Corded Ware and Bell Beaker related groups defined by patrilocality and female exogamy

tumulus-culture-eba-danube

Two new interesting papers concerning Corded Ware and Bell Beaker peoples appeared last week, supporting yet again what is already well-known since 2015 about West Uralic and North-West Indo-European speakers and their expansion.

Below are relevant excerpts (emphasis mine) and comments.

NOTE. I will add analyses of ancestry, renewed Y-DNA maps, etc. if and when I find the time.

I. Corded Ware and Battle Axe cultures

Open access The genomic ancestry of the Scandinavian Battle Axe Culture people and their relation to the broader Corded Ware horizon, by Malmström, Günther, et al. Philos. Trans. R. Soc. (2019).

I.1. Origins of Corded Ware peoples

The discovery of the Alexandria outlier represented a clear support for a long-lasting genomic difference between the two distinct cultural groups, Yamnaya and Corded Ware, already visible in an opposition Khvalynsk vs. late Sredni Stog ca. 4000 BC, i.e. well before the formation of both Late Eneolithic/Early Bronze Age groups.

However, the realization that it may not have been an Eneolithic individual, but rather a (Middle?) Bronze Age one, suggests that Sredni Stog was possibly not directly related to Corded Ware, and a potential direct connection with Yamnaya might have to be reevaluated, e.g. through the Carpathian Basin, as Anthony (2017) proposed.

pca-yamnaya-corded-ware-oblaczkowo
Principal component analysis of modern Europeans (grey) and projected ancient Europeans.

This new paper shows two early Corded Ware individuals from Obłaczkowo, Poland (ca. 2900-2600 BC) – hence close to the supposed original Proto-Corded Ware community – with an apparently (almost) full “Steppe-like” ancestry, clustering (almost) with Yamnaya individuals:

Similar to the BAC individuals, the newly sequenced individuals from the present-day Karlova in Estonia and Obłaczkowo in Poland appear to have strong genetic affinities to other individuals from BAC and CWC contexts across the Baltic Sea region. Some individuals from CWC contexts, including the two from Obłaczkowo, cluster closely with the potential source population of steppe-related ancestry, the Yamnaya herders. Notably, these individuals appear to be those with the earliest radiocarbon dates among all genetically investigated individuals from CWC contexts. Overall, for CWC-associated individuals, there is a clear trend of decreasing affinity to Yamnaya herders with time.

NOTE. Interestingly, this sample is almost certainly attributed to the skeleton E8-A, which had been supposedly already investigated by the Copenhagen group as the RISE1 sample:

We note that RISE1 is also described as the individual from Obłaczkowo feature E8-A. However, their genetic results differ from ours. They present this individual as a molecularly determined male that belongs to Y-chromosomal haplogroup (hg) R1b and to mtDNA hg K1b1a1 while our results show this individual to be female, carrying a mtDNA hg U3a’c profile

Since the typical Steppe_MLBA ancestry of Corded Ware groups does not show good fits for (Pre-)Yamnaya-derived ancestry, it is almost certain that these individuals will show no (or almost no) direct Yamnaya-related contribution, but rather a contribution of East European sub-Neolithic groups, more or less close to the steppe-forest region.

NOTE. They might show contributions from Pre-Yamnaya-influenced Sredni Stog, though, but if they show a contribution of Yamnaya, then they are probably outliers, related to Yamnaya vanguard groups (see image below). And for them to show it, then both sources, Yamnaya and Corded Ware, should be clearly distinguishable from each other and their relative contribution quantifiable in formal stats, something difficult (if not impossible) to ascertain today.

Their position in the published PCA – a plot apparently affected by projection bias – suggests a cluster in common with early Baltic samples, which are known to show contributions from East European sub-Neolithic populations (see qpAdm values for Baltic CWC samples).

NOTE. Results for previous samples labelled as Poland CWC are unreliable due to their low coverage.

The most interesting aspect about the ancestry shown by these early samples is their further support for an origin of the culture different than Sredni Stog, and for a rejection of the Alexandria outlier as ancestral to them, hence for a Volhynian-Podolian homeland of Proto-Corded Ware peoples, with an ancestry probably more closely related to the late Maykop Steppe- and Trypillian/GAC groups admixed with sub-Neolithic populations of the Eastern European Late Eneolithic.

NOTE. That is, unless there is a reason for the apparent increase in so-called “Steppe-ancestry” during the northward and westward migration of CWC peoples that represents another thing entirely…

trypillian-yamnaya-influence-baltic
Trypillian routes of influence and Yamnaya culture influences in Central and Central-East Europe during the Late Eneolithic / Early Bronze Age. Images by Klochko (2009).

I.2. CWC expansion under R1a bottlenecks

The two males in our dataset (ber1 and poz81) belonged to Y-chromosome R1a haplogroups, as do the majority of males (16/24) from the previously published CWC contexts, while a smaller fraction belonged to R1b [3/24] or I2a [3/24] lineages. The R1a haplogroup has not been found among Neolithic farmer populations nor in hunter–gatherer groups in central and western Europe, but it has been reported from eastern European hunter–gatherers and Eneolithic groups. Individuals from the Pontic–Caspian steppe, associated with the Yamnaya Culture, carry mostly R1b and not R1a haplotypes.

Sample poz81 is of basal hg. R1a-CTS4385*, an R1a-M417 subclade, supporting once again that most Corded Ware individuals from western and central European groups expanded under R1a-M417 (xZ645) lineages. The Battle Axe sample from Bergsgraven (ca. 2620-2470 BC) shows a basal hg. R1a-Y2395*, a R1a-Z283 subclade leading to the typically Fennoscandian R1a-Z284.

Both findings further support that typical lineages of West CWC groups, including R1a-M417 (xZ645) subclades, were fully replaced by incoming East Bell Beakers, and that the limited expansion of R1a-Z284 and I1 (the latter found in one newly reported Late Neolithic sample from Sweden) was the outcome of later regional bottlenecks within Scandinavia, after the creation of a maritime dominion by the Bell Beaker elites during the Dagger Period.

I.3. CWC and lactase persistence

(…) one of these individuals (kar1) carried at least one allele (-13910 C->T) associated with lactose tolerance, while the other two individuals (ber1 and poz81) carried at least one ancestral variant each, consistent with previous observations of low levels of lactose tolerance variants in the Neolithic and a slight increase among individuals from CWC contexts.

The fact that two early CWC individuals carry ancestral variants could be said to support the improbability of the individual from Alexandria representing a community ancestral to the Corded Ware community. On the other hand, the late CWC individual from Estonia carries one allele, but it still seems that only Bell Beakers and Steppe-related groups show the necessary two alleles during the Early Bronze Age, which is in line with a late Repin/early Yamnaya-related origin of the successful selection of the trait, consistent with the expansion of their specialized semi-nomadic cattle-breeding economy through the steppe biome during the Late Eneolithic.

rs4988235-lactase-persistence-history
Maps part of the public data used for the post by Iain Mathieson on Lactase Persistence. “By 2500 BP, the allele is present over a band stretching from Ireland to Central Asia at around 50 degrees latitude. This probably reflects the spread of Steppe ancestry populations in which the allele originated. However, the allele is still rare (say less than 1% frequency) over this entire range. It does not become common anywhere until some time in the past 2500 years – when it reaches its present-day high frequency in Britain and Central Europe”.

I.4. West Uralic spread from the East

The BAC groups fit as a sister group to the CWC-associated group from Estonia but not as a sister group to the CWC groups from Poland or Lithuania (|Z| > 3), indicating some differences in ancestry between these CWC groups and BAC. Supervised admixture modelling suggests that BAC may be the CWC-related group with the lowest YAM-related ancestry and with more ancestry from European Neolithic groups.

While the results of the paper are compatible with a migration from either the Eastern or the Western Baltic into Scandinavia, phylogeography and archaeology support that Battle Axe peoples emerged as a Baltic Corded Ware group close to the Vistula that expanded first to the north-east, and then to the west from Finland, continuing mostly unscathed during the whole Bronze Age mostly in eastern Fennoscandia with the development of Balto-Finnic- and Samic-speaking communities.

corded-ware-culture-ancestry-over-time
Correlation between f4(Chimp, LBK, YAM, X), where X is a CWC or BAC individual, and the date (BCE) of each individual. This statistic measures shared drift between CWC and Linear Pottery Culture (LBK) as opposed to YAM and should increase with the higher proportion of Neolithic farmer ancestry in CWC and BAC.

Radiocarbon dating showed that the three individuals from the Öllsjö megalithic tomb derived from later burials, where oll007 (2860–2500 cal BCE) overlaps with the time interval of the BAC, and oll009 and oll010 (1930–1650 cal BCE) fall within the Scandinavian Late Neolithic and Early Bronze Age

For more on how the Pitted Ware culture may have influenced Uralic-speaking Battle Axe peoples earlier than Indo-European-speaking Bell Beakers in Scandinavia, read more about Early Bronze Age Scandinavia and about the emergence of the Pre-Proto-Germanic community.

II. Bell Beakers through the Bronze Age

New paper (behind paywall) Kinship-based social inequality in Bronze Age Europe, by Mittnik et al. Science (2019).

II.1. Yamnaya vanguard settlers

In my last post, I showed how the ancestry of Corded Ware from Esperstedt is consistent with influence by incoming Yamnaya vanguard settlers or early Bell Beakers, stemming ultimately from the Carpathian Basin, something that could be inferred from the position of the Esperstedt outlier in the PCA, and by the knowledge of Yamnaya archaeological influences up to Saxony-Anhalt.

Yamnaya settlers are strongly suspected to have migrated in small so-called vanguard groups to the west and north of the Carpathians in the first half of the 3rd millennium BC, well before the eventual adoption of the Proto-Beaker package and their expansion ca. 2500 BC as East Bell Beakers.

Tauber Valley infiltration

As I mentioned in the books, one of the known – among the many more unknown – sites displaying Yamnaya-related traits and suggesting the expansion of Yamnaya settlers into Central Europe is Lauda-Königshofen, in the Tauber Valley.

From Diet and Mobility in the Corded Ware of Central Europe, by Sjögren, Price, & Kristiansen PLoS One (2017):

A series of CW cemeteries have been excavated in the Tauber valley. There are three large cemeteries known and some 30 smaller sites. The larger ones are Tauberbischofsheim-Dittingheim with 62 individuals, Tauberbischofsheim-Impfingen with 40 individuals, and Lauda-Königshofen with 91 individuals. The cemeteries are dispersed rather regularly along the Tauber valley, on both sides of the river, suggesting a quite densely settled landscape.

The Lauda-Königshofen graves consisted mostly of single inhumations in contracted position, usually oriented E-W or NE-SW. A total of 91 individuals were buried in 69 graves. At least 9 double graves and three graves with 3–4 individuals were present. In contrast to the common CW pattern, sexes were not distinguished by body position, only by grave goods. This trait is common in the Tauber valley and suggests a local burial tradition in this area. Stone axes were restricted to males, pottery to females, while other artifacts were common to both sexes. About a third of the graves were surrounded by ring ditches, suggesting palisade enclosures and possibly over-plowed barrows.

In particular, Frînculeasa, Preda, & Heyd (2015) used Lauda-Königshofen as representative of the mobility of horse-riding Yamnaya nomadic herders migrating into southern Germany, referring to the findings in Trautmann (2012) about the nomadic herders from the Tauber Valley, and their already known differences with other Corded Ware groups.

The likely influence of Yamnaya in the region has been reported at least since the 2000s, repeatedly mentioned by Jozef Bátora (2002, 2003, 2006), who compiled Yamnaya influences in a map that has been copied ever since, with little improvement over time. Heyd believes that there are potentially many Yamnaya remains along the Middle and Lower Danube and tributaries not yet found, though.

NOTE. Looking for this specific site, I realized that Bátora (and possibly many after him who, like me, copied his map) located Lauda-Königshofen in a more south-western position within Baden-Württemberg than its actual location. I have now corrected it in the maps of Chalcolithic migrations.

yamnaya-corded-ware-europe
Yamnaya influences in Central Europe suggestive of vanguard settlements, contemporary with Corded Ware groups. See full map.

Althäuser Hockergrab…Bell Beakers

Unfortunately, though, it is very difficult to attribute the reported R1b-L51 sample from the Tauber valley to a population preceding the arrival of East Bell Beakers in the region, so there is no uncontroversial smoking gun of Yamnaya vanguard settlers – yet. Reasons to doubt a Pre-Beaker origin are as follows:

1. This family of the Tauber valley shows a late radiocarbon date (ca. 2500 BC), i.e. from a time where East Bell Beakers are known to have been already expanding in all directions from the Middle and Upper Danube and its tributaries.

tauber-valley-althauser-hockergrab
Crouched burial from Althausen (Althäuser Hockergrab), dated ca. 2500 BC.

2. Archaeological information is scarce. Remains of these four individuals were discovered in 1939 and officially reported together with other findings in 1950, without any meaningful data that could distinguish between Bell Beakers and Corded Ware individuals.

This site is located in the Tauber valley, ca. 100 km to the northwest of the Lech valley. The site was discovered during the construction of a sports field in 1939 and was subsequently excavated by G. Müller and O. Paret. Four individuals in crouched position were found in the burial pit of a flat grave. The burial did not contain any grave goods, but due to the type of grave and positioning of the bodies (with heads pointing towards southwest) the site was attributed to the Corded Ware complex.

The classification of this burial as of CWC and not BBC seems to have been based entirely on the numerous CWC findings in the Tauber valley, rather than on its particular burial orientation following a regional custom (foreign to the described standard of both cultures), and on its grave type that was also found among Bell Beaker groups. Like many human remains recovered in dubious circumstances in the 20th century, these samples should have probably been labelled (at least in the genetic paper) more properly as Tauber_LN or Tauber_EBA.

yamnaya-bias-tauber-lech-valley
Changes in ancestry over time. (A) Median ages of individuals plotted against z scores of f4 (Mbuti, Test; Yamnaya_Samara, Anatolia_Neolithic) show increase of Anatolian farmer-related ancestry (indicated by more positive z-scores) and decrease of variation in ancestry over time. Grey shading indicates significant z scores, red line shonw near correlation (r = -0.35971; P = 0.003) and dotted lines the 95% confidence interval. (B) ancestry proportions on autosomes calculated with qpAdm. (C) Sex-bias z scores between autosomes and X chromosomes show significant male bias for steppe-related ancestry in the Tauber samples. Image modified from the paper: Surrounded with a blue circle in (A) are females with more Steppe-related ancestry, and in (C) surrounded by squares are the distinct sex biases found in the earliest BBC from the Tauber valley vs. later groups from the Lech valley.

3. In terms of ancestry, there seem to be no gross differences between the Lech Valley BBC individuals and previously reported South German Beakers, originally Yamnaya-like settlers admixing through exogamy with locals, including Corded Ware peoples, as the sex bias of the Lech Valley Beakers proves (see PCA plot below). In other words, northern and eastern Beakers admixed with regional (Epi-)Corded Ware females during their respective expansions, similar to how southern and western Beakers admixed with regional EEF-related females.

The two available Tauber Valley samples (“Tauber_CWC”) show the same pattern: a quite recent Steppe-related male bias and Anatolia_Neolithic-related female bias. Nevertheless, the male sample clusters ‘to the south’ in the PCA relative to all sampled Corded Ware individuals (see PCA plot below), and shows less Yamnaya-like ancestry than what is reported (or can be inferred) for Yamnaya from Hungary or early Bell Beakers of elevated Steppe-related ancestry.

The ancestry and position of the Althäuser male in the PCA is thus fully compatible with recently incoming East Bell Beakers admixing with local peoples (including Corded Ware) through exogamy, but not so much with a sample that would be expected from Yamanaya vanguard + Corded Ware-related ancestry (more like the Esperstedt outlier or the early France Beaker). Compared to the more ‘northern’ (fully Corded Ware-like) position of his female counterpart, there is little to support that both are part of the same native Tauber valley community after generations of ancestry levelling…

yamnaya-ancestry-tauber-cwc-bbc-lech-eba-mba
Table S9. Three-way qpAdm admixture model for European MN/Chalcolithic group+Yamnaya_Samara. P-values greater than 0.05 (model is not rejected) marked in green.

4. The haplogroup inference is also unrevealing: whereas the paper reports that it is R1b-P310* (xU106, xP312), there is no data to support a xP312 call, so it may well be even within the P312 branch, like most sampled Bell Beaker males. Similarly, the paper also reports that HUGO_180Sk1 (ca. 2340 BC) shows a positive SNP for the U106 trunk, which would make it the earliest known U106 sample and originally from Central Europe, but there is no clear support for this SNP call, either. At least not in their downloadable BAM files, as far as I can tell. Even if both were true, they would merely confirm the path of expansion of Yamnaya / East Bell Beakers through the Danube, already visible in confirmed genomic data:

r1b-l51-archaic-yamnaya-bell-beakers
Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from the Tauber Valley and one from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

II.2. Proto-Celts and the Tumulus culture

The most interesting data from Mittnik et al. (2019) – overshadowed by the (at first sight) striking “CWC” label of the Althäuser male – is the finding that the most likely (Pre-)Proto-Celtic community of Southern Germany shows, as expected, major genetic continuity over time with Yamnaya/East Bell Beaker-derived patrilineal families, which suggests an almost full replacement of other Y-chromosome haplogroups in Southern German Bronze Age communities, too.

Sampled families form part of an evolving Bell Beaker-derived European BA cluster in common with other Indo-European-speaking cultures from Western, Southern, and Northern Europe, also including early Balto-Slavs, clearly distinct from the Corded Ware-related clusters surviving in the Eastern Baltic and the forest zone.

This Central European Bronze Age continuity is particularly visible in many generations of different patrilocal families practising female exogamy, showing patrilineal inheritance mainly under R1b-P312 (mostly U152+) lineages proper of Central European bottlenecks, all of them apparently following a similar sociopolitical system spanning roughly a thousand years, since the arrival of East Bell Beakers in the region (ca. 2500 BC) until – at least – the end of the Middle Bronze Age (ca. 1300 BC):

Here, we show a different kind of social inequality in prehistory, i.e., complex households that consisted of i) a higher-status core family, passing on wealth and status to descendants, ii) unrelated, wealthy and high-status non-local women and iii) local, low-status individuals. Based on comparisons of grave goods, several of the high-status non-local females could have come from areas inhabited by the Unetice culture, i.e., from a distance of at least 350 km. As the EBA evidence from most of Southern Germany is very similar to the Lech valley, we suggest that social structures comparable to our microregion existed in a much broader area. The EBA households in the Lech valley, however, seem similar to the later historically known oikos, the household sphere of classic Greece, as well as the Roman familia, both comprising the kin-related family and their slaves.

pca-lech-valley-bell-beaker-eba
Genetic structure of Late Neolithic and Bronze Age individuals from southern Germany. (A) Ancient individuals (covered at 20,000 or more SNPs) projected onto principal components defined by 1129 present day west Eurasians (shown in fig. S6); individuals in this study shown with outlines corresponding to their 87Sr/86Sr isotope value (black: consistent with local values, orange: uncertain/intermediate, red: inconsistent with local values). Selected published ancient European individuals are shown without outlines. Image modified from the paper. Surrounded by triangles in cyan, Corded Ware-like females; with a blue triangle, Yamnaya/Early BBC-like sample from the Tauber valley.

NOTE. For those unfamiliar with the usual clusters formed by the different populations in the PCA, you can check similar graphics: PCA with Bell Beaker communities, PCA with Yamnaya settlers from the Carpathians, a similar one from Wang et al. (2019) showing the Yamnaya-Hungary cline, or the chronological PCAs prepared by me for the books.

The gradual increase in local EEF-like ancestry among South Germany EBA and MBA communities over the previous BBC period offers a reasonable explanation as to how Italic and Celtic communities remained in loose contact (enough to share certain innovations) despite their physical separation by the Alps during the Early Bronze Age, and probably why sampled Bell Beakers from France were found to be the closest source of Celts arriving in Iberia during the Urnfield period.

Furthermore, continued contacts with Únětice-related peoples through exogamy also show how Celtic-speaking communities closer to the Danube might have influenced (and might have been influenced by) Germanic-speaking communities of the Nordic Late Neolithic and Bronze Age, helping explain their potentially long-lasting linguistic exchange.

Like other previous Neolithic or Chalcolithic groups that Yamnaya and Bell Beakers encountered in Europe, ancestry related to the Corded Ware culture became part of Bell Beaker groups during their expansion and later during the ancestry levelling in the European Early Bronze Age, which helps us distinguish the evolution of Indo-European-speaking communities in Europe, and suggests likely contacts between different cultural groups separated hundreds of km. from each other.

All in all, there is nothing to support that (epi-)Corded Ware groups might have survived in any way in Central or Western Europe: whether through their culture, their Y-chromosome haplogroups, or their ancestry, they followed the fate of other rapidly expanding groups before them, viz. Funnelbeaker, Baden, or Globular Amphorae cultural groups. This is very much unlike the West Uralic-speaking territory in the Eastern Baltic and the Russian forests, where Corded Ware-related cultures thrived during the Bronze Age.

lech-valley-yamnaya-ancestry-over-time
f4-statistics showing differences in ancestry in populations grouped by period. An increase in affinity to ancestry related to Anatolia Neolithic over time. Males and females grouped together shown as upward and downward pointing triangles, respectively.

Conclusion

It was about time that geneticists caught up with the relevance of Y-DNA bottlenecks when assessing migrations and cultural developments.

From Malmström et al. (2019):

The paternal lineages found in the BAC/CWC individuals remain enigmatic. The majority of individuals from CWC contexts that have been genetically investigated this far for the Y-chromosome belong to Y-haplogroup R1a, while the majority of sequenced individuals of the presumed source population of Yamnaya steppe herders belong to R1b. R1a has been found in Mesolithic and Neolithic Ukraine. This opens the possibility that the Yamnaya and CWC complexes may have been structured in terms of paternal lineages—possibly due to patrilineal inheritance systems in the societies — and that genetic studies have not yet targeted the direct sources of the expansions into central and northern Europe.

From Gibbons (2019), a commentary to Mittnik et al. (2019):

Some of the early farmers studied were part of the Neolithic Bell Beaker culture, named for the shape of their pots. Later generations of Bronze Age men who retained Bell Beaker DNA were high-ranking, buried with bronze and copper daggers, axes, and chisels. Those men carried a Y chromosome variant that is still common today in Europe. In contrast, low-ranking men without grave goods had different Y chromosomes, showing a different ancestry on their fathers’ side, and suggesting that men with Bell Beaker ancestry were richer and had more sons, whose genes persist to the present.

There was no sign of these women’s daughters in the burials, suggesting they, too, were sent away for marriage, in a pattern that persisted for 700 years. The only local women were girls from high-status families who died before ages 15 to 17, and poor, unrelated women without grave goods, probably servants, Mittnik says. Strontium levels from three men, in contrast, showed that although they had left the valley as teens, they returned as adults.

Also, from Scientific American:

(…) it has long been assumed that prior to the Athenian and Roman empires,—which arose nearly 2,500 and more than 2,000 years ago, respectively—human social structure was relatively straightforward: you had those who were in power and those who were not. A study published Thursday in Science suggests it was not that simple. As far back as 4,000 years ago, at the beginning of the Bronze Age and long before Julius Caesar presided over the Forum, human families of varying status levels had quite intimate relationships. Elites lived together with those of lower social classes and women who migrated in from outside communities. It appears early human societies operated in a complex, class-based system that propagated through generations.

It seems wrong (to me, at least) that the author and – as he believes – archaeologists and historians had “assumed” a different social system for the European Bronze Age, which means they hadn’t read about how Indo-European societies were structured. For example, long ago Benveniste (1969) already drew some coherent picture of these prehistoric peoples based on their reconstructed language alone: regarding their patrilocal and patrilineal family system; regarding their customs of female exogamy and marriage system; and regarding the status of foreigners and slaves as movable property in their society.

A long-lasting and pervasive social system of Bronze Age elites under Yamnaya lineages strikingly similar to this Southern German region can be easily assumed for the British Isles and Iberia, and it is likely to be also found in the Low Countries, Northern Germany, Denmark, Italy, France, Bohemia and Moravia, etc., but also (with some nuances) in Southern Scandinavia and Central-East Europe during the Bronze Age.

Therefore, only the modern genetic pool of some border North-West Indo-European-speaking communities of Europe need further information to describe a precise chain of events before their eventual expansion in more recent times:

  1. the relative geographical isolation causing the visible regional founder effects in Scandinavia, proper of the maritime dominion of the Nordic Late Neolithic (related thus to the Island Biogeography Theory); and
  2. the situation of the (Pre-)Proto-Balto-Slavic community close to the Western Baltic which, I imagine, will be shown to be related to a resurge of local lineages, possibly due to a shift of power structures similar to the case described for Babia Góra.

NOTE. Rumour has it that R1b-L23 lineages have already been found among Mycenaeans, while they haven’t been found among sampled early West European Corded Ware groups, so the westward expansion of Indo-European-speaking Yamnaya-derived peoples mainly with R1b-L23 lineages through the Danube Basin merely lacks official confirmation.

Related

Bell Beakers and Mycenaeans from Yamnaya; Corded Ware from the forest steppe

eba-yamnaya-ancestry-hungary

I have recently written about the spread of Pre-Yamnaya or Yamnaya ancestry and Corded Ware-related ancestry throughout Eurasia, using exclusively analyses published by professional geneticists, and filling in the gaps and contradictory data with the most reasonable interpretations. I did so consciously, to avoid any suspicion that I was interspersing my own data or cherry picking results.

Now I’m finished recapitulating the known public data, and the only way forward is the assessment of these populations using the available datasets and free tools.

Understanding the complexities of qpAdm is fairly difficult without a proper genetic and statistical background, which I won’t pretend to have, so its tweaking to get strictly correct results would require an unending game of trial and error. I have sadly little time for this, even taking my tendency to procrastination into account… so I have used a simple model akin to those published before – in particular, the outgroup selection by Ning, Wang et al. (2019), who seem to be part of the only group interested in distinguishing Yamnaya-related from Corded Ware-related ancestry, probably the most relevant question discussed today in population genomics regarding the Proto-Indo-European and Proto-Uralic homelands.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

I have used for all analyses below a merged dataset including the curated one of the Reich Lab, the latest on Central and South Asia by Narasimhan, Patterson et al. (2019), on Iberia by Olalde et al. (2019), and on the East Baltic by Saag et al. (2019), as well as datasets including samples from Wang et al. (2019) and Lamnidis et al. (2018). I used (and intend to use) the same merged dataset in all cases, despite its huge size, to avoid adding one more uncontrolled variable to the analyses, so that all results obtained can be compared.

I try to prepare in advance a bunch of relevant files with left pops and right pops for each model:

  1. It seems a priori more reasonable to use geographically and chronologically closer proxy populations (say, Trypillia or GAC for Steppe-related peoples) than hypothetic combinations of ancestral ones (viz. Anatolian farmer, WHG, and EHG).
  2. This also means using subgroups closer to the most likely source population, such as (Don-Volga interfluve) Yamnaya_Kalmykia rather than (Middle Volga) Yamnaya_Samara for the western expansion of late Repin/early Yamnaya, or the early Germany_Corded_Ware.SG or Czech_Corded Ware for the group closest to the Proto-Corded Ware population (see below), likely neighbouring the Upper Vistula region.
  3. I usually test two source populations for different targets, which seems like a much more efficient way of using computer resources, whenever I know what I want to test, since I need my PC back for its normal use; whenever I don’t know exactly what to test, I use three-way admixture models and look for subsets to try and improve the results.

I have probably left out some more complex models by individualizing the most relevant groups, but for the time being this would have to do. Also, no other formal stats have been used in any case, which is an evident shortcoming, ruling out an interpretation drawn directly and only from the results below.

Full qpAdm results for each batch of samples are presented in a Google Spreadsheet, with each tab (bottom of the page) showing a different combination of sources, usually in order of formally ‘best’ (first to the left) to ‘worst’ (last to the right) fits, although the order is difficult to select in highly heterogeneous target groups, as will be readily visible.

maykop-trypillia-intrusion-steppes
Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

Corded Ware origins

The latest publications on the Yampil barrow complex have not improved much our understanding of the complexity of Corded Ware origins from an archaeological point of view, involving multiple cultural (hence likely population) influences. This bit is from Ivanova et al., Baltic-Pontic Studies (2015) 20:1, and most hypotheses of the paper remain unanswered (except maybe for the relevance of the Złota group):

In the light of the above outline therefore one should argue that the ‘architecture of barrows’ associated in the ‘Yampil landscape’ of the Middle Dniester Area with the Eneolithic (specifically, mainly with the TC), precedes the development of a similar phenomenon that can be observed from 2900/2800 BC in the Upper Dniester Area and drainage basin of the Upper Vistula, associated with the CWC [Goslar et al. 2015; Włodarczak 2006; 2007; 2008; Jarosz, Włodarczak 2007]. The most consuming research question therefore is whether ritual customs making use of Eneolithic (Tripolye) ‘barrow architecture’ could have penetrated northwards along the Dniester route, where GAC communities functioned. One could also ask what role the rituals played among the autochthons [Kośko 2000; Włodarczak 2008; 2014: 335; Ivanova, Toshchev 2015b].

This issue has already been discussed with a resulting tentative systemic taxonomy in the studies of Włodarczak, arguing for the Złota culture (ZC) in the Vistula region as an illustration of one of the (Małopolska) reception centres of civilization inspirations from the oldest Pontic ‘barrow culture’ circle associated with the Eneolithic and Early Bronze Age [Włodarczak 2008]. Notably, it is in the ZC that one can notice a set of cultural traits (catacomb grave construction, burial details, forms and decoration of vessels) analogous to those shared by the north-western Black Sea Coast groups of the forest-steppe Eneolithic (chiefly Zhyvotilovka-Volchansk) and the Late Tripolye circle (chiefly Usatovo-Gordinești-Horodiștea-Kasperovtsy).

gac-trypillia-usatovo-corded-ware
Globular Amphorae culture „exodus” to the Danube Delta: a – Globular Amphorae culture; b – GAC (1), Gorodsk (2), Vykhvatintsy (3) and Usatovo (4) groups of Trypillia culture; c – Coţofeni culture; d – northern border of the late phase of Baden culture;red arrows – direction of Globular Amphora culture expansion; blue arrow – direction of „reflux” of Globular Amphora culture (apud Włodarczak, 2008, with changes).

Taking into account that I6561 might be wrongly dated, we cannot include the Corded Ware-like sample of the end-5th millennium BC in the analysis of Corded Ware origins. That uncertainty in the chronology of the appearance of “Steppe ancestry” in Proto-Corded Ware peoples complicates the selection of any potential source population from the CHG cline.

Nevertheless, the lack of hg. R1a-M417 and sizeable Pre-Yamnaya-related ancestry in the sampled Pontic forest-steppe Eneolithic populations (represented exclusively by two samples from Dereivka ca. 3600-3400 BC) would leave open the interesting possibility that a similar ancestry got to the forest-steppe region between modern Poland and Ukraine during the known complex population movements of the Late Eneolithic.

It is known that Corded Ware-derived groups and Steppe Maykop show bad fits for Pre-Yamnaya/Yamnaya ancestry, and also that Steppe Maykop is a potential source of “Steppe-related ancestry” within the Eneolithic CHG mating network of the Pontic-Caspian steppes and forest-steppes. Testing Corded Ware for recent Trypillia and Maykop influences, proper of Late Trypillia and Late Maykop groups in the North Pontic area (such as Zhyvotylivka–Vovchans’k and Gordineşti) side by side with potential Pre-Yamnaya and Yamnaya sources makes thus sense:

Now, the main obvious difference between Khvalynsk-Yamnaya and Corded Ware is the long-lasting, pervasive Y-chromosome bottlenecks under R1b lineages in the former, compared to the haplogroup variability and late bottleneck under R1a-M417 in the latter, which speaks in favour – on top of everything else – of a different community of sub-Neolithic hunter-gatherers including hg. R1a-M417 hijacking the expansion of Steppe_Maykop-related ancestry around the Volhynian-Podolian Upland.

Akin to how Yamnaya patrilineal descendants hijacked regional EEF (±CWC) ancestry components mainly through exogamy, dragging them into the different expanding Bell Beaker groups (see below), but kept their Indo-European languages, these hunter-gatherers that admixed with peoples of “Steppe ancestry” were the most likely vector of expansion of Uralic languages in Eastern Europe.

corded-ware-from-trypillia-maykop
PCA of ancient Eurasian samples. Marked likely Proto-Corded Ware samples and potential origin of its PCA cluster based on qpAdm results. See full PCA and more related files.

Baltic Corded Ware

One of the most interesting aspects of the results above is the surprising heterogeneity of the different regional groups, which is also reflected in the Y-DNA variability of early Corded Ware samples.

Seeing how Baltic CWC groups, especially the early Latvia_LN sample, show particularly bad fits with the models above, it seems necessary to test how this population might have come to be. My first impression in 2017 was that they could represent early Corded Ware groups admixed with Yamnaya settlers through their interactions along the Dnieper-Dniester corridor.

However, I recently predicted that the most likely admixture leading to their ancestry and PCA cluster would involve a Corded Ware-like group and a group related to sub-Neolithic cultures of eastern Europe, whose best proxy to date are EHG-like Khvalynsk samples (i.e. excluding the outlier with Pre-Yamnaya ancestry, I0434):

corded-ware-pca-sub-neolithic-europe
Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Late Corded Ware + Yamnaya vanguard

Relevant are also the mixtures of Corded Ware from Esperstedt, and particularly those of the sample I0104, which I have repeated many times in this blog I suspected to be influenced by vanguard Yamnaya settlers:

The infeasible models of CWC + Yamnaya_Kalmykia ± Hungary_Baden (see below for Bell Beakers) and the potential cluster formed with other samples from the Baltic suggest that it could represent a more complex set of mixtures with sub-Neolithic populations. On the other hand, its location in Germany, late date (ca. 2500 BC or later), and position in the PCA, together with the good fits obtained for Germany_Beaker as a source, suggest that the increase in Steppe-related ancestry + EEF makes it impossible for the model (as I set it) to directly include Yamnaya_Kalmykia, despite this excess Steppe-related ancestry actually coming from Yamnaya vanguard groups.

I think it is very likely that the future publication of EEF-admixed Yamnaya_Hungary samples (or maybe even Yamnaya vanguard samples) will improve the fits of this model.

These results confirm at least the need to distrust the common interpretation of mixtures including late Corded Ware samples from Esperstedt (giving rise to the “up to 75% Yamnaya ancestry of CWC” in the 2015 papers) as representative of the Corded Ware culture as a whole, and to keep always in mind that an admixture of European BA groups including Corded Ware Esperstedt as a source also includes East BBC-like ancestry, unless proven otherwise.

yamnaya-vanguard-corded-ware-chalcolithic-early
Yamnaya vanguard groups in Corded Ware territory before the expansion of Bell Beakers (ca. 2500 BC). See full map.

Bell Beaker expansion

A hotly (re)debated topic in the past 6 months or so, and for all the wrong reasons, is the origin of the Bell Beaker folk. Archaeology, linguistics, and different Y-chromosome bottlenecks clearly indicate that Bell Beakers were at the origin of the North-West Indo-European expansion in Europe, while the survival of Corded Ware-related groups in north-eastern Europe is clearly related to the expansion of Uralic languages.

NOTE. For the interesting case of Proto-Indo-Iranians expanding with Corded Ware-like ancestry, see more on the formation of Sintashta-Potapovka-Filatovka from East Uralic-speaking Abashevo and Pre-Proto-Indo-Iranian-speaking Poltavka herders. See also more on R1a in Indo-Iranians and on the social complexity of Sintashta.

Nevertheless, every single discarded theory out there seems to keep coming back to life from time to time, and a new wave of interest in “Bell Beaker from the Single Grave culture” somehow got revived in the process, too, because this obsession – unlike the “Bell Beakers from Iberia Chalcolithic” – is apparently acceptable in certain circles, for some reason.

We know that Iberian Beakers, British Beakers, or Sicilian EBA – representing the most likely closest source population of speakers of Proto-Galaico-Lusitanian, Pre-Celtic Indo-European, and Proto-Elymian, respectively – have already been successfully tested for a direct origin among Western European Beakers in Olalde et al. (2018), Olalde et al. (2019), and Fernandes et al. (2019).

This success in ascertaining a closer Beaker source is probably due to the physical isolation of the specific groups (related to Germany_Beaker, Netherlands_Beaker, and NE_Mediterranean_Beaker samples, respectively) after their migration into regions dominated by peoples without Steppe-related ancestry. Furthermore, Celtic-speaking populations expanding with Urnfield south of the Pyrenees also show a good fit with a source close to France_Beaker.

So I decided to test sampled Bell Beaker populations, to see if it could shed light to the most likely source population of individual Beaker groups and the direction of migration within Central Europe, i.e. roughly eastwards or westwards. As it was to be expected for closely related populations (see the relevant discussion here), an attempt to offer a simplistic analysis of direction based on formal stats does not make any sense, because most of the alternative hypotheses cannot be rejected:

Not only because of the similar values obtained, but because it is absurd to take p-values as a measure of anything, especially when most of these conflicting groups with slightly ‘better’ or ‘worse’ p-values represent multiple different mixtures of the type (Yamnaya + EEF) + (Corded Ware + EEF ± Yamnaya), impossible to distinguish without selecting proper, direct ancestral populations…

A further example of how explosive the Bell Beaker expansion was into different territories, and of their extensive local admixture, is shown by the unsuccessful attempt by Olalde et al. (2018) to obtain an origin of the EEF source for all Beaker groups (excluding Iberian Beakers):

bell-beaker-local-population-iberia
Investigating the genetic makeup of Beaker-complex-associated individuals. Testing different populations as a source for the Neolithic ancestry component in Beaker-complex-associated individuals. The table shows P values (* indicates values > 0.05) for the fit of the model: ‘Steppe_EBA + Neolithic/Copper Age’ source population.
burials-yamnaya-hungary
Map of attested Yamnaya pit-grave burials in the Hungarian plains; superimposed in shades of blue are common areas covered by floods before the extensive controls imposed in the 19th century; in orange, cumulative thickness of sand, unfavourable loamy sand layer. Marked are settlements/findings of Boleráz (ca. 3500 BC on), Baden (until ca. 2800 BC), Kostolac (precise dates unknown), and Yamna kurgans (from ca. 3100/3000 BC on).

Now, there is a simpler way to understand what kind of Steppe-related ancestry is proper of Bell Beakers. I tested two simple models for some Beaker groups: Yamnaya + Hungary Baden vs. Corded Ware + GAC Poland. After all, the Bell Beaker folk should prefer a source more closely related to either Yamnaya Hungary or Central European Corded Ware:

Interestingly, models including Yamnaya + Baden show good fits for the most important groups related to North-West Indo-Europeans, including Bell Beakers from Germany, the Netherlands, Italy, and Poland, representing the most likely closest source populations of speakers of Pre-Proto-Celtic, Pre-Proto-Germanic, Proto-Italo-Venetic, and Pre-Proto-Balto-Slavic, respectively.

The admixed Yamnaya samples from Hungary that will hopefully be published soon by the Jena Lab will most likely further improve these fits, especially in combination with intermediate Chalcolithic populations of the Middle and Upper Danube and its tributaries, to a point where there will be an absolute chronological and geographical genomic trail from the fully Yamnaya-like Yamnaya settlers from Hungary to all North-West Indo-European-speaking groups of the Early Bronze Age.

The only difference between groups will be the gradual admixture events of their source Beaker group with local populations on their expansion paths, including peoples of mainly EEF, CWC+EEF, or CWC+EEF+Yamnaya related ancestry. There is ample evidence beyond ancestry models to support this, in particular continued Y-DNA bottlenecks under typical Yamnaya paternal lineages, mainly represented by R1b-L51 subclades.

east-bell-beaker-group-expansion
Distribution of the Bell Beaker East Group, with its regional provinces, as of c. 2400 cal BC (after Heyd et al. 2004, modified). See full maps.

European Early Bronze Age

European EBA groups that might show conflicting results due to multiple admixture events with Corded Ware-related populations are the Únětice culture and the Nordic Late Neolithic.

The results for Únětice groups seem to be in line with what is expected of a Central European EBA population derived from Bell Beakers admixed with surrounding poulations of East Bell Beaker and/or late (Epi-)Corded Ware descent.

Potential models of mixture for Nordic Late Neolithic samples – despite the bad fits due to the lack of direct ancestral CWC and BBC groups from Denmark – seem to be impossible to justify as derived exclusively from Single Grave or (even less) from Battle Axe peoples, supporting immigration waves of Bell Beakers from the south and further admixture events with local groups through maritime domination.

PCA of ancient European samples. Marked are Bronze Age clusters. See full PCAs.

Balkans Bronze Age

The potential origin of the typical Corded Ware Steppe-related ancestry in the social upheaval and population movements of the Dnieper-Dniester forest-steppe corridor during the 4th millennium BC raises the question: how much do Balkan Bronze Age groups owe their ancestry to a population different than the spread of Pre-Yamnaya-like Suvorovo-Novodanilovka chieftains? Furthermore, which Bronze Age groups seem to be more likely derived exclusively from Pre-Yamnaya groups, and which are more likely to be derived from a mixture of Yamnaya and Pre-Yamnaya? Do the formal stats obtained correspond to the expected results for each group?

Since the expansion of hg. I2a-L699 (TMRCA ca. 5500 BC) need not be associated with Yamnaya, some of these values – together with the assessment of each individual archaeological culture – may question their origin in a Yamnaya-related expansion rather than in a Khvalynsk-related one.

NOTE. These are the last ones I was able to test yesterday, and I have not thought these models through, so feel free to propose other source and target groups. In particular, complex movements through the North Pontic area during the Late Eneolithic would suggest that there might have been different Steppe-ancestry-related vs. EEF-related interactions in the north-west and west Pontic area before and during the expansion of Yamnaya.

Mycenaeans

One of the key Indo-European populations that should be derived from Yamnaya to confirm the Steppe hypothesis, together with North-West Indo-Europeans, are Proto-Greeks, who will in turn improve our understanding of the preceding Palaeo-Balkan community. Unfortunately, we only have Mycenaean samples from the Aegean, with slight contributions of Steppe-related ancestry.

Still, analyses with potential source populations for this Steppe ancestry show that the Yamnaya outlier from Bulgaria is a good fit:

The comparison of all results makes it quite evident the why of the good fits from (Srubnaya-related) Bulgaria_MLBA I2163 or of Sintashta_MLBA relative to the only a priori reasonable Yamnaya and Catacomb sources: it is not about some hypothetical shared ancestor in Graeco-Aryan-speaking East Yamnaya– or even Catacomb-Poltavka-related groups, because all available Yamnaya-related peoples are almost indistinguishable from each other (at least with the sampling available today). These results reflect a sizeable contribution of similar EEF-related populations from around the Carpathians in both Steppe-related groups: Corded Ware and Yamnaya settlers from the Balkans.

mycenaeans-minyan-ware-greece-minoan
Cultural groups in and around the Balkans during the Early Bronze Age. See full maps.

qpAdm magic

In hobby ancestry magic, as in magic in general, it is not about getting dubious results out of thin air: misdirection is the key. A magician needs to draw the audience attention to ‘remarkable’ ancestry percentages coupled with ‘great’ (?) p-values that purportedly “prove” what the audience expects to see, distracting everyone from the true interesting aspects, like statistical design, the data used (and its shortcomings), other opposing models, a comparison of values, a proper interpretation…you name it.

I reckon – based on the examples above – that the following problems lie at the core of bad uses of qpAdm:

  1. In the formal aspect, the poor understanding of what p-values and other formal stats obtained actually mean, and – more importantly – what they don’t mean. The simplistic trend to accept results of a few analyses at face value is necessarily wrong, in so far as there is often no proper reasoning of what is being assessed and how, and there is never a previous opinion about what could be expected if the alternative hypotheses were true.
  2. In the interpretation aspect, the poor judgement of accompanying any results with simplistic, superficial, irrelevant, and often plainly wrong archaeological or linguistic data selected a posteriori; the inclusion of some racial or sociopolitical overtones in the mixture to set a propitious mood in the target audience; and a sort of ritualistic theatrics with the main theme of ‘winning’, that is best completed with ad hominems.

If you get rid of all this, the most reasonable interpretation of the output of a model proposed and tested should be similar to Nick Patterson’s words in his explanation of qpWave and qpAdm use:

Here we see that, at least in this analysis there are reasonable models with CordedWareNeolithic is a mix of either WHG or LBKNeolithic and YamnayaEBA. (…) The point of this note is not to give a serious phylogenetic analysis but the results here certainly support a major Steppe contribution to the Corded Ware population, which is entirely concordant with the archaeology [?].

Very far, as you can see, from the childish “Eureka! I proved the source!”-kind of thinking common among hobbyists.

The Mycenaean case is an illustrative example: if the Yamnaya outlier from Bulgaria were not available, and if one were not careful when designing and assessing those mixture models, the interpretation would range from erroneous (viz. a Graeco-Aryan substrate, as I initially thought) to impossible (say, inventing migration waves of Sintashta or Srubnaya peoples into Crete). The models presented above show that a contribution of Yamnaya to Mycenaeans couldn’t be rejected, and this alone should have been enough to accept Yamnaya as the most likely source population of “Steppe ancestry” in Proto-Greeks, pending intermediate samples from the Balkans. In other words, one could actually find that ‘the best’ p-values for source populations of Mycenaeans is a combination of modern Poles + Turks, despite the impracticality of such a model…

I haven’t been able to reproduce results which supposedly showed that Corded Ware is more likely to be derived from (Pre-)Yamnaya than other source population, or that Corded Ware is better suited as the ancestral population of Bell Beakers. The analyses above show values in line with what has been published in recent scientific papers, and what should be expected based on linguistics and archaeology. So I’ll go out on a limb here and say that it’s only through a careful selection of outgroups and samples tested, and of as few compared models as possible, that you could eventually get this kind of results and interpretation, if at all.

Whether that kind of special care for outgroups and samples is about (a) an acceptable fine-tuning of the analyses, (b) a simplistic selection dragged from the first papers published and applied indiscriminately to all models, or (c) cherry picking analyses until results fit the expected outcome, is a question that will become mostly irrelevant when future publications continue to support an origin of the expansion of ancient Indo-European languages in Khvalynsk- and Yamnaya-related migrations.

Feel free to suggest (reasonable) modifications to correct some of these models in the comments. Also, be sure to check out other values such as proportions, SD or SNPs of the different results that I might have not taken into account when assessing ‘good’ or ‘bad’ fits.

Related

Yamnaya replaced Europeans, but admixed heavily as they spread to Asia

narasimhan-spread-yamnaya-ancestry

Recent papers The formation of human populations in South and Central Asia, by Narasimhan, Patterson et al. Science (2019) and An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers, by Shinde et al. Cell (2019).

NOTE. For direct access to Narasimhan, Patterson et al. (2019), visit this link courtesy of the first author and the Reich Lab.

I am currently not on holidays anymore, and the information in the paper is huge, with many complex issues raised by the new samples and analyses rather than solved, so I will stick to the Indo-European question, especially to some details that have changed since the publication of the preprint. For a summary of its previous findings, see the book series A Song of Sheep and Horses, in particular the sections from A Clash of Chiefs where I discuss languages and regions related to Central and South Asia.

I have updated the maps of the Preshistory Atlas, and included the most recently reported mtDNA and Y-DNA subclades. I will try to update the Eurasian PCA and related graphics, too.

NOTE. Many subclades from this paper have been reported by Kolgeh (download), Pribislav and Principe at Anthrogenica on this thread. I have checked some out for comparison, but even if it contradicted their analyses mine would be the wrong ones. I will upload my spreadsheets and link to them from this page whenever I find the time.

caucasus-cline-narasimhan
Ancestry clines (1) before and (2) after the advent of farming. Colour modified from the original to emphasize the CHG cline: notice the apparent relevance of forest-steppe groups in the formation of this CHG mating network from which Pre-Yamnaya peoples emerged.

Indo-Europeans

I think the Narasimhan, Patterson et al. (2019) paper is well-balanced, and unexpectedly centered – as it should – on the spread of Yamnaya-related ancestry (now Western_Steppe_EMBA) as the marker of Proto-Indo-European migrations, which stretched ca. 3000 BC “from Hungary in the west to the Altai mountains in the east”, spreading later Indo-European dialects after admixing with local groups, from the Atlantic to South Asia.

I. Afanasievo

I.1. East or West PIE?

I expected Afanasievo to show (1) R1b-L23(xZ2103, xL51) and (2) R1b-L51 lineages, apart from (3) the known R1b-Z2103 ones, pointing thus to an ancestral PIE community before the typical Yamnaya bottlenecks, and with R1b-L51 supporting a connection with North-West Indo-European. The presence of some samples of hg. Q pointed in this direction, too.

However, Afanasievo samples show overwhelmingly R1b-Z2103 subclades (all except for those with low coverage), all apparently under R1b-Z2108 (formed ca. 3500 BC, TMRCA ca. 3500 BC), like most samples from East Yamnaya.

This necessarily shifts the split and spread of R1b-L23 lineages to Khvalynsk/early Repin-related expansions, in line with what TMRCA suggested, and what advances by Anthony (2019) and Khokhlov (2018) on future samples from the Reich Lab suggest.

Given the almost indistinguishable ancestry between Afanasievo and Early Yamnaya, there seems to be as of yet little potential information to support in population genomics that Pre-Tocharians were more closely related to North-West Indo-Europeans than to Graeco-Aryans, as it is proposed in linguistics based on the few shared traits between them, and the lack of innovations proper of the Graeco-Aryan community.

NOTE. A new issue of Wekʷos contains an abstract from a relevant paper by Blažek on vocabulary for ‘word’, including the common NWIE *wrdʰo-/wordʰo-, but also a new (for me, at least) Northern Indo-European one: *rēki-/*rēkoi̯-, shared by Slavic and Tocharian.

The fact that bottlenecks happened around the time of the late Repin expansion suggests that we might be able to see different clans based on the predominant lineages developing around the Don-Volga area in the 4th millennium BC. The finding of Pre-R1b-L51 in Lopatino (see below), and of a Catacomb sample of hg. R1b-Z2103(Z2105-) in the North Caucasus steppe near Novoaleksandrovskij also support a star-like phylogeny of R1b-L23 stemming from the Don-Volga area.

NOTE. Interestingly, a dismissal of a common trunk between Tocharian and North-West Indo-European would mean that shared similarities between such disparate groups could be traced back to a Common Late PIE trunk, and not to a shared (western) Repin community. For an example of such a ‘pure’ East-West dialectal division, see the diagram of Adams & Mallory (2007) at the end of the post. It would thus mean a fatal blow to Kortlandt’s Indo-Slavonic group among other hypothetical groupings (remade versions of the ancient Centum-Satem division), as well as to certain assumptions about laryngeal survival or tritectalism that usually accompany them. Still, I don’t think this is the case, so the question will remain a linguistic one, and maybe some similarities will be found with enough number of samples that differentiate Northern Indo-Europeans from the East Yamna/Catacomb-Poltavka-Balkan_EBA group.

afanasievo-y-dna
Y-chromosome haplogroups of Afanasievo samples and neighbouring groups. See full maps.

I.2. Expansion or resurgence of hg. Q1b?

Haplogroup Q1b-Y6802(xY6798) seems to be the main lineage that expanded with Afanasievo, or resurged in their territory. It’s difficult to tell, because the three available samples are family, and belong to a later period.

NOTE. I have finally put some order to the chaos of Q1a vs. Q1b subclades in my spreadsheet and in the maps. The change of ISOGG 2016 to 2017 has caused that many samples reported as of Q1 subclades from papers prepared during the 2017-2018 period, and which did not provide specific SNP calls, were impossible to define with certainty. By checking some of them I could determine the specific standard used.

In favour of the presence of this haplogroup in the Pre-Yamnaya community are:

  • The statement by Anthony (2019) that Q1a [hence maybe Q1b in the new ISOGG nomenclature] represented a significant minority among an R1b-rich community.
  • The sample found in a Sintastha WSHG outlier (see below), of hg. Q1b-Y6798, and the sample from Lola, of hg. Q1b-L717, are thus from other lineage(s) separated thousands of years from the Afanasievo subclade, but might be related to the Khvalynsk expansion, like R1b-V1636 and R1b-M269 are.

These are the data that suggest multiple resurgence events in Afanasievo, rather than expanding Q1b lineages with late Repin:

  • Overwhelming presence of R1b in early Yamnaya and Afanasievo samples; one Q1(xQ1b) sample reported in Khvalynsk.
  • The three Q1b samples appear only later, although wide CI for radiocarbon dates, different sites, and indistinguishable ancestry may preclude a proper interpretation of the only available family.
    • Nevertheless, ancestry seems unimportant in the case of Afanasievo, since the same ancestry is found up to the Iron Age in a community of varied haplogroups.
  • Another sample of hg. Q1b-Y6802(xY6798) is found in Aigyrzhal_BA (ca. 2120 BC), with Central_Steppe_EMBA (WSHG-related) ancestry; however, this clade formed and expanded ca. 14000 BC.
  • The whole Altai – Baikal area seems to be a Q1b-L54 hotspot, although admittedly many subclades separated very early from each other, so they might be found throughout North Eurasia during the Neolithic.
  • One Afanasievo sample is reported as of hg. C in Shin (2017), and the same haplogroup is reported by Hollard (2014) for the only available sample of early Chemurchek to date, from Kulala ula, North Altai (ca. 2400 BC).
afanasievo-chemurchek-y-dna
Y-chromosome haplogroups of late Afanasievo – early Chemurchek samples and neighbouring groups. See full maps.

I.3. Agricultural substrate

Evidence of continuous contacts of Central_Steppe_MLBA populations with BMAC from ca. 2100 BC on – visible in the appearance of Steppe ancestry among BMAC samples and BMAC ancestry among Steppe pastoralists – supports the close interaction between Indo-Iranian pastoralists and BMAC agriculturalists as the origin of the Asian agricultural substrate found in Proto-Indo-Iranian, hence likely related to the language of the Oxus Civilization.

Similar to the European agricultural substrate adopted by West Yamnaya settlers (both NWIE and Palaeo-Balkan speakers), Tocharian shows a few substrate terms in common with Indo-Iranian, which can be explained by contacts in different dialectal stages through phonetic reconstruction alone.

The recent Hermes et al. (2019) supports the early integration of pastoralism and millet cultivation in Central Asia (ca. 2700 BC or earlier), with the spread of agriculture to the north – through the Inner Asian Mountain Corridor – being thus unrelated to the Indo-Iranian expansions, which might support independent loans.

However, compared to the huge number of parallel shared loans between NWIE and Palaeo-Balkan languages in the European substratum, Indo-Iranians seem to have been the first borrowers of vocabulary from Asian agriculturalists, while Proto-Tocharian shows just one certain related word, with phonetic similarities that warrant an adoption from late Indo-Iranian dialects.

chemurchek-sintashta-bmac
Y-chromosome haplogroups of Sintashta, Central Asia, and neighbouring groups in the Early Bronze Age. See full maps.

The finding of hg. (pre-)R1b-PH155 in a BMAC sample from Dzharkutan (to the west of Xinjiang) together with hg. R1b in a sample from Central Mongolia previously reported by Shin (2017) support the widespread presence of this lineage to the east and west of Xinjiang, which means it might have become incorporated to Indo-Iranian migrants into the Xiaohe horizon, to the Afanasievo-Chemurchek-derived groups, or the later from the former. In other words, the Island Biogeography Theory with its explanation of founder effects might be, after all, applicable to the whole Xinjiang area, not only during the Chemurchek – Tianshan-Beilu – Xiaohe interaction.

Of course, there is no need for too complicated models of haplogroup resurgence events in Central and South Asia, seeing how the total amount of hg. R1a-L657 (today prevalent among Indo-Aryan speakers from South Asia) among ancient Western/Central_Steppe_MLBA-related samples amounts to a total of 0, and that many different lineages survived in the region. Similar cases of haplogroup resurgence and Y-DNA bottleneck events are also found in the Central and Eastern Mediterranean, and in North-Eastern Europe. From the paper:

[It] could reflect stronger ecological or cultural barriers to the spread of people in South Asia than in Europe, allowing the previously established groups more time to adapt and mix with incoming groups. A second difference is the smaller proportion of Steppe pastoralist– related ancestry in South Asia compared with Europe, its later arrival by ~500 to 1000 years, and a lower (albeit still significant) male sex bias in the admixture (…).

Y-chromosome haplogroups of samples from the Srubna-Andronovo and Andronovo-related horizon, Xiaohe, late BMAC, and neighbouring groups. See full maps.

II. R1b-Beakers replaced R1a-CWC peoples

II.1. R1a-M417-rich Corded Ware

Newly reported Corded Ware samples from Radovesice show hg. R1a-M417, at least some of them xZ645, ‘archaic’ lineages shared with the early Bergrheinfeld sample (ca. 2650 BC) and with the coeval Esperstedt family, hence supporting that it eventually became the typical Western Corded Ware lineage(s), probably dominating over the so-called A-horizon and the Single Grave culture in particular. On the other hand, R1a-Z645 was typical of bottlenecks among expanding Eastern Corded Ware groups.

Interestingly, it is supported once again that known bottlenecks under hg. R1a-M417 happened during the Corded Ware expansion, evidenced also by the remarkable high variability of male lineages among early Corded Ware samples. Similarly, these Corded Ware samples from Bohemia form part of the typical ‘Central European’ cluster in the PCA, which excludes once again not only the ‘official’ Espersted outlier I1540, but also the known outlier with Yamnaya ancestry.

NOTE. The fact that Esperstedt is closely related geographically and in terms of ancestry to later Únětice samples further complicates the assumption that Únětice is a mixture of Bell Beakers and Corded Ware, being rather an admixture of incoming Bell Beakers with post-Yamnaya vanguard settlers who admixed with Corded Ware (see more on the expansion of Yamnaya ancestry). In other words, Únětice is rather an admixture of Yamnaya+EEF with Yamnaya+(CWC+EEF).

Y-chromosome haplogroups of samples from Catacomb, Poltavka, Balkan EBA, and Bell Beaker, as well as neighbouring groups. See full maps.

On Ukraine_Eneolithic I6561

If the bottlenecks are as straightforward as they appear, with a star-like phylogeny of R1a-M417 starting with the Pre-Corded Ware expansion, then what is happening with the Alexandria sample, so precisely radiocarbon dated to ca. 4045-3974 BC? The reported hg. R1a-M417 was fully compatible, while R1a-Z645 could be compatible with its date, but the few positive SNPs I got in my analysis point indeed to a potential subclade of R1a-Z94, and I trust more experienced hobbyists in this ‘art’ of ascertaining the SNPs of ancient samples, and they report hg. R1a-Z93 (Z95+, Y26+, Y2-).

Seeing how Y-DNA bottlenecks worked in Yamnaya-Afanasievo and in Corded Ware and related groups, and if this sample really is so deep within R1a-Z93 in a region that should be more strongly affected by the known Neolithic Y-chromosome bottlenecks and forest-steppe ecotone, someone from the lab responsible for this sample should check its date once again, before more people keep chasing their tails with an individual that (based on its derived SNPs’ TMRCA) might actually be dated to the Bronze Age, where it could make much more sense in terms of ancestry and position in the PCA.

EDIT (14 SEP 2019): … and with the fact that he is the first individual to show the genetic adaptation for lactase persistence (I3910-T), which is only found later among Bell Beakers, and much later in Sintashta and related Steppe_MLBA peoples (see comments below).

This is also evidenced by the other Ukraine_Eneolithic (likely a late Yamnaya) sample of hg. R1b-Z2103 from Dereivka (ca. 2800 BC) and who – despite being in a similar territory 1,000 years later – shows a wholly diluted Yamnaya ancestry under typically European HG ancestry, even more so than other late Sredni Stog samples from Dereivka of ca. 3600-3400 BC, suggesting a decrease in Steppe ancestry rather than an increase – which is supposedly what should be expected based on the ancestry from Alexandria…

Like the reported Chalcolithic individual of Hajji Firuz who showed an apparently incompatible subclade and Yamnaya ancestry at least some 1,000 years before it should, and turned out to be from the Iron Age (see below), this may be another case of wrong radiocarbon dating.

NOTE. It would be interesting, if this turns out to be another Hajji Firuz-like error, to check how well different ancestry models worked in whose hands exactly, and if anyone actually pointed out that this sample was derived, and not ancestral, to many different samples that were used in combination with it. It would also be a great control to check if those still supporting a Sredni Stog origin for PIE would shift their preference even more to the north or west, depending on where the first “true” R1a-M417 samples popped up. Such a finding now could be thus a great tool to discover whether haplogroup-based bias plays a role in ancestry magic as related to the Indo-European question, i.e. if it really is about “pure statistics”, or there is something else to it…

II.1. R1b-L51-rich Bell Beakers

The overwhelming majority of R1b-L51 lineages in Radovesice during the Bell Beaker period, just after the sampled Corded Ware individuals from the same site, further strengthen the hypothesis of an almost full replacement of R1a-M417 lineages from Central Europe up to southern Scandinavia after the arrival of Bell Beakers.

Yet another R1b-L151* sample has popped up in Central Europe, in the individual classified as Bilina_BA (ca. 2200-800 BC), which clusters with Bell Beakers from Bohemia, with the outlier from Turlojiškė, and with Early Slavs, suggesting once again that a group of central-east European Beakers represented the Pre-Proto-Balto-Slavic community before their spread and admixture events to the east.

The available ancient distribution of R1b-L51*, R1b-L52* or R1b-L151* is getting thus closer to the most likely origin of R1b-L51 in the expansion of East Bell Beakers, who trace their paternal ancestors to Yamnaya settlers from the Carpathian Basin:

NOTE. Some of these are from other sources, and some are samples I have checked in a hurry, so I may have missed some derived SNPs. If you send me a corrected SNP call to dismiss one of these, or more ‘archaic’ samples, I’ll correct the map accordingly. See also maps of modern distributionof R1b-M269 subclades.

r1b-l51-ancient-europe
Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

III. Proto-Indo-Iranian

Before the emergence of Proto-Indo-Iranian, it seems that Pre-Proto-Indo-Iranian-speaking Poltavka groups were subjected to pressure from Central_Steppe_EMBA-related peoples coming from the (south-?)east, such as those found sampled from Mereke_BA. Their ‘kurgan’ culture was dated correctly to approximately the same date as Poltavka materials, but their ancestry and hg. N2(pre-N2a) – also found in a previous sample from Botai – point to their intrusive nature, and thus to difficulties in the Pre-Proto-Indo-Iranian community to keep control over the previous East Yamnaya territory in the Don-Volga-Ural steppes.

We know that the region does not show genetic continuity with a previous period (or was not under this ‘eastern’ pressure) because of an Eastern Yamnaya sample from the same site (ca. 3100 BC) showing typical Yamnaya ancestry. Before Yamnaya, it is likely that Pre-Yamnaya ancestry formed through admixture of EHG-like Khvalynsk with a North Caspian steppe population similar to the Steppe_Eneolithic samples from the North Caucasus Piedmont (see Anthony 2019), so we can also rule out some intermittent presence of a Botai/Kelteminar-like population in the region during the Khvalynsk period.

It is very likely, then, that this competition for the same territory – coupled with the known harsher climate of the late 3rd millennium BC – led Poltavka herders to their known joint venture with Abashevo chiefs in the formation of the Sintashta-Potapovka-Filatovka community of fortified settlements. Supporting these intense contacts of Poltavka herders with Central Asian populations, late ‘outliers’ from the Volga-Ural region show admixture with typical Central_Steppe_MLBA populations: one in Potapovka (ca. 2220 BC), of hg. R1b-Z2103; and four in the Sintashta_MLBA_o1 cluster (ca. 2050-1650 BC), with two samples of hg. R1b-L23 (one R1b-Z2109), one Q1b-L56(xL53), one Q1b-Y6798.

central-steppe-pastoralists
Outlier analysis reveals ancient contacts between sites. We plot the average of principal component 1 (x axis) and principal component 2 (y axis) for the West Eurasian and All Eurasian PCA plots (…). In the Middle to Late Bronze Age Steppe, we observe, in addition to the Western_Steppe_MLBA and Central_Steppe_MLBA clusters (indistinguishable in this projection), outliers admixed with other ancestries. The BMAC-related admixture in Kazakhstan documents northward gene flow onto the Steppe and confirms the Inner Asian Mountain Corridor as a conduit for movement of people.

Similar to how the Sintashta_MLBA_o2 cluster shows an admixture with central steppe populations and hg. R1a-Z645, the WSHG ancestry in those outliers from the o1 cluster of typically (or potentially) Yamnaya lineages show that Poltavka-like herders survived well after centuries of Abashevo-Poltavka coexistence and admixture events, supporting the formation of a Proto-Indo-Iranian community from the local language as pronounced by the incomers, who dominated as elites over the fortified settlements.

The Proto-Indo-Iranian community likely formed thus in situ in the Don-Volga-Ural region, from the admixture of locals of Yamnaya ancestry with incomers of Corded Ware ancestry – represented by the ca. 67% Yamnaya-like ancestry and ca. 33% ancestry from the European cline. Their community formed thus ca. 1,000 years later than the expansion of Late PIE ca. 3500 BC, and expanded (some 500 years after that) a full-fledged Proto-Indo-Iranian language with the Srubna-Andronovo horizon, further admixing with ca. 9% of Central_Steppe_EMBA (WSHG-related) ancestry in their migration through Central Asia, as reported in the paper.

IV. Armenian

The sample from Hajji Firuz, of hg. R1b-Z2103 (xPF331), has been – as expected – re-dated to the Iron Age (ca. 1193-1019 BC), hence it may offer – together with the samples from the Levant and their Aegean-like ancestry rapidly diluted among local populations – yet another proof of how the Late Bronze Age upheaval in Europe was the cause of the Armenian migration to the Armenoid homeland, where they thrived under the strong influence from Hurro-Urartian.

middle-east-armenia-y-dna
Y-chromosome haplogroups of the Middle East and neighbouring groups during the Late Bronze Age / Iron Age. See full maps.

Indus Valley Civilization and Dravidian

A surprise came from the analysis reported by Shinde et al. (2019) of an Iran_N-related IVC ancestry which may have split earlier than 10000 BC from a source common to Iran hunter-gatherers of the Belt Cave.

For the controversial Elamo-Dravidian hypothesis of the Muscovite school, this difference in ancestry between both groups (IVC and Iran Neolithic) seems to be a death blow, if population genomics was even needed for that. Nevertheless, I guess that a full rejection of a recent connection will come down to more recent and subtle population movements in the area.

EDIT (12 SEP): Apparently, Iosif Lazaridis is not so sure about this deep splitting of ‘lineages’ as shown in the paper, so we may be talking about different contributions of AME+ANE/ENA, which means the Elamo-Dravidian game is afoot; at least in genomics:

I shared the idea that the Indus Valley Civilization was linked to the Proto-Dravidian community, so I’m inclined to support this statement by Narasimhan, Patterson, et al. (2019), even if based only on modern samples and a few ancient ones:

The strong correlation between ASI ancestry and present-day Dravidian languages suggests that the ASI, which we have shown formed as groups with ancestry typical of the Indus Periphery Cline moved south and east after the decline of the IVC to mix with groups with more AASI ancestry, most likely spoke an early Dravidian language.

india-steppe-indus-valley-andamanese-ancestry
Natural neighbour interpolation of qpAdm results – Maximum A Posteriori Estimate from the Hierarchical Model (estimates used in the Narasimhan, Patterson et al. 2019 figures) for Central_Steppe_MLBA-related (left), Indus_Periphery_West-related (center) and Andamanese_Hunter-Gatherer-related ancestry (right) among sampled modern Indian populations. In blue, peoples of IE language; in red, Dravidian; in pink, Tibeto-Burman; in black, unclassified. See full image.

I am wary of this sort of simplistic correlation with modern speakers, because we have seen what happened with the wrong assumptions about modern Balto-Slavic and Finno-Ugric speakers and their genetic profile (see e.g. here or here). In fact, I just can’t differentiate as well as those with deep knowledge in South Asian history the social stratification of the different tribal groups – with their endogamous rules under the varna and jati systems – in the ancestry maps of modern India. The pattern of ancestry and language distribution combined with the findings of ancient populations seem in principle straightforward, though.

Conclusion

The message to take home from Shinde et al. (2019) is that genomic data is fully at odds with the Anatolian homeland hypothesis – including the latest model by Heggarty (2014)* – whose relevance is still overvalued today, probably due in part to the shift of OIT proponents to more reasonable Out-of-Iran models, apparently more fashionable as a vector of Indo-Aryan languages than Eurasian steppe pastoralists?
*The authors listed this model erroneously as Heggarty (2019).

The paper seems to play with the occasional reference to Corded Ware as a vector of expansion of Indo-European languages, even after accepting the role of Yamnaya as the most evident population expanding Late PIE to western Europe – and the different ancestry that spread with Indo-Iranian to South Asia 1,000 years later. However, the most cringe-worthy aspect is the sole citation of the debunked, pseudoscientific glottochronological method used by Ringe, Warnow, and Taylor (2002) to support the so-called “steppe homeland”, a paper and dialectal scheme which keeps being referenced in papers of the Reich Lab, probably as a consequence of its use in Anthony (2007).

On the other hand, these are the equivalent simplistic comments in Narasimhan, Patterson et al. (2019):

The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the unique features shared between Indo-Iranian and Balto-Slavic languages. (…), which despite their vast geographic separation share the “satem” innovation and “ruki” sound laws.

mallory-adams-tree
Indo-European dialectal relationships, from Mallory and Adams (2006).

The only academic closely related to linguistics from the list of authors, as far as I know, is James P. Mallory, who has supported a North-West Indo-European dialect (including Balto-Slavic) for a long time – recently associating its expansion with Bell Beakers – opposed thus to a Graeco-Aryan group which shared certain innovations, “Satemization” not being one of them. Not that anyone needs to be a linguist to dismiss any similarities between Balto-Slavic and Indo-Iranian beyond this phonetic trend, mind you.

Even Anthony (2019) supports now R1b-rich Pre-Yamnaya and Yamnaya communities from the Don-Volga region expanding Middle and Late Proto-Indo-European dialects.

So how does the underlying Corded Ware ancestry of eastern Europe (where Pre-Balto-Slavs eventually spread to from Bell Beaker-derived groups) and of the highly admixed (“cosmopolitan”, according to the authors) Sintashta-Potapovka-Filatovka in the east relate to the similar-but-different phonetic trends of two unrelated IE dialects?

If only there was a language substrate that could (as Shinde et al. put it) “elegantly” explain this similar phonetic evolution, solving at the same time the question of the expansion of Uralic languages and their strong linguistic contacts with steppe peoples. Say, Eneolithic populations of mainly hunter-fisher-gatherers from the North Pontic forest-steppes with a stronger connection to metalworking

Related

The Lusatian culture, the most likely vector of Balto-Slavic expansions

early-bronze-age-languages-europe

New archaeological paper (behind paywall) New evidence on the southeast Baltic Late Bronze Age agrarian intensification and the earliest AMS dates of Lens culinaris and Vicia faba, by Minkevičius et al. Vegetation History and Archaeobotany (2019).

Interesting excerpts (emphasis mine):

Arrival of farming in the south-east Baltic

The current state of research reveals no firm evidence of crop cultivation in the region before the LBA (Piličiauskas et al. 2017b; Grikpėdis and Motuzaitė-Matuzevičiūtė 2018). Current archaeobotanical data firmly suggest the adoption of farming during the EBA to LBA transition. (…) By comparison, in other parts of N Europe subsistence economy of CWC groups was characterized by strong emphasis on animal husbandry, however crop cultivation was also used (Kirleis 2019; Vanhanen et al. 2019). CWC sites from the Netherlands, Denmark, Sweden and Germany reveal evidence of the cultivation of H. vulgare var. nudum, T. dicoccum, Linum usitatissimum (flax) (Oudemans and Kubiak-Martens 2014; Beckerman 2015; Kubiak- Martens et al. 2015).

It is (…) striking that earliest evidence of farming in the SE Baltic only appears in the deposits dating over 4,000 years later.

The environmental conditions of the SE Baltic presented a significant barrier and numerous genetic adaptations were required before farming could successfully spread into the region (Motuzaitė-Matuzevičiūtė 2018). Adaptations through seasonality changes usually play a major role in adapting to new environments (Sherratt 1980). These include establishing genetic controls on seasonality, especially flowering times and length of growing season (Fuller and Lucas 2017). Therefore, it could be argued that farming was only firmly established in the region around the LBA after several crop species, primarily barley, became adapted to the local environment and the risk of crop failure was reduced (Motuzaitė-Matuzevičiūtė 2018). The transition to farming was further aided by the climate warming which started around 750 cal bc (Gaigalas 2004; Sillasoo et al. 2009). In such a case the fragmented evidence from earlier periods is a likely illustration of the early attempts that have failed.

south-east-baltic-agrarian-communities
Map of sites mentioned in the text: 1 Duba and Palesa Lakes, 2 Šventoji, 3 Šarnelė, 4 Iru, 5 Kvietiniai, 6 Kreiči, 7 Turlojiškė, 8 Narkūnai, 9 Luokesa 1, 10 Mūkakalns, 11 Kivutkalns, 12 Asva, 13 Kukuliškiai

Social change

The LBA agrarian intensification of the SE Baltic was most likely not an isolated case but rather a part of broader social, economic and technological developments sweeping across northern Europe.

Evidence from sites across the Baltic Sea shows that the end of the EBA (ca. 1200 bc onward, after Gustafsson 1998) was marked by intensification of agriculture and changes in landscape management. This coincides with the agricultural developments observed on the SE fringes of the Baltic Sea and provides a context for the eventual arrival of farming, followed shortly by the rapid agrarian intensification of the region. Looking just south from the study region, we see that data from northern Poland reveal a sharp increase in both scale and intensity of agricultural activities during the EBA to LBA transition. Pollen records show significant environmental changes starting around 1400/1300 bc (Wacnik 2005, 2009; Wacnik et al. 2012). These were mostly a result of development of a production economy based on plant cultivation and animal raising. Even more significant changes during this period are visible in southern Scandinavia. Pollen records from S Sweden present evidence for an opening up of the forested landscape and the creation of extensive grasslands (Berglund 1991; Gustafsson 1998). Major changes are also apparent in archaeobotanical assemblages.

In general, during the end of the EBA northern Europe underwent a massive transformation of the farming system moving towards a more intensified agriculture aimed at surplus production. However, this should not be regarded as an isolated occurrence, but rather as a radical change of the whole society which took place throughout Europe (Gustafsson 1998). Intensification of contacts across northern Europe have integrated previously isolated regions into a wider network (Kristiansen and Larsson 2005; Wehlin 2013; Earle et al. 2015). It is therefore likely that farming spread into the SE fringes of the Baltic Sea alongside other innovations including malleable technologies and developments of social structure.

bronze-age-late-baltic
Late Bronze Age cultures in the Baltic. See full map.

The presence and scale of intensifying connections is well illustrated by SE Baltic archaeological material.

Firstly, the appearance of stone ship graves has served as a basis for locating the Nordic communication zones. Construction of such graves was limited to the coastal regions of Kurzeme, Saaremaa Island and the Northern Estonian coast near Tallinn and Kaliningrad (Graudonis 1967; Okulicz 1976; Lang 2007) and is generally regarded as a foreign burial custom which was common in Gotland and along the Scandinavian coast. This is also supported by the Staldzene and Tehumardi hoards (Vasks and Vijups 2004; Sperling 2013), which contained artefacts typical of Nordic culture.

Secondly, studies of early metallurgy and its products, both imported and created in the SE Baltic, have concluded that metal consumption in the LBA had more than doubled compared to the EBA (Sidrys and Luchtanas 1999). The SE Baltic region lacks any metal artefact types exclusive to the region and metal objects are dominated by artefact types originating from Nordic and Lusatian cultures (Sidrys and Luchtanas 1999; Lang 2007; Čivilytė 2014). This indicates that even after metal crafting reached the region, the technology remained exclusively of foreign origin. Rarely identifiable negatives of clay casting moulds were also made for artefacts of Nordic influence, such as Mälar type axes or Härnevi type pins (Čivilytė 2014; Sperling 2014).

Lastly, emerging social diversification was accompanied by the establishment of the first identifiable settlement pattern. Settlement locations were strategically chosen alongside economically significant routes, primarily on the coast and near the Daugava River. Hilltop areas were prioritized over the lowlands, and excavations on these sites have often revealed several stages of enclosure construction (Graudonis 1989). This has also been explained as a reflection of intensifying communication networks between Nordic and Lusatian cultures, and the indigenous communities of the SE Baltic.

Proto-Balto-Slavic

One of the aspects of my description of Balto-Slavic I am least convinced about is my acceptance of Kortlandt’s dialectal classification into Proto-East Baltic, Proto-West Baltic, and Proto-Slavic, due to its strong reliance on his own controversial theory of late laryngeal loss.

Kortlandt’s position regarding Balto-Slavic is that it is in fact simply ‘Proto-Baltic’, a language that would stem thus from an Indo-Baltic branch, which would be originally represented by Corded Ware, and which would have split suddenly in its three dialects without any common development between branches, including some intermediate hypothetic “Centum” Temematic substrate that would explain everything his model can’t…

As more genetic and archaeological data on northern Europe appears, his ideas about Balto-Slavic are becoming even less credible, fully at odds with his predicted population and cultural movements, in particular because of the evident shaping of Indo-European-speaking Europe through the expansion of the Bell Beaker culture from the Yamnaya of the Carpathian Basin, and of the shaping of Uralic-speaking Europe through the expansion of the Corded Ware culture.

bronze-age-middle-northern-europe
Middle Bronze Age cultures close to the Baltic ca. 1750-1250 BC. See full map.

The site of Turlojiškė in southern Lithuania (ca. 908-485 BC) – which Mittnik et al. (2018) classified as “Bronze Age, Trzciniec culture?” – can be more reasonably considered a settlement of incoming intensive agrarian communities under the influence of the Lusatian culture, like the Narkūnai hilltop settlement in eastern Lithuania (ca. 800–550 BC), or the enclosed hilltop settlement of Kukuliškiai in western Lithuania (ca. 887-506 BC), just 300 m east of the Baltic Sea, also referred to in the paper.

While the dates of sampled individuals include a huge span (ca. 2100-600 BC), those with confirmed radiocarbon dates are more precisely dated to the LBA-EIA transition. More specifically, the first clearly western influence is seen in the early outlier Turlojiškė1932 (ca. 1230-920 BC), while later samples and samples from Kivutkalns, in Latvia, show major genetic continuity with indigenous populations, compatible with the new chiefdom-based systems of the Baltic and the known lack of massive migrations to the region.

Contacts with western groups of the Nordic Bronze Age and Lusatian cultures intensified – based on existing archaeological and archaeobotanical evidence – in the LBA, especially from ca. 1100/1000 BC on, and Baltic languages seem to have thus little to do with the disappearing Trzciniec culture, and more with the incoming Lusatian influence.

Both facts – more simple dialectalization scheme, and more recent Indo-European expansion to the east – support the spread of Proto-Baltic into the south-east Baltic area precisely around this time, and is also compatible with an internal separation from Proto-Slavic during the expansion of the Lusatian culture.

pca-late-bronze-age-balto-slavic-finnic
Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

Even though comparative grammar is traditionally known to be wary of resorting to language contamination or language contact, the truth is that – very much like population genomics – trying to draw a ‘pure’ phylogenetic tree for Balto-Slavic has never worked very well, and the most likely culprit is the Slavic expansion to the south-east into territories which underwent different and complex genetic and linguistic influences for centuries (see here and here).

The close interaction of Nordic BA and Lusatian cultures (and their cultural predominance over) indigenous eastern Baltic peoples from ca. 1100 BC fits (part of) the known intense lexical borrowings of Balto-Finnic from Palaeo-Germanic and from early Proto-Baltic, as well as (part of) the known Germanic–Balto-Slavic contacts, whereas the evident Balto-Finnic-like substrate of Balto-Slavic, and especially of Baltic, must stem from the acculturation of those indigenous East Baltic peoples.

The relative chronology of hydrotoponymy in the East Baltic shows that essentially all ancestral layers to the north of the Daugava must have been Uralic, while roughly south of the Daugava they seem to be mostly Indo-European. The question remains, though, when did this Indo-European layer start?

Despite the many centuries that could separate the attestation of southern place- and river-names from northern ones, Old European is also defined by linguistic traits, which would imply that the same language inferred from Western and Southern European hydrotoponymy is that found in the Baltic, hence all from North-West Indo-European-speaking Bell Beakers and derived Early European Bronze Age groups.

Interestingly, though, it is well known that some modern Baltic toponyms can’t be easily distinguished from the Old European layers – unlike those of Iberia or the British Isles, which show some attested language change in the proto-historical and historical period – which may imply both (a) continuity of Baltic languages since the EBA, but also that (b) the Baltic naming system is a confounding factor in assessing the ancestral expansion of Old European. The latter is becoming more and more likely with each new linguistic, archaeological, and genetic paper.

up-river
Hydronyms in up-. One among many examples of scarcely attested appellatives that appear inflated in the Baltic due to modern use.

In summary, a survival of a hypothetical late Trzciniec language in Lithuania or as part of the expanding Lusatian community is not the most economic explanation for what is seen in genetics and archaeology. On the other hand, the cluster formed by the Tollense samples (a site corresponding to the Nordic Bronze Age), the Turlojiškė outlier, and the early Slavs from Bohemia all depict an eastward expansion of Balto-Slavic languages from Central Europe, at the same time as Celtic expanded to the west with the Urnfield culture.

NOTE. Another, more complicated question, though, is if this expanding Proto-Baltic language accompanying agriculture represents the extinct
early Proto-Baltic dialect from which Balto-Finnic borrowed words, hence Proto-Baltic proper expanded later, or if this early Baltic branch could have been part of the Trzciniec expansion. Again, the answer in archaeological and genetic terms seems to be the former. For a more detailed discussion of this and more, see European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic.

As I said recently, the slight increase in Corded Ware-like ancestry among Iron Age Estonians, if it were statistically relevant and representative of an incoming population – and not just the product of “usual” admixture with immediate neighbours – need not be from south-eastern Corded Ware groups, because the Akozino-Malär cultural exchange seems to have happened as an interaction in both directions, and not just as an eastward migration imagined by Carpelan and Parpola.

Archaeology and genetics could actually suggest then (at least in part) an admixture with displaced indigenous West Uralic-speaking peoples from the south-west, to the south of the Daugava River, at the same time as the Indo-European – Uralic language frontier must have shifted to its traditional location, precisely during the LBA / EIA transition around 1000 BC.

NOTE. For more on this, see the supplementary materials of Saag et al. (2019).

fortified-settlements-lba-ia
Distribution of fortified settlements (filled circles) and other hilltop sites (empty circles) of the Late Bronze Age and Pre-Roman Iron Ages in the East Baltic region. Tentative area of most intensive contacts between Baltic and Balto-Finnic communities marked with a dashed line. Image modified from (Lang 2016).

The tight relationship of the three communities also accounts for the homogeneous distribution of expanding haplogroup N1c-VL29 (possibly associated with Akozino warrior-traders) in the whole Baltic Sea area, such as those appearing in the Estonian Iron Age samples, which have no clearly defined route(s) of expansion.

It is even possible that they emerged first in the south, linked to marriage alliances of Akozino chieftains with Baltic- and Germanic-speaking chiefdoms around the Baltic Sea (see N1c in Germanic Iron Age), because the expansion of (some) N1c lineages with Gulf of Finland Finnic to the north was more clearly associated with their known bottleneck ca. 2,000 years ago.

Related

North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Proto-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1b (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a (potentially Q1b in the newer nomenclature) will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1b, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1b, and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related

Volga Basin R1b-rich Proto-Indo-Europeans of (Pre-)Yamnaya ancestry

yamnaya-expansion

New paper (behind paywall) by David Anthony, Archaeology, Genetics, and Language in the Steppes: A Comment on Bomhard, complementing in a favourable way Bomhard’s Caucasian substrate hypothesis in the current issue of the JIES.

NOTE. I have tried to access this issue for some days, but it’s just not indexed in my university library online service (ProQuest) yet. This particular paper is on Academia.edu, though, as are Bomhard’s papers on this issue in his site.

Interesting excerpts (emphasis mine):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair Shak III and Varfolomievka (42 and 28 on Figure 2), they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

morgunova-eneolithic-pontic-caspian
Eneolithic settlements (1–5, 7, 10–16, 20, 22–43, 48, 50), burial grounds (6, 8–9, 17–19, 21, 47, 49) and kurgans (44–46) of the steppe Ural-Volga region: 1 Ivanovka; 2 Turganik; 3 Kuzminki; 4 Mullino; 5 Davlekanovo; 6 Sjezheye (burial ground); 7 Vilovatoe; 8 Ivanovka; 9 Krivoluchye; 10–13 LebjazhinkaI-III-IV-V; 14 Gundorovka; 15–16 Bol. Rakovka I-II; 17–18 Khvalunsk I-II; 19 Lipoviy Ovrag; 20 Alekseevka; 21 Khlopkovskiy; 22 Kuznetsovo I; 23 Ozinki II; 24 Altata; 25 Monakhov I; 26 Oroshaemoe; 27 Rezvoe; 28 Varpholomeevka; 29 Vetelki; 30 Pshenichnoe; 31 Kumuska; 32 Inyasovo; 33 Shapkino VI; 34 Russkoe Truevo I; 35 Tsaritsa I-II; 36 Kamenka I; 37 Kurpezhe-Molla; 38 Istay; 39 Isekiy; 40 Koshalak; 41 Kara-Khuduk; 42 Kair-Shak VI; 43 Kombakte; 44 Berezhnovka I-II; 45 Rovnoe; 46 Politotdelskoe; 47 burial near s. Pushkino; 48 Elshanka; 49 Novoorsk; 50 Khutor Repin. Modified from Morgunova (2014).

But before 4500 BC, CHG ancestry appeared among the EHG hunter-fishers in the middle Volga steppes from Samara to Saratov, at the same time that domesticated cattle and sheep-goats appeared. The Reich lab now has whole-genome aDNA data from more than 30 individuals from three Eneolithic cemeteries in the Volga steppes between the cities of Saratov and Samara (Khlopkov Bugor, Khvalynsk, and Ekaterinovka), all dated around the middle of the fifth millennium BC. Many dates from human bone are older, even before 5000 BC, but they are affected by strong reservoir effects, derived from a diet rich in fish, making them appear too old (Shishlina et al 2009), so the dates I use here accord with published and unpublished dates from a few dated animal bones (not fish-eaters) in graves.

Only three individuals from Khvalynsk are published, and they were first published in a report that did not mention the site in the text (Mathieson et al. 2015), so they went largely unnoticed. Nevertheless, they are crucial for understanding the evolution of the Yamnaya mating network in the steppes. They were mentioned briefly in Damgaard et al (2018) but were not graphed. They were re-analyzed and their admixture components were illustrated in a bar graph in Wang et al (2018: figure 2c), but they are not the principal focus of any published study. All of the authors who examined them agreed that these three Khvalynsk individuals, dated about 4500 BC, showed EHG ancestry admixed substantially with CHG, and not a trace of Anatolian Farmer ancestry, so the CHG was a Hotu-Cave or Kotias-Cave type of un-admixed CHG. The proportion of CHG in the Wang et al. (2018) bar graphs is about 20-30% in two individuals, substantially less CHG than in Yamnaya; but the third Khvalynsk individual had more than 50% CHG, like Yamnaya. The ca. 30 additional unpublished individuals from three middle Volga Eneolithic cemeteries, including Khvalynsk, preliminarily show the same admixed EHG/CHG ancestry in varying proportions. Most of the males belonged to Y-chromosome haplogroup R1b1a, like almost all Yamnaya males, but Khvalynsk also had some minority Y-chromosome haplogroups (R1a, Q1a, J, I2a2) that do not appear or appear only rarely (I2a2) in Yamnaya graves.

eneolithic-steppes
Pontic-Caspian steppe and neighbouring groups in the Neolithic. See full map.

Wang et al. (2018) discovered that this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes. The Progress-2 individuals from North Caucasus steppe graves lived not far from the pre-Maikop farmers of the Belaya valley, but they did not exchange mates, according to their DNA.

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA. After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

eneolithic-early-steppes
Pontic-Caspian steppe and neighbouring groups in the Early Eneolithic. See full map.

Anatolian Farmer ancestry and Yamnaya origins

The Eneolithic Volga-North Caucasus mating network (Khvalynsk/Progress-2 type) exhibited EHG/CHG admixtures and Y-chromosome haplogroups similar to Yamnaya, but without Yamnaya’s additional Anatolian Farmer ancestry. (…)

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes, a surprising but undeniable discovery. Archaeologists have seen connections in ornament types and in some details of funeral ritual between Dnieper-Donets cemeteries of the Mariupol-Nikol’skoe type and cemeteries in the middle Volga steppes such as Khvalynsk and S’yez’zhe (Vasiliev 1981:122-123). Also their cranio-facial types were judged to be similar (Bogdanov and Khokhlov 2012:212). So it it surprising that their aDNA does not indicate any genetic admixture with Khvalynsk or Progress-2. Also, neither they nor the Volga steppe Eneolithic populations showed any Anatolian Farmer ancestry. (…)

All three of the steppe-admixed exceptions were from the Varna region (Mathieson et al. 2018). One of them was the famous “golden man’ at Varna (Krause et al. 2016), Grave 43, whose steppe ancestry was the most doubtful of the three. If he had steppe ancestry, it was sufficiently distant (five+ generations before him) that he was not a statistically significant outlier, but he was displaced in the steppe direction, away from the central values of the majority of typical Anatolian Farmers at Varna and elsewhere. The other two, at Varna (grave 158, a 5-7-year-old girl) and Smyadovo (grave 29, a male 20-25 years old), were statistically significant outliers who had recent steppe ancestry (consistent with grandparents or great-grandparents) of the EHG/CHG Khvalynsk/Progress-2 type, not of the Dnieper Rapids EHG/WHG type.

(…) I believe that the Suvorovo-Cernavoda I movement into the lower Danube valley and the Balkans about 4300 BC separated early PIE-speakers (pre-Anatolian) from the steppe population that stayed behind in the steppes and that later developed into late PIE and Yamnaya.

This archaeological transition marked the breakdown of the mating barrier between steppe and Anatolian Farmer mating networks. After this 4300-4200 BC event, Anatolian Farmer ancestry began to pop up in the steppes. The currently oldest sample with Anatolian Farmer ancestry in the steppes in an individual at Aleksandriya, a Sredni Stog cemetery on the Donets in eastern Ukraine. Sredni Stog has often been discussed as a possible Yamnaya ancestor in Ukraine (Anthony 2007: 239- 254). The single published grave is dated about 4000 BC (4045– 3974 calBC/ 5215±20 BP/ PSUAMS-2832) and shows 20% Anatolian Farmer ancestry and 80% Khvalynsk-type steppe ancestry (CHG&EHG). His Y-chromosome haplogroup was R1a-Z93, similar to the later Sintashta culture and to South Asian Indo-Aryans, and he is the earliest known sample to show the genetic adaptation to lactase persistence (I3910-T). Another pre-Yamnaya grave with Anatolian Farmer ancestry was analyzed from the Dnieper valley at Dereivka, dated 3600-3400 BC (grave 73, 3634–3377 calBC/ 4725±25 BP/ UCIAMS-186349). She also had 20% Anatolian Farmer ancestry, but she showed less CHG than Aleksandriya and more Dereivka-1 ancestry, not surprising for a Dnieper valley sample, but also showing that the old fifth-millennium-type EHG/WHG Dnieper ancestry survived into the fourth millennium BC in the Dnieper valley (Mathieson et al. 2018).

late-eneolithic-repin
Pontic-Caspian steppe and neighbouring groups in the Late Eneolithic. See full map.

Probably, late PIE (Yamnaya) evolved in the same part of the steppes—the Volga-Caucasus steppes between the lower Don, the lower and middle Volga, and the North Caucasus piedmont—where early PIE evolved, and where appropriate EHG/CHG admixtures and Y-chromosome haplogroups were seen already in the Eneolithic (without Anatolian Farmer). There have always been archaeologists who argued for an origin of Yamnaya in the Volga steppes, including Gimbutas (1963), Merpert (1974), and recently Morgunova (2014), who argued that this was where Repin-type ceramics, an important early Yamnaya pottery type, first appeared in dated contexts before Yamnaya, about 3600 BC. The genetic evidence is consistent with Yamnaya EHG/CHG origins in the Volga-Caucasus steppes. Also, if contact with the Maikop culture was a fundamental cause of the innovations in transport and metallurgy that defined the Yamnaya culture, then the lower Don-North Caucasus-lower Volga steppes, closest to the North Caucasus, would be where the earliest phase is expected.

I would still guess that the Darkveti-Meshoko culture and its descendant Maikop culture established the linguistic ancestor of the Northwest Caucasian languages in approximately the region where they remained. I also accept the general consensus that the appearance of the hierarchical Maikop culture about 3600 BC had profound effects on pre-Yamnaya and early Yamnaya steppe cultures. Yamnaya metallurgy borrowed from the Maikop culture two-sided molds, tanged daggers, cast shaft hole axes with a single blade, and arsenical copper. Wheeled vehicles might have entered the steppes through Maikop, revolutionizing steppe economies and making Yamnaya pastoral nomadism possible after 3300 BC.

For those who still hoped that Proto-Indo-Europeans of Yamnaya/Afanasievo ancestry from the Don-Volga region were associated with the expansion of hg. R1a-M417, in a sort of mythical “R1-rich” Indo-European society, it seems this is going to be yet another prediction based on ancestry magic that goes wrong.

Proto-Indo-Europeans were, however, associated with other subclades beyond R1b-M269, probably (as I wrote recently) R1b-V1636, I2a-L699, Q1a-M25, and R1a-YP1272, but also interestingly some J subclade, so let’s see what surprises the new study on Khvalynsk and Yamnaya settlers from the Carpathian Basin brings…

On the bright side, it is indirectly confirmed that late Sredni Stog formed part of the neighbouring Corded Ware-like populations of ca. 20-30%+ Anatolian farmer ancestry that gave Yamnaya its share (ca. 6-10%), relative to the comparatively unmixed Khvalynsk and late Repin population (as shown by Afanasevo).

In this steppe mating network that opened up after the Khvalynsk expansion, the increasing admixture of Anatolian farmer-related ancestry in Yamnaya from east (ca. 2-10%) to west (ca. 6-15%) points to an exogamy of late Repin males in their western/south-western regions with populations around the Don River basin and beyond (and endogamy within the Yamnaya community), in an evolution relevant for language expansions and language contacts during the Late Eneolithic.

NOTE. “Mating network” is my new preferred term for “ancestry”. Also great to see scholars finally talk about “Pre-Yamnaya” ancestry, which – combined with the distinction of Yamnaya from Corded Ware ancestry – will no doubt help differentiate fine-scale population movements of steppe- and forest-steppe-related populations.

north-pontic-kvityana-dereivka-repin
Modified from Rassamakin (1999), adding red color to Repin expansion. The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug.

The whole issue of the JIES is centered on Caucasian influences on Early PIE as an Indo-Uralic dialect, and this language contact/substrate is useful to locate the most likely candidates for the Northeast and Northwest Caucasian and the Proto-Indo-European homelands.

On the other hand, it would also be interesting to read a discussion of how this Volga homeland of Middle PIE and Don-Volga-Ural homeland of Late PIE would be reconciled with the known continuous contacts of Uralic with Middle and Late PIE (see here) to locate the most likely Proto-Uralic homeland.

Especially because Corded Ware fully replaced all sub-Neolithic groups to the north and east of Khvalynsk/Yamnaya, like Volosovo, so no other population neighbouring Middle and Late Proto-Indo-Europeans survived into the Bronze Age…

EDIT: For those new to this blog, this information on unpublished samples from the Volga River basin is yet another confirmation of Khokhlov’s report on the R1b-L23 samples from Yekaterinovka, and its confirmation by a co-author of The unique elite Khvalynsk male from a Yekaterinovskiy Cape burial, apart from more support to the newest data placing Yekaterinovka culturally and probably chronologically between Samara and Khvalynsk.

Related

Corded Ware ancestry in North Eurasia and the Uralic expansion

uralic-clines-nganasan

Now that it has become evident that Late Repin (i.e. Yamnaya/Afanasevo) ancestry was associated with the migration of R1b-L23-rich Late Proto-Indo-Europeans from the steppe in the second half of the the 4th millennium BC, there’s still the question of how R1a-rich Uralic speakers of Corded Ware ancestry expanded , and how they spread their languages throughout North Eurasia.

Modern North Eurasians

I have been collecting information from the supplementary data of the latest papers on modern and ancient North Eurasian peoples, including Jeong et al. (2019), Saag et al. (2019), Sikora et al. (2018), or Flegontov et al. (2019), and I have tried to add up their information on ancestral components and their modern and historical distributions.

Fortunately, the current obsession with simplifying ancestry components into three or four general, atemporal groups, and the common use of the same ones across labs, make it very simple to merge data and map them.

Corded Ware ancestry

There is no doubt about the prevalent ancestry among Uralic-speaking peoples. A map isn’t needed to realize that, because ancient and modern data – like those recently summarized in Jeong et al. (2019) – prove it. But maps sure help visualize their intricate relationship better:

natural-modern-srubnaya-ancestry
Natural neighbor interpolation of Srubnaya ancestry among modern populations. See full map.
kriging-modern-srubnaya-ancestry
Kriging interpolation of Srubnaya ancestry among modern populations. See full map

Interestingly, the regions with higher Corded Ware-related ancestry are in great part coincident with (pre)historical Finno-Ugric-speaking territories:

uralic-languages-modern
Modern distribution of Uralic languages, with ancient territory (in the Common Era) labelled and delimited by a red line. For more information on the ancient territory see here.

Edit (29/7/2019): Here is the full Steppe_MLBA ancestry map, including Steppe_MLBA (vs. Indus Periphery vs. Onge) in modern South Asian populations from Narasimhan et al. (2018), apart from the ‘Srubnaya component’ in North Eurasian populations. ‘Dummy’ variables (with 0% ancestry) have been included to the south and east of the map to avoid weird interpolations of Steppe_MLBA into Africa and East Asia.

modern-steppe-mlba-ancestry2
Natural neighbor interpolation of Steppe MLBA-like ancestry among modern populations. See full map.

Anatolia Neolithic ancestry

Also interesting are the patterns of non-CWC-related ancestry, in particular the apparent wedge created by expanding East Slavs, which seems to reflect the intrusion of central(-eastern) European ancestry into Finno-Permic territory.

NOTE. Read more on Balto-Slavic hydrotoponymy, on the cradle of Russians as a Finno-Permic hotspot, and about Pre-Slavic languages in North-West Russia.

natural-modern-lbk-en-ancestry
Natural neighbor interpolation of LBK EN ancestry among modern populations. See full map.
kriging-modern-lbk-en-ancestry
Kriging interpolation of LBK EN ancestry among modern populations. See full map

WHG ancestry

The cline(s) between WHG, EHG, ANE, Nganasan, and Baikal HG are also simplified when some of them excluded, in this case EHG, represented thus in part by WHG, and in part by more eastern ancestries (see below).

modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations. See full map.
kriging-modern-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Arctic, Tundra or Forest-steppe?

Data on Nganasan-related vs. ANE vs. Baikal HG/Ulchi-related ancestry is difficult to map properly, because both ancestry components are usually reported as mutually exclusive, when they are in fact clearly related in an ancestral cline formed by different ancient North Eurasian populations from Siberia.

When it comes to ascertaining the origin of the multiple CWC-related clines among Uralic-speaking peoples, the question is thus how to properly distinguish the proportions of WHG-, EHG-, Nganasan-, ANE or BaikalHG-related ancestral components in North Eurasia, i.e. how did each dialectal group admix with regional groups which formed part of these clines east and west of the Urals.

The truth is, one ought to test specific ancient samples for each “Siberian” ancestry found in the different Uralic dialectal groups, but the simplistic “Siberian” label somehow gets a pass in many papers (see a recent example).

Below qpAdm results with best fits for Ulchi ancestry, Afontova Gora 3 ancestry, and Nganasan ancestry, but some populations show good fits for both and with similar proportions, so selecting one necessarily simplifies the distribution of both.

Ulchi ancestry

modern-ulchi-ancestry
Natural neighbor interpolation of Ulchi ancestry among modern populations. See full map.
kriging-modern-ulchi-ancestry
Kriging interpolation of Ulchi ancestry among modern populations. See full map.

ANE ancestry

natural-modern-ane-ancestry
Natural neighbor interpolation of ANE ancestry among modern populations. See full map.
kriging-modern-ane-ancestry
Kriging interpolation of ANE ancestry among modern populations. See full map.

Nganasan ancestry

modern-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among modern populations. See full map.
kriging-modern-nganasan-ancestry
Kriging interpolation of Nganasan ancestry among modern populations. See full map.

Iran Chalcolithic

A simplistic Iran Chalcolithic-related ancestry is also seen in the Altaic cline(s) which (like Corded Ware ancestry) expanded from Central Asia into Europe – apart from its historical distribution south of the Caucasus:

modern-iran-chal-ancestry
Natural neighbor interpolation of Iran Neolithic ancestry among modern populations. See full map.
kriging-modern-iran-neolithic-ancestry
Kriging interpolation of Iran Chalcolithic ancestry among modern populations. See full map.

Other models

The first question I imagine some would like to know is: what about other models? Do they show the same results? Here is the simplistic combination of ancestry components published in Damgaard et al. (2018) for the same or similar populations:

NOTE. As you can see, their selection of EHG vs. WHG vs. Nganasan vs. Natufian vs. Clovis of is of little use, but corroborate the results from other papers, and show some interesting patterns in combination with those above.

EHG

damgaard-modern-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-ehg-ancestry
Kriging interpolation of EHG ancestry among modern populations. See full map.

Natufian ancestry

damgaard-modern-natufian-ancestry
Natural neighbor interpolation of Natufian ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-natufian-ancestry
Kriging interpolation of Natufian ancestry among modern populations. See full map.

WHG ancestry

damgaard-modern-whg-ancestry
Natural neighbor interpolation of WHG ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-whg-ancestry
Kriging interpolation of WHG ancestry among modern populations. See full map.

Baikal HG ancestry

damgaard-modern-baikalhg-ancestry
Natural neighbor interpolation of Baikal hunter-gatherer ancestry among modern populations, data from Damgaard et al. (2018). See full map.
damgaard-kriging-baikal-hg-ancestry
Kriging interpolation of Baikal HG ancestry among modern populations. See full map.

Ancient North Eurasians

Once the modern situation is clear, relevant questions are, for example, whether EHG-, WHG-, ANE, Nganasan-, and/or Baikal HG-related meta-populations expanded or became integrated into Uralic-speaking territories.

When did these admixture/migration events happen?

How did the ancient distribution or expansion of Palaeo-Arctic, Baikalic, and/or Altaic peoples affect the current distribution of the so-called “Siberian” ancestry, and of hg. N1a, in each specific population?

NOTE. A little excursus is necessary, because the calculated repetition of a hypothetic opposition “N1a vs. R1a” doesn’t make this dichotomy real:

  1. There was not a single ethnolinguistic community represented by hg. R1a after the initial expansion of Eastern Corded Ware groups, or by hg. N1a-L392 after its initial expansion in Siberia:
  2. Different subclades became incorporated in different ways into Bronze Age and Iron Age communities, most of which without an ethnolinguistic change. For example, N1a subclades became incorporated into North Eurasian populations of different languages, reaching Uralic- and Indo-European-speaking territories of north-eastern Europe during the late Iron Age, at a time when their ancestral origin or language in Siberia was impossible to ascertain. Just like the mix found among Proto-Germanic peoples (R1b, R1a, and I1)* or among Slavic peoples (I2a, E1b, R1a)*, the mix of many Uralic groups showing specific percentages of R1a, N1a, or Q subclades* reflect more or less recent admixture or acculturation events with little impact on their languages.

*other typically northern and eastern European haplogroups are also represented in early Germanic (N1a, I2, E1b, J, G2), Slavic (I1, G2, J) and Finno-Permic (I1, R1b, J) peoples.

ananino-culture-new
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

The problem with mapping the ancestry of the available sampling of ancient populations is that we lack proper temporal and regional transects. The maps that follow include cultures roughly divided into either “Bronze Age” or “Iron Age” groups, although the difference between samples may span up to 2,000 years.

NOTE. Rough estimates for more external groups (viz. Sweden Battle Axe/Gotland_A for the NW, Srubna from the North Pontic area for the SW, Arctic/Nganasan for the NE, and Baikal EBA/”Ulchi-like” for the SE) have been included to offer a wider interpolated area using data already known.

Bronze Age

Similar to modern populations, the selection of best fit “Siberian” ancestry between Baikal HG vs. Nganasan, both potentially ± ANE (AG3), is an oversimplification that needs to be addressed in future papers.

Corded Ware ancestry

bronze-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Bronze Age populations. See full map.

Nganasan-like ancestry

bronze-age-nganasan-like-ancestry
Natural neighbor interpolation of Nganasan-like ancestry among Bronze Age populations. See full map.

Baikal HG ancestry

bronze-age-baikal-hg-ancestry
Natural neighbor interpolation of Baikal Hunter-Gatherer ancestry among Bronze Age populations. See full map.

Afontova Gora 3 ancestry

bronze-age-afontova-gora-ancestry
Natural neighbor interpolation of Afontova Gora 3 ancestry among Bronze Age populations. See full map.

Iron Age

Corded Ware ancestry

Interestingly, the moderate expansion of Corded Ware-related ancestry from the south during the Iron Age may be related to the expansion of hg. N1a-VL29 into the chiefdom-based system of north-eastern Europe, including Ananyino/Akozino and later expanding Akozino warrior-traders around the Baltic Sea.

NOTE. The samples from Levänluhta are centuries older than those from Estonia (and Ingria), and those from Chalmny Varre are modern ones, so this region has to be read as a south-west to north-east distribution from the Iron Age to modern times.

iron-age-corded-ware-ancestry
Natural neighbor interpolation of Srubnaya ancestry among Iron Age populations. See full map.

Baikal HG-like ancestry

The fact that this Baltic N1a-VL29 branch belongs in a group together with typically Avar N1a-B197 supports the Altaic origin of the parent group, which is possibly related to the expansion of Baikalic ancestry and Iron Age nomads:

iron-age-baikal-ancestry
Natural neighbor interpolation of Baikal HG ancestry among Iron Age populations. See full map.

Nganasan-like ancestry

The dilution of Nganasan-like ancestry in an Arctic region featuring “Siberian” ancestry and hg. N1a-L392 at least since the Bronze Age supports the integration of hg. N1a-Z1934, sister clade of Ugric N1a-Z1936, into populations west and east of the Urals with the expansion of Uralic languages to the north into the Tundra region (see here).

The integration of N1a-Z1934 lineages into Finnic-speaking peoples after their migration to the north and east, and the displacement or acculturation of Saami from their ancestral homeland, coinciding with known genetic bottlenecks among Finns, is yet another proof of this evolution:

iron-age-nganasan-ancestry
Natural neighbor interpolation of Nganasan ancestry among Iron Age populations. See full map.

WHG ancestry

Similarly, WHG ancestry doesn’t seem to be related to important population movements throughout the Bronze Age, which excludes the multiple North Eurasian populations that will be found along the clines formed by WHG, EHG, ANE, Nganasan, Baikal HG ancestry as forming part of the Uralic ethnogenesis, although they may be relevant to follow later regional movements of specific populations.

iron-age-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Iron Age populations. See full map.

Conclusion

It seems natural that people used to look at maps of haplogroup distribution from the 2000s, coupled with modern language distributions, and would try to interpret them in a certain way, reaching thus the wrong conclusions whose consequences are especially visible today when ancient DNA keeps contradicting them.

In hindsight, though, assuming that Balto-Slavs expanded with Corded Ware and hg. R1a, or that Uralians expanded with “Siberian” ancestry and hg. N1a, was as absurd as looking at maps of ancestry and haplogroup distribution of ancient and modern Native Americans, trying to divide them into “Germanic” or “Iberian”…

The evolution of each specific region and cultural group of North Eurasia is far from being clear. However, the general trend speaks clearly in favour of an ancient, Bronze Age distribution of North Eurasian ancestry and haplogroups that have decreased, diluted, or become incorporated into expanding Uralians of Corded Ware ancestry, occasionally spreading with inter-regional expansions of local groups.

Given the relatively recent push of Altaic and Indo-European languages into ancestral Uralic-speaking territories, only the ancient Corded Ware expansion remains compatible with the spread of Uralic languages into their historical distribution.

Related