Kortlandt: West Indo-Europeans along the Danube, Germanic and Balto-Slavic share a Corded Ware substrate

copper-age-early_yamna-corded-ware

New paper (behind paywall) The Expansion of the Indo-European Languages, by Frederik Kortlandt, JIES (2018) 46(1 & 2):219-231.

Abstract:

When considering the way the Indo-Europeans took to the west, it is important to realize that mountains, forests and marshlands were prohibitive impediments. Moreover, people need fresh water, all the more so when traveling with horses. The natural way from the Russian steppe to the west is therefore along the northern bank of the river Danube. This leads to the hypothesis that the western Indo-Europeans represent successive waves of migration along the Danube and its tributaries. The Celts evidently followed the Danube all the way to southern Germany. The ancestors of the Italic tribes, including the Veneti, may have followed the river Sava towards northern Italy. The ancestors of Germanic speakers apparently moved into Moravia and Bohemia and followed the Elbe into Saxony. A part of the Veneti may have followed them into Moravia and moved along the Oder through the Moravian Gate into Silesia. The hypothetical speakers of Temematic probably moved through Slovakia along the river Orava into western Galicia. The ancestors of speakers of Balkan languages crossed the lower Danube and moved to the south. This scenario is in agreement with the generally accepted view of the earliest relations between these branches of Indo-European.

The western Indo-European vocabulary in Baltic and Slavic is the result of an Indo-European substratum which contained an older non-Indo-European layer and was part of the Corded Ware horizon. The numbers show that a considerable part of the vocabulary was borrowed after the split between Baltic and Slavic, which came about when their speakers moved westwards north and south of the Pripet marshes. These events are older than the westward movement of the Slavs which brought them into contact with Temematic speakers. One may conjecture that the Venedi occupied the Oder basin and then expanded eastwards over the larger part of present-day Poland before the western Balts came down the river Niemen and moved onwards to the lower Vistula. We may then identify the Venedic expansion with the spread of the Corded Ware horizon and the westward migration of the Balts and the Slavs with their integration into the larger cultural complex. The theory that the Venedi separated from the Veneti in the upper Sava region and moved through Moravia and Silesia to the Baltic Sea explains the “im Namenmaterial auffällige Übereinstimmung zwischen dem Baltikum und den Gebieten um den Nordteil der Adria” (Udolph 1981: 61). The Balts probably moved in two stages because the differences between West and East Baltic are considerable.

Instead of reinterpreting his views in light of the recent genetic finds, Kortlandt tries to mix in this paper his own old theories with the recent interpretations of genetic papers, using also dubious secondary sources – e.g. Iversen and Kroonen (2017) or Klejn (2017) [see here, and here] – which, in my opinion, creates a potentially dangerous circular reasoning.

For example, even though he criticizes the general stance of recent genetic papers with regard to Proto-Indo-European dialectalization and expansion as too early, and he supports the Danube expansion route, he nevertheless follows their interpretations in accepting that Corded Ware was Indo-European (which would then be in his view either pre-LPIE, or an LPIE dialect with no known descendants; but with Western IE vocabulary??).

He still follows his good old Indo-Slavonic group in the east, but at the same time maintains Kallio’s view that there were no early Uralic loanwords in Balto-Slavic, and also Kallio’s (and the general) view that there were close contacts with PIE and Pre-Proto-Indo-Iranian…

NOTE. The latest paper on Eurasian migrations by Damgaard et al. (Nature 2018), which shows mainly Proto-Iranians dominating over East Europe after the Early Bronze Age, have left still fewer space for a Proto-Balto-Slavic group emerging from the east.

Also, he asserts the following, which is a rather weird interpretation of events:

It appears that the Corded Ware horizon spread to southern Scandinavia (cf. Iversen & Kroonen 2017) but not to the Baltic region during the Neolithic.

“However, we also find indications of genetic impact from exogenous populations during the Neolithic, most likely from northern Eurasia and the Pontic Steppe. These influences are distinct from the Anatolian-farmer-related gene flow found in Central Europe during this period.”

It follows that the Indo-Europeans did not reach the Baltic region before the Late Neolithic. The influx of non-local people from northern Eurasia may be identified with the expansion of the Finno-Ugrians, who came into contact with the Indo-Europeans as a result of the eastward expansion of the latter in the fourth millennium. This was long before the split between Balto-Slavic and Indo-Iranian.

In the Late Neolithic there was “a further population movement into the regions surrounding the Baltic Sea” that was “accompanied by the first evidence of extensive animal husbandry in the Eastern Baltic”, which “suggests import of the new economy by an incoming steppe-like population independent of the agricultural societies that were already established to the south and west of the Baltic Sea.” (Mittnik & al. 2018). These may have been the ancestors of Balto-Slavic speakers. At a later stage, the Corded Ware horizon spread eastward, giving rise to farming ancestry in Eastern Baltic individuals and to a female gene-flow from the Eastern Baltic into Central Europe (ibidem).

copper-age-late-urals
Late Copper Age migrations in Asia ca. 2800-2300 BC.

He is a strong Indo-Uralic supporter, and supports a parallel Indo-European – Uralic development in Eastern Europe, and (as you can read) he misunderstands the description of population movements in the Baltic region, and thus misplaces Finno-Ugric speakers as Eurasian migrants arriving in the Baltic from the east during the Late Neolithic, before the Corded Ware expansion, which is not what the cited papers implied.

NOTE. Such an identification of westward Neolithic migrations with Uralic speakers is furthermore to be rejected following the most recent paper on Fennoscandian samples.

He has previously asserted that the substrate common to Germanic and Balto-Slavic is non-Indo-European, so I guess that this proposal of an intermediate Indo-European language of the Corded Ware culture strongly influenced by a Non-Indo-European substrate, which in turn influences (as a substrate) both Germanic and Balto-Slavic, is the best way he could put everything together, if one assumes the widespread interpretations of genetic papers.

NOTE. It is very likely that this paper was sent in late 2017. That’s the main problem with traditional publications including the most recent genetic investigation: by the time something gets eventually published, the text is already outdated.

I obviously share his opinion on precedence of disciplines in Indo-European studies:

The methodological point to be emphasized here is that the linguistic evidence takes precedence over archaeological and genetic data, which give no information about the languages spoken and can only support the linguistic evidence. The relative chronology of developments must be established on the basis of the comparative method and internal reconstruction. The location of a reconstructed language can only be established on the basis of lexical and onomastic material. On the other hand, archaeological or genetic data may supply the corresponding absolute chronology. It is therefore incorrect to attribute cultural influences in southern Scandinavia and the Baltic region in the third millennium to Germanic or Baltic speakers because these languages did not yet exist. While the Italo-Celtic branch may have separated from its Indo-European neighbors in the first half of the third millennium, Proto-Balto-Slavic and Proto-Indo-Iranian can be dated to the second millennium and Proto-Germanic to the end of the first millennium BC (cf. Kortlandt 2010: 173f., 197f., 249f.). The Indo-Europeans who moved to southern Scandinavia as part of the Corded Ware horizon were not the ancestors of Germanic speakers, who lived farther to the south, but belonged to an unknown branch that was eventually replaced by Germanic.

I hope we can see more and more anthropological papers like this, using traditional linguistics coupled with archaeology and the most recent genetic investigations.

Related:

Yamna/Afanasevo elite males dominated by R1b-L23, Okunevo brings ancient Siberian/Asian population

afanasevo-okunevo

Open access paper New genetic evidence of affinities and discontinuities between bronze age Siberian populations, by Hollard et al., Am J Phys Anthropol. (2018) 00:1–11.

NOTE. This seems to be a peer-reviewed paper based on a more precise re-examination of the samples from Hollard’s PhD thesis, Peuplement du sud de la Sibérie et de l’Altaï à l’âge du Bronze : apport de la paléogénétique (2014).

Interesting excerpts:

Afanasevo and Yamna

The Afanasievo culture is the earliest known archaeological culture of southern Siberia, occupying the Minusinsk-Altai region during the Eneolithic era 3600/3300 BC to 2500 BC (Svyatko et al., 2009; Vadetskaya et al., 2014). Archeological data showed that the Afanasievo culture had strong affinities with the Yamnaya and pre-Yamnaya Eneolithic cultures in the West (Grushin et al., 2009). This suggests a Yamnaya migration into western Altai and into Afanasievo. Note that, in most current publications, “the Yamnaya culture” combines the so-called “classical Yamnaya culture” of the Early Bronze Age and archeological sites of the preceding Repin culture in the middle reaches of the Don and Volga rivers. In the present article we conventionally use the term Yamnaya in the same sense, in which case the beginning of the “Yamnaya culture” can be dated after the middle of the 4th millennium BC, when the Afanasievo culture appeared in the Altai.

Because of numerous traits attributed to early Indo-Europeans and cultural relations with Kurgan steppe cultures, members of the Afanasievo culture are believed to have been Indo-European speakers (Mallory and Mair, 2000). In a recent whole-genome sequencing study, Allentoft et al. (2015) concluded that Eastern Yamnaya individuals and Afanasievo individuals were genetically indistinguishable. Moreover, this study and one published concurrently by Haak et al. (2015) analyzed 11 Eastern Yamnaya males and showed that all of them belonged to the R1b1a1a (formerly R1b1a) (…)

indo-european-uralic-migrations-afanasevo
Early Chalcolithic migrations ca. 3300-2600 BC.

Published works indicate that R1b was a predominant haplogroup from the late Neolithic to the early Bronze Age, notably in the Bell Beaker and Yamnaya cultures (Allentoft et al., 2015; Haak et al., 2015; Lee et al., 2012; Mathieson et al., 2015). Nearly 100% of the Afanasievo men we typed belonged to the R1b1a1a subhaplogroup and, for at least three of them, more precisely to the L23 (xM412) subclade. (…)

(…) our results therefore support the hypothesis of a genetic link between Afanasievo and Yamnaya. This also suggests that R1b was indeed dominant in the early Bronze Age Siberian steppe, at least in individuals that were buried in kurgans (possibly an elite part of the population). The geographical and temporal distribution of subhaplogroup R1b1a1a supports the hypothesis of population expansion from West to East in the Eurasian steppe during this period. It should however be noted that the Yamnaya burials from which the samples for DNA analysis were obtained (Allentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015) were dated within the limits of the Afanasievo period. Ancestors of both East Yamnaya and Afanasievo populations must therefore be sought in the context of earlier Eneolithic cultures in Eastern Europe. Sufficient Y-chromosomal data from such Eneolithic populations is, unfortunately, not yet available.

mtdna-ydna-afanasevo-okunevo
Mitochondrial- (A) and Y- (B) haplogroup distribution in studied populations

Okunevo and paternal lineage shift in South Siberia

Results obtained in the current study, from more than a dozen Okunevo individuals belonging to the earliest stage of Okunevo culture, that is the Uibat period (2500–2200 BC) (Lazaretov, 1997), suggest a discontinuity in the genetic pool between Afanasievo and Okunevo cultures. Although Y-chromosomal data obtained for bearers of the Okunevo culture showed that one individual carried haplogroup R1b, most Okunevo Y-haplogroups are representative of an Asian component represented by paternal lineages Q and NO1.

Okunevo carrier of Y-haplogroup Q1b1a-L54, which also supports this hypothesis (L54 being a marker of the lineage from which M3, the main Ameridian lineage, arose). Okunevo people could therefore be a remnant paleo-Siberian population with possible Afanasievo input, as suggested by the presence of the R1b1a1a2a subhaplogroup in one individual.

indo-european-uralic-migrations-afanasevo-late
Late Chalcolithic migrations ca. 2600-2250 BC.

Replacement of Asian Indo-European elite lineages by R1a

Published genetic data from the late Bronze Age Andronovo culture from the Minusinsk Basin (Keyser et al., 2009), the Sintashta culture from Russia (Allentoft et al., 2015) and the Srubnaya culture from the region of Samara (Mathieson et al., 2015), show that males did not belong to Y-haplogroup R1b but mostly to R1a clades: there appears to have been a change in the dominant Y-chromosomal haplogroup between the early and the late Bronze Age in these regions. Moreover, as described in Allentoft et al. (2015), the Andronovo and Sintashta peoples were closely related to each other but clearly distinct from both Yamnaya and Afanasievo. Although these results do not imply that Y-haplogroup R1b was entirely absent in these later populations, they could correspond to a replacement of the elite between these two main periods and therefore a difference in the haplogroups of the men that were preferentially buried.

indo-european-uralic-migrations-okunevo-andronovo
Early Bronze Age migrations ca. 2250-1750 BC.

Afanasevo and the Tarim Basin

The discovery, in the Tarim Basin, of well-preserved mummies from the Bronze Age allows for the construction of two hypotheses regarding the peopling of the Xinjiang province at this period. The “steppe hypothesis,” argues for a link with nomadic steppe herders (Hemphill and Mallory, 2004), possibly represented in this case by Afanasievo populations and their descendants (Mallory and Mair, 2000). However, newly published cultural data from the burial grounds of Gumugou (Wang, 2014) and Xiaohe (Xinjiang, 2003, 2007) shows material culture and burial rites incompatible with the Afanasievo culture. The earliest 14C date for Tarim Basin burials would place them at the turn of the 2nd millenium BC (Wang, 2013), 500 years after the Afanasievo period.

Instead, early Gumugou and Xiaohe burial grounds were contemporary with the start of the Andronovo period. Likewise, the Bronze Age population of the Xinjiang at Gumugou/Qäwrighul is not phenotypically closest to Afanasievo but to the Andronovo (Fedorovo) group of northeastern Kazakhstan and western Altai (Kozintsev, 2009). Our investigations demonstrate that Y-chromosomal lineage composition is also compatible with the notion that the ancient Tarim population was genetically distinct from the Afanasievo population. The only Y-haplogroup found by Li et al. (2010) in the Bronze Age Tarim Basin population was Y-haplogroup R1a, which suggests a proximity of this population with Andronovo groups rather than Afanasievo groups.

I don’t think these finds are much of a surprise based on what we already know, or need much explanation…

I would add that, once again, we have more proof that the movement of Okunevo and related ancient Siberian migrants from Central or North Asia will not be able to explain the presence of Uralic languages spread over North-East Europe and Scandinavia already during the Bronze Age.

Also interesting is to read in more peer-reviewed papers the idea of Late Indo-European speakers clearly linked to the expansion of patrilineally-related elite males marked by haplogroup R1b-L23, most likely since Eneolithic Khvalynsk/Repin cultures.

Related:

Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia

indo-european-yamnaya-corded-ware

A commenter, Old Europe, drew my attention to the Uralic (Finnic-Saamic) substrate in Germanic proposed by Schrijver in Chapter V. Origins of Language Contact and the Origins of the Germanic Languages, Routledge (2014).

I wanted to share here some interesting excerpts (emphasis mine):

NOTE. I have avoided many detailed linguistic discussions. You should read the whole chapter to check them out.

The origins of the Germanic subfamily of Indo-European cannot be understood without acknowledging its interactions with a language group that has been its long-time neighbour: the Finnic subgroup of the Uralic language family. Indo-European and Uralic are linked to one another in two ways: they are probably related to one another in deep time — how deep is impossible to say3 — and Indo-European has been a constant source from which words were borrowed into Uralic languages, from the fourth millennium BC up to the present day.4 The section of the Uralic family that has always remained in close proximity to the Indo-European dialects which eventually turned into Germanic is Finnic. I use the term Finnic with a slightly idiosyncratic meaning : it covers the Finno-Saamic protolanguage and both of its children, Saami and Balto-Finnic.(…)

finnic-family-tree-schrijver
Schrijver (2014). The Finnic family tree (simplified)

Linguistically, the relationship between Indo-European and Uralic has always been asymmetrical. While hundreds of loanwords flowed into Uralic languages from Indo-European languages such as Germanic, Balto-Slavic, Iranian, and Proto-Indo-European itself, hardly any Uralic loanwords have entered the Indo-European languages (apart from a few relatively late dialectal loans into e.g. Russian and the Scandinavian languages). This strongly suggests that Uralic speakers have always been more receptive to ideas coming from Indo-European–speaking areas than the other way around. This inequality probably began when farming and the entire way of life that accompanies it reached Uralic-speaking territory via Indo-European–speaking territory, so that Uralic speakers, who traditionally were hunter-gatherers of the mixed and evergreen forest zone of northeastern Europe and gradually switched to an existence as sedentary farmers, were more likely to pick up ideas and the words that go with them from Indo-European than from anywhere else.

Farming requires a different mind-set from a hunter-gatherer existence. Farmers are generally sedentary, model the landscape, and have an agricultural calendar to determine their actions. Hunter-gatherers of the northern forest zone are generally nomadic, and rather than themselves modelling the natural environment they are modelled by it: their calendar depends on when and where a particular natural resource is available.(…)

All of this is no doubt a simplification of the thousands of years of associations between speakers of Uralic and speakers of Indo-European, but the loanword evidence strongly suggests that by and large relations between the two groups were highly unequal. The single direction in which loanwords flowed, and the mass of loanwords involved, can be compared with the relation between Latin and the vernacular languages in the Roman Empire, almost all of which disappeared in favour of Latin. It is therefore certain that groups of Uralic speakers switched to Indo-European. The question is whether we can trace those groups and, more particularly, whether Finnic speakers switching to Indo-European were involved in creating the Indo-European dialect we now know as Germanic.

Convergence of Finnic and Germanic

What both have in common is that the sound structures of Finnic and Germanic, which started from very different beginnings, apparently came to resemble one another significantly. If that is what we observe, we must conclude that both languages converged as a result of contact.

During the approximately five to six millennia that separate Proto-Uralic from Modern Finnish, there was only one episode during which the consonantal system underwent a dramatic overhaul. This episode separates the Finno-Saamic protolanguage, which is phonologically extremely conservative, from the Balto-Finnic protolanguage, which is very innovative.

finno-samic-consonants

By the time Finno-Saamic developed into Balto-Finnic, the consonant system was very different:

balto-finnic-consonants

In Balto-Finnic, the entire palatal series has been lost, apart from j, and the contrast between dentals and alveolars has disappeared: out of three different s-sounds only one remains. The fricatives ð and γ have been lost, and so has the velar nasal ŋ. The only increase has been in the number of long (geminate) consonants by the appearance of ss, mm, nn, and ll. The loss of separate alveolar and palatal series and the disappearance of ŋ could be conceived as convergences towards Proto-Germanic, which lacked such consonants. This is not obvious for the loss of the voiced fricatives γ, ð, which Proto-Germanic did possess. However, this way of comparing Balto-Finnic and Germanic is flawed in an important respect: what we are doing is assessing convergence by comparing the dynamic development from Finno-Saamic to Balto-Finnic to the static system of Proto-Germanic, as if Proto-Germanic is not itself the result of a set of changes to the ancestral Pre-Germanic consonantal system. If we wish to find out whether there was convergence and which language converged on which, what we should do, therefore, is to compare the dynamic development of Finno-Saamic to Balto-Finnic to the dynamic development of Pre-Germanic to Proto-Germanic, because only that procedure will allow us to state whether Balto-Finnic moved towards Proto-Germanic, or Proto-Germanic moved towards Balto-Finnic, or both moved towards a third language. The Pre-Germanic consonantal system can be reconstructed as follows: 7

pre-germanic-proto-germanic-verner-s-law

The slashes in the second and third rows indicate the uncertainty about the Proto-Indo-European nature of the sounds involved. (…)

What resulted was the following Proto-Germanic consonant system:

proto-germanic-consonant-system

We are now in a better position to answer the question whether Proto-Germanic and Balto-Finnic have converged. Three striking developments affected both languages:

  • Both languages lost the palatalized series of consonants (apart from j), which in both languages became non-palatalized.
  • >Both languages developed an extensive set of long (geminate) consonants; Pre-Germanic had none, while Finno-Saamic already had a few.
  • Both languages developed an h.

These similarities between the languages are considerable.

The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

Verner’s Law in Pre-Germanic

As we have seen in the preceding section, Verner’s law is a sound change that affected originally voiceless consonants, so *p , t , k , kj , kw, s of the Pre-Germanic system. These normally became the Proto-Germanic voiceless fricatives *f, θ, h, h, hw, s, respectively. But if *p, t, k etc. were preceded by an originally unstressed syllable, Verner’s law intervened and they were turned into voiced consonants. Those voiced consonants merged with the series *bh, dh, gh of the Pre-Germanic system and therefore subsequently underwent all changes that the latter did, turning out as *b/v , *d/ð , g/γ in the Proto-Germanic system (that is, v, ð, γ after a vowel and b, d, g in all other environments in the word). When *s was affected by Verner’s Law, a new phoneme *z arose. In a diagram:

pre-germanic-verner-s-law

While it is very common in the history of European languages for stress to influence the development of vowels, it only very rarely affected consonants in this part of the world. Verner’s law is a striking exception. It resembles a development which, on a much larger scale, affected Finno-Saamic: consonant gradation.(…)

In all Finno-Saamic languages, rhythmic gradation has become phonemic and fossilized. The connection between rhythmic gradation and Verner’s law is relatively straightforward: both processes involve changing a voiceless consonant after an unstressed syllable. (…)

We can therefore repeat for Proto-Uralic the argument that persuaded us earlier that gradation in Saami and Balto-Finnic must go back to the common Finno-Saamic protolanguage: the similarity of the gradation rules in Nganasan to those in Finno-Saamic is so specific and so detailed, and the phenomenon of gradation so rare in the languages of the world, that gradation must be reconstructed for the Uralic protolanguage.

Verner’s law turns all voiceless obstruents (Pre-Germanic *p, t, k, kj, kw, s) into voiced obstruents (ultimately Proto-Germanic *b/v , d/ð, g/γ, g/γ, gw, z) after a Pre-Germanic unstressed syllable. Rhythmic gradation turns all voiceless obstruents after an unstressed syllable into weak-grade consonants, which means that *p, t, k, s become Finnic *b/v , d/ð , g/γ, z. This is striking. Given the geographical proximity of Balto-Finnic and Germanic and given the rare occurrence of stress-related consonant changes in European languages, it would be unreasonable to think that Verner’s law and rhythmic gradation have nothing to do with one another.

It is very hard to accept, however, that gradation is the result of copying Verner’s law into Finnic. First of all, Verner’s law, which might account for rhythmic gradation, in no way accounts for syllabic gradation in Finnic. And, second, gradation can be shown to be an inherited feature of Finnic which goes all the way back to Proto-Uralic. Once one acknowledges that Verner’s law and gradation are causally linked and that gradation cannot be explained as a result of copying Verner’s law into Finnic, there remains only one possibility: Verner’s law is a copy of Finnic rhythmic gradation into Germanic. That means that we have finally managed to find what we were looking for all along: a Finnic sound feature in Germanic that betrays that Finnic speakers shifted to Germanic and spoke Germanic with a Finnic accent. The consequence of this idea is dramatic: since Verner’s law affected all of Germanic, all of Germanic has a Finnic accent.

indo-european-uralic-bell-beaker-corded-ware-migrations
Late Chalcolithic migrations ca. 2600-2250 BC.

On the basis of this evidence for Finnic speakers shifting to Germanic, it is possible to ascribe other, less specifically Finnic traits in Germanic to the same source. The most obvious trait is the fixation of the main stress on the initial syllable of the word. Initial stress is inherited in Finno-Saamic but was adopted in Germanic only after the operation of Verner’s law, quite probably under Finnic influence. The consonantal changes described in section V.3.1 can be attributed to Finnic with less confidence. The best case can be made for the development of geminate (double) consonants in Germanic, which did not inherit any of them, while Finno-Saamic inherited *pp, tt, kk, cc and took their presence as a cue to develop other geminates such as *nn and *ll . Possibly geminates developed so easily in Proto-Germanic because Finnic speakers (who switched to Germanic) were familiar with them. Other consonantal changes, such as the loss of the palatalized series in both Germanic and Balto-Finnic and the elimination of the different s- and c-phonemes, might have occurred for the same reason: if Balto-Finnic had undergone them earlier than Germanic, which we do not know, they could have constituted part of the Balto-Finnic accent in Germanic. An alternative take on those changes starts from the observation that they all constitute simplifications of an older, richer system of consonants. While simplifications can be and often are caused by language shift if the new speakers lacked certain phonemes in their original language, simplifications do not require an explanation by shift: languages are capable of simplifying a complex system all by themselves. Yet the similarities between the simplifications in Germanic and in Balto-Finnic are so obvious that one would not want to ascribe their co-occurrence to accidental circumstances.

Grimm’s Law in Proto-Germanic (speculative)

Voiceless lenis pronunciation of b, d, g is typical of the majority of German and Scandinavian dialects, so may well have been inherited from Proto-Germanic. Voiceless lenis is also the pronunciation that has been assumed to underlie the weak grades of Finno-Saamic single *p, t, k. If Proto-Germanic *b, d, g were indeed voiceless lenis, the single most striking result of the Germanic consonant shift is that it eliminated the phonological difference between voiced and voiceless consonants that Germanic had inherited from Proto-Indo-European (…) Since neither Finno-Saamic nor Balto-Finnic possessed a phonological difference between voiced and voiceless obstruents, its loss in Proto-Germanic can be regarded as yet another example of a Finnic feature in Germanic.

grimms-law

It is clear that this account of the first Germanic consonant shift as yet another example of Finnic influence is to some degree speculative. The point I am making is not that the Germanic consonant shift must be explained on the basis of Finnic influence, like Verner’s law and word-initial stress, only that it can be explained in this way, just like other features of the Germanic sound system discussed earlier, such as the loss of palatalized consonants and the rise of geminates.

A consequence of this account of the origins of the Proto-Germanic consonantal system is that the transition from Pre-Germanic to Proto-Germanic was entirely directed by Finnic. Or, to put it in less subtle words: Indo-European consonants became Germanic consonants when they were pronounced by Finnic speakers.

post-bell-beaker-europe
Post-Bell-Beaker Europe, after ca. 2200 BC.

The vocalic system, on the other hand, presented less difficulties for both, Indo-European and Uralic speakers, since it was quite similar.

Schrijver goes on to postulate certain asymmetric differences in loans, especially with regard to Proto-Germanic, Balto-Finnic, Proto-Saamic, Proto-Baltic, and later contacts, including a potential non-Uralic, non-IE substrate language to justify some of these, which may in turn be connected with Kroonen’s agricultural substrate hypothesis of Proto-Germanic, and thus also with the other surviving Scandinavian Neolithic cultures before the eventual simplification of the cultural landscape during the Bronze Age.

Conclusion on the origin of Germanic

The Finnic-Germanic contact situation has turned out to be of a canonical type. To Finnic speakers, people who spoke prehistoric Germanic and its ancestor, Pre-Germanic, must have been role models. Why they were remains unclear. In the best traditions of Uralic–Indo-European contacts, Finnic speakers adopted masses of loanwords from (Pre-)Germanic. Some Finnic speakers even went a crucial step further and became bilingual: they spoke Pre-Germanic according to the possibilities offered by the Finnic sound system, which meant they spoke with a strong accent. The accent expressed itself as radical changes in the Pre-Germanic consonantal system and no changes in the Pre-Germanic vowel system. This speech variety became very successful and turned an Indo-European dialect into what we now know as Germanic. Bilingual speakers became monolingual speakers of Germanic.

What we do not know is for how long Finnic-Germanic bilingualism persisted. It is possible that it lasted for some time because both partners grew more alike even with respect to features whose origin we cannot assign to either of them (loss of palatalized consonants): this suggests, perhaps, that both languages became more similar because generally they were housed in the same brain. What we can say with more confidence is that the bilingual situation ultimately favoured Germanic over Finnic: loanwords continued to flow in one direction only, from Germanic to Finnic, hence it is clear that Germanic speakers remained role models.

This is as far as the linguistic evidence can take us for the moment.

Based on archaeology and genetics, I think we can say that the close North-West Indo-European – Proto-Finnic interaction in Scandinavia lasted for hundreds of years, during the time when a unifying Nordic culture and language developed from Bell Beaker maritime elites dominating over Corded Ware groups.

As we know, Uralic languages were in close contact with Middle PIE, and also later with Proto-Indo-Iranian. This Pre-Germanic development in Scandinavia is therefore another hint at the identification of a rather early Proto-Finnic spoken in the Baltic area – potentially then by Battle Axe groups – , and thus the general identification of Uralic expansion with the different Corded Ware groups.

NOTE. The ‘common’ loss of certain palatals, which Schrijver interprets as a change of Pre-Germanic from the inherited Proto-Indo-European, may in fact not be such – in the opinion of bitectalists, including us, and especially taking the North-West Indo-European reconstruction and the Corded Ware substrate hypothesis into account – , so this effect would be a rather unidirectional shift from Finnic to Germanic. On the other hand, certain palatalization trends which some have described for Germanic could in fact be explained precisely by this bidirectional influence.

Related:

The future of the Reich Lab’s studies and interpretations of Late Indo-European migrations

yamna-corded-ware-bell-beaker-reich

Short report on advances in Genomics, and on the Reich Lab:

Some interesting details:

  • The Lab is impressive. I would never dream of having something like this at our university. I am really jealous of that working environment.
  • They are currently working on population transformations in Italy; I hope we can have at last Italic and Etruscan samples.
  • It is always worth it to repeat that we are all the source of multiple admixture events, many of them quite recent; and I liked the Star Wars simile.
  • Also, some names hinting at potential new samples?? Zajo-I, Chanchan, Gurulde?, Володарка (Ukraine – medieval?), Autodrom, Облевка, Кресты, Кудуксай (Ural region, palaeo-metal?), Золкут, etc.
reich-lab-samples
Ancient DNA sample bag?

On the bad aspect, they keep repeating the same “steppe ancestry” meme (in the featured image above, or the one below). I know this is the news report (i.e. science communication), not exactly the Reich Lab, but these maps didn’t appear out of the blue.

steppe-admixture-reich
Steppe ancestry distribution in Europe, according to PBS.

Interesting for future interpretations is the whiteboard behind David Reich’s back (apparently they like to keep relevant information on whiteboards…):

reich-indo-european-tree
Whiteboard behind David Reich’s back (at his office?).

It seems that while the Copenhagen group will still be bound (see here) by the Gimbutas/Kristiansen starting point, the Reich Lab will remain bound by Anthony’s selection of Ringe’s (2002) glottochronological model, and they will try to make genomic data fit in with it.

In fact, the whiteboard doesn’t even include Ringe’s link of Germanic with Italo-Celtic, which could maybe hint at Anthony’s recent change of heart? (i.e. Yamna Hungary -> Corded Ware). That would mean still less Linguistics (if glottochronology can be called that), and more Archaeology…

anthony-ringe-migration-model
Image from Anthony & Ringe (2015). “The Proto-Indo-European homeland, with migrations outward at about 4200 BCE (1), 3300 BCE (2), and 3000 BCE (3a and 3b). A tree diagram (inset) shows the pre-Germanic split as unresolved. Modified from Anthony (2013).”

I don’t know why university labs need to do this: To select the linguistic model preferred by a single archaeologist, which happens to be the lead archaeologist of the group, and then try to make genetic data agree again and again with that model. I guess it is a strategic question, and has to do with granting continued contacts with archaeological sites, and access to samples from them?

I understand none of them will try to learn ancient languages, too much work probably. But, wouldn’t it have been more scientifish, at least, to depart from, say, three or four reasonable potential linguistic models (that is, from Indo-Europeanists), and from there discuss the best potential fits for the current genomic data in each paper?

This is, for example, how the Heyd (archaeologist) + German/Spanish Indo-Europeanist schools would look like:

yamnaya-heyd-dunkel
Yamnaya expansion coupled with Meid’s (1975) description of three stages of Proto-Indo-European development (as interpreted by Adrados 1998) and depiction of Heyd’s proposal of Yamna expansion.

Wouldn’t you say it could have fitted the statistical and Y-DNA data seamlessly, in contrast to Gimbutas/Trager (i.e. Kristiansen today), or to Anthony/Ringe?

NOTE. I would say the mainstream German school follows Meid’s (1975) three-stage theory coupled with Dunkel’s (e.g. 1997) nomenclature. The Spanish school follows Adrados, who has repeated ad nauseam that he was the first to mention the three-stage theory in conferences and papers previous to and coincident with Meid’s proposal (see his latest JIES article, a paper available in Scribd). In any case, Spanish and German scholars have been working hand in hand in accepting and developing a general linguistic model similar to the one above.

Archaeological theories like those of Heyd or Mallory for Yamna and Bell Beaker (in contrast to Kristiansen or Anthony), and Prescott and Walderhaug for Bell Beaker and Germanic (contrasting with Kristiansen and Iversen) are compatible with this German/Spanish model.

The French school is non-existent on the homeland matter, Italian scholars seem to be behind even in the description of Anatolian as archaic (probably related to the general wish to have Latin as derived from Vergil’s Troy), Russian scholars are still working with Nostratic and Mesolithic expansions, and Leiden, as the leading IE publisher worldwide today, is full of very different ‘divos’, each with his own pet theory (some obviously agreeing with the German/Spanish model; and especially interesting is that some of them are strong supporters of an Indo-Uralic proto-language).

The English-speaking world, on the other hand, has seen the most varied models being either proposed or translated into its language, with the most popular ones being those publicized by archaeologists (Winfred P. Lehmann being one of the noteworthy exceptions), which may explain why for some people (archaeologists or geneticists) linguistics seems more like a game. It is to be assumed that these same people haven’t taken a look at the dozens of genetic papers published to date – and hundreds of archaeological papers using a bit of linguistics to support their models – , and how wrong they have all been in their interpretations, or else they would realize that genomics does (sadly) not really look like a serious discipline at all right now among most linguists, and among many archaeologists either…

Thus, instead of comparing the main theories on Proto-Indo-European (i.e. linguistics->archaeology->genetics), which would have offered the most stable framework to assess potential prehistoric ethnolinguistic identifications, they keep using a single, simplistic language tree liked by an archaeologist, and trying to fit genetic data to it, while also adapting archaeology to genetics, i.e. genetics->archaeology->linguistics; which, as you can imagine, is not going to convince any linguist.

Especially disappointing is that the world’s leading genetic lab still relies on a marginal proposal based on glottochronology, the homeopathy of linguistics… At least in that regard everyone should know better by now.

Also, they keep interacting with the wrong audience: instead of trying to engage linguists into the real homeland and dialectal quest, to keep Genomics a serious discipline among academics, they tend to discuss with politically- or racially-motivated people, which is probably also in line with strategic decisions.

In the example below, we see the main author of their recent paper on Indo-Iranian migrations seeking once again interaction, this time through “news” promoted by Hindu nationalist bigots, so that – even if that makes them look more neutral in the eyes of those who may allow access to Indian samples – , in the end, we see in genomics a fictitious revival of the “AIT vs. OIT debate” dead long ago in linguistics and archaeology (anywhere but in India).

Pretty disappointing to see these trends; so much effort and time invested in futile discussions and infinitely reworked doomed glottochronological or 19th-century models, when it is the fine-scale population structure of expanding Yamna peoples what we should be discussing now, and thus Late PIE dialectalisation with offshoots Afanasevo, East Bell Beaker, Balkan Bronze Age, and Sintashta/Potapovka; as well as Corded Ware evolution in Uralic-speaking territory.

EDIT (7 JUN 2018): Some parts of the text have been corrected or slightly modified.

Related:

Minimal Corded Ware culture impact in Scandinavia – Bell Beakers the unifying maritime elite

copper-age-late-bell-beaker

Chapter The Sea and Bronze Age Transformations, by Christopher Prescott, Anette Sand-Eriksen, and Knut Ivar Austvoll, In: Water and Power in Past Societies (2018), Emily Holt, Proceedings of the IEMA Postdoctoral Visiting Scholar Conference on Theories and Methods in Archaeology, Vol. 6.

NOTE. You can download the chapter draft at Academia.edu.

Abstract (emphasis mine):

Along the western Norwegian coast, in the northwestern region of the Nordic Late Neolithic and Bronze Age (2350–500 BCE) there is cultural homogeneity but variable expressions of political hierarchy. Although new ideological institutions, technology (e.g., metallurgy and boat building), intensified agro‑pastoral farming, and maritime travel were introduced throughout the region as of 2350 BCE, concentrations of expressions of Bronze Age elites are intermittently found along the coast. Four regions—Lista, Jæren, Karmøy, and Sunnmøre—are examined in an exploration of the establishment and early role of maritime practices in this Nordic region. It is argued that the expressions of power and material wealth concentrated in these four regions is based on the control of bottlenecks, channels, portages, and harbors along important maritime routes of travel. As such, this article is a study of prehistoric travel, sources of power, and maritime landscapes in the Late Neolithic and Early Bronze Age of Norway.

Interesting excerpts:

(…)The [Corded Ware culture (CWC)] in Norway (or Battle Axe Culture, 2750–2400/2350 BCE) is primarily represented in Eastern Norway, with a patchy settlement pattern along the Oslo fjord’s coast through the inland valleys to Trøndelag in Central Norway (Hinsch 1956). The CWC represents an enigmatic period in Norwegian prehistory (Hinsch 1956; Østmo 1988:227–231; Prescott and Walderhaug 1995; Shetelig 1936); however the data at the moment suggests the following patterns:

  • Migration: The CWC was the result of a small‑scale immigration, but did not trigger substantial change.
  • Eastern and limited impact: The CWC was primarily located in small settlement patches in eastern Norway.
  • Terrestrial: In terms of maritime practices, the CWC does not represent a significant break from older traditions, though it seems to have a more pronounced terrestrial bearing. It is conceivable that pastures and hunting grounds were a more important political‑economic resource than waterways.

The mid‑third millennium in Norway, around 2400 BCE, represents a significant reorientation. Bell Beaker Culture (BBC) settlements in western Denmark and Norway archaeologically mark the instigation of the Nordic LN, though much of the historical process leading from the Bell Beaker to the Late Neolithic, 2500 to 2350 BCE, remains unclear (Prescott 2012; Prescott and Melheim 2009; Prieto‑Martinez 2008:116; Sarauw 2007:66; Vandkilde 2001, 2005). Still, the outcome is the establishment of the Nordic region of interaction in the Baltic, Northern Germany, Sweden, Denmark, and Norway. The distribution of artifact materials such as Bell Beakers and flint daggers attests to the far‑flung network of regular exchange and communication. This general region of interaction was reproduced through the Late Neolithic and Bronze Age.

nordic-late-neolithic
The Nordic region in the Late Neolithic and Bronze Age. Sites and regions discussed in the text are marked (ater Prescott and Glørstad 2015:fig. 1).

The transition from the preceding Neolithic period hunter‑gatherer societies was rapid and represents a dramatic termination of hunter‑gatherer traditions. It has been argued that the transformation is tied to initial migrations of people to the western coast of Norway from BBC areas, possibly from northern Jutland (Prescott 2011; Prescott and Walderhaug 1995:273). Bifacial tanged‑and‑barbed points, often referred to as “Bell Beaker points,” probably represent an early, short phase of the BBC‑transition around 2400 BCE. In Norway these points have a predominantly western and coastal distribution (Østmo 2012:64), underscoring the maritime nature of the initial BBC‑expansion.

late-neolithic-flint-daggers
Distribution routes for LN1 flint daggers type 1 suggesting communication routes and networks. (Redrawn after fig. 9, Apel 2001:17).

(…) In response to the question about what attracted people from Bell Beaker groups to western Norway, responses have hypothesized hunting products, political power, pastures, and metals. Particularly the latter has been emphasized by Lene Melheim (2012, 2015:37ff).

A recent study by Melheim and Prescott (2016) integrated maritime exploration with metal prospecting to explain initial excursions of BBC‑people along the western coast and into the fjords. Building on the archaeological concept of traveling metal prospectors as an element in the expansion of the Bell Beaker phenomenon, in combination with anthropological perspectives on prospecting, the article explores how prospecting for metal would have adjusted to the landscapes of western Scandinavia. Generally speaking, prospecting seldom leads to successful metal production, and it is difficult to study archaeologically. However, it will often create links between the prospectors’ society and indigenous groups, opening new territories, and have a significant transformative impact—on both the external and indigenous actors and societies.

While the text echoes the traditional idea that Corded Ware spread Indo-European languages, Prescott (since Prescott and Walderhaug 1995) is a supporter of the formation of a Nordic community and a Nordic (i.e. Pre-Germanic) language with the arrival of Bell Beakers.

An identification of the Corded Ware language as of a previous Proto-Indo-European stage is possible, as I have previously said (although my preference is Uralic-related languages).

This CWC language would thus still form the common substrate to both Germanic and Balto-Slavic, both being North-West Indo-European dialects, which spread with Bell Beakers over previous Corded Ware territory.

NOTE. This pre-LPIE nature could be in turn related to Kortlandt’s controversial proposal of an ealier PIE dative *-mus shared by both branches. However, that would paradoxically be against Kortlandt’s own assumption that the substrate was in fact of a non-Indo-European nature

See also:

Reproductive success among ancient Icelanders stratified by ancestry

iceland-pca

New paper (behind paywall), Ancient genomes from Iceland reveal the making of a human population, by Ebenesersdóttir et al. Science (2018) 360(6392):1028-1032.

Abstract and relevant excerpts (emphasis mine):

Opportunities to directly study the founding of a human population and its subsequent evolutionary history are rare. Using genome sequence data from 27 ancient Icelanders, we demonstrate that they are a combination of Norse, Gaelic, and admixed individuals. We further show that these ancient Icelanders are markedly more similar to their source populations in Scandinavia and the British-Irish Isles than to contemporary Icelanders, who have been shaped by 1100 years of extensive genetic drift. Finally, we report evidence of unequal contributions from the ancient founders to the contemporary Icelandic gene pool. These results provide detailed insights into the making of a human population that has proven extraordinarily useful for the discovery of genotype-phenotype associations.

icelanders
Shared drift of ancient and contemporary Icelanders. (A) Scatterplot of D-statistics reflecting Iceland-specific drift. To aid interpretation, we included values for ancient British-Irish Islanders and a subset of contemporary individuals (who were correspondingly removed from the reference populations).

We estimated the mean Norse ancestry of the settlement population (24 pre-Christians and one early Christian) as 0.566 [95% confidence interval (CI) 0.431–0.702], with a nonsignificant difference betweenmales (0.579) and females (0.521). Applying the same ADMIXTURE analysis to each of the 916 contemporary Icelanders, we obtained a mean Norse ancestry of 0.704 (95% CI 0.699–0.709). Although not statistically significant (t test p = 0.058), this difference is suggestive. A similar difference ofNorse ancestry was observed with a frequency-based weighted least-squares admixture estimator (16), 0.625 [Mean squared error (MSE) = 0.083] versus 0.74 (MSE = 0.0037). Finally, the D-statistic test D(YRI, X; Gaelic, Norse) also revealed a greater affinity between Norse and contemporary Icelanders (0.0004, 95% CI 0.00008–0.00072) than between Norse and ancient Icelanders (−0.0002, 95% CI −0.00056–0.00015). This observation raises the possibility that reproductive success among the earliest Icelanders was stratified by ancestry, as genetic drift alone is unlikely to systematically alter ancestry at thousands of independent loci (fig. S10). We note that many settlers of Gaelic ancestry came to Iceland as slaves, whose survival and freedom to reproduce is likely to have been constrained (17). Some shift in ancestry must also be due to later immigration from Denmark, which maintained colonial control over Iceland from 1380 to 1944 (for example, in 1930 there were 745 Danes out of a total population of 108,629 in Iceland) (18).

icelander-admixture
Shared drift of ancient and contemporary Icelanders. (B) Estimated Norse,
Gaelic, and Icelandic ancestry for ancient Icelanders using ADMIXTURE
in supervised mode.

Five pre-Christian Icelanders (VDP-A5, DAVA9, NNM-A1, SVK-A1 and TGS-A1) fall just outside the space occupied by contemporary Norse in Fig. 3A. That these individuals show a stronger signal of drift shared with contemporary Icelanders is also apparent in the results of ADMIXTURE, run in supervised mode with three contemporary reference populations (Norse, Gaelic, and Icelandic) (Fig. 3B). The correlation between the proportion of Icelandic ancestry from this analysis and PC1 in Fig. 2A is |r| = 0.913.(…)

(…) as the five ancient Icelanders fall well within the cluster of contemporary Scandinavians (Fig. 3C), we conclude that they, or close relatives, likely contributed more to the contemporary Icelandic gene pool than the other pre-Christians. We note that this observation is consistent with the inference that settlers of Norse ancestry had greater reproductive success than those of Gaelic ancestry.

icelanders-y-dna
Haplogroup data, from the paper. Image modified by me, with those close to Gaelic and British/Irish samples (see above Scatterplot of D-statistics and ADMIXTURE data) marked in fluorescent: yellow closer to Gaelic, green less close.

Ancient Icelanders show a clear relation with the typically Norse Y-DNA distribution: I1 / R1a-Z284 / R1b-U106.

  • Among R1a, the picture is uniformly of R1a-Z284 (at least five of the seven reported).
  • There are six samples of I1, with great variation in subclades.
  • Among R1b-L51 subclades (ten samples), there are U106 (at least one sample), L21 (three samples), and another P312 (L238); see above the relationship with those clustering closely with Gaelic samples, marked in fluorescent, which is compatible with Gaelic settlers (predominantly of R1b-L21 lineages) coming to Iceland as slaves.

Probably not much of a surprise, coming from Norse speakers, but they are another relevant reference for comparison with samples of East Germanic tribes, when they appear.

Also, the first reported Klinefelter (XXY) in ancient DNA (sample ID is YGS-B2).

Related:

On Latin, Turkic, and Celtic – likely stories of mixed societies and little genetic impact

celtic-europe-national-geographic

Recent article on The Conversation, The Roman dead: new techniques are revealing just how diverse Roman Britain was, about the paper (behind paywall) A Novel Investigation into Migrant and Local Health-Statuses in the Past: A Case Study from Roman Britain, by Redfern et al. Bioarchaeology International (2018), among others.

Interesting excerpts about Roman London:

We have discovered, for example, that one middle-aged woman from the southern Mediterranean has black African ancestry. She was buried in Southwark with pottery from Kent and a fourth century local coin – her burial expresses British connections, reflecting how people’s communities and lives can be remade by migration. The people burying her may have decided to reflect her life in the city by choosing local objects, but we can’t dismiss the possibility that she may have come to London as a slave.

The evidence for Roman Britain having a diverse population only continues to grow. Bioarchaeology offers a unique and independent perspective, one based upon the people themselves. It allows us to understand more about their life stories than ever before, but requires us to be increasingly nuanced in our understanding, recognising and respecting these people’s complexities.

We already have a more or less clear idea about how little the Roman conquest may have shaped the genetic map of Europe, Africa, or the Middle East, in contrast to other previous or later migrations or conquests.

Also, on the Turkic expansion, the recent paper of Damgaard et al. (Nature 2018) stated:

In the sixth century AD, the Hunnic Empire had been broken up and dispersed as the Turkic Khaganate assumed the military and political domination of the steppes22,23. Khaganates were steppe nomad political organizations that varied in size and became dominant during this period; they can be contrasted to the previous stateless organizations of the Iron Age24. The Turkic Khaganate was eventually replaced by a number of short-lived steppe cultures25 (…).

We find evidence that elite soldiers associated with the Turkic Khaganate are genetically closer to East Asians than are the preceding Huns of the Tian Shan mountains (Supplementary Information section 3.7). We also find that one Turkic Khaganate-period nomad was a genetic outlier with pronounced European ancestries, indicating the presence of ongoing contact with Europe (…).

turk-medieval-populations
Analyses of Turk- and Medieval-period population clusters. a, PCA of Tian Shan Hun, Turk, Kimak, Kipchack, Karakhanid and Golden Horde, including 28 individuals analysed at 242,406 autosomal SNP positions. b, Results for model-based clustering analysis at K = 7. Here we illustrate the admixture analyses with K = 7 as it approximately identifies the major component of relevance (Anatolian/ European farmer component, Caucasian ancestry, EHG-related ancestry and East Asian ancestry).”

These results suggest that Turkic cultural customs were imposed by an East Asian minority elite onto central steppe nomad populations, resulting in a small detectable increase in East Asian ancestry. However, we also find that steppe nomad ancestry in this period was extremely heterogeneous, with several individuals being genetically distributed at the extremes of the first principal component (Fig. 2) separating Eastern and Western descent. On the basis of this notable heterogeneity, we suggest that during the Medieval period steppe populations were exposed to gradual admixture from the east, while interacting with incoming West Eurasians. The strong variation is a direct window into ongoing admixture processes and the multi-ethnic cultural organization of this period.

We already knew that the expansion of the La Tène culture, associated with the expansion of Celtic languages throughout Europe, was probably not accompanied by massive migrations (from the IEDM, 3rd ed.):

The Mainz research project of bio-archaeometric identification of mobility has not proven to date a mass migration of Celtic peoples in central Europe ca. 4th-3rd centuries BC, i.e. precisely in a period where textual evidence informs of large migratory movements (Scheeres 2014). La Tène material culture points to far-reaching inter-regional contacts and cultural transfers (Burmeister 2016).

Also, from the latest paper on Y-chromosome bottleneck:

[The hypothesis of patrilineal kin group competition] has an added benefit in that it could explain the temporal placement of the bottleneck if competition between patrilineal kin groups was the main form of intergroup competition for a limited episode of time after the Neolithic transition. Anthropologists have repeatedly noted that the political salience of unilineal descent groups is greatest in societies of ‘intermediate social scale’ (Korotayev47 and its citations on p. 2), which tend to be post-Neolithic small-scale societies that are acephalous, i.e. without hierarchical institutions48. Corporate kin groups tend to be absent altogether among mobile hunter gatherers with few defensible resource sites or little property (Kelly49 pp. 64–73), or in societies utilizing relatively unoccupied and under-exploited resource landscapes (Earle and Johnson50 pp. 157–171). Once they emerge, complex societies, such as chiefdoms and states, tend to supervene the patrilineal kin group as the unit of intergroup competition, and while they may not eradicate them altogether as sub-polity-level social identities, warfare between such kin groups is suppressed very effectively51,52.These factors restrict the social phenomena responsible for the bottleneck to the period after the initial Neolithic but before the emergence of complex societies, which would place the bottleneck-generating mechanisms in the right period of time for each region of the Old World.

chalcolithic_late_Europe_Bell_Beaker
Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

However, I recently read in a forum for linguists that the expansion of East Bell Beakers overwhelmingly of R1b-L21 subclades in the British Isles “poses a problem”, in that it should be identified with a Celtic expansion earlier than traditionally assumed…

That interpretation would be in line with the simplistic maps we are seeing right now for Bell Beakers (see below for the Copenhagen group).

If anything, the results of Bell Beaker expansions (taken alone) would seem to support a model similar to Cunliffe & Koch‘s hypotheses of a rather early Celtic expansion into Great Britain and Iberia from the Atlantic.

invasion-from-the-steppe-yamnaya
Spread of Indo-European languages (by the Copenhagen group).

But it doesn’t. Mallory already explained why in Cunliffe & Koch’s series Celtic from the West: the Bell Beaker expansion is too early for that; even for Italo-Celtic. It should correspond to North-West Indo-European speakers.

Not every population movement that is genetically very significant needs to be significant for the languages attested much later in the region.

This should be obvious to everyone with the many examples we already have. One of the least controversial now would probably be the expansion of R1b-DF27, widespread in Iberia probably at roughly the same time as R1b-L21 was in Great Britain, and still pre-Roman Iberians showed a mix of non-Indo-European languages, non-Celtic languages (at least Galaico-Lusitanian), and also some (certain) Celtic languages. And modern Iberians speak Romance languages, without much genetic impact from the Romans, either…

It is well-established in Academia that the expansion of La Tène is culturally associated with the spread of Celtic languages in Europe, including the British Isles and Iberia. While modern maps of U152 distribution may correspond to the migration of early Celts (or Italo-Celtic speakers) with Urnfield/Hallstatt, the great Celtic expansion across Europe need not show a genetic influence greater than or even equal to that of previous prehistoric migrations.

post-bell-beaker-europe
Post-Bell-Beaker Europe, after ca. 2200 BC.

You can see in these de novo models the same kind of invented theoretical ‘problem’ (as Iosif Lazaridis puts it) that we have seen with the Corded Ware showing steppe ancestry, with Old Hittite samples not showing EHG ancestry, or with CHG ancestry appearing north of the Caucasus but no EHG to the south.

However you may want to explain all these errors in scientific terms (selection bias, under-coverage, over-coverage, faulty statistical methods, etc.), these interpretations were simply fruit of the lack of knowledge of the anthropological disciplines at play.

Let’s hope the future paper on Celtic expansion takes this into consideration.

Related:

Post-Neolithic Y-chromosome bottleneck explained by cultural hitchhiking and competition between patrilineal clans

Open access study Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck, by Zeng, Aw, and Feldman, Nature Communications (2018).

Abstract (emphasis mine):

In human populations, changes in genetic variation are driven not only by genetic processes, but can also arise from cultural or social changes. An abrupt population bottleneck specific to human males has been inferred across several Old World (Africa, Europe, Asia) populations 5000–7000 BP. Here, bringing together anthropological theory, recent population genomic studies and mathematical models, we propose a sociocultural hypothesis, involving the formation of patrilineal kin groups and intergroup competition among these groups. Our analysis shows that this sociocultural hypothesis can explain the inference of a population bottleneck. We also show that our hypothesis is consistent with current findings from the archaeogenetics of Old World Eurasia, and is important for conceptions of cultural and social evolution in prehistory.

Relevant excerpts:

y-dna-bottleneck
Tree of Y-chromosome genotypes from samples found among cultures with hunter-gatherer subsistence, and agropastoralist subsistence. The blue background represents hunter-gatherer subsistence while the green background represents agropastoralist subsistence. Letters in red circles match individuals from sites with their archaeological context. Note that R1b-P321 is synonymous with R1b-S116. Adapted from Figs. 3, 4, 5 and 6 of Kivisild67, with addition of information from Olalde et al.64. The vertical axis represents time; the position of branch points represent the ages of branch-defining mutations, with nomenclature and age from yfull (https://www.yfull.com/tree/)

Our hypothesis explains the bottleneck as a consequence of intergroup competition between patrilineal kin groups, which caused cultural hitchhiking between Y-chromosomes and cultural groups and reduction in Y-chromosomal diversity. Competition between demes can dramatically reduce genetic diversity within a population1, especially if the population is structured such that variation is greater between demes than within demes. Culturally transmitted kinship ideals and norms can cause homophilous sorting and limit interdemic gene flow, creating homogeneous demes that differ strongly from one another. Patrilineal corporate kin groups, with coresiding male group members descending from a common male ancestor, would produce such an effect on Y-chromosomes only, as patrilineal corporate kin groups generally coexist with female exogamy40, which would homogenize the mitochondrial gene pools of different groups41,42.

With intergroup competition between patrilineal corporate kin groups, two mechanisms would operate to reduce Y-chromosomal diversity. First, patrilineal corporate kin groups produce high levels of Y-chromosomal homogeneity within each social group due to common descent, as well as high levels of between-group variation. Second, the presence of such groups results in violent intergroup competition preferentially taking place between members of male descent groups, instead of between unrelated individuals. Casualties from intergroup competition then tend to cluster among related males, and group extinction is effectively the extinction of lineages.

There is evidence that other analogous situations involving gene-culture hitchhiking in culturally-defined social groups may have affected genetic diversity. Central Asian pastoralists, who are organized into patriclans, have high levels of intergroup competition and demonstrate ethnolinguistic and population-genetic turnover down into the historical period59. They also have a markedly lower diversity in Y-chromosomal lineages than nearby agriculturalists42,60. In fact, Central Asians are the only population whose male effective population size has not recovered from the post-Neolithic bottleneck; it remains disproportionately reduced, compared to female estimates using mtDNA4. Central Asians are also the only population to have star-shaped expansions of Y-chromosomes within the historical period, which may be due to competitive processes that led to the disproportionate political success of certain patrilineal clans60.

The simulation offers an interesting graphic. I had been thinking for some time about developing an interactive image with waves of expansion showing how only few haplogroups expand and thus their variability is reduced in successive migration waves, because a lot of people seemed not to be willing to accept this:

y-dna-bottleneck-simulation
Schematic of the steps in the simulation, according to the order described in the algorithm. a (i) Patrilineal (PT) starting conditions, where cultural groups strictly determine haplogroup type. a (ii) The non-patrilineal (NPT) condition where they are perfectly uncorrelated. b The killing step, with a more (PT) and less (NPT) patrilineal starting condition. The number of deaths in each group is inversely related to group size. The blue cultural group goes extinct in both cases. This causes the haplogroup represented by the diamonds to go extinct in PT, but no haplogroup extinction occurs in NPT. c The mutation step, where a small number of individuals in the largest haplogroup change their haplogroup. d The regeneration step, where (i) is a replica of (b) PT (iii), and (d) (ii) shows how the original number of individuals before the killing step is restored by proportionally increasing the number of individuals in all cells. e Group fission step. Where an empty row occurs, the largest cultural group splits, and half the individuals form a new cultural group in the empty row. The step in which we remove cultural groups that are too small—between (c, d) (see Methods)—is not shown

You only have to imagine this process happening in many successive waves of expansion (external as well as internal to each culture) since the first Neolithic expansions in the steppe in the late-6th millennium BC, even before the formation of the Khvalynsk-Sredni Stog cultural-historical community, to understand what happened in the next thousands of years with evolving patrilineal clans and their distinct cultures.

The whole paper is an interesting read. It’s great to see sociology and genetics finally catch up and interact to develop more complex anthropological hypotheses.

The fact that this paper appears in mid-2018 and geneticists are beginning to discuss this only now when their statistical methods fail to explain the obvious (see David Reich’s recent interview) seems anachronistic, though, because all this was quite clear already in 2015 – at least for those who were looking for mainstream Yamna – Bell Beaker connections, instead of inventing new migration pathways to justify the results of certain statistical analyses

Anyway, better late than never.

Also, they use YFull estimates, which vindicates my use of them in the Indo-European demic diffusion model (2017). On the other hand, their use of these estimates right now in 2018 for R1a-M417 and R1b-M269 – when we know of a R1a-Z93 case much older than YFull’s estimated 5,000 YBP for this subclade, and possibly for R1b-L23, too, is the biggest pitfall in their temporal assessment, although the bottlenecks seen in Chalcolithic expansions seem to have indeed began during the Mesolithic-Neolithic transition in the steppe.

So, say goodbye (if you haven’t already) to dat fantasy ‘steppe people’ of mixed R1a/R1b descent cooperating with the same mixed steppe language, all represented by the Yamnaya™ ancestral component, and say hello to distinct, competing ethnolinguistic steppe groups during the Neolithic.

Related:

East Bell Beakers, an in situ admixture of Yamna settlers and GAC-like groups in Hungary

indo-european-yamnaya-corded-ware

I wanted to repeat what I said last week in two different posts (see on the new Caucasus and Yamna Hungary samples, and on local groups in contact with Yamna settlers).

We already knew that expanding East Bell Beakers had received influence from a population similar to the available Globular Amphorae culture samples.

  1. Without Yamna settlers, but with Yamna Ukraine and East Bell Beaker samples, including an admixed Yamna Bulgaria sample (from Olalde & Mathieson 2017, and then with their Nature 2018 papers), the most likely interpretation was that Yamna settlers had received GAC ancestry probably during their migration through the Balkans, before turning into East Bell Beakers. However, some comments still supported that it was Corded Ware migrants the ones behind the formation of East Bell Beakers. I couldn’t understand it.
  2. Now we have (with Wang et al. 2018) Yamna settlers (identical to other Yamna groups and Afanasevo migrants) and GAC-like peoples coexisting with them in Hungary, with a Late Chalcolithic Yamna sample from Hungary showing a greater contribution from GAC. However, I still read discussions on Yamna settlers receiving GAC admixture from Corded Ware in Eastern Europe, from GAC in the Dnieper-Dniester area, in Budzhak/Usatovo, etc. I can’t understand this, either.
  3. I will post here the data we have, with the simplest maps and images showing the simplest possible model. No more long paragraphs.

    NOTE. All this data does not mean that this model is certain, especially because we don’t have direct access to the samples. But it is the simplest and most likely one. Sometimes 2+2=4. Even if it turns out later to be false.

    EDIT (30 MAY 2018): In fact, as I commented in the first post about these samples, there is a Yamna LCA/EBA sample probably from Late Yamna (in the North Pontic steppe, west of the Catacomb culture), which shows GAC-like contribution. However, this admixture is lesser than that of Hungary LCA/EBA1 sample, and both Yamna groups (Hungary and steppe) were probably already more sedentary, which also supports different contributions from nearby local GAC-like groups to each region, rather than maintained long-range internal genetic contributions from a single source near the steppe…

    indo-european-uralic-migrations-yamna-gac
    Yamna migrants ca. 3300-2600. Most likely site of admixture with GAC circled in red.
    yamna_bell_beaker
    Yamna – Bell Beaker migration according to Heyd (2007, 2012). Most likely site of admixture with GAC is marked by the evolution of Blue to Red color.
    PCA-yamna-hungary
    PCA results. Samples from Yamna Hungary are surrounded by red circles, GAC-like Hungarian groups surrounded by light brown (see below for ADMIXTURE data) Notice the most likely Yamna Hungary sample with GAC admixture clustering closely to CWC Esperstedt outlier, and thus to some East Bell Beaker samples. (d) shows these projected onto a PCA of 84 modern-day West Eurasian populations (open symbols).
    gac-like-hungary-yamnaya
    Modified image, with red rectangles surrounding (unreleased) Hungarian samples from Yamna and GAC-like groups. (c) ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)
    yamnaya-hungary-lca-eba
    Modified image, with red rectangles surrounding (unreleased) Yamna samples Notice greater GAC contribution to late Yamna Hungary sample. Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups
    yamnaya-hungary-globular-amphora
    Modified table from Wang et al. (2018) Supplementary materials (in bold, Yamna and related samples; in red, newly reported samples). Notice greater GAC contribution to late Yamna Hungary sample. “Supplementary Table 18. P values of rank=1 and admixture coefficients of modelling the Steppe ancestry populations as a two-way admixture of the Eneolithic_steppe and Globular_Amphora using 14 outgroups. Left populations: Steppe cluster, Eneolithic_steppe, Globular Amphora Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

    The CWC outlier from Esperstedt

    I already said that my initial interpretation of the Esperstedt outlier, dated ca. 2430 BC, as due to a late contribution directly from the steppe (i.e. from long-range contacts between late Corded Ware groups from Europe and late groups from the steppe) was probably wrong, seeing how (in Olalde et al. 2017) early East Bell Beaker samples from Hungary and Central Europe clustered closely to this individual.

    Now we see that fully ‘Yamnaya-like’ Yamna settlers lived in Hungary probably for two or three centuries ca. 2900-2600 BC, and the absorption of known (or unknown) Yamna vanguard groups found up to Saxony-Anhalt before 2600 BC would be enough to justify the genomic findings of this individual.

    An outlier it is, then. But probably from admixture with nearby Yamna-like people.

    olalde_pca
    Image modified by me, from Olalde et al. (2017). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier.

    Related:

The R1b-L23/Late PIE expansions, and the ‘R1a – Indo-European’ association

indo-european-yamnaya-corded-ware

I wrote a series of posts at the end of 2017 / beginning of 2018, to answer the wrong assumptions I could read in forums and blogs since 2015.

I decided not to publish them then, seeing how many successive papers were confirming my Indo-European demic diffusion model in a (surprisingly) clear-cut way.

Nevertheless, because I keep reading the same comments no matter what gets published, even in mid-2018 – the latest ones in our Facebook page (“was haplogroup X Indo-European?”), and in this very blog (“I see it very difficult to link Bell Beaker with Balto-Slavic, when now Balto-Slavic people are strikingly R1a-dominated”); and because I see even more misunderstandings and personal attacks, I have decided to publish them.

This way I will be able to explain my “R1b-L23/Proto-Indo-Europeans” theory with simplistic maps (however badly I hate such maps when I find them on Google searches), and I will also have a page to redirect those who don’t want to dismiss the “R1a – Indo-European association”, instead of answering comments about this question each time they pop up…

Here you have the links to the posts – and also on the menu above (there is a lot of rambling, because they are from a period of less clear data on Yamna and Corded Ware; today I would have never written such long discussions, they are mostly unnecessary):

  1. Haplogroup is not language, but R1b-L23 expansion was associated with Proto-Indo-Europeans
  2. The history of the simplistic ‘haplogroup R1a — Indo-European’ association
  3. Tips for dialogue with those supporting the R1a/Indo-European association

Related: