Villabruna cluster in Late Epigravettian Sicily supports South Italian corridor for R1b-V88

epipalaeolithic-whg-expansion

New preprint Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: new archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily), by Catalano et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

Grotta d’Oriente is a small coastal cave located on the island of Favignana, the largest (~20 km2) of a group of small islands forming the Egadi Archipelago, ~5 km from the NW coast of Sicily.

The Oriente C funeral pit opens in the lower portion of layer 7, specifically sublayer 7D. Two radiocarbon dates on charcoal from the sublayers 7D (12149±65 uncal. BP) and 7E, 12132±80 uncal. BP are consistent with the associated Late Epigravettian lithic assemblages (Lo Vetro and Martini, 2012; Martini et al., 2012b) and refer the burial to a period between about 14200-13800 cal. BP, when Favignana was connected to the main island (Agnesi et al., 1993; Antonioli et al., 2002; Mannino et al. 2014).

sicily-grotta-oriente
A-B) Geographic location of Grotta d’Oriente.

The anatomical features of Oriente C are close to those of Late Upper Palaeolithic populations of the Mediterranean and show strong affinity with other Palaeolithic individuals of Sicily. As suggested by Henke (1989) and Fabbri (1995) the hunter-gatherer populations were morphologically rather uniform.

Genetic analysis

We confirmed the originally reported mitochondrial haplogroup assignment of U2’3’4’7’8’9. This haplogroup is present in both pre- and post-LGM populations, but is rare by the Mesolithic, when U5 dominates (Posth et al.2016).

Lipson et al. (2018) (their supplementary Figure S5.1) and Villalba-Mouco et al. (2019) (their Figure 2A) showed that European Late Palaeolithic and Mesolithic hunter-gatherers fall along two main axes of genetic variation. Multidimensional scaling (MDS) of f3-statistics shows that these axes form a “V” shape (Fig. 3). (…)

Focusing further on Oriente C, we find that it shares most drift with individuals from Northern Italy, Switzerland and Luxembourg, and less with individuals from Iberia, Scandinavia, and East and Southeast Europe (Fig. 4A-B). Shared drift decreases significantly with distance (Fig. 4C) and with time (Fig. 4D) although in a linear model of drift with distance and time as a covariate, only distance (p=1.3×10-6) and not time (p=0.11) is significant. Consistent with the overall E-W cline in hunter-gatherer ancestry, genetic distance to Oriente C increases more rapidly with longitude than latitude, although this may also be affected by geographic features. For example, Oriente C shares significantly more drift with the 8,000 year-old 1,400 km distant individual from Loschbour in Luxembourg (Lazaridis et al.,2014), than with the 9,000 year old individual from Vela Spila in Croatia (Mathieson et al.,2018) only 700 km away as shown by the D-statistic (Patterson et al.,2012) D (Mbuti, Oriente C, Vela Spila, Villabruna); Z=3.42. Oriente C’s heterozygosity was slightly lower than Villabruna (14% lower at 1240k transversion sites), but this difference is not significant (bootstrap P=0.12).

oriente-c-villabruna-f3-statistics
Multidimensional scaling of outgroup f3-statistics for Late 531 Upper Palaeolithic and Mesolithic hunter-gatherers.

Discussion and Conclusion

The robust record of radiocarbon dates proves that they reached Sicily not before 15-14 ka cal. BP, several millennia after the LGM peak. In our opinion, in fact, the hypothesis about an early colonization of Sicily by Aurignacians (Laplace, 1964; Chilardi et al., 1996) must be rejected, on the basis of a recent reinterpretation of the techno-typological features of the lithic industries from Riparo di Fontana Nuova (Martini et al., 2007; Lo Vetro and Martini, 2012; on this topic see also Di Maida et al., 2019).

These analyses have implications for understanding the origin and diffusion of the hunter-gatherers that inhabited Europe during the Late Upper Palaeolithic and Mesolithic. Our findings indicate that Oriente C shows a strong genetic relationship with Western European Late Upper Palaeolithic and Mesolithic hunter-gatherers, suggesting that the “Western hunter-gatherers” was a homogeneous population widely distributed in the Central Mediterranean, presumably as a consequence of continuous gene flow among different groups, or a range expansion following the LGM.

shared-drift-whg-villabruna-oriente-c
The same statistic as in A plotted with geographic position

The South Italian corridor

Once again, a hypothesis based on phylogeography – apart from scarce archaeological and palaeolinguistic data (“Semitic”-like topo-hydronymy and substrates in Europe) – seems to be confirmed step by step. Since the finding of the Villabruna individual of hg. R1b-L754 (likely R1b-V88, like south-eastern European lineages expanded with WHG ancestry), it was quite likely to find out that southern Europe was the origin of the expansion of R1b-V88 into Africa.

The most likely explanation for the presence of “archaic” R1b-V88 subclades among modern Sardinians was, therefore, that they represented a remnant from a Late Upper Palaeolithic/Early Mesolithic population that had not been replaced in subsequent migrations, and thus that the migration of these lineages into Northern Africa and the Green Sahara happened during a period when Italy was connected by a shallower Mediterranean (and more land connections) to Northern Africa.

late-epigravettian
Likely Late Epigravettian/Mesolithic expansion of R1b-V88 into Northern Africa. See full map.

Nevertheless, the arguments for a quite recent expansion of R1b-V88 through the Mediterranean and into Africa keep being repeated, probably based on ancestry from the few ancient (and many modern) populations that have been investigated to date, a simplistic approach prone to important errors that overarch whole migration models.

For example, in the recent paper by Marcus et al. (2019) the presence of these lineages among ancient Sardinians (from the late 4th millennium BC on) is interpreted as an expansion of R1b-V88 with the Cardial Neolithic based on their ancestry, disregarding the millennia-long gap between these samples and the presence of this haplogroup in Palaeolithic/Mesolithic Northern Iberia and Northern Italy, and the comparatively much earlier splits in the phylogenetic tree and dispersal among African populations.

Afroasiatic and Nostratic

I was asked recently if I really believed that we could reconstruct Proto-Nostratic and connect it with any ancestral population. My answer is simple: until the Chalcolithic – when the whole picture of Indo-Europeans, Uralians, Egyptians or Semites becomes quite clear – we have just very few (linguistic, archaeological, genetic) dots which we would like to connect, and we do so the best we can. The earlier the population and proto-language, the more difficult this task becomes.

NOTE. 1) I tentatively connected hg. R with Nostratic in a previous text – when it appeared that R1a expanded from around Lake Baikal, hence Eurasiatic; R1b from the south with AME-WHG ancestry, hence Afroasiatic; and R2 with Dravidian.

2) After that, I though it was more likely to be connected to AME ancestry and the Middle East, because of the apparent expansion of WHG from south-eastern Europe, and the potential association of Afroasiatic and (Elamo-?)Dravidian to Middle Eastern populations.

3) However, after finding more and more R1b samples expanding through northern Eurasia, spreading through the (then wider) steppe regions; and R1a essentially surviving among other groups in eastern Europe for thousands of years without being associated to significant migrations (like, say, hg. C after the Palaeolithic), it didn’t seem like this division was accurate, hence my most recent version.

But, in essence, it’s all about connecting the dots, and we have very few of them…

eurasiatic-phylum-ultraconserved-words
Phylogenetic tree from Pagel et al. (2013), partially in agreement with Kortlandt’s view on Eurasiatic. “Consensus phylogenetic tree of Eurasiatic superfamily (A) superimposed on Eurasia and (B) rooted tree with estimated dates of origin of families and of superfamily. (A) Unrooted consensus tree with branch lengths (solid lines) shown to scale and illustrating the correspondence between the tree and the contemporary north-south and east-west geographical positions of these language families. Abbreviations: P (proto) followed by initials of language family: PD, proto-Dravidian; PK, proto-Kartvelian; PU, proto-Uralic; PIE, proto–Indo-European; PA, proto-Altaic; PCK, proto–Chukchi-Kamchatkan; PIY, proto–Inuit-Yupik. The dotted line to PIY extends the inferred branch length into the area in which Inuit-Yupik languages are currently spoken: it is not a measure of divergence. The cross-hatched line to PK indicates that branch has been shortened (compare with B). The branch to proto-Dravidian ends in an area that Dravidian populations are thought to have occupied before the arrival of Indo-Europeans (see main text). (B) Consensus tree rooted using proto-Dravidian as the outgroup. The age at the root is 14.45 ± 1.75 kya (95% CI = 11.72–18.38 kya) or a slightly older 15.61 ± 2.29 kya (95% CI = 11.72–20.40 kya) if the tree is rooted with proto-Kartvelian. The age assumes midpoint rooting along the branch leading to proto-Dravidian (rooting closer to PD would produce an older root, and vice versa), and takes into account uncertainty around proto–Indo-European date of 8,700 ± 544 (SD) y following ref. 35 and the PCK date of 692 ± 67 (SD) y ago.”

In linguistics, I trust traditional linguists who tend to trust other more experimental linguists (like Hyllested or Kortlandt) who consider that – in their experience – an Indo-Uralic and a Eurasiatic phylum can be reconstructed. Similarly, linguists like Kortlandt are apparently (partially) supportive of attempts like that of Allan Bomhard with Nostratic – although almost everyone is critic of the Muscovite school‘s attachment to the Brugmannian reconstruction, stuck in pre-laryngeal Proto-Indo-Anatolian and similar archaisms.

I mostly use Nostratic as a way to give a simplistic ethnolinguistic label to the genetically related prehistoric peoples whose languages we will probably never know. I think it’s becoming clear that the strongest connection right now with the expansion of potential Eurasiatic dialects is offered by ANE-related populations (hence Y-chromosome bottlenecks under hg. R, Q, probably also N), however complicated the reconstruction of that hypothetic community (and its dialectalization) may be.

Therefore, the multiple expansions of lineages more or less closely associated to ANE-related peoples – like R1b-V88 in the case of Afrasian, or R2 in the case of Dravidians – are the easiest to link to the traditionally described Nostratic dialects and their highly hypothetic relationship.

green-sahara-neolithic
Reconstruction of North African vegetation during past green Sahara periods. Estimated and reconstructed MAP for the Holocene GSP (6–10 kyr BP) projected onto a cross-section along the eastern Sahara (left panel) and map view of reconstructed MAP, vegetation and physiographic elements [7,8,11,45] (right panel). Image from Larrasoaña et al. (2013).

What should be clear to anyone is that the attempt of many modern Afroasiatic speakers to connect their language to their own (or their own community’s main) haplogroups, frequently E and/or J, is flawed for many reasons; it was simplistic in the 2000s, but it is absurd after the advent of ancient DNA investigation and more recent investigation on SNP mutation rates. R1b-V88 should have been on the table of discussions about the expansion of Afroasiatic communities through the Green Sahara long ago, whether one supports a Nostratic phylum or not.

The fact that the role of R1b bottlenecks and expansions in the spread of Afroasiatic is usually not even discussed despite their likely connection with the most recent population expansions through the Green Sahara fitting a reasonable time frame for Proto-Afroasiatic reconstruction, a reasonable geographical homeland, and a compatible dialectal division – unlike many other proposed (E or J) subclades – reveals (once again) a lot about the reasons behind amateur interest in genetics.

Just like seeing the fixation in (and immobility of) recent writings about the role of I1, I2, or (more recently) R1a in the Proto-Indo-European expansion, R1b with Vasconic, or N1c with Proto-Uralic.

NOTE. That evident interest notwithstanding, it is undeniable that we have a much better understanding of the expansions of R1b subclades than other haplogroups, probably due in great part to the easier recovery of ancient DNA from Eurasia (and Europe in particular), for many different – sociopolitical, geographical, technological – reasons. It is quite possible that a more thorough temporal transect of ancient DNA from the Middle East and Africa might radically change our understanding of population movements, especially those related to the Afroasiatic expansion. I am referring in this post to interpretations based on the data we currently have, despite that potential R1b-based bias.

Related

Sea Peoples behind Philistines were Aegeans, including R1b-M269 lineages

New open access paper Ancient DNA sheds light on the genetic origins of early Iron Age Philistines, by Feldman et al. Science Advances (2019) 5(7):eaax0061.

Interesting excerpts (modified for clarity, emphasis mine):

Here, we report genome-wide data from human remains excavated at the ancient seaport of Ashkelon, forming a genetic time series encompassing the Bronze to Iron Age transition. We find that all three Ashkelon populations derive most of their ancestry from the local Levantine gene pool. The early Iron Age population was distinct in its high genetic affinity to European-derived populations and in the high variation of that affinity, suggesting that a gene flow from a European-related gene pool entered Ashkelon either at the end of the Bronze Age or at the beginning of the Iron Age. Of the available contemporaneous populations, we model the southern European gene pool as the best proxy for this incoming gene flow. Last, we observe that the excess European affinity of the early Iron Age individuals does not persist in the later Iron Age population, suggesting that it had a limited genetic impact on the long-term population structure of the people in Ashkelon.

philistines-pca
Ancient genomes (marked with color-filled symbols) projected onto the principal components inferred from present-day west Eurasians (gray circles). The newly reported Ashkelon populations are annotated in the upper corner.

Genetic discontinuity between the Bronze Age and the early Iron Age people of Ashkelon

In comparison to ASH_LBA, the four ASH_IA1 individuals from the following Iron Age I period are, on average, shifted along PC1 toward the European cline and are more spread out along PC1, overlapping with ASH_LBA on one extreme and with the Greek Late Bronze Age “S_Greece_LBA” on the other. Similarly, genetic clustering assigns ASH_IA1 with an average of 14% contribution from a cluster maximized in the Mesolithic European hunter-gatherers labeled “WHG” (shown in blue in Fig. 2B) (15, 22, 26). This component is inferred only in small proportions in earlier Bronze Age Levantine populations (2 to 9%).

In agreement with the PCA and ADMIXTURE results, only European hunter-gatherers (including WHG) and populations sharing a history of genetic admixture with European hunter-gatherers (e.g., as European Neolithic and post-Neolithic populations) produced significantly positive f4-statistics (Z ≥ 3), suggesting that, compared to ASH_LBA, ASH_IA1 has additional European-related ancestry.

We find that the PC1 coordinates positively correlate with the proportion of WHG ancestry modeled in the Ashkelon individuals, suggesting that WHG reasonably tag a European-related ancestral component within the ASH_IA1 individuals.

philistines-admixture
We plot the ancestral proportions of the Ashkelon individuals inferred by qpAdm using Iran_ChL, Levant_ChL, and WHG as sources ±1 SEs. P values are annotated under each model. In cases when the three-way model failed (χ2P < 0.05), we plot the fitting two-way model. The WHG ancestry is necessary only in ASH_IA1.

The best supported one (χ2P = 0.675) infers that ASH_IA1 derives around 43% of ancestry from the Greek Bronze Age “Crete_Odigitria_BA” (43.1 ± 19.2%) and the rest from the ASH_LBA population.

(…) only the models including “Sardinian,” “Crete_Odigitria_BA,” or “Iberia_BA” as the candidate population provided a good fit (χ2P = 0.715, 49.3 ± 8.5%; χ2P = 0.972, 38.0 ± 22.0%; and χ2P = 0.964, 25.8 ± 9.3%, respectively). We note that, because of geographical and temporal sampling gaps, populations that potentially contributed the “European-related” admixture in ASH_IA1 could be missing from the dataset.

The transient impact of the “European-related” gene flow on the Ashkelon gene pool

The ASH_IA2 individuals are intermediate along PC1 between the ASH_LBA ones and the earlier Bronze Age Levantines (Jordan_EBA/Lebanon_MBA) in the west Eurasian PCA (Fig. 2A). Notably, despite being chronologically closer to ASH_IA1, the ASH_IA2 individuals position closer, on average, to the earlier Bronze Age individuals.

philistines-y-dna
See more information on Y-DNA SNP calls, including ASH067 as R1b-M269 (xL151).

The transient excess of European-related genetic affinity in ASH_IA1 can be explained by two scenarios. The early Iron Age European-related genetic component could have been diluted by either the local Ashkelon population to the undetectable level at the time of the later Iron Age individuals or by a gene flow from a population outside of Ashkelon introduced during the final stages of the early Iron Age or the beginning of the later Iron Age.

By modeling ASH_IA2 as a mixture of ASH_IA1 and earlier Bronze Age Levantines/Late Period Egyptian, we infer a range of 7 to 38% of contribution from ASH_IA1, although no contribution cannot be rejected because of the limited resolution to differentiate between Bronze Age and early Iron Age ancestries in this model.

Hg. R1b-M269 and the Aegean

I already predicted this relationship of Philistines and Aegeans (Greeks in particular) months ago, based on linguistics, archaeology, and phylogeography, although it was (and still is) yet unclear if these paternal lineages might have come from other nearby populations which might be descended from Common Anatolians instead, given the known intense contacts between Helladic and West Anatolian groups.

luwian-civilization-sea-peoples
The alternative view: The Sea Peoples can be traced back to the Aegean, so they could also have consisted of Luwian petty kingdoms, who had formed an alliance and attacked Hatti from the south.

The deduction process for the Greek connection was quite simple:

Palaeo-Balkan populations

We know that R1b-Z2103 expanded with Yamna, including West Yamna settlers: they appear in Vučedol, which means they formed part of the earliest expansion waves of Yamna settlers into the Carpathian Basin, and they also appear scattered among Bell Beakers (apart from dominating East Yamna and Afanasevo), which suggests that they were possibly one of the most successful lineages during the late Repin/early Yamna expansion.

The “Steppe ancestry” associated with I2a-L699 samples among Balkan BA peoples may have also been associated with recent Bronze Age expansions, and this haplogroup’s presence among modern Balkan peoples may also suggest that it expanded with Palaeo-Balkan languages. Nevertheless, we don’t know which specific lineages and “Steppe ancestry” they represent, sadly.

These samples may well be related to remnants of previous Balkan populations like Cernavodă or Ezero, because there has been no peer-reviewed attempt at distinguishing Khvalynsk-/Novodanilovka- from Sredni Stog- from Yamnaya-related populations (see here), and some groups that are associated with this ancestry, like Corded Ware, are known to be culturally distinct from Yamna.

In any case, Proto-Greeks from the southern Balkans (say, Sitagroi IV and related groups) are probably going to show, based on Palaeo-Balkan substrate and Pre-Greek substrate and on the available Mycenaean samples, a process of decreasing proportion of R1b-Z2103 lineages relative to local ones, and a relatively similar cline of Yamna:EEF ancestry from northern to southern areas, at least in the periods closest to the Yamna expansion.

NOTE. The finding of “archaic” R1b-L389 (R1b-V1636) and R1a-M198 subclades among modern Greeks and the likely Neolithic origin of these paternal lineages around the Caucasus suggest that their presence in Greece may be from any of the more recent migrations that have happened between Anatolia and the Balkans, especially during the Common Era, rather than Indo-Anatolian migrations; probably very very recently.

-chalcolithic-late-balkans
Bronze Age cultures in the Balkans and the Aegean. See full map including ancient samples with Y-DNA, mtDNA, and ADMIXTURE.

Minoans and haplogroup J

In the Aegean, it is already evident that the population changed language partly through cultural diffusion, probably through elite domination of Proto-Greek speakers. Whether that happened before the invasion into the Greek Peninsula or after it is unclear, as we discussed recently, because we only have one reported Y-chromosome haplogroup among Mycenaeans, and it is J (probably continuing earlier lineages).

Now we have more samples from the so-called Emporion 2 cluster in Olalde et al. (2019), which shows Mycenaean-like eastern Mediterranean ancestry and 3 (out of 3) samples of haplogroup J, which – given the origin of the colony in Phocea – may be interpreted as the prevalence of West Anatolian-like ancestry and lineages in the eastern part of the Aegean (and possibly thus south Peloponnese), in line with the modern situation.

NOTE. It does not seem likely that those R or R1b-L23 samples from the Emporion 1 cluster are R1b-Z2103, based on their West European-like ancestry, although they still may be, because – as we know – ancestry (unlike haplogroup) changes too easily to interpret it as an ancestral ethnolinguistic marker.

anatolia-greek-aegean
PCA of ancient samples related to the Aegean, with Minoans, Mycenaeans (including the Emporion 2 cluster in the background) Anatolia N-Ch.-BA and Levantine BA-LBA populations, including Tel Shadud samples. See more PCAs of ancient Eurasian populations.

Greeks and haplogroup R1b-M269

Therefore, while the presence of R1b-Z2103 among ancient Balkan peoples connected to the Yamna expansion is clear, one might ask if R1b-Z2103 really spread up to the Peloponnese by the time of the Mycenaean Civilization. That has only one indirect answer, and it’s most likely yes.

We already had some R1b-Z2103 among Thracians and around the Armenoid homeland, which offers another clue at the migration of these lineages from the Balkans. The distribution of different “archaic” R1b-Z2103 subclades among modern Balkan populations and around the Aegean offered more support to this conclusion.

But now we have two interesting ancient populations that bear witness to the likely intrusion of R1b-M269 with Proto-Greeks:

An Ancient Greek of hg. R1b

A single ancient sample supports the increase in R1b-Z2103 among Greeks during the “Dorian” invasions that triggered the Dark Ages and the phenomenon of the Aegean Sea Peoples. It comes from a Greek lab study, showing R1b1b (i.e. R1b-P297 in the old nomenclature) as the only Y-chromosome haplogroup obtained from the sampling of the Gulf of Amurakia ca. 470-30 BC, i.e. before the Roman foundation of Nikopolis, hence from people likely from Anaktorion in Ancient Acarnania, of Corinthian origin.

ancient-greeks-y-dna-mtdna

Even with the few data available – and with the caution necessary for this kind of studies from non-established labs, which may be subject to many different kinds of errors – one could argue that the western Greek areas, which received different waves of migrants from the north and shows a higher distribution of R1b-Z2103 in modern times, was probably more heavily admixed with R1b-Z2103 than southern and eastern areas, which were always dominated by Greek-speaking populations more heavily admixed with locals.

The Dorian invasion and the Greek Dark Ages may thus account for a renewed influx of R1b-Z2103 lineages accompanying the dialects that would eventually help form the Hellenic Koiné. In a sense, it is only natural that demographically stronger populations around the Bronze Age Aegean would suffer a limited (male) population replacement with the succeeding invasions, starting with a higher genetic impact in the north-west and diminishing as they progressed to the south and the east, coupled with stepped admixture events with local populations.

This would be therefore the late equivalent of what happened at the end of the 3rd millennium BC, with Mycenaeans and their genetic continuity with Minoans.

pre-greek-ssos
Distribution of Pre-Greek place-names ending in -ssos/-ssa or -sos/-sa. See original images and more on the south/east cline distribution of Pre-Greek place-names here.

Sea peoples of hg. R1b-M269

Thanks to Wang et al. (2018) supplementary materials we knew that one of the two Levantine LBA II samples from Tel Shadud (final 13th–early 11th c. BC) published in van den Brink (2017) was of hg. R1b-M269 – in fact, the one interpreted as a Canaanite official residing at this site and emulating selected funerary aspects of Egyptian mortuary culture.

Both analyzed samples, this elite individual and a commoner of hg. J buried nearby, were genetically similar and indistinguishable from local populations, though:

Principal Components Analysis of L112 and L126 was carried out within the framework described in Lazaridis et al. (2016). This analysis showed that the two individuals cluster genetically, with similar estimated proportions of ancestry from diverse West Eurasian ancestral sources. These results are consistent with the hypothesis that they derive from the same population, or alternatively that they derive from two quite closely related populations.

We know that ancestry changes easily within a few generations, so there was not much information to go on, except for the fact that – being R1b-M269 – this individual could trace his paternal ancestor at some point to Proto-Indo-Europeans.

One might think that, because many haplogroups in this spreadsheet were wrong, this is also wrong; nevertheless, many haplogroups are correctly identified by Yleaf, and finding R1b-M269 in the Levant after the expansion of Sea Peoples could not be that surprising, because they were most likely related to populations of the Aegean Sea. Any other related hg. R1b (R1b-M73, R1b-V88, even R1b-V1636) wouldn’t fit as well as R1b-M269.

sea-peoples-egypt-rameses-iii

However, the early expansion of Proto-Indo-Aryans into the Middle East, as well as the later expansion of Armenians from the Balkans through Anatolia and of West Iranians from the east may have all potentially been related to this sample. But still, the previous linguistic and archaeological theories concerning the Philistines and the expansion of Sea Peoples in the Levant made this sample a likely (originally) Greek “Dorian” lineage, rather than the other (increasingly speculative) alternatives.

In any case, it was obvious to anyone – that is, to anyone with a minimum knowledge of how population genomics works – that just the two samples from van den Brink (2017) couldn’t be used to get to any conclusions about the ancestral origin of these individuals (or their differences) beyond Levantine peoples, because their ancestry was essentially (i.e. statistically) the same as the other few available ancient samples from nearby regions and similar periods.

If anything, the PCA suggested an origin of the R1b sample closer to Aegean populations relative to the J individual (see PCA above), and this should have been supported also by amateur models, without any possible confirmation (as with the ASH_IA2 cluster in this paper). However, if you have followed online discussions of Tel Shadud R1b-M269 sample since it was mentioned first on Eupedia months ago – including another wave of misguided speculation based on the ancestry of both individuals triggered by a discussion on this blog -, you have once more proof of how misleading ancestry analyses can be in the wrong hands.

NOTE. This is the Nth proof (and that only in 2019) of how it’s best to just avoid amateur analyses and interpretations altogether, as I did in the recent publication of the books. All those who didn’t take into account whatever was commented about the ancestry of these samples haven’t lost a single bit of relevant information on Levantine peoples, and have had more time for useful reads, compared to those dedicated to endless void speculation, once again gone awfully wrong, as does everything related to cocky ancient DNA crackpottery 😉

bronze-age-late-aegean
Late Bronze Age population movements in the Eastern Mediterranean and the Middle East. See full map including ancient DNA samples with Y-DNA, mtDNA, and ADMIXTURE.

Admittedly, though, even accepting the evident Mediterranean origin of this lineage, one could have argued that this sample may have been of R1b-L151 subclade, if one were inclined to support the theory that Italic peoples were behind Sea Peoples expanding east – and consequently that the ancestors of Etruscans had migrated eastward into the Aegean (e.g. into Lemnos), so that it could be asserted that Tyrsenian might have been a remnant language of an ancient population of northern Italy.

Philistines

Fortunately, some of the samples recovered in Feldman et al. (2019) that could be analyzed (those of the cluster ASH_IA1) offer a very specific time frame where European ancestry appeared (ca. 1250 BC) before it subsequently became fully diluted (as seen in cluster ASH_IA2) among the prevalent Levantine ancestry of the area.

Also fortunately, this precise cluster shows another R1b-M269 sample, likely R1b-Z2103 (because it is probably xL151), and this sample together with others from the same cluster prove that the ancestry related to the original southern European incomers was:

  1. Recent, related thus to LBA population movements, as expected; and
  2. More closely related to coeval Aegeans, including Mycenaeans with Steppe-related ancestry.

NOTE. I say “fortunately” because, as you can imagine if you have dealt with amateurish discussions long enough, without this cluster with evident Aegean ancestry and the R1b-M269 (Z2103) sample precisely associated to it, some would enter again in endless comment loops created by ancestry magicians, showing how Aegean peoples were not behind Sea Peoples, or not behind Philistines, or not behind the R1b-M269 among Philistines, depending on their specific agendas.

aegean-sea-peoples
Map of the Sea People invasions in the Aegean Sea and Eastern Mediterranean at the end of the Late Bronze Age (blue arrows).. Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows. From Kaniewski et al. (2011). Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows.

The results of the paper don’t solve the question of the exact origin of all Sea Peoples (not even that of Philistines), but it is quite clear that most of those forming this seafaring confederation must have come from sites around the Aegean Sea. This supports thus the traditional origin attributed to them, including a hint at the likely expansion of Eastern Mediterranean ancestry and lineages into the Italian Peninsula precisely from the Aegean, as some oral communications have already disclosed.

As an indirect conclusion from the findings in this paper, then, we can now more confidently support that Tyrsenian speakers most likely expanded into the Appenines and the Alps originally from a Tyrsenian-speaking LBA population from Lemnos, due to the social unrest in the whole Aegean region, and might have become heavily admixed with local Italic peoples quite quickly, as it happened with Philistines, resulting in yet another case of language expansion through (the simplistically called) elite domination.

Conclusion

Even more interesting than these specific findings, this paper confirms yet another hypothesis based on phylogeography, and proves once again two important starting points for ancient DNA interpretation that I have discussed extensively in this blog:

  • The rare R1b-M269 Y-chromosome lineage of Tel Shadud offered ipso facto the most relevant clue about the ancestral geographical origin of this Canaanite elite male’s paternal family, most likely from the north-west based on ancient phylogeography, which indirectly – in combination with linguistics and archaeology – supported the ancestral ethnolinguistic identification of Philistines with the Aegean and thus with (a population closest to) Ancient Greeks.
  • Ancestry analyses are often fully unreliable when assessing population movements, especially when few samples from incomplete temporal-geographical transects are assessed in isolation, because – unlike paternal (and maternal) haplogroups – ancestry might change fully within a few generations, depending on the particular anthropological setting. Their investigation is thus bound by many limitations – of design, statistical, and anthropological (i.e. archaeological and linguistic) – which are quite often not taken into account.

These cornerstones of ancient DNA interpretation have been already demonstrated to be valid not only for Levantine populations, as in this case, but also for Balkan peoples, for Bell Beakers, for steppe populations (like Khvalynsk, Sredni Stog, Yamna, Corded Ware), for Basques, for Balto-Slavs, for Ugrians and Samoyeds, and for many other prehistoric peoples.

I rest my case.

Related

A Song of Sheep and Horses, revised edition, now available as printed books

cover-song-sheep-and-horses

As I said 6 months ago, 2019 is a tough year to write a blog, because this was going to be a complex regional election year and therefore a time of political promises, hence tenure offers too. Now the preliminary offers have been made, elections have passed, but the timing has slightly shifted toward 2020. So I may have the time, but not really any benefit of dedicating too much effort to the blog, and a lot of potential benefit of dedicating any time to evaluable scientific work.

On the other hand, I saw some potential benefit for publishing texts with ISBNs, hence the updates to the text and the preparation of these printed copies of the books, just in case. While Spain’s accreditation agency has some hard rules for becoming a tenured professor, especially for medical associates (whose years of professional experience are almost worthless compared to published peer-reviewed papers), it is quite flexible in assessing one’s merits.

However, regional and/or autonomous entities are not, and need an official identifier and preferably printed versions to evaluate publications, such as an ISBN for books. I took thus some time about a month ago to update the texts and supplementary materials, to publish a printed copy of the books with Amazon. The first copies have arrived, and they look good.

series-song-sheep-horses-cover

Corrections and Additions

Titles
I have changed the names and order of the books, as I intended for the first publication – as some of you may have noticed when the linguistic book was referred to as the third volume in some parts. In the first concept I just wanted to emphasize that the linguistic work had priority over the rest. Now the whole series and the linguistic volume don’t share the same name, and I hope this added clarity is for the better, despite the linguistic volume being the third one.

Uralic dialects
I have changed the nomenclature for Uralic dialects, as I said recently. I haven’t really modified anything deeper than that, because – unlike adding new information from population genomics – this would require for me to do a thorough research of the most recent publications of Uralic comparative grammar, and I just can’t begin with that right now.

Anyway, the use of terms like Finno-Ugric or Finno-Samic is as correct now for the reconstructed forms as it was before the change in nomenclature.

west-east-uralic-schema

Mediterranean
The most interesting recent genetic data has come from Iberia and the Mediterranean. Lacking direct data from the Italian Peninsula (and thus from the emergence of the Etruscan and Rhaetian ethnolinguistic community), it is becoming clearer how some quite early waves of Indo-Europeans and non-Indo-Europeans expanded and shrank – at least in West Iberia, West Mediterranean, and France.

Finno-Ugric
Some of the main updates to the text have been made to the sections on Finno-Ugric populations, because some interesting new genetic data (especially Y-DNA) have been published in the past months. This is especially true for Baltic Finns and for Ugric populations.

ananino-culture-new

Balto-Slavic
Consequently, and somehow unsurprisingly, the Balto-Slavic section has been affected by this; e.g. by the identification of Early Slavs likely with central-eastern populations dominated by (at least some subclades of) hg. I2a-L621 and E1b-V13.

Maps
I have updated some cultural borders in the prehistoric maps, and the maps with Y-DNA and mtDNA. I have also added one new version of the Early Bronze age map, to better reflect the most likely location of Indo-European languages in the Early European Bronze Age.

As those in software programming will understand, major changes in the files that are used for maps and graphics come with an increasing risk of additional errors, so I would not be surprised if some major ones would be found (I already spotted three of them). Feel free to communicate these errors in any way you see fit.

bronze-age-early-indo-european
European Early Bronze Age: tentative langage map based on linguistics, archaeology, and genetics.

SNPs
I have selected more conservative SNPs in certain controversial cases.

I have also deleted most SNP-related footnotes and replaced them with the marking of each individual tentative SNP, leaving only those footnotes that give important specific information, because:

  • My way of referencing tentative SNP authors did not make it clear which samples were tentative, if there were more than one.
  • It was probably not necessary to see four names repeated 100 times over.
  • Often I don’t really know if the person I have listed as author of the SNP call is the true author – unless I saw the full SNP data posted directly – or just someone who reposted the results.
  • Sometimes there are more than one author of SNPs for a certain sample, but I might have added just one for all.
ancient-dna-all
More than 6000 ancient DNA samples compiled to date.

For a centralized file to host the names of those responsible for the unofficial/tentative SNPs used in the text – and to correct them if necessary -, readers will be eventually able to use Phylogeographer‘s tool for ancient Y-DNA, for which they use (partly) the same data I compiled, adding Y-Full‘s nomenclature and references. You can see another map tool in ArcGIS.

NOTE. As I say in the text, if the final working map tool does not deliver the names, I will publish another supplementary table to the text, listing all tentative SNPs with their respective author(s).

If you are interested in ancient Y-DNA and you want to help develop comprehensive and precise maps of ancient Y-DNA and mtDNA haplogroups, you can contact Hunter Provyn at Phylogeographer.com. You can also find more about phylogeography projects at Iain McDonald’s website.

Graphics
I have also added more samples to both the “Asian” and the “European” PCAs, and to the ADMIXTURE analyses, too.

I previously used certain samples prepared by amateurs from BAM files (like Botai, Okunevo, or Hittites), and the results were obviously less than satisfactory – hence my criticism of the lack of publication of prepared files by the most famous labs, especially the Copenhagen group.

Fortunately for all of us, most published datasets are free, so we don’t have to reinvent the wheel. I criticized genetic labs for not releasing all data, so now it is time for praise, at least for one of them: thank you to all responsible at the Reich Lab for this great merged dataset, which includes samples from other labs.

NOTE. I would like to make my tiny contribution here, for beginners interested in working with these files, so I will update – whenever I have time – the “How To” sections of this blog for PCAs, PCA3d, and ADMIXTURE.

-iron-age-europe-romans
Detail of the PCA of European Iron Age populations. See full versions.

ADMIXTURE
For unsupervised ADMIXTURE in the maps, a K=5 is selected based on the CV, giving a kind of visual WHG : NWAN : CHG/IN : EHG : ENA, but with Steppe ancestry “in between”. Higher K gave worse CV, which I guess depends on the many ancient and modern samples selected (and on the fact that many samples are repeated from different sources in my files, because I did not have time to filter them all individually).

I found some interesting component shared by Central European populations in K=7 to K=9 (from CEU Bell Beakers to Denmark LN to Hungarian EBA to Iberia BA, in a sort of “CEU BBC ancestry” potentially related to North-West Indo-Europeans), but still, I prefer to go for a theoretically more correct visualization instead of cherry-picking the ‘best-looking’ results.

Since I made fun of the search for “Siberian ancestry” in coloured components in Tambets et al. 2018, I have to be consistent and preferred to avoid doing the same here…

qpAdm
In the first publication (in January) and subsequent minor revisions until March, I trusted analyses and ancestry estimates reported by amateurs in 2018, which I used for the text adding my own interpretations. Most of them have been refuted in papers from 2019, as you probably know if you have followed this blog (see very recent examples here, here, or here), compelling me to delete or change them again, and again, and again. I don’t have experience from previous years, although the current pattern must have been evidently repeated many times over, or else we would be still talking about such previous analyses as being confirmed today…

I wanted to be one step ahead of peer-reviewed publications in the books, but I prefer now to go for something safe in the book series, rather than having one potentially interesting prediction – which may or may not be right – and ten huge mistakes that I would have helped to endlessly redistribute among my readers (online and now in print) based on some cherry-picked pairwise comparisons. This is especially true when predictions of “Steppe“- and/or “Siberian“-related ancestry have been published, which, for some reason, seem to go horribly wrong most of the time.

I am sure whole books can be written about why and how this happened (and how this is going to keep happening), based on psychology and sociology, but the reasons are irrelevant, and that would be a futile effort; like writing books about glottochronology and its intermittent popularity due to misunderstood scientist trends. The most efficient way to deal with this problem is to avoid such information altogether, because – as you can see in the current revised text – they wouldn’t really add anything essential to the content of these books, anyway.

Continue reading

Official site of the book series:
A Song of Sheep and Horses: eurafrasia nostratica, eurasia indouralica

Fulani from Cameroon show ancestry similar to Afroasiatic speakers from East Africa

sahel-region-fulani

Open access African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations, by Fan et al. Genome Biology (2019) 20:82.

Interesting excerpts (emphasis mine):

Introduction

To extend our knowledge of patterns of genomic diversity in Africa, we generated high coverage (> 30×) genome sequencing data from 43 geographically diverse Africans originating from 22 ethnic groups, representing a broad array of ethnic, linguistic, cultural, and geographic diversity (Additional file 1: Table S1). These include a number of populations of anthropological interest that have never previously been characterized for high-coverage genome sequence diversity such as Afroasiatic-speaking El Molo fishermen and Nilo-Saharan-speaking Ogiek hunter-gatherers (Kenya); Afroasiatic-speaking Aari, Agaw, and Amhara agro-pastoralists (Ethiopia); Niger-Congo-speaking Fulani pastoralists (Cameroon); Nilo-Saharan-speaking Kaba (Central African Republic, CAR); and Laka and Bulala (Chad) among others. We integrated this data with 49 whole genome sequences generated as part of the Simons Genome Diversity Project (SGDP) [14] (…)

afroasiatic-samples
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification

Results and discussion

We found that the CRHG populations from central Africa, including the Mbuti from the Demographic Republic of Congo (DRC), Biaka from the CAR, and Baka, Bakola, and Bedzan from Cameroon, also form a basal lineage in the phylogeny. The other two hunter-gatherer populations, Hadza and Sandawe, living in Tanzania, group with populations from eastern Africa (Fig. 2). The two Nilo-Saharan-speaking populations, the Mursi from southern Ethiopia and the Dinka from southern Sudan, group into a single cluster, which is consistent with archeological data indicating that the migration of Nilo-Saharan populations to eastern Africa originated from a source population in southern Sudan in the last 3000 years [4, 23, 24, 25].

phylogenetic-relationship-africans
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles

The Fulani people are traditionally nomadic pastoralists living across a broad geographic range spanning Sudan, the Sahel, Central, and Western Africa. The Fulani in our study, sampled from Cameroon, clustered with the Afroasiatic-speaking populations in East Africa in the phylogenetic analysis, indicating a potential language replacement from Afroasiatic to Niger-Congo in this population (Fig. 2). Prior studies suggest a complex history of the Fulani; analyses of Y chromosome variation suggest a shared ancestry with Nilo-Saharan and Afroasiatic populations [24], whereas mtDNA indicates a West African origin [26]. An analysis based on autosomal markers found traces of West Eurasian-related ancestry in this population [4], which suggests a North African or East African origin (as North and East Africans also have such ancestry likely related to expansions of farmers and herders from the Near East) and is consistent with the presence at moderate frequency of the −13,910T variant associated with lactose tolerance in European populations [15, 16].

Phylogenetic reconstruction of the relationship of African individuals under a model allowing for migration using TREEMIX [27] largely recapitulates the NJ phylogeny with the exception of the Fulani who cluster near neighboring Niger-Congo-speaking populations with whom they have admixed (Additional file 2: Figure S1). Interestingly, TREEMIX analysis indicates evidence for gene flow between the Hadza and the ancestors of the Ju|‘hoan and Khomani San, supporting genetic, linguistic, and archeological evidence that Khoesan-speaking populations may have originated in Eastern Africa [28, 29, 30].

afroasiatic-niger-congo-admixture
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. With the increasing of K, the populations are largely grouped by their current language usage

About the Fulani, this is what the referenced study of Y‐chromosome variation among 15 Sudanese populations by Hassan et al. (2008), had to say:

  • Haplogroups A-M13 and B-M60 are present at high frequencies in Nilo-Saharan groups except Nubians, with low frequencies in Afro-Asiatic groups although notable frequencies of B-M60 were found in Hausa (15.6%) and Copts (15.2%).
  • Haplogroup E (four different haplotypes) accounts for the majority (34.4%) of the chromosome and is widespread in the Sudan. E-M78 represents 74.5% of haplogroup E, the highest frequencies observed in Masalit and Fur populations. E-M33 (5.2%) is largely confined to Fulani and Hausa, whereas E-M2 is restricted to Hausa. E-M215 was found to occur more in Nilo-Saharan rather than Afro-Asiatic speaking groups.
  • In contrast, haplogroups F-M89, I-M170, J-12f2, and JM172 were found to be more frequent in the Afro-Asiatic speaking groups. J-12f2 and J-M172 represents 94% and 6%, respectively, of haplogroup J with high frequencies among Nubians, Copts, and Arabs.
  • Haplogroup K-M9 is restricted to Hausa and Gaalien with low frequencies and is absent in Nilo-Saharan and Niger-Congo.
  • Haplogroup R-M173 appears to be the most frequent haplogroup in Fulani, and haplogroup R-P25 has the highest frequency in Hausa and Copts and is present at lower frequencies in north, east, and western Sudan.
  • Haplogroups A-M51, A-M23, D-M174, H-M52, L-M11, OM175, and P-M74 were completely absent from the populations analyzed.
fulfulde-fulani-language
Image modified from “Fulfulde Language Family Report” Author: Annette Harrison; Cartographer: Irene Tucker; SIL International 2003.

This is what David Reich will talk about in the seminar Insights into language expansions from ancient DNA:

In this talk, I will describe how the new science of genome-wide ancient DNA can provide insights into past spreads of language and culture. I will discuss five examples: (1) the spread of Indo-European languages to Europe and South Asia in association with Steppe pastoralist ancestry, (2) the spread of Austronesian languages to the open Pacific islands in association with Taiwanese aboriginal-associated ancestry, (3) the spread of Austroasiatic languages through southeast Asia in association with the characteristic ancestry type that is also represented in western Indonesia suggesting that these languages were once widespread there, (4) the spread of Afroasiastic languages through in East Africa as part of the Pastoral Neolithic farming expansion, and (5) the spread of Na-Dene languages in North America in association with Proto-Paleoeskimo ancestry. I will highlight the ways that ancient DNA can meaningfully contribute to our understanding of language expansions—increasing the plausibility of some scenarios while decreasing the plausibility of others—while emphasizing that with genetic data by itself we can never definitively determine what languages ancient people spoke.

EDIT (3 MAY 2019): Apparently, there was not much to take from the talk:

neolithic-pastoralist-africa
Pastoralist Neolithic in Africa, through a pale-green Sahelo-Sudanian steppe corridor. See full map.

This seminar (and maybe some new paper on the Neolithic expansion in Africa) could shed light on population movements that may be related to the spread of Afroasiatic dialects. Until now, it seems that Bantu peoples have been more interesting for linguistics and archaeology, and South and East Africans for anthropology.

Archaeology in Africa appears to be in its infancy, as is population genomics. From the latest publication by Carina Schlebusch, Population migration and adaptation during the African Holocene: A genetic perspective, a chapter from Modern Human Origins and Dispersal (2019):

The process behind the introduction and development of farming in Africa is still unclear. It is not known how many independent invention events there were in the continent and to which extent the various first instances of farming in northern Africa are linked. Based on the archeological record, it was proposed that at least three regions in Africa may have developed agriculture independently: the Sahara/Sahel (around 7 ka), the Ethiopian highlands (7-4 ka), and western Africa (5-3 ka). In addition to these developments, the Nile River Valley is thought to have adopted agriculture (around 7.2 ka), from the Neolithic Revolution in the Middle East (Chapter 12 – Jobling et al. 2014; Chapter 35, 37 – Mitchell and Lane 2013). From these diverse centers of origin, farmers or farming practices spread to the rest of Africa, with domesticate animals reaching the southern tip of Africa ~2 ka and crop farming ~1,8 ka (Mitchell 2002; Huffman 2007)

african-popularion-movements
Schematic representation of possible migration routes related to the expansion of herders and crop farmers during Holocene times. Arrow color indicate source populations; Brown-Eurasian, Green-western African, Blue-eastern African.

Similar to the case in Europe and the 1990s-2000s wrong haplogroup history based on the modern distribution of R1b, R1a, N, or I2, it is possible that neither of the most often mentioned haplogroups linked to the Afroasiatic expansion, E and J, were responsible for its early spread within Africa, despite their widespread distribution in certain modern Afroasiatic-speaking areas. The fact that such assessments include implausible glottochronological dates spanning up to 20,000 years for the parent language, combined with regional language continuities despite archaeological changes, makes them even more suspicious.

Similar to the case with Indo-Europeans and the “steppe ancestry” concept of the 2010s, it may be that the often-looked-for West Eurasian ancestry among Africans is the effect of recent migrations, unrelated to the Afroasiatic expansion. The results of this paper could be offering another sign of how this ancestry may have expanded only quite recently westwards from East Africa through the Sahel, after the Semitic expansion to the south:

1. From approximately 1000 BC, accompanying Nilo-Saharan peoples.

2. From approximately AD 1500, with the different population movements related to the nomadic Fulani:

sahel-nomadic-sedentary
Image from Sahel in West African History – Oxford Research Encyclopedia of African History.
  • Arguably, since the Fulani caste system wasn’t as elaborate in northern Nigeria, eastern Niger, and Cameroon, these specific groups would be a good example of the admixture with eastern populations, based on the (proportionally) huge amount of slaves they dealt with.
  • Similarly, it could be argued that the castes-based social stratification in most other territories (including Sudan) would have helped them keep a genetic make-up similar to their region of origin in terms of ancient lineages, hence similar to Chadic populations from west to east.

Reich’s assertion of the association of the language expansion with the spread of Pastoral Neolithic is still too vague, but – based on previous publications of ancient DNA in Africa and the Levant – I don’t have high hopes for a revolutionary paper in the near future. Without many samples and proper temporal transects, we are stuck with speculations based on modern distributions and scarce historical data.

fula-people-distribution
A distribution map of Fula people. Dark green: a major ethnic group; Medium: significant; Light: minor. Modified from image by Sarah Welch at Wikipedia.

About the potential genetic make-up of Cameroon before the arrival of the Neolithic, from the recent SAA 84th Annual Meeting (Abstracts in PDF):

Lipson, Mark (Harvard Medical School), Mary Prendergast (Harvard University), Isabelle Ribot (Université de Montréal), Carles Lalueza-Fox (Institute of Evolutionary Biology CSIC-UPF) and David Reich (Harvard Medical School)

[253] Ancient Human DNA from Shum Laka (Cameroon) in the Context of African Population History We generated genome-wide DNA data from four people buried at the site of Shum Laka in Cameroon between 8000–3000 years ago. One individual carried the deeply divergent Y chromosome haplogroup A00 found at low frequencies among some present-day Niger-Congo speakers, but the genome-wide ancestry profiles for all four individuals are very different from the majority of West Africans today and instead are more similar to West-Central African hunter-gatherers. Thus, despite the geographic proximity of Shum Laka to the hypothesized birthplace of Bantu languages and the temporal range of our samples bookending the initial Bantu expansion, these individuals are not representative of a Bantu source population. We present a phylogenetic model including Shum Laka that features three major radiations within Africa: one phase early in the history of modern humans, one close to the time of the migration giving rise to non-Africans, and one in the past several thousand years. Present-day West Africans and some East Africans, in addition to Central and Southern African hunter-gatherers, retain ancestry from the first phase, which is therefore still represented throughout the majority of human diversity in Africa today.

Related

A Game of Thrones in Indo-European: proto-languages in Westeros and Essos, and population genomics

game-of-thrones-westeros-essos-map

I think proto-languages can be applied to basically any appropriate prehistoric setting, and especially to science fiction and fantasy settings. I often viewed the lack of interest for them as based on the idea that they are not fantastic enough, that they would render a fantastic world too realistic to allow for an adequate immersion of the reader (or viewer) into a new world.

With time, I have become more and more convinced that most authors don’t use proto-languages (or tweaked versions of them) simply because they can’t, and resort to the easier way: inventing some rules and words based on some basic ideas and sounds they feel would fit a certain culture or people, to get going. After all, world-building is about a good enough, not too detailed description, and books are about characters and settings, not worlds.

After the end of the 7th season of the Game of Thrones TV series, of which I have become a great fan, I had some season finale grief to deal with, so I thought about applying what we knew about Proto-Indo-Europeans to the fantasy world. Since all book translations deal with English names as if they were translations of the Common Tongue (e.g. Spanish “Invernalia” or “Poniente” for “Winterfel” or “Westeros”), the idea of a translation into Proto-Indo-European seemed quite interesting.

NOTE. I understand that, for some, the idea that “the original language is the best” would make them reject this. However, just take into account the millions who enjoy the books and the TV series only in their native language, and know nothing about the ‘original’ version…

Here are the text and images:

A Dance with Old Tongues

As you can see, the idea of the Common Tongue being Late Proto-Indo-European brings about a whole new (infinite) world of dialectal evolution, language contacts, and population expansions which must be established for the whole setting to work. This is what the text I began to write was about: to use languages (and related populations) of ca. 6000-1500 BC, and to avoid anachronisms and impossible language relationships.

As an added advantage, fans of role-playing games could expand their world with the use of the language correspondences and the maps. This way, instead of “Northern English” being spoken in the North, and “Spanish English” being spoken in Dorne, according to some selections that have been naturally criticized, you have ancient languages that fit with the ancient setting, and which were actually related to each other.

8-westeros-essos-languages-equivalence
Equivalence of languages of the known world with coeval proto-languages. Solid red lines divide Graeco-Aryan from Northern Indo-European dialects (Tocharian is separated from North-West Indo-European by a dotted red line). See all maps.

I also began drawing a fantasy map, my first one – even though I have been member of Cartographer’s Guild for years – , which eventually helped me with my updates of maps of prehistoric migrations, and even with the use of arrows and colors for scientific publications. I drew details mainly to illustrate the text, not to offer a comprehensive translated world. Most of the work was done in the Summer of 2017, with some map changes done in 2018 with help of the maps and works of fans.

NOTE. I have reviewed it during some long travels lately, and included names of “bloodlines” (i.e. haplogroups), which I find more interesting today for people to understand bottlenecks during prehistoric migrations; I have also added a map using pie charts. If this doesn’t fit well with the whole picture, it’s because it’s a recent addition. The rest is more or less the same as one-two years ago.

I don’t have time now to correct much of what I wrote. I have forgotten most of the relevant details from the books, especially A World of Ice and Fire which I think helped me a lot with this, and I am sure that after writing A Song of Sheep and Horses (now you know the why of the book names) I would deal with some language identification and cognates differently.

I decided to publish it to liven up our Facebook page of Modern Indo-European now that the 8th season is near, so that people can participate and try to translate (translatable) names and expressions into Proto-Indo-European, to see how it would work out. You can also request access our Modern Indo-European and Proto-Indo-European groups; both are administered mainly by Fernando.

If you think this whole idea is crazy, or a huge loss of time, I agree; this is how you lose your time when you like fantasy, comic books, etc. But I am a great fan of fantasy and fiction, and I had a lot of free time back then, so I couldn’t help it…

On the other hand, if you feel that mixing fantasy (or SF) with the Proto-Indo-European question (especially population genomics) is a bad idea, I may have agreed with that two years ago, and maybe this is the reason why I hesitated to publish it then.

Hoewever, today we can read a whole new (2018 and 2019) bunch of “steppe ancestry=Indo-European” fantasies: invisible Nganasan reindeer hordes, a Fearsome Tisza River where Yamna settlers mysteriously disappear, shapeshifting Dutch CWC peoples who change haplogroups, languages dependent on cephalic types, or Yamna/Bell Beaker expanding Vasconic…So what’s the matter with some more fantasy?

Ancient Sardinia hints at Mesolithic spread of R1b-V88, and Western EEF-related expansion of Vasconic

nuragic-sardinia-neolithic

New preprint Population history from the Neolithic to present on the Mediterranean island of Sardinia: An ancient DNA perspective, by Marcus et al. bioRxiv (2019)

Interesting excerpts (emphasis mine, edited for clarity):

On the high frequency of R1b-V88

Our genome-wide data allowed us to assign Y haplogroups for 25 ancient Sardinian individuals. More than half of them consist of R1b-V88 (n=10) or I2-M223 (n=7).

Francalacci et al. (2013) identi fied three major Sardinia-specifi c founder clades based on present-day variation within the haplogroups I2-M26, G2-L91 and R1b-V88, and here we found each of those broader haplogroups in at least one ancient Sardinian individual. Two major present-day Sardinian haplogroups, R1b-M269 and E-M215, are absent.

Compared to other Neolithic and present-day European populations, the number of identi fied R1b-V88 carriers is relatively high.

(…)ancient Sardinian mtDNA haplotypes belong almost exclusively to macro-haplogroups HV (n = 16), JT (n = 17) and U (n = 9), a composition broadly similar to other European Neolithic populations.

r1b-v88-europe
Geographic and temporal distribution of R1b-V88 Y-haplotypes in ancient European samples. We plot the geographic position of all ancient samples inferred to carry R1b-V88 equivalent markers. Dates are given as years BCE (means of calibrated 2s radio-carbon dates). Multiple V88 individuals with similar geographic positions are vertically stacked. We additionally color-code the status of the R1b-V88 subclade R1b-V2197, which is found in most present-day African R1b-V88 carriers.

On the origin of a Vasconic-like Paleosardo with the Western EEF

(…) the Neolithic (and also later) ancient Sardinian individuals sit between early Neolithic Iberian and later Copper Age Iberian populations, roughly on an axis that differentiates WHG and EEF populations and embedded in a cluster that additionally includes Neolithic British individuals. This result is also evident in terms of absolute genetic differentiation, with low pairwise FST ~ 0.005 +- 0.002 between Neolithic Sardinian individuals and Neolithic western mainland European populations. Pairwise outgroup-f3 analysis shows a very similar pattern, with the highest values of f3 (i.e. most shared drift) being with Neolithic and Copper Age Iberia, gradually dropping off for temporally and geographically distant populations.

In explicit admixture models (using qpAdm, see Methods) the southern French Neolithic individuals (France-N) are the most consistent with being a single source for Neolithic Sardinia (p ~ 0:074 to reject the model of one population being the direct source of the other); followed by other populations associated with the western Mediterranean Neolithic Cardial Ware expansion.

sardinians-ancient-eef
Principal Components Analysis based on the Human Origins dataset. A: Projection of ancient individuals’ genotypes onto principal component axes de fined by modern Western Eurasians (gray labels).

Pervasive Western Hunter-Gatherer ancestry in Iberian/French/Sardinian population

Similar to western European Neolithic and central European Late Neolithic populations, ancient Sardinian individuals are shifted towards WHG individuals in the top two PCs relative to early Neolithic Anatolians Admixture analysis using qpAdm infers that ancient Sardinian individuals harbour HG ancestry (~ 17%) that is higher than early Neolithic mainland populations (including Iberia, ~ 8%), but lower than Copper Age Iberians (~ 25%) and about the same as Southern French Middle-Neolithic individuals (~ 21%).

sardinia-modern-ancient-nuragic-pca
Principal Components Analysis based on the Human Origins dataset. B: Zoom into the region most relevant for Sardinian individuals.

Continuity from Sardinia Neolithic through the Nuragic

We found several lines of evidence supporting genetic continuity from the Sardinian Neolithic into the Bronze Age and Nuragic times. Importantly, we observed low genetic differentiation between ancient Sardinian individuals from various time periods.

A qpAdm analysis, which is based on simultaneously testing f-statistics with a number of outgroups and adjusts for correlations, cannot reject a model of Neolithic Sardinian individuals being a direct predecessor of Nuragic Sardinian individuals (…) Our qpAdm analysis further shows that the WHG ancestry proportion, in a model of admixture with Neolithic Anatolia, remains stable at ~17% throughout three ancient time-periods.

sardinians-modern-ancient-pca-admixture
Present-day genetic structure in Sardinia reanalyzed with aDNA. A: Scatter plot of the rst two principal components trained on 1577 present-day individuals with grand-parental ancestry from Sardinia. Each individual is labeled with a location if at least 3 of the 4 grandparents were born in the same geographical location (\small” three letter abbreviations); otherwise with \x” or if grand-parental ancestry is missing with \?”. We calculated median PC values for each Sardinian province (large abbreviations). We also projected each ancient Sardinian individual on to the top two PCs (gray points). B/C: We plot f-statistics that test for admixture of modern Sardinian individuals (grouped into provinces) when using Nuragic Sardinian individuals as one source population. Uncertainty ranges depict one standard error (calculated from block bootstrap). Karitiana are used in the f-statistic calculation as a proxy for ANE/Steppe ancestry (Patterson et al., 2012).

Steppe influx in Modern Sardinians

While contemporary Sardinian individuals show the highest affinity towards EEF-associated populations among all of the modern populations, they also display membership with other clusters (Fig. 5). In contrast to ancient Sardinian individuals, present-day Sardinian individuals carry a modest “Steppe-like” ancestry component (but generally less than continental present-day European populations), and an appreciable broadly “eastern Mediterranean” ancestry component (also inferred at a high fraction in other present-day Mediterranean populations, such as Sicily and Greece).

Related

Happy new year 2019…and enjoy our new books!

song-sheep-horses-header

Sorry for the last weeks of silence, I have been rather busy lately. I am having more projects going on, and (because of that) I also wanted to finish a project I have been working on for many months already.

I have therefore decided to publish a provisional version of the text, in the hope that it will be useful in the following months, when I won’t be able to update it as often as I would like to:

EDIT (20 JAN 2019): For those of you who are more comfortable reading in your native language, I have placed some links to automatic translations by Google Translate. They might work especially well for the texts of A Game of Clans & A Clash of Chiefs.

Don’t forget to check out the maps included in the supplementary materials: I have added Y-DNA, mtDNA, and ADMIXTURE data using GIS software. The PCA graphics are also important to follow the main text.

NOTE. Right now the files are only in my server. I will try to upload them to Academia.edu and Research Gate when I have time, I have uploaded them to Academia.edu and ResearchGate, in case the websites are too slow.

I would have preferred to wait for a thorough revision of the section on archaeology and the linguistic sections on Uralic, but I doubt I will have time when the reviews come, so it was either now or maybe next December…

I say so in the introduction, but it is evident that certain aspects of the book are tentative to say the least: the farther back we go from Late Proto-Indo-European, the less clear are many aspects. Also, linguistically I am not convinced about Eurasiatic or Nostratic, although they do have a certain interest when we try to offer a comprehensive view of the past, including ethnolinguistic identities.

I cannot be an expert in everything, and these books cover a lot. I am bound to publish many corrections as new information appears and more reviews are sent. For example, just days ago (before SNP calls of Wang et al. 2018 were published) some paragraphs implied that AME might have expanded Nostratic from the Middle East. Now it does not seem so, and I changed them just before uploading the text. That’s how tentative certain routes are, and how much all of this may change. And that only if we accept a Nostratic phylum…

NOTE. Since the first book I wrote was the linguistic one, and I have spent the last months updating the archaeology + genetics part, now many of you will probably understand 1) why I am so convinced about certain language relationships and 2) how I used many posts to clarify certain ideas and receive comments. Many posts offer probably a good timeline of what I worked with, and when.

Acknowledgements

I did not add this section to the books, because they are still not ready for print, but I think this is due somewhere now. It is impossible to reference all who have directly or indirectly contributed to this, so this is a list of those I feel have played an important role.

I am indebted to the following people (which does not mean that they share my views, obviously):

First and foremost, to Fernando López-Menchero, for having the patience to review with detail many parts on Indo-European linguistics, knowing that I won’t accept many of his comments anyway. The additional information he offers is invaluable, but I didn’t want to turn this into a huge linguistic encyclopaedia with unending discussions of tiny details of each reconstructed word. I think it is already too big as it is.

I would not have thought about doing this if it were not for the interest of Wekwos (Xavier Delamarre) in publishing a full book about the Indo-European demic diffusion model (in the second half of 2017, I think). It was them who suggested that I extended the content, when all I had done until then was write an essay and draw some maps in my free time between depositing the PhD thesis and defending it.

Sadly, as much as I would like to publish a book with a professional publisher, I don’t think ancient DNA lends itself for the traditional format, so my requests (mainly to have free licenses and being able to review the text at will, as new genetic papers are published) were logically not acceptable. Also, the main aim of all volumes, especially the linguistic one, is the teaching of essentials of Late Proto-Indo-European and related languages, and this objective would be thwarted by selling each volume for $50-70 and only in printed format. I prefer a wider distribution.

At first I didn’t think much of this proposal, because I do not benefit from this kind of publications in my scientific field, but with time my interest in writing a whole, comprehensive book on the subject grew to the point where it was already an ongoing project, probably by the start of 2018.

I would not have been in contact with Wekwos if it were not for user Camulogène Rix at Anthrogenica, so thanks for that and for the interest in this work.

I would not have thought of writing this either if not for the spontaneous support (with an unexpected phone call!) of a professor of the Complutense University of Madrid, Ángel Gómez Moreno, who is interested in this subject – as is his wife, a professor of Classics more closely associated to Indo-European studies, and who helped me with a search for Indo-Europeanists.

EDIT (1 JAN 2019): I remembered that Karin Bojs sent me her book after reading the demic diffusion model. I may have also thought about writing a whole book back then, but mid-2017 is probably too early for the project.

Professor Kortlandt is still to review the text, but he contributed to both previous essays in some very interesting ways, so I hope he can help me improve the parts on Uralic, and maybe alternative accounts of expansion for Balto-Slavic, depending on the time depth that he would consider warranted according to the Temematic hypothesis.

The maps are evidently (for those who are interested in genetics) in part the result of the effort of the late Jean Manco: As you can see from the maps including Y-DNA and mtDNA samples, I have benefitted from her way of organising data and publishing it. Similarly, the work of Iain McDonald in assessing the potential migration routes of R1b and R1a in Europe with the help of detailed maps was behind my idea for the first maps, and consequently behind these, too.

I should thank all people responsible for the release of free datasets to work with, including the Reich and Jena labs, the Veeramah Lab, and also researchers from the Max Planck Institute or the Mainz Palaeogenetics group, who didn’t mind to share with me datasets to work with.

Readers of this blog with interesting comments have also been essential for the improvement of the texts. You can probably see some of your many contributions there. I may not answer many comments, because I am always busy (and sometimes I just don’t have anything interesting to say), but I try to read all of them.

EDIT (1 JAN 2019) I think I should mention at least Chetan, Egg, or Robert George; but then I would leave out old europe, Sgr Ganesh, or Tileman Ehlen; and if I include them I would leave out others…

Users of other sites, like Anthrogenica, whose particular points of view and deep knowledge of some very specific aspects are sometimes very useful. In particular, user Anglesqueville helped me to fix some issues with the merging of datasets to obtain the PCAs and ADMIXTURE, and prepared some individual samples to merge them.

Even without posting anything, Google Analytics keeps sending me messages about increasing user fidelity (returning users), and stats haven’t really changed (which probably means more people are reading old posts), so thank you for that.

I hope you enjoy the books.

Happy new year!

Palaeolithic Caucasus samples reveal the most important component of West Eurasians

dzudzuana-ancestry-europe

Preprint Paleolithic DNA from the Caucasus reveals core of West Eurasian ancestry, by Lazaridis et al. bioRxiv (2018).

Interesting excerpts:

We analyzed teeth from two individuals 63 recovered from Dzudzuana Cave, Southern Caucasus, from an archaeological layer previously dated to ~27-24kya (…). Both individuals had mitochondrial DNA sequences (U6 and N) that are consistent with deriving from lineages that are rare in the Caucasus or Europe today. The two individuals were genetically similar to each other, consistent with belonging to the same population and we thus analyze them jointly.

(…) our results prove that the European affinity of Neolithic Anatolians does not necessarily reflect any admixture into the Near East from Europe, as an Anatolian Neolithic-like population already existed in parts of the Near East by ~26kya. Furthermore, Dzudzuana shares more alleles with Villabruna-cluster groups than with other ESHG (Extended Data Fig. 5b), suggesting that this European affinity was specifically related to the Villabruna cluster, and indicating that the Villabruna affinity of PGNE populations from Anatolia and the Levant is not the result of a migration into the Near East from Europe. Rather, ancestry deeply related to the Villabruna cluster was present not only in Gravettian and Magdalenian-era Europeans but also in the populations of the Caucasus, by ~26kya. Neolithic Anatolians, while forming a clade with Dzudzuana with respect to ESHG, share more alleles with all other PGNE (Extended Data Fig. 5d), suggesting that PGNE share at least partially common descent to the exclusion of the much older samples from Dzudzuana.

dzudzuana-anatolia-pca
Ancient West Eurasian population structure. PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).

Our co-modeling of Epipaleolithic Natufians and Ibero-Maurusians from Taforalt confirms that the Taforalt population was mixed, but instead of specifying gene flow from the ancestors of Natufians into the ancestors of Taforalt as originally reported, we infer gene flow in the reverse direction (into Natufians). The Neolithic population from Morocco, closely related to Taforalt is also consistent with being descended from the source of this gene flow, and appears to have no admixture from the Levantine Neolithic (Supplementary Information 166 section 3). If our model is correct, Epipaleolithic Natufians trace part of their ancestry to North Africa, consistent with morphological and archaeological studies that indicate a spread of morphological features and artifacts from North Africa into the Near East. Such a scenario would also explain the presence of Y-chromosome haplogroup E in the Natufians and Levantine farmers, a common link between the Levant and Africa.

(…) we cannot reject the hypothesis that Dzudzuana and the much later Neolithic Anatolians form a clade with respect to ESHG (P=0.286), consistent with the latter being a population largely descended from Dzudzuana-like pre-Neolithic populations whose geographical extent spanned both Anatolia and the Caucasus. Dzudzuana itself can be modeled as a 2-way mixture of Villabruna-related ancestry and a Basal Eurasian lineage.

In qpAdm modeling, a deeply divergent hunter-gatherer lineage that contributed in relatively unmixed form to the much later hunter-gatherers of the Villabruna cluster is specified as contributing to earlier hunter-gatherer groups (Gravettian Vestonice16: 35.7±11.3% and Magdalenian ElMiron: 60.6±11.3%) and to populations of the Caucasus (Dzudzuana: 199 72.5±3.7%, virtually identical to that inferred using ADMIXTUREGRAPH). In Europe, descendants of this lineage admixed with pre-existing hunter-gatherers related to Sunghir3 from Russia for the Gravettians and GoyetQ116-1 from Belgium for the Magdalenians, while in the Near East it did so with Basal Eurasians. Later Europeans prior to the arrival of agriculture were the product of re-settlement of this lineage after ~15kya in mainland Europe, while in eastern Europe they admixed with Siberian hunter-gatherers forming the WHG-ANE cline of ancestry [See PCA above]. In the Near East, the Dzudzuana-related population admixed with North African-related ancestry in the Levant and with Siberian hunter-gatherer and eastern non-African-related ancestry in Iran and the Caucasus. Thus, the highly differentiated populations at the dawn of the Neolithic were primarily descended from Villabruna Cluster and Dzudzuana-related ancestors, with varying degrees of additional input related to both North Africa and Ancient North/East Eurasia whose proximate sources may be clarified by future sampling of geographically and temporally intermediate populations.

qpgraph-dzudzuana
An admixture graph model of Paleolithic West Eurasians. An automatically generated admixture graph models fits populations (worst Z-score of the difference between estimated and fitted f-statistics is 2.7) or populations (also including South_Africa_HG, worst Z-score is 3.5). This is a simplified model assuming binary admixture events and is not a unique solution (Supplementary Information section 2). Sampled populations are shown with ovals and select labeled internal nodes with rectangles.

Interesting excerpts from the supplementary materials:

From our analysis of Supplementary Information section 3, we showed that these sources are indeed complex, and only one of these (WHG, represented by Villabruna) appears to be a contributor to all the remaining sources. This should not be understood as showing that hunter-gatherers from mainland Europe migrated to the rest of West Eurasia, but rather that the fairly homogeneous post-15kya population of mainland Europe labeled WHG appear to represent a deep strain of ancestry that seems to have contributed to West Eurasians from the Gravettian era down to the Neolithic period.

Villabruna is representative of the WHG group. We also include ElMiron, the best sample from the Magdalenian era as we noticed that within the WHG group there were individuals that could not be modeled as a simple clade with Villabruna but also had some ElMiron-related ancestry. Ddudzuana is representative of the Ice Age Caucasus population, differentiated from Villabruna by Basal Eurasian ancestry. AG3 represents ANE/Upper Paleolithic Siberian ancestry, sampled from the vicinity of Lake Baikal, while Russia_Baikal_EN related to eastern Eurasians and represents a later layer of ancestry from the same region of Siberia as AG3 Finally, Mbuti are a deeply diverged African population that is used here to represent deep strains of ancestry (including Basal Eurasian) prior to the differentiation between West Eurasians and eastern non-Africans that are otherwise not accounted for by the remaining five sources. Collectively, we refer to this as ‘Basal’ or ‘Deep’ ancestry, which should be understood as referring potentially to both Basal Eurasian and African ancestry.

It has been suggested that there is an Anatolia Neolithic-related affinity in hunter-gatherers from the Iron Gates. Our analysis confirms this by showing that this population has Dzudzuana-related ancestry as do many hunter-gatherer populations from southeastern Europe, eastern Europe and Scandinavia. These populations cannot be modeled as a simple mixture of Villabruna and AG3 but require extra Dzudzuana-related ancestry even in the conservative estimates, with a positive admixture proportion inferred for several more in the speculative ones. Thus, the distinction between European hunter-gatherers and Near Eastern populations may have been gradual in pre-Neolithic times; samples from the Aegean (intermediate between those from the Balkans and Anatolia) may reveal how gradual the transition between Dzudzuana-like Neolithic Anatolians and mostly Villabruna-like hunter-gatherers was in southeastern Europe.

ancient-modern-european-admixture
Modified image (cut, with important samples marked). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the 365 split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (a) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown.

Villabruna: This type of ancestry differentiates between present-day Europeans and non-Europeans within West Eurasia, attaining a maximum of ~20% in the Baltic in accordance with previous observations and with the finding of a later persistence of significant hunter-gatherer ancestry in the region. Its proportion drops to ~0% throughout the Near East. Interestingly, a hint of such ancestry is also inferred in all North African populations west of Libya in the speculative proportions, consistent with an archaeogenetic inference of gene flow from Iberia to North Africa during the Late Neolithic.

ElMiron: This type of ancestry is absent in present-day West Eurasians. This may be because most of the Villabruna-related ancestry in Europeans traces to WHG populations that lacked it (since ElMiron-related ancestry is quite variable within European hunter-gatherers). However, ElMiron ancestry makes up only a minority component of all WHG populations sampled to date and WHG-related ancestry is a minority component of present-day Europeans. Thus, our failure to detect it in present day people may be simply be too little of it to detect with our methods.

Dzudzuana: Our analysis identifies Dzudzuana-related ancestry as the most important component of West Eurasians and the one that is found across West Eurasian-North African populations at ~46-88% levels. Thus, Dzudzuana-related ancestry can be viewed as the common core of the ancestry of West Eurasian-North African populations. Its distribution reaches its minima in northern Europe and appears to be complementary to that of Villabruna, being most strongly represented in North Africa, the Near East (including the Caucasus) and Mediterranean Europe. Our results here are expected from those of Supplementary Information section 3 in which we modeled ancient Near Eastern/North African populations (the principal ancestors of present-day people from the same regions) as deriving much of their ancestry from a Dzudzuana-related source. Migrations from the Near East/Caucasus associated with the spread of the Neolithic, but also the formation of steppe population introduced most of the Dzudzuana-related ancestry present in Europe, although (as we have seen above) some such ancestry was already present in some pre-agricultural hunter-gatherers in Europe.

AG3: Ancestry related to the AG3 sample from Siberia has a northern distribution, being strongly represented in both central-northern Europe and the north Caucasus.

Russia_Baikal_EN: Ancestry related to hunter-gatherers from Lake Baikal in Siberia (postdating AG3) appears to have affected primarily northeastern European populations which have been previously identified as having East Eurasian ancestry; some such ancestry is also identified for a Turkish population from Balıkesir, likely reflecting the Central Asian ancestry of Turkic speakers which has been recently confirmed directly in an Ottoman sample from Anatolia.

Some comments

So, to try and sum up:

  • Dzudzuana shares ancestry with ‘Common West Eurasian’ (CWE). the ancestor cluster of Villabruna.
  • Dzudzuana diverges from CWE because of a Basal Eurasian ancestry contribution [which supports that Basal Eurasian ancestry was a deep Middle Eastern lineage].
  • Dzudzuana is closest to Anatolia Neolithic, and close to Gravettian.
palaeolithic-gravettian-villabruna
Palaeolithic migrations and clusters in Europe. See more maps.

Chronologically:

  1. Aurignacian: First West Eurasians arrive ca. 36,000 BP, Goyet cluster expands probably with C1a2 lineages.
  2. After that, the early or ‘unmixed’ Villabruna cluster (‘hidden’ somewhere probably east of Europe, either North Eurasia or South Eurasia), lineages unknown (possibly IJ), contributes to:
    1. Gravettian (ca. 30,000 BP): Věstonice cluster expands, probably with IJ lineages.
    2. A (hidden) ‘Common West Eurasian’ population.
    3. In turn:

      • Dzudzuana ca. 26,000 BP derived from Common West Eurasian (curiously, haplogroup G seems to split in today’s subclades ca. 26,000 BP).
      • During the Gravettian (ca. 26,000 BP), an Anatolian Neolithic-like population exists already in the Near East. Both Věstonice and this Anatolian HG are close to Dzudzuana; in turn, Dzudzuana from CWE.

    4. Magdalenian (ca. 20,000 BP): El Mirón cluster expands, probably with more specific I lineages.
  3. Bølling-Allerød warming period (ca. 14,000 BP): ‘late’ Villabruna cluster or WHG (=CWE with greater affinity to Near Eastern populations) expands, probably spreading with R1b in mainland Europe and to the east (admixing with Siberian HG), creating the WHG — ANE ancestry cline, as reflected in Iron Gates HG, Baltic HG, etc.

[Here we have the possible “bidirectional gene flow between populations ancestral to Southeastern Europeans of the early Holocene and Anatolians of the late glacial or a dispersal of Southeastern Europeans into the Near East” inferred from Anatolian hunter-gatherers]

palaeolithic-gravettian-magdalenian-migrations
The Gravettian (30,000 to 20,000 years) is drawn in black and white; the subsequent Magdalenian (17,000 to 10,000 years) and Hamburgian (13,000-11,750 years) are in light blue and red. It is not known whether the spread of the Gravettian was a result of diffusion of people or cultures. This figure illustrates the possible monocentric origins of the Gravettian, in which the Gravettian is hypothesized to have its origin in the Middle Danube Basin, first spreading west (solid lines) and later spreading east and southeast (dashed lines). This scenario is largely based on the chronology of sites. Thus far, genome-wide data has been collected from only three of the ten< Gravettian regions indicated on the map. These regions are northern Austria (1 sample), the Czech Republic (6), southern Italy (3) and Belgium (3), indicating that they all share a genomic ancestry. However, it is unknown whether samples from the remaining regions also share a close genomic ancestry. Some skeletal remains associated with the Gravettian that could be investigated paleogenomically are from Sungir (Russia); Laghar Velho (central Portugal); Cussac Cave; Les Garennes, near Vilhonneur; and Level 2 at Abri Pataud116 (western France). Light blue and light red regions represent the approximate distributions of the Magdalenian Culture and the Hamburgian Culture (13,000-11,750 years). Figure adapted from Kozłowski. Image from Harris (2017)

The paper talks about possibilities for Common West Eurasian:

  1. Migration from mainland Europe to Near East or vice versa (not very likely);
  2. Migration from a geographically intermediate Ice Age refugium in southeast Europe, Anatolia, or the circum-Pontic region that explain post-glacial affinity of post-glacial Levantine and Anatolian populations.

It also re-states what was known:

  • EHG (ca. 8,000 BP) = between WHG — ANE (ca. 24,000 BP).
  • CHG (ca. 10,000 BP) = between EHG — Iran N.

I would say that the distinct CHG vs. Dzudzuana ancestry puts CHG probably to the south, within the Iranian Plateau, during the Gravettian, expanding probably later.

Also important, Ancestral North African probably accompanied by haplogroup E. Early expansion of North Africans into the Near East further confirms the impossibility of Afroasiatic (much younger) to be associated with these expansions, and confirms that the still unclear Green Sahara migrations are the key.

Related