3000 BC, a period far too remote to correspond linguistically with Proto-Baltic (Kallio 1998a).

Since the Baltic contacts began at a very initial phase of Proto-Finnic, the language must have been relatively uniform at that time. Hence, if we consider that the layer of Baltic loanwords may have spread over the Gulf of Finland at that time, we could also insist that the whole of the Proto-Finnic language did so.

migration-theory
Prehistoric Balts as the southern neighbours of Proto-Finnic speakers. 1 = The approximated area of Proto-Uralic. 2 = The approximated area of Finnic during the Iron Age. 3 = The area of ancient Baltic hydronyms. 4 = The area of Baltic languages in about 1200 AD. 5 = The problem: When did Uralic expand westwards and when did it meet Baltic? Junntila (2012).

II. Proto-Finno-Saamic homeland

The evidence of continued Palaeo-Germanic loanwords (from Pre- to Proto-Germanic stages) is certainly the most important data to locate the Finno-Saamic homeland, and from there backwards into the true Uralic homeland. Following Kallio (2017):

(…) the loanword evidence furthermore suggests that the ancestors of Finnic and Saamic had at least phonologically remained very close to Proto-Uralic as late as the Bronze Age (ca. 1700–500 BC). In particular, certain loanwords, whose Baltic and Germanic sources point to the first millennium BC, after all go back to the Finno-Saamic proto-stage, which is phonologically almost identical to the Uralic proto-stage (see especially the table in Sammallahti 1998: 198–202). This being the case, Dahl’s wave model could perhaps have some use in Uralic linguistics, too.

The presence of Pre-Germanic loanwords points rather to the centuries around the turn of the 2nd – 1st millennium BC or earlier. Proto-Germanic words must have been borrowed before the end of Germanic influence in the eastern Baltic at the beginning of the Iron Age, which sets a clear terminus ante quem ca. 800 BC.

The arrival of Bell Beaker peoples in Scandinavia ca. 2350 BC, heralding the formation of the Dagger Period, as well as the development of Pre-Germanic in common with Finnic-like populations point to the late 3rd / early 2nd millennium BC as the first time of close interaction through the Baltic region.

III. Proto-Uralic homeland

(…) the earliest Indo-European loanwords in the Uralic languages (…) show that Proto-Uralic cannot have been spoken much earlier than Proto-Indo-European dated about 3500 BC (Koivulehto 2001: 235, 257). As the same loanword evidence naturally also shows that the Uralic and Indo-European homelands were not located far from one another, the Uralic homeland can most likely be located in the Middle and Upper Volga region, right north of the Indo-European homeland*. From the beginning of the Subneolithic period about 5900 BC onwards, this region was an important innovation centre, from where several cultural waves spread to the Finnish Gulf area, such as the Sperrings Ware wave about 4900 BC, the Combed Ware wave about 3900 BC, and the Netted Ware wave about 1900 BC (Carpelan & Parpola 2001: 78–90).

The mainstream position is nowadays trying to hold together the traditional views of Corded Ware as Indo-European, and a Uralic Fennoscandia during the Bronze Age.

The following is an example of how this “Volosovo/Forest Zone hunter-gatherer theory” of Uralic origins looks like, as a ‘mixture’ of cultures and languages that benefits from the lack of genetic data for certain regions and periods (taken from Parpola 2018):

asbestos-ware
The extent of Typical Comb Ware (TCW), Asbestos- and Organic-tempered Wares (AOW) and Volosovo and Garino-Bor cultures; areas with deposits of native copper in Karelia and copperbearing sandstone in Volga-Kama-area are marked dark gray (after Zhuravlev 1977; Krajnov 1987; Nagovitsyn 1987; Chernykh 1992; Carpelan 1999; Zhul´nikov 1999). From Nordqvist et al. (2012).

The Corded Ware (or Battle Axe) culture intruded into the Eastern Baltic and coastal Finland already around 3100 BCE. The continuity hypothesis maintains that the early Proto-Finnic speakers of the coastal regions, who had come to Finland in the 4th millennium BCE with the Comb-Pitted Ware, coexisted with the Corded Ware newcomers, gradually adopting their pastoral culture and with it a number of NW-IE loanwords, but assimilating the immigrants linguistically.

The fusion of the Corded Ware and the local Comb-Pitted Ware culture resulted into the formation of the Kiukais culture (c. 2300–1500) of southwestern Finland, which around 2300 received some cultural impulses from Estonia, manifested in the appearance of the Western Textile Ceramic (which is different from the more easterly Textile Ceramic or Netted Ware, and which is first attested in Estonia c. 2700 BCE, cf. Kriiska & Tvauri 2007: 88), and supposed to have been accompanied by an influx of loanwords coming from Proto-Baltic. At the same time, the Kiukais culture is supposed to have spread the custom of burying chiefs in stone cairns to Estonia.

The coming of the Corded Ware people and their assimilation created a cultural and supposedly also a linguistic split in Finland, which the continuity hypothesis has interpreted to mean dividing Proto-Saami-Finnic unity into its two branches. Baltic Finnic, or simply Finnic, would have emerged in the coastal regions of Finland and in the northern East Baltic, while preforms of Saami would have been spoken in the inland parts of Finland.

The Nordic Bronze Age culture, correlated above with early Proto-Germanic, exerted a strong influence upon coastal Finland and Estonia 1600–700 BCE. Due to this, the Kiukais culture was transformed into the culture of Paimio ceramics (c. 1600–700 BCE), later continued by Morby ceramics (c. 700 BCE – 200 CE). The assumption is that clear cultural continuity was accompanied by linguistic continuity. Having assimilated the language of the Germanic traders and relatively few settlers of the Bronze Age, the language of coastal Finland is assumed to have reached the stage of Proto-Finnish at the beginning of the Christian era. In Estonia, the Paimio ceramics have a close counterpart in the contemporaneous Asva ceramics.

Eastern homelands?

I will not comment on Siberian or Central Asian homeland proposals, because they are obviously not mainstream, still less today when we know that Uralic was certainly in contact with Proto-Indo-European, and then with Pre- and Proto-Indo-Iranian, as supported even by the Copenhagen group in Damgaard et al. (2018).

This is what Kallio (2017) has to say about the agendas behind such proposals:

Interestingly, the only Uralicists who generally reject the Central Russian homeland are the Russian ones who prefer the Siberian homeland instead. Some Russians even advocate that the Central Russian homeland is only due to Finnish nationalism or, as one of them put it a bit more tactfully, “the political and ideological situation in Finland in the first decades of the 20th century” (Napolskikh 1995: 4).

Still, some Finns (and especially those who also belong to the “school who wants it large and wants it early”) simultaneously advocate that exactly the same Central Russian homeland is due to Finnlandisierung (Wiik 2001: 466).

Hence, for those of you willing to learn about fringe theories not related to North-Eastern Europe, you also have then the large and early version of the Uralic homeland, with Wiik’s Palaeolithic continuity of Uralic peoples spread over all of eastern and central Europe (hence EHG and R1a included):

atlantic-finnic-theory
Palaeolithic boat peoples and Finno-Ugric. Source

These fringe Finnish theories look a lot like the Corded Ware expansion… Better not go the Russian or Finnish nationalist ways? Agreed then, let’s discuss only rational proposals based on current data.

The archaeological homeland

For a detailed account of the Corded Ware expansion with Battle Axe, Fatyanovo-Balanovo, and Abashevo groups into the area, you can read my recent post on the origin of R1a-Z645.

1. Textile ceramics

During the 2nd millennium BC, textile impressions appear in pottery as a feature across a wide region, from the Baltic area through the Volga to the Urals, in communities that evolve from late Corded Ware groups without much external influence.

While it has been held that this style represents a north-west expansion from the Volga region (with the “Netted Ware” expansion), there are actually at least two original textile styles, one (earlier) in the Gulf of Finland, common in the Kiukainen pottery, which evolves into the Textile ware culture proper, and another which seems to have an origin in the Middle Volga region to the south-east.

The Netted ware culture is the one that apparently expands into inner Finland – a region not densely occupied by Corded Ware groups until then. There are, however, no clear boundaries between groups of both styles; textile impressions can be easily copied without much interaction or population movement; and the oldest textile ornamentation appeared on the Gulf of Finland. Hence the tradition of naming all as groups of Textile ceramics.

textile-ware-cultures
Maximum distribution of Textile ceramics during the Bronze Age (ca. 2000-800 BC). Asbestos-tempered ware lies to the north (and is also continued in western Fennoscandia).

The fact that different adjacent groups from the Gulf of Finland and Forest Zone share similar patterns making it very difficult to differentiate between ‘Netted Ware’ or ‘Textile Ware’ groups points to:

  • close cultural connections that are maintained through the Gulf of Finland and the Forest Zone after the evolution of late Corded Ware groups; and
  • no gross population movements in the original Battle Axe / Fatyanovo regions, except for the expansion of Netted Ware to inner Finland, Karelia, and the east, where the scattered Battle Axe finds and worsening climatic conditions suggest most CWC settlements disappeared at the end of the 3rd millennium BC and recovered only later.

NOTE. This lack of population movement – or at least significant replacement by external, non-CWC groups – is confirmed in genetic investigation by continuity of CWC-related lineages (see below).

The technology present in Textile ceramics is in clear contrast to local traditions of sub-Neolithic Lovozero and Pasvik cultures of asbestos-tempered pottery to the north and east, which point to a different tradition of knowledge and learning network – showing partial continuity with previous asbestos ware, since these territories host the main sources of asbestos. We have to assume that these cultures of northern and eastern Fennoscandia represent Palaeo-European (eventually also Palaeo-Siberian) groups clearly differentiated from the south.

The Chirkovo culture (ca. 1800-700 BC) forms on the middle Volga – at roughly the same time as Netted Ware formed to the west – from the fusion of Abashevo and Balanovo elites on Volosovo territory, and is also related (like Abashevo) to materials of the Seima-Turbino phenomenon.

Bronze Age ethnolinguistic groups

In the Gulf of Finland, Kiukainen evolves into the Paimio ceramics (in Finland) — Asva Ware (in Estonia) culture, which lasts from ca. 1600 to ca. 700 BC, probably representing an evolving Finno-Saamic community, while the Netted Ware from inner Finland (the Sarsa and Tomitsa groups) and the groups from the Forest Zone possibly represent a Volga-Finnic community.

NOTE. Nevertheless, the boundaries between Textile ceramic groups are far from clear, and inner Finland Netted Ware groups seem to follow a history different from Netted Ware groups from the Middle and Upper Volga, hence they could possibly be identified as an evolving Pre-Saamic community.

Based on language contacts, with Early Baltic – Early Finnic contacts starting during the Iron Age (ca. 500 BC onwards), this is a potential picture of the situation at the end of this period, when Germanic influence on the coast starts to fade, and Lusatian culture influence is stronger:

aikio-finnic-saamic
The linguistic situation in Lapland and the northern Baltic Sea Area in the Early Iron Age prior to the expansion of Saami languages; the locations of the language groups are schematic. The black line indicates the distribution of Saami languages in the 19th century, and the gray line their approximate maximal distribution before the expansion of Finnic. Aikio (2012)

The whole Finno-Permic community remains thus in close contact, allowing for the complicated picture that Kallio mentions as potentially showing Dahl’s wave model for Uralic languages.

Genetic data shows a uniform picture of these communities, with exclusively CWC-derived ancestry and haplogroups. So in Mittnik et al. (2018) all Baltic samples show R1a-Z645 subclades, while the recent session on Estonian populations in ISBA 8 (see programme in PDF) clearly states that:

[Of the 24 Bronze Age samples from stone-cist graves] all 18 Bronze Age males belong to R1a.

Regarding non-Uralic substrates found in Saami, supposedly absorbed during the expansion to the north (and thus representing languages spoken in northern Fennoscandia during the Bronze Age) this is what Aikio (2012) has to say:

The Saami substrate in the Finnish dialects thus reveals that also Lakeland Saami languages had a large number of vocabulary items of obscure origin. Most likely many of these words were substrate in Lakeland Saami, too, and ultimately derive from languages spoken in the region before Saami. In some cases the loan origin of these words is obvious due to their secondary Proto-Saami vowel combinations such as *ā–ë in *kāvë ‘bend; small bay’ and *šāpšë ‘whitefish’. This substrate can be called ‘Palaeo-Lakelandic’, in contrast to the ‘Palaeo-Laplandic’ substrate that is prominent in the lexicon of Lapland Saami. As the Lakeland Saami languages became extinct and only fragments of their lexicon can be reconstructed via elements preserved in Finnish place-names and dialectal vocabulary, we are not in a position to actually study the features of this Palaeo-Lakelandic substrate. Its existence, however, appears evident from the material above.

If we wanted to speculate further, based on the data we have now, it is very likely that two opposing groups will be found in the region:

A) The central Finnish group, in this hypothesis the Palaeo-Lakelandic group, made up of the descendants of the Mesolithic pioneers of the Komsa and Suomusjärvi cultures, and thus mainly Baltic HG / Scandinavian HG ancestry and haplogroups I / R1b(xM269) (see more on Scandinavian HG).

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018).

B) Lapland and Kola were probably also inhabited by similar Mesolithic populations, until it was eventually assimilated by expanding Siberian groups (of Siberian ancestry and N1c-L392 lineages) from the east – entering the region likely through the Kola peninsula – , forming the Palaeo-Laplandic group, which was in turn later replaced by expanding Proto-Saamic groups.

Siberian ancestry appears first in Fennoscandia at Bolshoy Oleni Ostrov ca. 1520 BC, with haplogroup N1c-L392 (2 samples, BOO002 and BOO004), and with Siberian ancestry. This is their likely movement in north-eastern Europe, from Lamnidis et al (2018):

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period.

saamic-lovozero-pca
PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

Obviously, these groups of asbestos-tempered ware are not connected to the Uralic expansion. From the same paper:

The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

2. The Early Iron Age

The Ananino culture appears in the Vyatka-Kama area, famed for its metallurgy, with traditions similar to the North Pontic area, by this time developing Pre-Sauromatian traditions. It expanded to the north in the first half of the first millennium BC, remaining in contact with the steppes, as shown by the ‘Scythian’ nature of its material culture.

NOTE. The Ananino culture can be later followed through its zoomorphic styles into Iron Age Pjanoborskoi and Gljadenovskoi cultures, later to Ural-Siberian Middle Age cultures – Itkuska, Ust’-Poluiska, Kulaiska cultures –, which in turn can be related as prototypes of medieval Permian styles.

ananino-culture-homeland
Territory of (early and maximum) Ananino material culture. Vasilyev (2002).

At the same time as the Ananino culture begins to expand ca. 1000 BC, the Netted Ware tradition from the middle Oka expanded eastwards into the Oka-Vyatka interfluve of the middle Volga region, until then occupied by the Chirkovo culture. Eventually the Akozino or Akhmylovo group (ca. 800-300 BC) emerged from the area, showing a strong cultural influence from the Ananino culture, by that time already expanding into the Cis-Urals region.

The Akozino culture remains nevertheless linked to the western Forest Zone traditions, with long-ranging influences from as far as the Lusatian culture in Poland (in metallurgical techniques), which at this point is also closely related with cultures from Scandinavia (read more on genetics of the Tollense Valley).

malar-celts-ananino
Mälar celts and molds for casting (a) and the main distribution area (в) of Mälar-type celts of the Mälar type in the Volga-Kama region (according to Kuzminykh 1983: figure 92) and Scandinavia (according to Baudou 1960: Karte 10); Ananino celts and molds for casting (б) and the main distribution area (г) of the distribution of the celts of the Ananino type in the Volga-Kama area (according to Kuzminykh 1983: figure 9); dagger of Ananino type (д).Map from (Yushkova 2010)

Different materials from Akozino reach Fennoscandia late, at the end of the Bronze Age and beginning of the Early Iron Age, precisely when the influence of the Nordic Bronze Age culture on the Gulf of Finland was declining.

This is a period when Textile ceramic cultures in north-eastern Europe evolve into well-armed chiefdom-based groups, with each chiefdom including thousands or tens of thousands, with the main settlements being hill forts, and those in Fennoscandia starting ca. 1000-400 BC.

Mälar-type celts and Ananino-type celts appear simultaneously in Fennoscandia and the Forest Zone, with higher concentrations in south-eastern Sweden (Mälaren) and the Volga-Kama region, supporting the existence of a revived international trade network.

akozino-malar-axes-fennoscandia
Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Paimio—Asva Ware culture evolves (ca. 700-200 BC) into the Morby (in Finland) — Ilmandu syle (in Estonia, Latvia, and Mälaren) culture. The old Paimio—Asva tradition continues side by side with the new one, showing a clear technical continuity with it, but with ornamentation compared to the Early Iron Age cultures of the Upper Volga area. This new south-eastern influence is seen especially in:

  • Akozino-Mälar axes (ca. 800-500 BC): introduced into the Baltic area in so great numbers – especially south-western Finland, the Åland islands, and the Mälaren area of eastern Sweden – that it is believed to be accompanied by a movement of warrior-traders of the Akozino-Akhmylovo culture, following the waterways that Vikings used more than a thousand years later. Rather than imports, they represent a copy made with local iron sources.
  • Tarand graves (ca. 500 BC – AD 400): these ‘mortuary houses’ appear in the coastal areas of northern and western Estonia and the islands, at the same time as similar graves in south-western Finland, eastern Sweden, northern Latvia and Courland. Similar burials are found in Akozino-Akhmylovo, with grave goods also from the upper and middle Volga region, while grave goods show continuity with Textile ware.

The use of asbestos increases in mainland Finnish wares with Kjelmøy Ware (ca. 700 BC – AD 300), which replaced the Lovozero Ware; and in the east in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (ca. 700-500 BC – AD 200), where they replaced the previous Sarsa-Tomitsa ceramics.

The Gorodets culture appears during the Scythian period in the forest-steppe zone north and west of the Volga, shows fortified settlements, and there are documented incursions of Gorodets iron makers into the Samara valley, evidenced by deposits of their typical pottery and a bloom or iron in the region.

Iron Age ethnolinguistic groups

According to (Koryakova and Epimakhov 2007):

It is commonly accepted by archaeology, ethnography, and linguistics that the ancestors of the Permian peoples (the Udmurts, Komi-Permians, and Komi-Zyryans) left the sites of Ananyino cultural intercommunity.

NOTE. For more information on the Late Metal Ages and Early Medieval situation of Finno-Ugric languages, see e.g. South-eastern contact area of Finnic languages in the light of onomastics (Rahkonen 2013).

finno-saamic-mordvin
Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2011)

Certain innovations shared between Proto-Fennic (identified with the Gulf of Finland) and Proto-Mordvinic (from the Gorodets culture) point to their close contact before the Proto-Fennic expansion, and thus to the identification of Gorodets as Proto-Mordvinic, hence Akozino as Volgaic (Parpola 2018):

  • the noun paradigms and the form and function of individual cases,
  • the geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • the change of numeral *luka ‘ten’ with *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature (hence possibly from Siberian influence in north-eastern Europe).
ananino-textile-ware-cultures
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Purple area show likely zones of predominant Siberian ancestry and N1c-L392 lineages. Blue areas likely zones of predominant CWC ancestry and R1a-Z645 lineages. Fading purple arrows represent likely stepped movements of haplogroup N1c-L392 for centuries (Siberian → Ananino → Akozino → Fennoscandia), found eventually in tarand graves. Blue arrows represent eventual expansions of Fennic and (partially displaced) Saamic. Modified image from Vasilyev (2002).

The introduction of a strongly hierarchical chiefdom system can quickly change the pre-existing social order and lead to a major genetic shift within generations, without a radical change in languages, as shown in Sintashta-Potapovka compared to the preceding Poltavka society (read more about Sintashta).

Fortified settlements in the region represented in part visiting warrior-traders settled through matrimonial relationships with local chiefs, eager to get access to coveted goods and become members of a distribution network that could guarantee them even military assistance. Such a system is also seen synchronously in other cultures of the region, like the Nordic Bronze Age and Lusatian cultures (Parpola 2013).

The most likely situation is that N1c subclades were incorporated from the Circum-Artic region during the Anonino (Permic) expansion to the north, later emerged during the formation of the Akozino group (Volgaic, under Anonino influence), and these subclades in turn infiltrated among the warrior traders that spread all over Fennoscandia and the eastern Baltic (mainly among Fennic, Saamic, Germanic, and Balto-Slavic peoples), during the age of hill forts, creating alliances partially based on exogamy strategies (Parpola 2013).

Over the course of these events, no language change is necessary in any of the cultures involved, since the centre of gravity is on the expanding culture incorporating new lineages:

  • first on the Middle Volga, when Ananino expands to the north, incorporatinig N1c lineages from the Circum-Artic region.
  • then with the expansion of the Akozino-Akhmylovo culture into Ananino territory, admixing with part of its population;
  • then on the Baltic region, when materials are imported from Akozino into Fennoscandia and the eastern Baltic (and vice versa), with local cultures being infiltrated by foreign (Akozino) warrior-traders and their materials;
  • and later with the different population movements that led eventually to a greater or lesser relevance of N1c in modern Finno-Permic populations.

To argue that this infiltration and later expansion of lineages changed the language in one culture in one of these events seems unlikely. To use this argument of “opposite movement of ethnic and language change” for different successive events, and only on selected regions and cultures (and not those where the greatest genetic and cultural impact is seen, like e.g. Sweden for Akozino materials) is illogical.

NOTE. Notice how I write here about “infiltration” and “lineages”, not “migration” or “populations”. To understand that, see below the next section on autosomal studies to compare Bronze Age, Iron Age, Medieval and Modern Estonians, and see how little the population of Estonia (homeland of Proto-Fennic and partially of Proto-Finno-Saamic) has changed since the Corded Ware migrations, suggesting genetic continuity and thus mostly close inter-regional and intra-regional contacts in the Forest Zone, hence a very limited impact of the absorbed N1c lineages (originally at some point incorporated from the Circum-Artic region). You can also check on the most recent assessment of R1a vs. N1c in modern Uralic populations.

Iron Age and later populations

From the session on Estonian samples on ISBA 8, by Tambets et al.:

[Of the 13 samples from the Iron Age tarand-graves] We found that the Iron Age individuals do in fact carry chrY hg N3 (…) Furthermore, based on their autosomal data, all of the studied individuals appear closer to hunter-gatherers and modern Estonians than Estonian CWC individuals do.

EDIT (16 OCT) A recent abstract with Saag as main author (Tambets second) cites 3 out of 5 sampled Iron Age individuals as having haplogroup N3.

EDIT (28 OCT): Notice also the appearance of N1a1a1a1a1a1a1-L1025 in Lithuania (ca. 300 AD), from Damgaard (Nature 2018); the N1c sample of the Krivichi Pskov Long Barrows culture (ca. 8th-10th c. AD), and N1a1a1a1a1a1a7-Y4341 among late Vikings from Sigtuna (ca. 10th-12th c. AD) in Krzewinska (2018).

estonian-pca
PCA of Estonian samples from the Bronze Age, Iron Age and Medieval times. Tambets et al. (2018, upcoming).

Looking at the plot, the genetic inflow marking the change from the Bronze Age to the Iron Age looks like an obvious expansion of nearby peoples with CWC-related ancestry, i.e. likely from the south-east, near the Middle Volga, where influence of steppe peoples is greater (hence likely Akozino) into a Proto-Fennic population already admixed (since the arrival of Corded Ware groups) with Comb Ware-like populations.

All of these groups were probably R1a-Z645 (likely R1a-Z283) since the expansion of Corded Ware peoples, with an introduction of some N1c lineages precisely during this Iron Age period. This infiltration of N1c-L392 with Akozino is obviously not directly related to Siberian cultures, given what we know about the autosomal description of Estonian samples.

Rather, N1c-L392 lineages were likely part of the incoming (Volgaic) Akozino warrior-traders, who settled among developing chiefdoms based on hill fort settlements of cultures all over the Baltic area, and began to appear thus in some of the new tarand graves associated with the Iron Age in north-eastern Europe.f

A good way to look at this is to realize that no new cluster appears compared to the data we already have from Baltic LN and BA samples from Mittnik et al. (2018), so the Estonian BA and IA clusters must be located (in a proper PCA) in the cline from Pit-Comb Ware culture through Baltic BA to Corded Ware groups:

baltic-samples
PCA and ADMIXTURE analysis reflecting three time periods in Northern European prehistory. a Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). Population labels of modern West Eurasians are given in Supplementary Fig. 7 and a zoomed-in version of the European Late Neolithic and Bronze Age samples is provided in Supplementary Fig. 8. b Ancestral components in ancient individuals estimated by ADMIXTURE (k = 11)

This genetic continuity from Corded Ware (the most likely Proto-Uralic homeland) to the Proto-Fennic and Proto-Saamic communities in the Gulf of Finland correlates very well with the known conservatism of Finno-Saamic phonology, quite similar to Finno-Ugric, and both to Proto-Uralic (Kallio 2017): The most isolated region after the expansion of Corded Ware peoples, the Gulf of Finland, shielded against migrations for almost 1,500 years, is then the most conservative – until the arrival of Akozino influence.

NOTE. This has its parallel in the phonetic conservatism of Celtic or Italic compared to Finno-Ugric-influenced Germanic, Balto-Slavic, or Indo-Iranian.

Only later would certain regions (like Finland or Lappland) suffer Y-DNA bottlenecks and further admixture events associated with population displacements and expansions, such as the spread of Fennic peoples from their Estonian homeland (evidenced by the earlier separation of South Estonian) to the north and east:

diversification-finnic
The Finnic family tree. Kallio (2014).

The initial Proto-Fennic expansion was probably coupled with the expansion of Proto-Saami to the north, with the Kjelmøy Ware absorbing the Siberian population of Lovozero Ware, and potentially in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (Carpelan and Parpola 2017).

This Proto-Saami population expansion from the mainland to the north, admixing with Lovozero-related peoples, is clearly reflected in the late Iron Age Saamic samples from Levänluhta (ca. 400-800 AD), as a shift (of 2 out of 3 samples) to Siberian-like ancestry from their original CWC_Baltic-like situation (see PCA from Lamnidis et al. 2018 above).

Also, Volgaic and Permic populations from inner Finland and the Forest Zone to the Cis-Urals and Circum-Artic regions probably incorporate Siberian ancestry and N1c-L392 lineages during these and later population movements, while the westernmost populations – Estonian, Mordvinic – remain less admixed (see PCA from Tambets et al. 2018 below).

We also have data of N1c-L392 in Nordic territory in the Middle Ages, proving its likely strong presence in the Mälaren area since the Iron Age, with the arrival of Akozino warrior traders. Similarly, it is found among Balto-Slavic groups along the eastern Baltic area. Obviously, no language change is seen in Nordic Bronze Age and Lusatian territory, and none is expected in Estonian or Finnish territory, either.

Therefore, no “N1c-L392 + Siberian ancestry” can be seen expanding Finno-Ugric dialects, but rather different infiltrations and population movements with limited effects on ancestry and Y-DNA composition, depending on the specific period and region.

estonians-hungarians-mordvinian
Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected. See Tambets et al. (2018) for more information.

An issue never resolved

Because N1c-L392 subclades & Siberian ancestry, which appear in different proportions and with different origins among some modern Uralic peoples, do not appear in cultures supposed to host Uralic-speaking populations until the Iron Age, people keep looking into any direction to find the ‘true’ homeland of those ‘Uralic N1c peoples’? Kind of a full circular reasoning, anyone? The same is valid for R1a & steppe ancestry being followed for ‘Indo-Europeans’, or R1b-P312 & Neolithic farmer ancestry being traced for ‘Basques’, because of their distribution in modern populations.

I understand the caution of many pointing to the need to wait and see how samples after 2000 BC are like, in every single period, from the middle and upper Volga, Kama, southern Finland, and the Forest Zone between Fennoscandia and the steppe. It’s like waiting to see how people from Western Yamna and the Carpathian Basin after 3000 BC look like, to fill in what is lacking between East Yamna and Bell Beakers, and then between them and every single Late PIE dialect.

But the answer for Yamna-Bell Beaker-Poltavka peoples during the Late PIE expansion is always going to be “R1b-L23, but with R1a-Z645 nearby” (we already have a pretty good idea about that); and the answer for the Forest Zone and northern Cis- and Trans-Urals area – during the time when Uralic languages are known to have already been spoken there – is always going to be “R1a-Z645, but with haplogroup N nearby”, as is already clear from the data on the eastern Baltic region.

So, without a previously proposed model as to where those amateurs expressing concern about ‘not having enough data’ expect to find those ‘Uralic peoples’, all this waiting for the right data looks more like a waiting for N1c and Siberian ancestry to pop up somewhere in the historic Uralic-speaking area, to be able to say “There! A Uralic-speaking male!”. Not a very reasonable framework to deal with prehistoric peoples and their languages, I should think.

But, for those who want to do that, let me break the news to you already:

ananino-culture-balto-slavic
First N1c – Finno-Ugric person arrives in Estonia to teach Finno-Saamic to Balto-Slavic peoples.

And here it is, an appropriate fantasy description of the ethnolinguistic groups from the region. You are welcome:

  • During the Bronze Age, late Corded Ware groups evolve as the western Textile ware Fennic Balto-Slavic group in the Gulf of Finland; the Netted Ware Saamic Balto-Slavic group of inner Finland; the south Netted Ware / Akozino Volgaic Balto-Slavic groups of the Middle Volga; and the Anonino Permic Balto-Slavic group in the north-eastern Forest Zone; all developing still in close contact with each other, allowing for common traits to permeate dialects.
  • These Balto-Slavic groups would then incorporate west of the Urals during and after the Iron Age (ca. 800-500 BC first, and also later during their expansion to the north) limited ancestry and lineages from eastern European hunter-gatherer groups of Palaeo-European Fennic and Palaeo-Siberian Volgaic and Permic languages from the Circum-Artic region, but they adopted nevertheless the language of the newcomers in every single infiltration of N1c lineages and/or admixture with Siberian ancestry. Oh and don’t forget the Saamic peoples from central Sweden, of course, the famous N1c-L392 ‘Rurikid’ lineages expanding Saamic to the north and replacing Proto-Germanic…

The current model for those obsessed with modern Y-DNA is, therefore, that expanding Neolithic, Bronze Age and Iron Age cultures from north-eastern Europe adopted the languages of certain lineages originally from sub-Neolithic (Scandinavian and Siberian) hunter-gatherer populations of the Circum-Artic region; lineages that these cultures incorporated unevenly during their expansions. Hmmmm… Sounds like an inverse Western movie, where expanding Americans end up speaking Apache, and the eastern coast speaks Spanish until Italian migrants arrive and make everyone speak English… or something. A logic, no-nonsense approach to ethnolinguistic identification.

I kid you not, this is the kind of models we are going to see very soon. In 2018 and 2019, with ancient DNA able to confirm or reject archaeological hypotheses based on linguistic data, people will keep instead creating new pet theories to support preconceived ideas based on the Y-DNA prevalent among modern populations. That is, information available in the 2000s.

So what’s (so much published) ancient DNA useful for, exactly?

[Next post on the subject: Corded Ware—Uralic (III): Seima-Turbino and the Ugric and Samoyedic expansion]

Related