The cradle of Russians, an obvious Finno-Volgaic genetic hotspot

pskov-novgorod-russia

First look of an accepted manuscript (behind paywall), Genome-wide sequence analyses of ethnic populations across Russia, by Zhernakova et al. Genomics (2019).

Interesting excerpts:

There remain ongoing discussions about the origins of the ethnic Russian population. The ancestors of ethnic Russians were among the Slavic tribes that separated from the early Indo-European Group, which included ancestors of modern Slavic, Germanic and Baltic speakers, who appeared in the northeastern part of Europe ca. 1,500 years ago. Slavs were found in the central part of Eastern Europe, where they came in direct contact with (and likely assimilation of) the populations speaking Uralic (Volga-Finnish and Baltic- Finnish), and also Baltic languages [11–13]. In the following centuries, Slavs interacted with the Iranian-Persian, Turkic and Scandinavian peoples, all of which in succession may have contributed to the current pattern of genome diversity across the different parts of Russia. At the end of the Middle Ages and in the early modern period, there occurred a division of the East Slavic unity into Russians, Ukrainians and Belarusians. It was the Russians who drove the colonization movement to the East, although other Slavic, Turkic and Finnish peoples took part in this movement, as the eastward migrations brought them to the Ural Mountains and further into Siberia, the Far East, and Alaska. During that interval, the Russians encountered the Finns, Ugrians, and Samoyeds speakers in the Urals, but also the Turkic, Mongolian and Tungus speakers of Siberia. Finally, in the great expanse between the Altai Mountains on the border with Mongolia, and the Bering Strait, they encountered paleo-Asiatic groups that may be genetically closest to the ancestors of the Native Americans. Today’s complex patchwork of human diversity in Russia has continued to be augmented by modern migrations from the Caucasus, and from Central Asia, as modern economic migrations take shape.

pskov-novgorod-pca-eurasia-yakut
Sample relatedness based on genotype data. Eurasia: Principal Component plot of 574 modern Russian genomes. Colors reflect geographical regions of collection; shapes reflect the sample source. Red circles show the location of Genome Russia samples.

In the current study, we annotated whole genome sequences of individuals currently living on the territory of Russia and identifying themselves as ethnic Russian or as members of a named ethnic minority (Fig. 1). We analyzed genetic variation in three modern populations of Russia (ethnic Russians from Pskov and Novgorod regions and ethnic Yakut from the Sakha Republic), and compared them to the recently released genome sequences collected from 52 indigenous Russian populations. The incidence of function-altering mutations was explored by identifying known variants and novel variants and their allele frequencies relative to variation in adjacent European, East Asian and South Asian populations. Genomic variation was further used to estimate genetic distance and relationships, historic gene flow and barriers to gene flow, the extent of population admixture, historic population contractions, and linkage disequilibrium patterns. Lastly, we present demographic models estimating historic founder events within Russia, and a preliminary HapMap of ethnic Russians from the European part of Russia and Yakuts from eastern Siberia.

pskov-novgorod-pca-finno-permic
Sample relatedness based on genotype data. Western Russia and neighboring countries: Principal Component plot of 574 modern Russian genomes. Colors reflect geographical regions of collection; shapes reflect the sample source. Red circles show the location of Genome Russia samples.

The collection of identified SNPs was used to inspect quantitative distinctions among 264 individuals from across Eurasia (Fig. 1) using Principal Component Analysis (PCA) (Fig. 2). The first and the second eigenvectors of the PCA plot are associated with longitude and latitude, respectively, of the sample locations and accurately separate Eurasian populations according to geographic origin. East European samples cluster near Pskov and Novgorod samples, which fall between northern Russians, Finno-Ugric peoples (Karelian, Finns, Veps etc.), and other Northeastern European peoples (Swedes, Central Russians, Estonian, Latvians, Lithuanians, and Ukrainians) (Fig. 2b). Yakut individuals map into the Siberian sample cluster as expected (Fig. 2a). To obtain an extended view of population relationships, we performed a maximum likelihood-based estimation of ancestry and population structure using ADMIXTURE [46](Fig. 2c). The Novgorod and Pskov populations show similar profiles with their Northeastern European ancestors while the Yakut ethnic group showed mixed ancestry similar to the Buryat and Mongolian groups.

pskov-novgorod-yakut-admixture
Population structure across samples in 178 populations from five major geographic regions (k=5). Samples are pooled across three different studies that covered the territory of Russian Federation (Mallick et al. 2016 [36], Pagani et al. 2016 [37], this study). The optimal k-value was selected by value of cross validation error. Russian samples from all studies (highlighted in bold dark blue) show a slight gradient from Eastern European (Ukrainian, Belorussian, Polish) to North European (Estonian Karelian, Finnish) structures, reflecting population history of northward expansion. Yakut samples from different studies (highlighted in bold red) also show a slight gradient from Mongolian to Siberian people (Evens), as expected from their original admixture and northward expansions. The samples originated from this study are highlighted, and plotted in separated boxes below.

Possible admixture sources of the Genome Russia populations were addressed more formally by calculating F3 statistics, which is an allele frequency-based measure, allowing to test if a target population can be modeled as a mixture of two source populations [48]. Results showed that Yakut individuals are best modeled as an admixture of Evens or Evenks with various European populations (Supplemental Table S4). Pskov and Novgorod showed admixture of European with Siberian or Finno-Ugric populations, with Lithuanian and Latvian populations being the dominant European sources for Pskov samples.

direction-expansion-russians
The heatmaps of gene flow barriers show for each point at the geographical map the interpolated differences in allele frequencies (AF) between the estimated AF at the point with AFs in the vicinity of this point. The direction of the maximal difference in allele frequencies is coded by colors and arrows.

So, Russians expanding in the Middle Ages as acculturaded Finno-Volgaic peoples.

Or maybe the true Germano-Slavonic™-speaking area was in north-eastern Europe, until the recent arrival of Finno-Permians with the totally believable Nganasan-Saami horde, whereas Yamna -> Bell Beaker represented Vasconic-Caucasian expanding all over Europe in the Bronze Age. Because steppe ancestry in Fennoscandia and Modern Basques in Iberia.

A really hard choice between equally plausible models.

Related

Common Slavs from the Lower Danube, expanding with haplogroup E1b-V13?

late-iron-age-eastern-europe

Florin Curta has published online his draft for Eastern Europe in the Middle Ages (500-1300), Brill’s Companions to European History, Vol. 10 (2019), apparently due to appear in June.

Some interesting excerpts, relevant for the latest papers (emphasis mine):

The Archaeology of the Early Slavs

(…) One of the most egregious problems with the current model of the Slavic migration is that it is not at all clear where it started. There is in fact no agreement as to the exact location of the primitive homeland of the Slavs, if there ever was one. The idea of tracing the origin of the Slavs to the Zarubyntsi culture dated between the 3rd century BC and the first century AD is that a gap of about 200 years separates it from the Kiev culture (dated between the 3rd and the 4th century AD), which is also attributed to the Slavs. Furthermore, another century separates the Kiev culture from the earliest assemblages attributed to the Prague culture. It remains unclear as to where the (prehistoric) Slavs went after the first century, and whence they could return, two centuries later, to the same region from which their ancestors had left. The obvious cultural discontinuity in the region of the presumed homeland raises serious doubts about any attempts to write the history of the Slavic migration on such a basis. There is simply no evidence of the material remains of the Zarubyntsi, Kiev, or even Prague culture in the southern and southwestern direction of the presumed migration of the Slavs towards the Danube frontier of the Roman Empire.

Moreover, the material culture revealed by excavations of 6th- to 7th-century settlements and, occasionally, cremation cemeteries in northwestern Russia, Belarus, Poland, Moravia, and Bohemia is radically different from that in the lands north of the Danube river, which according to the early Byzantine sources were inhabited at that time by Sclavenes: no settlement layout with a central, open area; no wheel-made pottery or pottery thrown on a tournette; no clay rolls inside clay ovens; few, if any clay pans; no early Byzantine coins, buckles, or remains of amphorae; no fibulae with bent stem, and few, if any bow fibulae. Conversely, those regions have produced elements of material culture that have no parallels in the lands north of the river Danube: oval, trough-like settlement features (which are believed to be remains of above-ground, log-houses); exclusively handmade pottery of specific forms; very large settlements, with over 300 houses; fortified sites that functioned as religious or communal centers; and burials under barrows. With no written sources to inform about the names and identities of the populations living in the 6th and 7th centuries in East Central and Eastern Europe, those contrasting material culture profiles could hardly be interpreted as ethnic commonality. In other words, there is no serious basis for attributing to the Sclavenes (or, at least, to those whom early Byzantine authors called so) any of the many sites excavated in Russia, Belarus, Poland, Moravia, and Bohemia.

slavic-expansion-prague-korchak
Common Slavic expanding with Prague-Korchak from the east…or was it from the west?

Migrations

There is of course evidence of migrations in the 6th and 7th centuries, but not in the directions assumed by historians. For example, there are clear signs of settlement discontinuity in northern Germany and in northwestern Poland. German archaeologists believe that the bearers of the Prague culture who reached northern Germany came from the south (from Bohemia and Moravia), and not from the east (from neighboring Poland or the lands farther to the east). At any rate, no archaeological assemblage attributed to the Slavs either in northern Germany or in northern Poland may be dated earlier than ca. 700. In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland. No site of any of the three archaeological cultures in Eastern Europe that have been attributed to the Slavs (Kolochin, Pen’kivka, and Prague/Korchak) has so far been dated earlier than the sites in the Lower Danube region where the 6th century sources located the Sclavenes. Neither the Kolochin, nor the Pen’kivka cultures expanded westwards into East Central or Southeastern Europe; on the contrary, they were themselves superseded in the late 7th or 8th century by other archaeological cultures originating in eastern Ukraine. Meanwhile, there is an increasing body of archaeological evidence pointing to very strong cultural influences from the Lower and Middle Danube to the Middle Dnieper region during the 7th century—the opposite of the alleged direction of Slavic migration.

When did the Slavs appear in those regions of East Central and Eastern Europe where they are mentioned in later sources? A resistant stereotype of the current scholarship on the early Slavs is that “Slavs are Slavonic-speakers; Slavonic-speakers are Slavs.”* If so, when did people in East Central and Eastern Europe become “Slavonic speakers”? There is in fact no evidence that the Sclavenes mentioned by the 6th-century authors spoke Slavic (or what linguists now call Common Slavic). Nor can the moment be established (with any precision), at which Slavic was adopted or introduced in any given region of East Central and Eastern Europe.** To explain the spread of Slavic across those regions, some have recently proposed the model of a koiné, others that of a lingua franca. The latter was most likely used within the Avar polity during the last century of its existence (ca. 700 to ca. 800).

*Ziółkowski, “When did the Slavs originate?” p. 211. On the basis of the meaning of the Old Church Slavonic word ięzyk (“language,” but also “people” or “nation”), Darden, “Who were the Sclaveni?” p. 138 argues that the meaning of the name the Slavs gave to themselves was closely associated with the language they spoke.

**Uncertainty in this respect dominates even in recent studies of contacts between Slavic and Romance languages (particularly Romanian), even though such contacts are presumed to have been established quite early (Paliga, “When could be dated ‘the earliest Slavic borrowings’?”; Boček, Studie). Recent studies of the linguistic interactions between speakers of Germanic and speakers of Slavic languages suggest that the adoption of place names of Slavic origin was directly linked to the social context of language contact between the 9th and the 13th centuries (Klír, “Sociální kontext”).

Avars

During the 6th century, the area between the Danube and the Tisza in what is today Hungary, was only sparsely inhabited, and probably a “no man’s land” between the Lombard and Gepid territories. It is only after ca. 600 that this area was densely inhabited, as indicated by a number of new cemeteries that came into being along the Tisza and north of present-day Kecskemét. There can therefore be no doubt about the migration of the Avars into the Carpathian Basin, even though it was probably not a single event and did not involve only one group of population, or even a cohesive ethnic group.

The number of graves with weapons and of burials with horses is particularly large in cemeteries excavated in southwestern Slovakia and in neighboring, eastern Austria. This was a region of special status on the border of the qaganate, perhaps a “militarized frontier.” From that region, the Avar mores and fashions spread farther to the west and to the north, into those areas of East Central Europe in which, for reasons that are still not clear, Avar symbols of social rank were particularly popular, as demonstrated by numerous finds of belt fittings. Emulating the success of the Avar elites sometimes involved borrowing other elements of social representation, such as the preferential deposition of weapons and ornamented belts. For example, in the early 8th century, a few males were buried in Carinthia (southern Austria) with richly decorated belts imitating those in fashion in the land of the Avars, but also with Frankish weapons and spurs. Much like in the Avar-age cemeteries in Slovakia and Hungary, the graves of those socially prominent men are often surrounded by many burials without any grave goods whatsoever.

early-avar-khaganate
Territory of the early Avar Qaganate and the location of the investigated sites in the Carpathian Basin in Csáky et al. (2019).

Carantanians

Carantania was a northern neighbor of the Lombard duchy of Friuli, which was inhabited by Slavs. According to Paul the Deacon, who was writing in the late 780s, those Slavs called their country Carantanum, by means of a corruption of the name of ancient Carnuntum (a former Roman legionary camp on the Danube, between Vienna and Bratislava). Carantanians were regarded as Slavs by the author of a report known as the Conversion of the Bavarians and Carantanians, and written in ca. 870 in order to defend the position of the archbishop of Salzburg against the claims of Methodius, the bishop of Pannonia.94 According to this text, a duke named Boruth was ruling over Carantania when he was attacked by Avars in ca. 740. He called for the military assistance of his Bavarian neighbors. The Bavarian duke Odilo (737–748) obliged, defeated the Avars, but in the process also subdued the Carantanians to his authority. Once Bavarian overlordship was established in Carantania, Odilo took with him as hostages Boruth’s son Cacatius and his nephew Chietmar (Hotimir). Both were baptized in Bavaria. During the 743 war between Odilo and Charles Martel’s two sons, Carloman and Pepin (the Mayors of the Palace in Austrasia and Neustria, respectively), Carantanian troops fought on the Bavarian side. The Bavarian domination cleared the field for missions of conversion to Christianity sent by Virgil, the new bishop of Salzburg (746–784). Many missionaries were of Bavarian origin, but some were Irish monks.

Moravians

Several Late Avar cemeteries dated to the last quarter of the 8th century are known from the lands north of the middle course of the river Danube, in what is today southern Slovakia and the valley of the Lower Morava [see image below]. By contrast, only two cemeteries have so far been found in Moravia (the eastern part of the present-day Czech Republic), along the middle and upper course of the Morava and along its tributary, the Dyje. In both Dolní Dunajovice and Hevlín, the latest graves may be dated by means of strap ends and belt mounts with human figures to the very end of the Late Avar period. (…)

The archaeological evidence pertaining to burial assemblages dated to the early 9th century is completely different. Shortly before or after 800, all traces of cremation—with or without barrows—disappear from the valley of the Morava river and southwestern Slovakia, two regions in which cremation had been the preferred burial rite during the previous centuries. This dramatic cultural change has often been interpreted as a direct influence of both Avar and Frankish burial rites, but it coincides in time with the adoption of Christianity by local elites. In spite of conversion, however, the representation of status through furnished burial continued well into the 9th century. Unlike Avar-age sites in Hungary and the surrounding regions, many men were buried in 9th-century Moravia together with their spurs, in addition to such weapons as battle axes, “winged” lance heads, or swords with high-quality steel blades of Frankish production.

morvaian-sites
Relevant Moravian sites mentioned in Curta’s new book.

When the Magyars inflicted a crushing defeat on the Bavarians at Bratislava (July 4, 907), the fate of Moravia was sealed as well. Moravia and the Moravians disappear from the radar of the written sources, and historians and archaeologists alike believe that the polity collapsed as a result of the Magyar raids.

Magyars

(…) although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).* However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

* Ivanov, Drevnie ugry-mad’iary; Ivanov and Ivanova, “Uralo-sibirskie istoki”; Boldog et al., “From the ancient homelands,” p. 3; Ivanov, “Similarities.” Ivanov, “Similarities,” p. 562 points out that the migration out of the lands along of the Middle Volga is implied by the disappearance of both cultures (Kushnarenkovo and Karaiakupovo) in the mid-9th century. For the Kushnarenkovo culture, see Kazakov, “Kushnarenkovskie pamiatniki.” For the Karaiakupovo culture, see Mogil’nikov, “K probleme.”

Given that the Magyars are first mentioned in relation to events taking place in the Lower Danube area in the 830s, the Magyar sojourn in Etelköz must have been no longer than 60 years or so—a generation. (…)

arrival-of-hungarians-feszty-slavs
A detail of the Arrival of the Hungarians, Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. This specific detail is probably based on the account on The Annals of Fulda, which narrates under the year 894 that the Hungarians crossed the Danube into Pannonia where they “killed men and old women outright and carried off the young women alone with them like cattle to satisfy their lusts and reduced the whole” province “to desert”.

It has become obvious by now that one’s impression of the Magyars as “Easterners” and “steppe-like” was (and still is) primarily based on grave finds, while the settlement material is considerably more aligned with what is otherwise known from other contemporary settlement sites in Central and Southeastern Europe. The dominant feature on the 10th- and 11th-century settlements in Hungary is the sunken-floored building of rectangular plan, with a stone oven in a corner. Similarly, the pottery resulting from the excavation of settlement sites is very similar to that known from many other such sites in Eastern Europe. Moreover, while clear changes taking place in burial customs between ca. 900 and ca. 1100 are visible in the archaeological record from cemeteries, there are no substantial differences between 10th- and the 11th-century settlements in Hungary. (…)

As a matter of fact, the increasing quantity of paleobotanical and zooarchaeological data from 10th-century settlements strongly suggests that the economy of the first generations of Magyars in Hungary was anything but nomadic. To call those Magyars “half-nomad” is not only wrong, but also misleading, as it implies that they were half-way toward civilization, with social changes taking place that must have had material culture correlates otherwise visible in the burial customs.

Comments

The origin of “Slavs” (i.e. that of “Slavonic” as a language, whatever the ancestral Proto-Slavic ethnic make-up was) is almost as complicated as the origin of Albanians, Basques, Balts, or Finns. Their entry into history is very recent, with few reliable sources available until well into the Middle Ages. If you add our ignorance of their origin with the desire of every single researcher or amateur out there to connect them to the own region (or, still worse, to all the regions where they were historically attested), we are bound to find contradictory data and a constantly biased selection of information.

Furthermore, it is extremely complicated to connect any recent population to its ancestral (linguistic) one through haplogroups prevalent today, and just absurd to connect them through ancestral components. This, which was already suspected for many populations, has been confirmed recently for Basques in Olalde et al. (2019) and will be confirmed soon for Finns with a study of the Proto-Fennic populations in the Gulf of Finland.

NOTE. Yes, the “my parents look like Corded Ware in this PCA” had no sense. Ever. Why adult people would constantly engage in that kind of false 5,000-year-old connections instead of learning history – or their own family history – escapes all comprehension. But if something is certain about human nature, is that we will still see nativism and ancestry/haplogroup fetishism for any modern region or modern haplogroups and their historically attested ethnolinguistic groups.

balto-slavic-pca
Genetic structure of modern Balto-Slavic populations within a European context according to the three genetic systems. Image from Kushniarevich et al. (2015)

As you can see from my maps and writings, I prefer neat and simple concepts: in linguistics, in archaeology, and in population movements. Hence my aversion to this kind of infinite proto-historical accounts (and interpretations of them) necessary to ascertain the origins of recent peoples (Slavs in this case), and my usual preference for:

  • Clear dialectal classifications, whether or not they can be as clear cut as I describe them. The only thing that sets Slavic apart from other recent languages is its connection with Baltic, luckily for both. Even though this connection is disputed by some linguists, and the question is always far from being resolved, a homeland of Proto-Balto-Slavic would almost necessarily need to be set to the north of the Carpathian Mountains in the Bronze Age (or at least close to them).
  • NOTE. A dismissal of a connection with Baltic would leave Slavic a still more complicated orphan, and its dialectal classification within Late PIE more dubious. Its union with Balto-Slavic locates it close to Germanic, and thus as a Bronze Age North-West Indo-European dialect close to northern Germany. So bear with me in accepting this connection, or enter the linguistic hell of arguing for Indo-Slavonic of R1a-Z93 mixed with Temematic….

  • A priori “pots = people” assumption, which may lead to important errors, but fewer than the usual “pots != people” of modern archaeologists. The traditional identification of the Common Slavic expansion with the Prague-Korchak culture – however undefined this culture may be – has clear advantages: it may be connected (although admittedly with many archaeological holes) with western cultures expanding east during the Bronze Age, and then west again after the Iron Age, and thus potentially also with Baltic.
  • A simplistic “haplogroup expansion = ethnolinguistic expansion”, which is quite useful for prehistoric migrations, but enters into evident contradictions as we approach the Iron Age. Common Slavs may be speculatively (for all we know) associated with an expansion of recent R1a-M458 lineages – among other haplogroups – from the east, and possibly Balto-Slavic as an earlier expansion of older subclades from the west, as I proposed in A Clash of Chiefs.
r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

NOTE. The connection of most R1a-Z280 lineages is more obviously done with ancient Finno-Ugric peoples, as it is clear now (see here and here).

Slavs appeared first in the Danube?

No matter what my personal preference is, one can’t ignore the growing evidence, and it seems that Florin Curta‘s long-lasting view of a Danubian origin of expansion for Common Slavic, including its condition as a lingua franca of late Avars, won’t be easy to reject any time soon:

1) Theories concerning Chernyakhov as a Slavic homeland will apparently need to be fully rejected, due to the Germanic-like ancestry that will be reported in the study by Järve et al.

2) Therefore, unless Przeworsk shows the traditionally described mixture of populations in terms of ancestry and/or haplogroups, it will also be a sign of East Germanic peoples expanding south (and potentially displacing the ancestors of Slavs in either direction, east or south).

It would seem we are stuck in a Danubian vs. Kievan homeland for Common Slavs, then:

3) About the homeland in the Kiev culture, two early Avar females from Szólád have been commented to cluster “among Modern Slavic populations” based on some data in Amorim et al. (2018).

Rather than supporting an origin of Slavs in common with modern Russians, Poles, and Ukranians as observed in the PCA, though, the admixture of AV1 and AV2 (ca. AD 540-640) paradoxically supports an admixture of Modern Slavs of Eastern Europe in common with early Avar peoples (an Altaic-speaking population) and other steppe groups with an origin in East Asia… So this admixture would actually support a western origin of the Common Slavs with which East Asian Avars may have admixed, and whose descendants are necessarily sampled at later times.

pca-medieval-avar-longobards
Procrustes transformed PCA of medieval ancient samples against POPRES imputed SNP dataset. AV1 and Av2 samples have been circled in red. Color coding of medieval samples is same as in Figs 1 and 2. Two letter and three codes for POPRES samples: AL=Albania, AT=Austria, BA=Bosnia-Herzegovina, BE=Belgium, BG=Bulgaria, CH=Switzerland, CY=Cyprus, CZ=Czech Republic, DE=Germany, DK=Denmark, ES=Spain, FI=Finland, FR=France, GB=United Kingdom, GR, Greece, HR=Croatia, HU=Hungary, IE=Ireland, IT=Italy, KS=Kosovo, LV=Latvia, MK=Macedonia, NO=Norway, NL=Netherlands, PL=Poland, PT=Portugal, RO=Romania, SM=Serbia and Montenegro, RU=Russia, Sct=Scotland, SE=Sweden, SI=Slovenia, SK=Slovakia, TR=Turkey, UA=Ukraine.

4) Favouring Curta’s Danubian origin (or even an origin near Bohemia) at the moment are thus:

  • The “western” cluster of Early Slavs from Brandýsek, Bohemia (ca. AD 600-900).
  • Two likely Slavic individuals from Usedom, in Mecklenburg-Vorpommern (AD 1200) show hg. R1a-M458 and E1b-M215 (Freder 2010).
  • An early West Slav individual from Hrádek nad Nisou in Northern Bohemia (ca. AD 1330) also shows E1b-M215 (Vanek et al. 2015).
  • One sample from Székkutas-Kápolnadülő (SzK/239) among middle or late Avars (ca. AD 650-710), a supposed Slavonic-speaking polity, of hg. E1b-V13.
  • Two samples from Karosc (K1/13, and K2/6) among Hungarian conquerors (ca. AD 895-950), likely both of hg. E1b-V13, probably connected to the alliance with Moravian elites.
  • Possibly a West Slavic sample from Poland in the High Middle Ages (see below).

A later Hungarian sample (II/53) from the Royal Basilica, where King Béla was interred, of hg. E1b1, supports the importance of this haplogroup among elite conquerors, although its original relation to the other buried individuals is unknown.

NOTE. You can see all ancient samples of haplogroup E to date on this Map of ancient E samples, with care to identify the proper subclades related to south-eastern Europe. About the ancestral origin of the haplogroup in Europe, you may read Potential extra Iberomaurusian-related gene flow into European farmers, by Chad Rohlfsen.

Even assuming that the R1a sample reported from the late Avar period is of a subclade typically associated with Slavs (I know, circular reasoning here), which is not warranted, we would have already 6 E1b1b vs. 1-2 R1a-M458 in populations that can be actually assumed to represent early Slavonic speakers (unlike many earlier cultures potentially associated with them), clearly earlier than other Slavic-speaking populations that will be sampled in eastern Europe. It is more and more likely that Early Slavs are going to strengthen Curta’s view, and this may somehow complicate the link of Proto-Slavic with eastern European BA cultures like Trzciniec or Lusatian.

NOTE. I am still expecting a clear expansion associated with Prague-Korchak, though, including a connection with bottlenecks based on R1a-M458 in the Middle Ages, whether the expansion is eventually shown to be from the west (i.e. Bohemia -> Prague -> Korchak), or from the east (i.e. Kiev -> Korchack -> Prague), and whether or not this cultural community was later replaced by other ‘true’ Slavonic-speaking cultures through acculturation or population movements.

slavic-origins
Common theories on Slavic origins.. After “The Early Slavs. Culture and Society in Early Medieval Europe” by P. M. Barford, Cornell University Press (2001). Image by Hxseek at Wikipedia.

5) Back to Przeworsk and the “north of the Carpathians” homeland (i.e. between the Upper Oder and the Upper Dniester), but compatible with Curta’s view: Even if Common Slavic is eventually evidenced to be driven by small migrations north and south of the Danube during the Roman Iron Age, before turning into a mostly “R1a-rich” migration or acculturation to the north in Bohemia and then east (which is what this early E1b-V13 connection suggests), this does not dismiss the traditional idea that Late Bronze Age – Iron Age central-eastern Europe was the Proto-Slavic homeland, i.e. likely the Pomeranian culture disturbed by the East Germanic migrations first (in Przeworsk), and the migrations of steppe nomads later (around the Danube).

Even without taking into account the connection with Baltic, the relevance of haplogroup E1b-V13 among Early Slavs may well be a sign of an ancestral population from the northern or eastern Carpathian region, supported by the finding of this haplogroup among the westernmost Scythians. The expansion of some modern E1b-CTS1273 lineages may link Slavic ancestrally with the Lusatian culture, which is an eastern (very specific) Urnfield culture group, stemming from central-east Europe.

An important paper in this respect is the upcoming Zenczak et al., where another hg. E1b1 will be added to the list above: such a sample is expected from Poland (from Kowalewko, Maslomecz, Legowo or Niemcza), either from the Roman Iron Age or Early Middle Ages, close to an early population of likely Scandinavian origin (eight I1 samples), apart from other varied haplogroups, with little relevance of R1a. Whether this E-V13 sample is an Iron Age one (justifying the bottleneck under E-V13 to the south) or, maybe more likely, a late one from the Middle Ages (maybe supporting a connection of the Gothic/Slavic E1b bottleneck with southern Chernyakhov or further west along the Danube) is unclear.

The finding of south-eastern European ancestry and lineages in both, Early Slavs and East Germanic tribes* suggests therefore a Slavonic homeland near (or within) the Przeworsk culture, close to the Albanoid one, as proposed based on topohydronymy. This may point to a complex process of acculturation of different eastern European populations which formed alliances, as was common during the Iron Age and later periods, and which cannot be interpreted as a clear picture of their languages’ original homeland and ancestral peoples (in the case of East Germanic tribes, apparently originally expanding from Scandinavia under strong I1 bottlenecks).

* Iberian samples of the Visigothic period in Spain show up to 25% E1b-V13 samples, with a mixture of haplogroups including local and foreign lineages, as well as some more E1b-V13 samples later during the Muslim period. Out of the two E1b samples from Longobards in Amorim et al. (2018), only SZ18 from Szólád (ca. AD 412-604) is within E1b-V13, in a very specific early branch (SNP M35.2), further locating the expansion of hg. E1b-V13 near the Danube. Samples of haplogroup J (maybe J2a) or G2a among Germanic tribes (and possibly in Poland’s Roman Iron Age / Early Middle Ages) are impossible to compare with early Hungarian ones without precise subclades.

east-slavic-expansion
East Slavic expansion in topo-hydronymy. Image from (Udolph 1997, 2016).

I already interpreted the earlier Slavic samples we had as a sign of a Carpathian origin and very recent bottlenecks under R1a lineages among Modern Slavs:

The finding of haplogroup E1b1b-M215 in two independent early West Slavic individuals further supports that the current distribution of R1a1a1b1a-Z282 lineages in Slavic populations is the product of recent bottlenecks. The lack of a precise subclade within the E1b1b-M215 tree precludes a proper interpretation of a potential origin, but they are probably under European E1b1b1a1b1-L618 subclade E1b1b1a1b1a-V13 (formed ca. 6100 BC, TMRCA ca. 2800 BC), possibly under the mutation CTS1273 (formed ca. 2600 BC, TMRCA ca. 2000 BC), in common with other ancient populations around the Carpathians (see below §viii.11. Thracians and Albanians). This gross geographic origin would support the studies of the Common Slavic homeland based on toponymy (Figure 66), which place it roughly between the Upper Oder and the Upper Dniester, north of the Carpathians (Udolph 1997, 2016).

EDIT (8 APR 2019): Another interesting data is the haplogroup distribution among Modern Slavs and neighbouring peoples (see Wikipedia). For example, the bottleneck seen in Modern Albanians, under Z5017 subclade, also points to an origin of the expansion of E1b-V13 subclades among multiethnic groups around the Lower Danube coinciding with the Roman Iron Age, given the estimates for the arrival of Proto-Albanian close to the Latin and Greek linguistic frontier.

Remarkable is also its distribution among Rusyns, East Slavs from the Carpathians not associated with the Kievan Rus’, isolated thus quite soon from East Slavic expansions to the east. They were reported to show ca. 35% hg. E1b-V13 globally in FTDNA, with a frequency similar to or higher than R1a, in common with South Slavic peoples*, reflecting thus a situation similar to the source of East Slavs before further R1a-based bottlenecks (and/or acculturation events) to the east:

* Although probably due in part to founder effects and biased familial sampling, this should be assumed to be common to all FTDNA sampling, anyway.

rusyns-map
Map showing the full geographic extent of the Rusyn people in Central Europe, prior to World War I (Carpatho Rusyn Society).

Repeating what should be already evident: in complex organizations and/or demographically dense populations (more common since the Iron Age), we can’t expect language change to happen in the same way as during the known Neolithic or Chalcolithic population replacements, be it in Finland, Hungary, Iberia, or Poland. For example, no matter whether Romans (2nd c. BC) brought some R1b-U152 and other Mediterranean lineages to Iberia; Germanic peoples entering Hispania (AD 5th c.) were of typically Germanic lineages or not; Muslims who spoke mainly Berber (AD 8th c.) and were mainly of hg. E1b-M81 (and J?) brought North African ancestry; etc. the language or languages of Iberia changed (or not) with the political landscape: neither with radical population replacements (or full population continuity), nor with the dominant haplogroups’ ancestral language.

Y-chromosome haplogroups are, in those cases, useful for ascertaining a more recent origin of the population. Like the finding of certain R1a-Z645, I2a-L621 & N-L392 lineages among Hungarians shows a recent origin near the Trans-Urals forest-steppes, or the finding of I1, R1b-U106 & E1b-V13 among Visigoths shows a recent origin near the Danube, the finding of Early Slavs (ca. AD 6th-7th c.) originally with small elite groups of hg. R1a-M458 & E1b-V13 from the Lower/Middle Danube – if strengthened with more Early Slavic samples, with Slavonic partially expanding as a lingua franca in some regions – is not necessarily representative of the Proto-Slavic community, just as it is clearly not representative of the later expansion of Slavic dialects. It would be representative, though, of the same processes of acculturation repeated all over Eurasia at least since the Iron Age, where no genetic continuity can be found with ancestral languages.

Related

R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

How the genocidal Yamnaya men loved to switch cultures

yamnaya-expansion-bell-beaker

After some really interesting fantasy full of arrows, it seems Kristiansen & friends are coming back to their most original idea from 2015, now in New Scientist’s recent clickbait Story of most murderous people of all time revealed in ancient DNA (2019):

Teams led by David Reich at Harvard Medical School and Eske Willerslev at the University of Copenhagen in Denmark announced, independently, that occupants of Corded Ware graves in Germany could trace about three-quarters of their genetic ancestry to the Yamnaya. It seemed that Corded Ware people weren’t simply copying the Yamnaya; to a large degree they actually were Yamnayan in origin.

If you think you have seen that movie, it’s because you have. They are at it again, Corded Ware from Yamna, and more “steppe ancestry” = “more Indo-European. It seems we haven’t learnt anything about “Steppe ancestry” since 2015. But there’s more:

Genocidal peoples who “switch cultures”

Burial practices shifted dramatically, a warrior class appeared, and there seems to have been a sharp upsurge in lethal violence. “I’ve become increasingly convinced there must have been a kind of genocide,” says Kristian Kristiansen at the University of Gothenburg, Sweden.

The collaboration revealed that the origin and initial spread of Bell Beaker culture had little to do – at least genetically – with the expansion of the Yamnaya or Corded Ware people into central Europe. “It started in It is in that region that the earliest Bell Beaker objects – including arrowheads, copper daggers and distinctive Bell-shaped pots – have been found, in archaeological sites carbon-dated to 4700 years ago. Then, Bell Beaker culture began to spread east, although the people more or less stayed put. By about 4600 years ago, it reached the most westerly Corded Ware people around where the Netherlands now lies. For reasons still unclear, the Corded Ware people fully embraced it. “They simply take on part of the Bell Beaker package and become Beaker people,” says Kristiansen.

The fact that the genetic analysis showed the Britons then all-but disappeared within a couple of generations might be significant. It suggests the capacity for violence that emerged when the Yamnaya lived on the Eurasia steppe remained even as these people moved into Europe, switched identity from Yamnaya to Corded Ware, and then switched again from Corded Ware to Bell Beaker.

Notice what Kristiansen did there? Yamnaya men “switched identities” into Corded Ware, then “switched identities” into Bell Beakers…So, the most aggresive peoples who have ever existed, exterminating all other Europeans, were actually not so violent when embracing wholly different cultures whose main connection is that they built kurgans (yes, Gimbutas lives on).

NOTE. By the way, just so we are clear, only Indo-Europeans are “genocidal”. Not like Neolithic farmers, or Palaeolithic or Mesolithic populations, or more recent Bronze Age or Iron Age peoples, who also replaced Y-DNA from many regions…

yamnaya-corded-ware-bell-beaker

In fact, there is much stronger evidence that these Yamnaya Beakers were ruthless. By about 4500 years ago, they had pushed westwards into the Iberian Peninsula, where the Bell Beaker culture originated a few centuries earlier. Within a few generations, about 40 per cent of the DNA of people in the region could be traced back to the incoming Yamnaya Beakers, according to research by a large team including Reich that was published this month. More strikingly, the ancient DNA analysis reveals that essentially all the men have Y chromosomes characteristic of the Yamnaya, suggesting only Yamnaya men had children.

“The collision of these two populations was not a friendly one, not an equal one, but one where the males from outside were displacing local males and did so almost completely,” Reich told New Scientist Live in September. This supports Kristiansen’s view of the Yamnaya and their descendants as an almost unimaginably violent people. Indeed, he is about to publish a paper in which he argues that they were responsible for the genocide of Neolithic Europe’s men. “It’s the only way to explain that no male Neolithic lines survived,” he says.

So these unimaginably violent Yamnaya men had children exclusively with their Y chromosomes…but not Dutch Single Grave peoples. These great great steppe-like northerners switched culture, cephalic index…and Y-chromosome from R1a (and others) to R1b-L151 to expand Italo-Celtic From The West™.

It’s hilarious how (exactly like their latest funny episode of PIE from south of the Caucasus) this new visionary idea copied by Copenhagen from amateur friends (or was it the other way around?) had been already rejected before this article came out, in Olalde et al. (2019), and that “Corded Ware=Indo-European” fans have become a parody of themselves.

What’s not to love about 2019 with all this back-and-forth hopping between old and new pet theories?

NOTE. I would complain (again) that the obsessive idea of the Danes is that Denmark CWC is (surprise!) the Pre-Germanic community, so it has nothing to do with “steppe ancestry = Indo-European” (or even with “Corded Ware = Indo-European”, for that matter), but then again you have Koch still arguing for Celtic from the West, Kortlandt still arguing for Balto-Slavic from the east, and – no doubt worst of all – “R1a=IE / R1b=Vasconic / N1c=Uralic” ethnonationalists arguing for whatever is necessary right now, in spite of genetic research.

So prepare for the next episode in the nativist and haplogroup fetishist comedy, now with western and eastern Europeans hand in hand: Samara -> Khvalynsk -> Yamnaya -> Bell Beaker spoke Vasconic-Tyrsenian, because R1b. Wait for it…

Vanguard Yamnaya groups

On a serious note, interesting comment by Heyd in the article:

A striking example of this distinction is a discovery made near the town of Valencina de la Concepción in southern Spain. Archaeologists working there found a Yamnaya-like kurgan, below which was the body of a man buried with a dagger and Yamnaya-like sandals, and decorated with red pigment just as Yamnaya dead were. But the burial is 4875 years old and genetic information suggests Yamnaya-related people didn’t reach that far west until perhaps 4500 years ago. “Genetically, I’m pretty sure this burial has nothing to do with the Yamnaya or the Corded Ware,” says Heyd. “But culturally – identity-wise – there is an aspect that can be clearly linked with them.” It would appear that the ideology, lifestyle and death rituals of the Yamnaya could sometimes run far ahead of the migrants.

NOTE. I have been trying to find which kurgan is this, reviewing this text on the archaeological site, but didn’t find anything beyond occasional ochre and votive sandals, which are usual. Does some reader know which one is it?

yamna-expansion-bell-beakers
Yamna expansion and succeeding East Bell Beaker expansion, without color on Bell Beaker territories. Notice vanguard Yamna groups in blue where East Bell Beakers later emerge. See original image with Bell Beaker territories.

Notice how, if you add all those vanguard Yamna findings of Central and Western Europe, including this one from southern Spain, you begin to get a good idea of the territories occupied by East Bell Beakers expanding later. More or less like vanguard Abashevo and Sintashta finds in the Zeravshan valley heralded the steppe-related Srubna-Andronovo expansions in Turan…

It doesn’t seem like Proto-Beaker and Yamna just “crossed paths” at some precise time around the Lower Danube, and Yamna men “switched cultures”. It seems that many Yamna vanguard groups, probably still in long-distance contact with Yamna settlers from the Carpathian Basin, were already settled in different European regions in the first half of the 3rd millennium BC, before the explosive expansion of East Bell Beakers ca. 2500 BC. As Heyd says, there are potentially many Yamna settlements along the Middle and Lower Danube and tributaries not yet found, connecting the Carpathian Basin to Western and Northern Europe.

These vanguard groups would have more easily transformed their weakened eastern Yamna connections with the fashionable Proto-Beaker package expanding from the west (and surrounding all of these loosely connected settlements), just like the Yamna materials from Seville probably represent a close cultural contact of Chalcolithic Iberia with a Yamna settlement (the closest known site with Yamna traits is near Alsace, where high Yamna ancestry is probably going to be found in a Bell Beaker R1b-L151 individual).

This does not mean that there wasn’t a secondary full-scale migration from the Carpathian Basin and nearby settlements, just like Corded Ware shows a secondary (A-horizon?) migration to the east with R1a-Z645. It just means that there was a complex picture of contacts between Yamna and European Chalcolithic groups before the expansion of Bell Beakers. Doesn’t seem genocidal enough for a popular movie, tho.

Related

A Game of Thrones in Indo-European: proto-languages in Westeros and Essos, and population genomics

I think proto-languages can be applied to basically any appropriate prehistoric setting, and especially to science fiction and fantasy settings. I often viewed the lack of interest for them as based on the idea that they are not fantastic enough, that they would render a fantastic world too realistic to allow for an adequate immersion of the reader (or viewer) into a new world.

With time, I have become more and more convinced that most authors don’t use proto-languages (or tweaked versions of them) simply because they can’t, and resort to the easier way: inventing some rules and words based on some basic ideas and sounds they feel would fit a certain culture or people, to get going. After all, world-building is about a good enough, not too detailed description, and books are about characters and settings, not worlds.

After the end of the 7th season of the Game of Thrones TV series, of which I have become a great fan, I had some season finale grief to deal with, so I thought about applying what we knew about Proto-Indo-Europeans to the fantasy world. Since all book translations deal with English names as if they were translations of the Common Tongue (e.g. Spanish “Invernalia” or “Poniente” for “Winterfel” or “Westeros”), the idea of a translation into Proto-Indo-European seemed quite interesting.

NOTE. I understand that, for some, the idea that “the original language is the best” would make them reject this. However, just take into account the millions who enjoy the books and the TV series only in their native language, and know nothing about the ‘original’ version…

Here are the text and images:

A Dance with Old Tongues

As you can see, the idea of the Common Tongue being Late Proto-Indo-European brings about a whole new (infinite) world of dialectal evolution, language contacts, and population expansions which must be established for the whole setting to work. This is what the text I began to write was about: to use languages (and related populations) of ca. 6000-1500 BC, and to avoid anachronisms and impossible language relationships.

As an added advantage, fans of role-playing games could expand their world with the use of the language correspondences and the maps. This way, instead of “Northern English” being spoken in the North, and “Spanish English” being spoken in Dorne, according to some selections that have been naturally criticized, you have ancient languages that fit with the ancient setting, and which were actually related to each other.

8-westeros-essos-languages-equivalence
Equivalence of languages of the known world with coeval proto-languages. Solid red lines divide Graeco-Aryan from Northern Indo-European dialects (Tocharian is separated from North-West Indo-European by a dotted red line). See all maps.

I also began drawing a fantasy map, my first one – even though I have been member of Cartographer’s Guild for years – , which eventually helped me with my updates of maps of prehistoric migrations, and even with the use of arrows and colors for scientific publications. I drew details mainly to illustrate the text, not to offer a comprehensive translated world. Most of the work was done in the Summer of 2017, with some map changes done in 2018 with help of the maps and works of fans.

NOTE. I have reviewed it during some long travels lately, and included names of “bloodlines” (i.e. haplogroups), which I find more interesting today for people to understand bottlenecks during prehistoric migrations; I have also added a map using pie charts. If this doesn’t fit well with the whole picture, it’s because it’s a recent addition. The rest is more or less the same as one-two years ago.

I don’t have time now to correct much of what I wrote. I have forgotten most of the relevant details from the books, especially A World of Ice and Fire which I think helped me a lot with this, and I am sure that after writing A Song of Sheep and Horses (now you know the why of the book names) I would deal with some language identification and cognates differently.

I decided to publish it to liven up our Facebook page of Modern Indo-European now that the 8th season is near, so that people can participate and try to translate (translatable) names and expressions into Proto-Indo-European, to see how it would work out. You can also request access our Modern Indo-European and Proto-Indo-European groups; both are administered mainly by Fernando.

If you think this whole idea is crazy, or a huge loss of time, I agree; this is how you lose your time when you like fantasy, comic books, etc. But I am a great fan of fantasy and fiction, and I had a lot of free time back then, so I couldn’t help it…

On the other hand, if you feel that mixing fantasy (or SF) with the Proto-Indo-European question (especially population genomics) is a bad idea, I may have agreed with that two years ago, and maybe this is the reason why I hesitated to publish it then.

Hoewever, today we can read a whole new (2018 and 2019) bunch of “steppe ancestry=Indo-European” fantasies: invisible Nganasan reindeer hordes, a Fearsome Tisza River where Yamna settlers mysteriously disappear, shapeshifting Dutch CWC peoples who change haplogroups, languages dependent on cephalic types, or Yamna/Bell Beaker expanding Vasconic…So what’s the matter with some more fantasy?

Ancient Sardinia hints at Mesolithic spread of R1b-V88, and Western EEF-related expansion of Vasconic

nuragic-sardinia-neolithic

New preprint Population history from the Neolithic to present on the Mediterranean island of Sardinia: An ancient DNA perspective, by Marcus et al. bioRxiv (2019)

Interesting excerpts (emphasis mine, edited for clarity):

On the high frequency of R1b-V88

Our genome-wide data allowed us to assign Y haplogroups for 25 ancient Sardinian individuals. More than half of them consist of R1b-V88 (n=10) or I2-M223 (n=7).

Francalacci et al. (2013) identi fied three major Sardinia-specifi c founder clades based on present-day variation within the haplogroups I2-M26, G2-L91 and R1b-V88, and here we found each of those broader haplogroups in at least one ancient Sardinian individual. Two major present-day Sardinian haplogroups, R1b-M269 and E-M215, are absent.

Compared to other Neolithic and present-day European populations, the number of identi fied R1b-V88 carriers is relatively high.

(…)ancient Sardinian mtDNA haplotypes belong almost exclusively to macro-haplogroups HV (n = 16), JT (n = 17) and U (n = 9), a composition broadly similar to other European Neolithic populations.

r1b-v88-europe
Geographic and temporal distribution of R1b-V88 Y-haplotypes in ancient European samples. We plot the geographic position of all ancient samples inferred to carry R1b-V88 equivalent markers. Dates are given as years BCE (means of calibrated 2s radio-carbon dates). Multiple V88 individuals with similar geographic positions are vertically stacked. We additionally color-code the status of the R1b-V88 subclade R1b-V2197, which is found in most present-day African R1b-V88 carriers.

On the origin of a Vasconic-like Paleosardo with the Western EEF

(…) the Neolithic (and also later) ancient Sardinian individuals sit between early Neolithic Iberian and later Copper Age Iberian populations, roughly on an axis that differentiates WHG and EEF populations and embedded in a cluster that additionally includes Neolithic British individuals. This result is also evident in terms of absolute genetic differentiation, with low pairwise FST ~ 0.005 +- 0.002 between Neolithic Sardinian individuals and Neolithic western mainland European populations. Pairwise outgroup-f3 analysis shows a very similar pattern, with the highest values of f3 (i.e. most shared drift) being with Neolithic and Copper Age Iberia, gradually dropping off for temporally and geographically distant populations.

In explicit admixture models (using qpAdm, see Methods) the southern French Neolithic individuals (France-N) are the most consistent with being a single source for Neolithic Sardinia (p ~ 0:074 to reject the model of one population being the direct source of the other); followed by other populations associated with the western Mediterranean Neolithic Cardial Ware expansion.

sardinians-ancient-eef
Principal Components Analysis based on the Human Origins dataset. A: Projection of ancient individuals’ genotypes onto principal component axes de fined by modern Western Eurasians (gray labels).

Pervasive Western Hunter-Gatherer ancestry in Iberian/French/Sardinian population

Similar to western European Neolithic and central European Late Neolithic populations, ancient Sardinian individuals are shifted towards WHG individuals in the top two PCs relative to early Neolithic Anatolians Admixture analysis using qpAdm infers that ancient Sardinian individuals harbour HG ancestry (~ 17%) that is higher than early Neolithic mainland populations (including Iberia, ~ 8%), but lower than Copper Age Iberians (~ 25%) and about the same as Southern French Middle-Neolithic individuals (~ 21%).

sardinia-modern-ancient-nuragic-pca
Principal Components Analysis based on the Human Origins dataset. B: Zoom into the region most relevant for Sardinian individuals.

Continuity from Sardinia Neolithic through the Nuragic

We found several lines of evidence supporting genetic continuity from the Sardinian Neolithic into the Bronze Age and Nuragic times. Importantly, we observed low genetic differentiation between ancient Sardinian individuals from various time periods.

A qpAdm analysis, which is based on simultaneously testing f-statistics with a number of outgroups and adjusts for correlations, cannot reject a model of Neolithic Sardinian individuals being a direct predecessor of Nuragic Sardinian individuals (…) Our qpAdm analysis further shows that the WHG ancestry proportion, in a model of admixture with Neolithic Anatolia, remains stable at ~17% throughout three ancient time-periods.

sardinians-modern-ancient-pca-admixture
Present-day genetic structure in Sardinia reanalyzed with aDNA. A: Scatter plot of the rst two principal components trained on 1577 present-day individuals with grand-parental ancestry from Sardinia. Each individual is labeled with a location if at least 3 of the 4 grandparents were born in the same geographical location (\small” three letter abbreviations); otherwise with \x” or if grand-parental ancestry is missing with \?”. We calculated median PC values for each Sardinian province (large abbreviations). We also projected each ancient Sardinian individual on to the top two PCs (gray points). B/C: We plot f-statistics that test for admixture of modern Sardinian individuals (grouped into provinces) when using Nuragic Sardinian individuals as one source population. Uncertainty ranges depict one standard error (calculated from block bootstrap). Karitiana are used in the f-statistic calculation as a proxy for ANE/Steppe ancestry (Patterson et al., 2012).

Steppe influx in Modern Sardinians

While contemporary Sardinian individuals show the highest affinity towards EEF-associated populations among all of the modern populations, they also display membership with other clusters (Fig. 5). In contrast to ancient Sardinian individuals, present-day Sardinian individuals carry a modest “Steppe-like” ancestry component (but generally less than continental present-day European populations), and an appreciable broadly “eastern Mediterranean” ancestry component (also inferred at a high fraction in other present-day Mediterranean populations, such as Sicily and Greece).

Related

Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia

steppe-balearic-sicily-sardinia

New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

Interesting excerpts (emphasis in bold; modified for clarity):

Balearic Islands: The expansion of Iberian speakers

Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

balearic-sicily-sardinia-pca
PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

Steppe in Sardinia IA: Phocaeans from Italy?

Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

yamnaya-samara
Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

Sicily EBA: The Lusitanian/Ligurian connection?

(…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

r1b-df27-z195
Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

Sad to read this:

This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.

Related

Aquitanians and Iberians of haplogroup R1b are exactly like Indo-Iranians and Balto-Slavs of haplogroup R1a

eba-indo-iranian-balto-slavs

The final paper on Indo-Iranian peoples, by Narasimhan and Patterson (see preprint), is soon to be published, according to the first author’s Twitter account.

One of the interesting details of the development of Bronze Age Iberian ethnolinguistic landscape was the making of Proto-Iberian and Proto-Basque communities, which we already knew were going to show R1b-P312 lineages, a haplogroup clearly associated during the Bell Beaker period with expanding North-West Indo-Europeans:

From the Bronze Age (~2200–900 BCE), we increase the available dataset from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period, albeit with less impact in the south. The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry. These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups. Y-chromosome turnover was even more pronounced, as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269.

iberia-admixture-y-dna
Proportion of ancestry derived from central European Beaker/Bronze Age populations in Iberians from the Middle Neolithic to the Iron Age (table S15). Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The arrival of East Bell Beakers speaking Indo-European languages involved, nevertheless, the survival of the two non-IE communities isolated from each other – likely stemming from south-western France and south-eastern Iberia – thanks to a long-lasting process of migration and admixture. There are some common misconceptions about ancient languages in Iberia which may have caused some wrong interpretations of the data in the paper and elsewhere:

NOTE. A simple reading of Iberian prehistory would be enough to correct these. Two recent books on this subject are Villar’s Indoeuropeos, iberos, vascos y otros parientes and Vascos, celtas e indoeuropeos. Genes y lenguas.

Iberian languages were spoken at least in the Mediterranean and the south (ca. “1/3 of Iberia“) during the Bronze Age.

Nope, we only know the approximate location of Iberian culture and inscriptions from the Late Iron Age, and they occupy the south-eastern and eastern coastal areas, but before that it is unclear where they were spoken. In fact, it seems evident now that the arrival of Urnfield groups from the north marks the arrival of Celtic-speaking peoples, as we can infer from the increase in Central European admixture, while the expansion of anthropomorphic stelae from the north-west must have marked the expansion of Lusitanian.

Vasconic was spoken in both sides of the Pyrenees, as it was in the Middle Ages.

Wrong. One of the worst mistakes I am seeing in many comments since the paper was published, although admittedly the paper goes around this problem talking about “Modern Basques”. Vasconic toponyms appear south of the Pyrenees only after the Roman conquests, and tribes of the south-western Pyrenees and Cantabrian regions were likely Celtic-speaking peoples. Aquitanians (north of the western Pyrenees) are the only known ancient Vasconic-speaking population in proto-historic times, ergo the arrival of Bell Beakers in Iberia was most likely accompanied by Indo-European languages which were later replaced by Celtic expanding from Central Europe, and Iberian expanding from south-east Iberia, and only later with Latin and Vasconic.

Ligurian is non-Indo-European, and Lusitanian is Celtic-like, so Iberia must have been mostly non-Indo-European-speaking.

The fragmentary material available on Ligurian is enough to show that phonetically it is a NWIE dialect of non-Celtic, non-Italic nature, much like Lusitanian; that is, unless you follow laryngeals up to Celtic or Italic, in which case you can argue anything about this or any other IE language, as people who reconstruct laryngeals for Baltic in the common era do.

EDIT (19 Mar 2019): It was not clear enough from this paragraph, because Ligurian-like languages in NE Iberia is just a hypothesis based on the archaeological connection of the whole southern France Bell Beaker region. My aim was to repeat the idea that Old European topo-hydronymy is older in NE Iberia (as almost anywhere in Iberia) than Iberian toponymy, so the initial hypothesis is that:

  1. a Palaeo-European language (as Villar puts it) expanded into most regions of Iberia in ancient times (he considered at some point the Mesolithic, but that is obviously wrong, as we know now); then
  2. Celts expanded at least to the Ebro River Basin; then
  3. Iberians expanded to the north and replaced these in NE Iberia; and only then
  4. after the Roman invasion, around the start of the Common Era, appear Vasconic toponyms south of the Pyrenees.

Lusitanian obviously does not qualify as Celtic, lacking the most essential traits that define Celticness…Unless you define “(Para-)Celtic” as Pre-Proto-Celtic-like, or anything of the sort to support some Atlantic continuity, in which case you can also argue that Pre-Italic or Pre-Germanic are Celtic, because you would be essentially describing North-West Indo-European

If Basques have R1b, it’s because of a culture of “matrilocality” as opposed to the “patrilocality” of Indo-Europeans

So wrong it hurts my eyes every time I read this. Not only does matrilocality in a regional group have few known effects in genetics, but there are many well-documented cases of population replacement (with either ancestry or Y-DNA haplogroups, or both) without language replacement, without a need to resort to “matrilineality” or “matrilocality” or any other cultural difference in any of these cases.

In fact, it seems quite likely now that isolated ancient peoples north of the Pyrenees will show a gradual replacement of surviving I2a lineages by neighbouring R1b, while early Iberian R1b-DF27 lineages are associated with Lusitanians, and later incoming R1b-DF27 lineages (apart from other haplogroups) are most likely associated with incoming Celts, which must have remained in north-central and central-east European groups.

NOTE. Notice how R1a is fully absent from all known early Indo-European peoples to date, whether Iberian IE, British IE, Italic, or Greek. The absence of R1a in Iberia after the arrival of Celts is even more telling of the origin of expanding Celts in Central Europe.

I haven’t had enough time to add Iberian samples to my spreadsheet, and hence neither to the ASoSaH texts nor maps/PCAs (and I don’t plan to, because it’s more efficient for me to add both, Asian and Iberian samples, at the same time), but luckily Maciamo has summed it up on Eupedia. Or, graphically depicted in the paper for the southeast:

iberia-haplogroups
Y chromosome haplogroup composition of individuals from southeast Iberia during the past 2000 years. The general Iberian Bronze and Iron Age population is included for comparison. Modified from Olalde et al. (2019).

Does this continued influx of Y-DNA haplogroups in Iberia with different cultures represent permanent changes in language? Are, therefore, modern Iberian languages derived from Lusitanian, Sorothaptic/Celtic, Greek, Phoenician, East or West Germanic, Hebrew, Berber, or Arabic languages? Obviously not. Same with Italy (see the recent preprint on modern Italians by Raveane et al. 2018), with France, with Germany, or with Greece.

If that happens in European regions with a known ancient history, why would the recent expansions and bottlenecks of R1b in modern Basques (or N1c around the Baltic, or R1a in Slavs) in the Middle Ages represent an ancestral language surviving into modern times?

Indo-Iranians

If something is clear from Narasimhan, Patterson, et al. (2018), is that we know finally the timing of the introduction and expansion of R1a-Z645 lineages among Indo-Iranians.

We could already propose since 2015 that a slow admixture happened in the steppes, based on archaeological finds, due to settlement elites dominating over common peoples, coupled with the known Uralic linguistic traits of Indo-Iranian (and known Indo-Iranian influence on Finno-Ugric) – as I did in the first version of the Indo-European demic diffusion model.

The new huge sampling of Sintashta – combined with that of Catacomb, Poltavka, Potapovka, Andronovo, and Srubna – shows quite clearly how this long-term admixture process between Uralic peoples and Indo-Iranians happened between forest-steppe CWC (mainly Abashevo) and steppe groups. The situation is not different from that of Iberia ca. 2500-2000 BC; from Narasimhan, Patterson, et al. (2018):

We combined the newly reported data from Kamennyi Ambar 5 with previously reported data from the Sintashta 5 individuals (10). We observed a main cluster of Sintashta individuals that was similar to Srubnaya, Potapovka, and Andronovo in being well modeled as a mixture of Yamnaya-related and Anatolian Neolithic (European agriculturalist-related) ancestry.

Even with such few words referring to one of the most important data in the paper about what happened in the steppes, Wang et al. (2018) help us understand what really happened with this simplistic concept of “steppe ancestry” regarding Yamna vs. Corded Ware differences:

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

As with Iberia (or any prehistoric region), the details of how exactly this language change happened are not evident, but we only need a plausible explanation coupled with archaeology and linguistics. Poltavka, Potapovka, and Sintashta samples – like the few available Iberian ones ca. 2500-2000 BC – offer a good picture of the cohabitation of R1b-L23 (mainly Z2103) and R1a-Z645 (mainly Z93+): a glimpse at the likely presence of R1a-Z93 within settlements – which must have evolved as the dominant elites – in a society where the majority of the population was initially formed by nomad herders (probably most R1b-Z2103), who were usually buried outside of the main settlements.

Will the upcoming Narasimhan, Patterson et al. (2019) deal with this problem of how R1a-M417 replaced R1b-M269, and how the so-called “Steppe_MLBA” (i.e. Corded Ware) ancestry admixed with “Steppe_EMBA” (i.e. Yamnaya) ancestry in the steppes, and which one of their languages survived in the region (that is, the same the Reich Lab has done with Iberia)? Not likely. The ‘genetic wars’ in Iberia deal with haplogroup R1b-P312, and how it was neither ‘native’ nor associated with Basques and non-Indo-European peoples in general. The ‘genetic wars’ in South Asia are concerned with the steppe origin of R1a, to prove that it is not a ‘native’ haplogroup to India, and thus neither are Indo-Aryan languages. To each region a politically correct account of genetic finds, with enough care not to fully dismiss national myths, it seems.

NOTE. Funnily enough, these ‘genetic wars’ are the making of geneticists since the 1990s and 2000s, so we are still in the midst of mostly internal wars caused by what they write. Just as genetic papers of the 2020s will most likely be a reaction to what they are writing right now about “steppe ancestry” and R1a. You won’t find much change to the linguistic reconstruction in this whole period, except for the most multicolored glottochronological proposals…

The first author of the paper has engaged, as far as I could see in Twitter, in dialogue with Hindu nationalists who try to dismiss the arrival of steppe ancestry and R1a into South Asia as inconclusive (to support the potential origin of Sanskrit millennia ago in the Indus Valley Civilization). How can geneticists deal with the real problem here (the original ethnolinguistic group expanding with Corded Ware), when they have to fend off anti-steppists from Europe and Asia? How can they do it, when they themselves are part of the same societies that demand a politically correct presentation of data?

This is how the data on the most likely Indo-Iranian-speaking region should be presented in an ideal world, where – as in the Iberia paper – geneticists would look closely to the Volga-Ural region to discover what happened with Proto-Indo-Iranians from their earliest to their latest stage, instead of constantly looking for sites close to the Indus Valley to demonstrate who knows what about modern Indian culture:

indo-iranian-admixture-similar-iberians
Tentative map of the Late PIE and Indo-Iranian community in the Volga-Ural steppes since the Eneolithic. Proportion of ancestry derived from central European Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

Now try and tell Hindu nationalists that Sanskrit expanded from an Early Bronze Age steppe community of R1b-rich nomadic herders that spoke Pre-Indo-Iranian, which was dominated and eventually (genetically) mostly replaced by elite Uralic-speaking R1a peoples from the Russian forest, hence the known phonetic (and some morphological) traits that remained. Good luck with the Europhobic shitstorm ahead..

Balto-Slavic

Iberian cultures, already with a majority of R1b lineages, show a clear northward expansion over previously Urnfield-like groups of north-east Iberia and Mediterranean France (which we now know probably represent the migration of Celts from central Europe). Similarly, Eastern Balts already under a majority of R1a lineages expanded likely into the Baltic region at the same time as the outlier from Turlojiškė (ca. 1075 BC), which represents the first obvious contacts of central-east Europe with the Baltic.

Iberia shows a more recent influx of central and eastern Mediterranean peoples, one of which eventually succeeded in imposing their language in Western Europe: Romans were possibly associated mainly with R1b-U152, apart from many other lineages. Proto-Slavs probably expanded later than Celts, too, connected to the disintegration of the Lusatian culture, and they were at some point associated with R1a-M458 and R1a-Z280(xZ92) lineages, apart from others already found in Early Slavs.

pca-balto-slavs-tollense-valley
PCA of central-eastern European groups which may have formed the Balto-Slavic-speaking community derived from Bell Beaker, evident from the position ‘westwards’ of CWC in the PCA, and surrounding cultures. Left: Early Bronze Age. Right: Tollense Valley samples.

This parallel between Iberia and eastern Europe is no coincidence: as Europe entered the Bronze Age, chiefdom-based systems became common, and thus the connection of ancestry or haplogroups with ethnolinguistic groups became weaker.

What happened earlier (and who may represent the Pre-Balto-Slavic community) will be clearer when we have enough eastern European samples, but basically we will be able to depict this admixture of NWIE-speaking BBC-derived peoples with Uralic-speaking CWC-derived groups (since Uralic is known to have strongly influenced Balto-Slavic), similar to the admixture found in Indo-Iranians, more or less like this:

iberian-admixture-balto-slavic
Tentative map of the North-West Indo-European and Balto-Slavic community in central-eastern Europe since the East Bell Beaker expansion. Proportion of ancestry derived from Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The Early Scythian period marked a still stronger chiefdom-based system which promoted the creation of alliances and federation-like groups, with an earlier representation of the system expanding from north-eastern Europe around the Baltic Sea, precisely during the spread of Akozino warrior-traders (in turn related to the Scythian influence in the forest-steppes), who are the most likely ancestors of most N1c-V29 lineages among modern Germanic, Balto-Slavic, and Volga-Finnic peoples.

Modern haplogroup+language = ancient ones?

It is not difficult to realize, then, that the complex modern genetic picture in Eastern Europe and around the Urals, and also in South Asia (like that of the Aegean or Anatolia) is similar to the Iron Age / medieval Iberian one, and that following modern R1a as an Indo-European marker just because some modern Indo-European-speaking groups showed it was always a flawed methodology; as flawed as following R1b for ancient Vasconic groups, or N1c for ancient Uralic groups.

Why people would argue that haplogroups mean continuity (e.g. R1b with Basques, N1c with Finns, R1a with Slavs, etc.) may be understood, if one lives still in the 2000s. Just like why one would argue that Corded Ware is Indo-European, because of Gimbutas’ huge influence since the 1960s with her myth of “Kurgan peoples”. Not many denied these haplogroup associations, because there was no reason to do it, and those who did usually aligned with a defense of descriptive archaeology.

However, it is a growing paradox that some people interested in genetics today would now, after the Iberian paper, need to:

  • accept that ancient Iberians and probably Aquitanians (each from different regions, and probably from different “Basque-Iberian dialects” in the Chalcolithic, if both were actually related) show eventually expansions with R1b-L23, the haplogroup most obviously associated with expanding Indo-Europeans;
  • acknowledge that modern Iberians have many different lineages derived from prehistoric or historic peoples (Celts, Phoenicians, Greeks, Romans, Jews, Goths, Berbers, Arabs), which have undergone different bottlenecks, the last ones during the Reconquista, but none of their languages have survived;
  • realize that a similar picture is to be found everywhere in central and western Europe since the first proto-historic records, with language replacement in spite of genetic continuity, such as the British Isles (and R1b-L21 continuity) after the arrival of Celts, Romans, Anglo-Saxons, Vikings, or Normans;
  • but, at the same time, continue blindly asserting that haplogroup R1a + “steppe ancestry” represent some kind of supernatural combination which must show continuity with their modern Indo-Iranian or Balto-Slavic language from time immemorial.
sintashta-y-dna
Replacement of R1b-L23 lineages during the Early Bronze Age in eastern Europe and in the Eurasian steppes: emergence of R1a in previous Yamnaya and Bell Beaker territories. Modified from EBA Y-DNA map.

Behave, pretty please

The ‘conservative’ message espoused by some geneticists and amateur genealogists here is basically as follows:

  • Let’s not rush to new theories that contradict the 2000s, lest some people get offended by granddaddy not being these pure whatever wherever as they believed, and let’s wait some 5, 10, or 20 years, as long as necessary – to see if some corner of the Yamna culture shows R1a, or some region in north-eastern Europe shows N1c, or some Atlantic Chalcolithic sample shows R1b – to challenge our preferred theories, if we actually need to challenge anything at all, because it hurts too much.
  • Just don’t let many of these genetic genealogists or academics of our time be unhappy, pretty please with sugar on top, and let them slowly adapt to reality with more and more pet theories to fit everything together (past theories + present data), so maybe when all of them are gone, within 50 or 70 years, society can smoothly begin to move on and propose something closer to reality, but always as politically correct as possible for the next generations.
  • For starters, let’s discuss now (yet again) that Bell Beakers may not have been Indo-European at all, despite showing (unlike Corded Ware) clearly Yamna male lineages and ancestry, because then Corded Ware and R1a could not have been Indo-European and that’s terrible, so maybe Bell Beakers are too brachycephalic to speak Indo-European or something, or they were stopped by the Fearsome Tisza River, or they are not pure Dutch Single Grave in The South hence not Indo-European, or whatever, and that’s why Iron Age Iberians or Etruscans show non-Indo-European languages. That’s not disrespectful to the history of certain peoples, of course not, but talking about the evident R1a-Uralic connection is, because this is The South, not The North, and respect works differently there.
  • Just don’t talk about how Slavs and Balts enter history more than 1,500 years later than Indo-European peoples in Western and Southern Europe, including Iberia, and assume a heroic continuity of Balts and Slavs as pure R1a ‘steppe-like’ peoples dominating over thousands of kms. in the Baltic, Fennoscandia, eastern Europe, and northern Asia for 5,000 years, with multiple Balto-Slavs-over-Balto-Slavs migrations, because these absolute units of Indo-European peoples were a trip and a half. They are the Asterix and Obelix of white Indo-European prehistory.
  • Perhaps in the meantime we can also invent some new glottochronological dialectal scheme that fits the expansion of Sredni Stog/Corded Ware with (Germano-?)Indo-Slavonic separated earlier than any other Late PIE dialect; and Finno-Volgaic later than any other Uralic dialect, in the Middle Ages, with N1c.
balto-slavic-pca
Genetic structure of the Balto-Slavic populations within a European context according to the three genetic systems, from Kushniarevich et al. (2015). Pure Balto-Slavs from…hmm…yeah this…ancient…region…or people…cluster…Whatever, very very steppe-like peoples, the True Indo-Europeans™, so close to Yamna…almost as close as Finno-Ugrians.

To sum up: Iberia, Italy, France, the British Isles, central Europe, the Balkans, the Aegean, or Anatolia, all these territories can have a complex history of periodic admixture and language replacement everywhere, but some peoples appearing later than all others in the historical record (viz. Basques or Slavs) apparently cannot, because that would be shameful for their national or ethnic myths, and these should be respected.

Ignorance of the own past as a blank canvas to be filled in with stupid ethnolinguistic continuity, turned into something valuable that should not be challenged. Ethnonationalist-like reasoning proper of the 19th century. How can our times be called ‘modern’ when this kind of magical thinking is still prevalent, even among supposedly well-educated people?

Related