Decline of genetic diversity in ancient domestic stallions in Europe

Open access research article Decline of genetic diversity in ancient domestic stallions in Europe, by Wutke et al., Science (2018), 4(4):eaap9691.

Abstract (emphasis mine):

Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection—initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times.

horses-y-chromosome-evolution
The frequencies of Y chromosome haplotypes started to change during the Late Bronze Age (1600–900 BCE).
Inferred temporal trajectories of haplotype frequencies. Each haplotype is displayed by a different color. The shaded area represents the 95% highest-density region. The trajectories were constructed taking the median values across frequencies from the simulations of the Bayesian posterior sample. The small chart represents the stacked frequencies; the amplitude of each colored area is proportional to the median haplotype frequencies (normalized) at a given time. The x and y axes of the small chart match those in the large one. Ka, thousands of years.

Interesting excerpts:

The first record of the modern domestic Y chromosome haplotype stems from two Bronze Age samples of similar age. Notably, both samples were found in two distantly located regions: present-day Slovakia (2000–1600 BCE, dated by archaeological context) and western Siberia (14C-dated: 1609–1436 cal. BCE). Although a very recent study proposes an oriental origin of this haplotype (14), we cannot determine the geographical origin of Y-HT-1 with certainty, because this haplotype has not been found thus far in predomestic or wild stallions. There are two possible scenarios: (i) Y-HT-1 emerged within the domestic population by mutation and (ii) Y-HT-1 was already present in wild horses and entered the domestic population either at the beginning of domestication (but initially restricted to Asian horses) or later by introgression (from wild Y-HT-1 carrying studs during the Iron Age). Crosses between domestic animals and their wild counterparts have been observed in several domestic species (15–18); thus, the simplest explanation would be that we missed Y-HT-1 in older samples because of limited geographical sampling. However, the estimated haplotype age is contemporary (Fig. 4) with the assumed starting point of horse domestication ~4000–3500 BCE (19), rendering it likely that Y-HT-1 originated within the domestic horse gene pool. Still, we cannot rule out definitively that it appeared before domestication.

Independent of its geographical origin, Y-HT-1 progressively replaced all other haplotypes—except for one additional lineage that is restricted to Yakutian horses (11). Considering our data, this trend in paternal diversity toward dominance of the modern lineage appears to start in the Bronze Age and becomes even more pronounced during the Iron Age. The Bronze Age was a time of large-scale human migrations across Eurasia (20–22), movements that were undoubtedly facilitated by the spread of horses as a means of transport and warfare. At that time, the western Eurasian steppes were inhabited by highly mobile cultures that largely relied on horses (20, 21, 23, 24). The genetic admixture of northern and central European humans with Caucasians/eastern Europeans did correlate with the spread of the Yamnaya culture from the Pontic-Caspian steppe (25), an area that has repeatedly been suggested as the center of horse domestication (19, 26, 27). Given the importance of domestic horses, it appears that deliberate selection/rejection of certain stallions by these people might have contributed to the loss of paternal diversity. The spread of humans out of this region might also have resulted in the spread of Y-HT-1 from Asia to Europe. This scenario also agrees with recent findings that the low male diversity of extant horses is not caused by recruiting only a limited number of stallions during early domestication (13).

horses-y-chromosome-map
Decline of paternal diversity began in Asia.
Maps displaying age, locality, and haplotype (different colors) of each successfully genotyped sample.

The presence of the Y chromosome haplotype carried by present-day Przewalski horses (Y-HT-2) in early domestic stallions and a European wild horse (Pie05; table S2) could be the result of introgression of Przewalski stallions. Although the original distribution of the Przewalski horse is unknown, it was probably much larger than that of the relict population in Mongolia that produced modern Przewalski horses and might even have extended into Central Europe. However, it is also possible that either Przewalski horses were among the initially domesticated horses or that Y-HT-2 occurred both in Przewalski horses and in those wild horses that are the ancestors of domestic horses, based on autosomal DNA data (30). Regardless of how Y-HT-2 entered the domestic gene pool, it was eventually lost, as were all haplotypes except Y-HT-1. In our sample set, Y-HT-2 was undetectable as early as the third time bin. However, it is possible that Y-HT-2 may have been present during this time period, but with a frequency below 0.11 (with 95% probability). The inferred time trajectories for Y-HT-2 frequencies suggest that it could nevertheless have persisted at very low frequencies until the Middle Ages (Fig. 3). On the basis of these simulations, this finding could be interpreted as a relic of this haplotype’s formerly higher frequency in the domestic horse gene pool. It is also possible that the presence of this haplotype could be the result of mating a wild stallion with a domestic mare, a frequently reported breeding practice when wild horses were still widely distributed. However, a significant contribution of the Przewalski horse to the gene pool of modern domestic horses has been almost ruled out by recent genomic studies (13, 31, 32).

horses-y-chromosome-selection
Stallion lineages through time.
Temporal haplotype network of the four detected Y chromosome haplotypes. Age of the samples indicated by multiple layers separated by color; vertical lines connecting the haplotypes of consecutive layers/ages represent which haplotype was transferred into a later/younger period. Numbers constitute the respective number of individuals showing this particular haplotype for that period. Prz, Przewalski; Dom, domestic.

Related:

Deep cultural ancestry and human development indicators across nation states

Open access Deep cultural ancestry and human development indicators across nation states, by Roland B. Sookias, Samuel Passmore, & Quentin D. Atkinson, RSOS (2018).

Abstract (emphasis mine):

How historical connections, events and cultural proximity can influence human development is being increasingly recognized. One aspect of history that has only recently begun to be examined is deep cultural ancestry, i.e. the vertical relationships of descent between cultures, which can be represented by a phylogenetic tree of descent. Here, we test whether deep cultural ancestry predicts the United Nations Human Development Index (HDI) for 44 Eurasian countries, using language ancestry as a proxy for cultural relatedness and controlling for three additional factors—geographical proximity, religion and former communism. While cultural ancestry alone predicts HDI and its subcomponents (income, health and education indices), when geographical proximity is included only income and health indices remain significant and the effect is small. When communism and religion variables are included, cultural ancestry is no longer a significant predictor; communism significantly negatively predicts HDI, income and health indices, and Muslim percentage of the population significantly negatively predicts education index, although the latter result may not be robust. These findings indicate that geographical proximity and recent cultural history—especially communism—are more important than deep cultural factors in current human development and suggest the efficacy of modern policy initiatives is not tightly constrained by cultural ancestry.

linguistic-religion-communism-groups
(a) Map showing the location of the 44 countries in our sample. Country regions are coloured according to HDI score from darker (low) to brighter (high). Coloured circles indicate major linguistic sub-groups—Germanic (green), Balto-Slavic (yellow), Italic (pink), Indo-Iranian (blue) and other (white). (b) Maximum clade credibility tree of 44 Indo-European languages corresponding to the countries in our sample, based on a Bayesian posterior sample of 1000 trees. The tips of the tree are colour coded according to HDI and its three subcomponents from darker (low) to brighter (high). Coloured boxes indicate major linguistic sub-groups as in panel (a).

Yet another questionable paper using bioinformatics, including many confounding factors, applying the “Catholic-versus-Protestantism”-efficiency kind of thinking (based on the traditional anti-Catholicism prevalent in certain regions even today) into modern religious distribution, linguistic (“cultural”) phylogenies, and modern borders of nation-states – instead of (traditional or modern, micro- or macro-) regions or cities, which would probably reveal other kind of differences.

I guess we will get a renewed New Age Inglehart–Welzel cultural map of the world rather soon.

An accident at work? Traumatic lesions in the skeleton of a Yamna “wagon driver”

Interesting article posted now free at ResearchGate:

An accident at work? Traumatic lesions in the skeleton of a 4th millennium BCE “wagon driver” from Sharakhalsun, Russia, by Tucker et al. HOMO – Journal of Comparative Human Biology (2017).

Excerpts (emphasis mine):

The cemetery site of Sharakhalsun 2 is located approximately 160 km east of Stavropol in the north Caucasus region of Russia [see featured image]. It comprises a linear alignment of mounds situated on the right side of the river Kalaus near the Manych water reserve. This area was a focus of burial activity from the late 5th millennium BCE onwards, and is dotted with tens of thousands of mounds.

Burial mound 6 was 50 m in diameter and 3 m high and was initially constructed by communities of the Steppe Maikop culture in the late 4th millennium BCE (Yakovlev and Samoylenko, 2008). During the third millennium, the mound was reused by groups from the Yamnaya community, who added several graves to the centre (graves 4, 5, 16) and periphery of the mound (grave 3). Several construction layers of the mound embankment can be attributed to these Yamnaya communities.

The most intriguing aspect of mound 6 was the discovery of four burials with wagons or wagon parts. The oldest is grave 18, which was a narrow, deep catacomb-like shaft dug from the side into the existing mound. At the bottom of the shaft the skeleton of an adult male was discovered, buried in a sitting position on a four-wheeled wagon [see figure below]. Most wooden parts of the wagon were poorly preserved but it is obvious that they comprised a complete, assembled wagon that was squeezed into the burial chamber. No other grave inclusions were found. Due to the constant remodelling of the mound when new burials were added, the actual stratigraphic relationship to the central Yamnaya graves is unclear but wooden parts of the wagon have been radiocarbon dated to 4500 ± 40 BP (3356-3033 cal BCE, at 95.4%, OxCal 4.2.4; Bronk Ramsey, 2009), which links the grave to the early Yamnaya culture and specifically to a group that are in between the Maikop and Yamnaya.

Wagon burials are a well-known phenomenon in the Northwest and North Caucasian steppe zone and beyond. The dating of their archaeological contexts associates such graves with the Novotitarovskaya, Yamnaya and Catacomb Cultures (Gei, 2000; Häusler, 1982; Kaiser, 2007; Shishlina et al., 2013). There is a great variation in this type of burial, with some wagons being found intact and assembled within graves, wagons with dismantled wheels being found below burials, or wagon boxes being used as the grave ceiling. Assembled or dismantled wagons have also been found in specific chambers beside the burial pits (Belinskiy and Kalmykov, 2004; Gei, 2000; Häusler, 1982; Limberis and Marchenko, 2002).

Not only is grave 18 the oldest wagon burial in mound 6 at Sharakhalsun but the position of the individual is unique. Out of the approximately 280 wagon burials so far known from the Urals to the lower Danube (Kaiser, 2007), it is the only one where the associated individual was buried sitting on the wagon, in contrast to the typical supine burial position underneath the wagon box.

Various interpretations have been posited for the significance of wagons in funerary rituals of the period, with Kaiser (2003) arguing that their relative rarity in Catacomb Culture burials represents the beginnings of social stratification, while Reinhold et al. (2017) discuss whether they may have been related to ownership rather than active driving. Wagons may have started to be used as ceremonial vehicles rather than for purely utilitarian purposes, with their final function being as a hearse (Uckelmann, 2013), the corpse being laid out on the wagon bed. In cases where the wagons were dismantled, and therefore no longer able to serve a functional purpose, it has been argued that this represents either their symbolic disabling (Knüsel, 2002), or gives them a new ritualistic lease of life (Shishlina et al., 2014). The finding of partial wagons in some burials has been suggested to represent pars pro toto (Kaiser, 2003), with the symbolic importance of the vehicle overriding any practical use they may have had in the funerary rites.

yamna-grave-wagon-rider
(a) In situ photograph of the individual in Grave 18, showing the slumping of the skeleton as a result of burial in a sitting position and (b) plan of the burial, showing the relationship of the skeleton to the surviving wooden parts of the wagon.

The article goes on to enumerate the different injuries of the skeleton that are compatible with a wagon accident.

Conclusion:

The burial of the individual, found in a seated position on a fully assembled wagon, is unique. When this form of burial is considered alongside the number and pattern of fractures found in the individual, which is also unique amongst the wider burial population, it has to be considered whether the individual could have been an active wagon-driver who sustained the majority, if not all, of the injuries in a severe accident whilst engaged in this activity.

There are some skeletal features recorded in the individual that could suggest heavy and unusual physical loading that may have been associated with habitual wagon-driving, although it must always be borne in mind that inferring specific occupations from activity-related skeletal changes is fraught with difficulties (see Jurmain et al., 2011; Villotte and Knüsel, 2013). The individual demonstrated heavy or abnormal use of muscle groups and ligaments involved in anterior and lateral flexion of the neck; elevation and stabilisation of the shoulders; abduction, adduction, rotation, flexion and extension of the arm; extension and flexion of the wrist; flexion, rotation and stabilisation of the thigh; and flexion of the knee (see Appendix for a more detailed description of these entheseal changes). All of these would be typical body movements expected in the action of sitting on a wagon and controlling the cart animals. The same pattern of entheseal changes was found in individuals examined by Molleson and Hodges (1993) and Kozak (2014), who also argued that this could suggest the presence of wagon drivers in their skeletal samples.

[Spondylolisthesis of the fourth lumbar vertebra and nonunion of the left ulna fracture] suggest that the individual recovered from his injuries, despite their severity, and continued with his former activities. However, the non-union of the ulna fracture may have resulted in some functional problems (dos Reis et al., 2009), while vertebral compression fractures often leave patients with chronic pain (Silverman, 1992). The individual had also developed severe secondary arthritis of the head of the first metacarpal and proximal phalanx as a result of the fracture to the metacarpal. Complications may also have arisen with the multiple rib fractures, especially those of the lower ribs, which are often associated with abdominal injuries (Brickley, 2006), while isolated fractures of the fibula can be associated with severe soft tissue damage to the ankle (Galloway, 2014b). Unfortunately, it is not possible to state with any certainty the degree to which the individual may have been affected by any complications in terms of loss of function or pain, as these are very specific to each individual (Petrie, 1967).

The majority of the suite of traumatic injuries suffered by this individual possibly relates to a single accident a number of months, if not years, before his death. The typical aetiology of these injuries would suggest that this may have been a fall from a wagon, with subsequent crushing by the vehicle landing on top of them, or “overrun” of a wheel across the chest of the individual, an accident involving their draft animals, or a combination of all three. The survival and recovery of the individual, despite the severity of his injuries, would probably have been a notable event in the community and it is interesting to speculate whether the unique positioning of the individual in his grave, sitting on a wagon rather than buried in a supine position underneath the wagon box, was some form of commemoration of the event.

Also, for those interested in research on the Northern Caucasus and its contacts with Khvalynsk/Yamna, especially due to David Reich’s opinion on a potential PIE homeland south of the Caucasus, and on connections with Maykop, I recommend you to take a look at Sabine Reinhold’s ResearchGate account.

north-caucasus-bronze-age
General outline of the North Caucasian Bronze Age.

See also:

Latin Americans show widespread Mediterranean and North African ancestry

Recent preprint Latin Americans show wide-spread Converso ancestry and the imprint of local Native ancestry on physical appearance, by Chacon-Duque et al. bioRxiv (2018).

Abstract:

Historical records and genetic analyses indicate that Latin Americans trace their ancestry mainly to the admixture of Native Americans, Europeans and Sub-Saharan Africans. Using novel haplotype-based methods here we infer the sub-populations involved in admixture for over 6,500 Latin Americans and evaluate the impact of sub-continental ancestry on the physical appearance of these individuals. We find that pre-Columbian Native genetic structure is mirrored in Latin Americans and that sources of non-Native ancestry, and admixture timings, match documented migratory flows. We also detect South/East Mediterranean ancestry across Latin America, probably stemming from the clandestine colonial migration of Christian converts of non-European origin (Conversos). Furthermore, we find that Central Andean ancestry impacts on variation of facial features in Latin Americans, particularly nose morphology, possibly relating to environmental adaptation during the evolution of Native Americans.

latin-america-finestructure
Reference population samples, fineSTRUCTURE groups and SOURCEFIND ancestry estimates for the five Latin American countries examined. (A) Colored pies and grey dots indicate the approximate geographic location of the 117 reference population samples studied. These samples have been subdivided on the world map into five major biogeographic regions: Native Americans (38 populations), Europeans (42 populations), East/South Mediterraneans (15 populations), Sub-Saharan Africans (15 populations) and East Asians (7 populations). The coloring of pies represents the proportion of individuals from that sample included in one of the 35 reference groups defined using fineSTRUCTURE (these groups are listed in the color-coded insets for each region; Supplementary Fig. 2). The grey dots indicate reference populations not inferred to contribute ancestry to the CANDELA sample. Panels (B) and (C) show, respectively, the estimated proportion of sub-continental Native American and European ancestry components in individuals with >5% total Native American or European ancestry in each country sampled (the stacked bars are color-coded as for the reference population groups shown in the insets of panel (A)). Panel (D) shows boxplots of the estimated sub-continental ancestry components for individuals with >5% total Sephardic/East/South Mediterranean ancestry. In this panel colors refer to countries as for the colored country labels shown in (A).

I don’t know how I missed this. It is probably the biggest sample of Latin American populations used for genetic analysis, and it seems it is due for publication soon.

One of its most interesting finds is the eastern Mediterranean and North African ancestry found in almost a quarter of the individuals sampled all over Latin America, which the authors attribute to Sephardic Jews or Conversos.

Although these Conversos were forbidden from migrating to the colonies, historical records document that some individuals made the journey, in an attempt to avoid persecution14. Since this was a clandestine process, the extent of Converso migration to Latin America is poorly documented. Genetic studies have provided suggestive evidence that certain Latin American populations, arguably with a peculiar history, could have substantial Converso ancestry1,18. Our findings indicate that the genetic signature of Converso migration to Latin America is substantially more prevalent than suggested by these special cases, or by historical records.

However, strictly speaking, Converso refers to a recent convert, while this ancestry could have also been part of older Sephardic (and obviously other North African) admixture found in Iberian populations during the Reconquista.

latin-america-native-spanish-conversos
Geographic variation of Native American (A), European (B), and East/South Mediterranean (C) ancestry sub-components in Latin American individuals. Each pie represents an individual with pie location corresponding to birthplace. Since many individuals share birthplace, jittering has been performed based on pie size and how crowded an area is. Pie size is proportional to total continental ancestry and only individuals with >5% of each continental ancestry are shown. Coloring of pies represents the proportion of each sub-continental component estimated for each individual (color-coded as in Fig. 1; Chaco2 does not contribute >5% to any individual and was excluded). Pies in panel (C) have been enlarged to facilitate visualization.

Discovered via Lizzie Wade’s article Latin America’s lost histories revealed in modern DNA, Science (2018).

Related:

David Reich on social inequality and Yamna expansion with few Y-DNA subclades

Interesting article from David Reich that I had missed, at Nautilus, Social Inequality Leaves a Genetic Mark.

It explores one of the main issues we are observing with ancient DNA, the greater reduction in Y-DNA lineages relative to mtDNA lineages, and its most likely explanation (which I discussed recently).

Excerpts interesting for the Indo-European question (emphasis mine):

Gimbutas’s reconstruction has been criticized as fantastical by her critics, and any attempt to paint a vivid picture of what a human culture was like before the period of written texts needs to be viewed with caution. Nevertheless, ancient DNA data has provided evidence that the Yamnaya were indeed a society in which power was concentrated among a small number of elite males. The Y chromosomes that the Yamnaya carried were nearly all of a few types, which shows that a limited number of males must have been extraordinarily successful in spreading their genes. In contrast, in their mitochondrial DNA, the Yamnaya had more diverse sequences.9 The descendants of the Yamnaya or their close relatives spread their Y chromosomes into Europe and India, and the demographic impact of this expansion was profound, as the Y-chromosome types they carried were absent in Europe and India before the Bronze Age but are predominant in both places today.13

This Yamnaya expansion also cannot have been entirely friendly, as is clear from the fact that the proportion of Y chromosomes of steppe origin in both western Europe14 and in India15 today is much larger than the proportion of the rest of the genome. This preponderance of male ancestry coming from the steppe implies that male descendants of the Yamnaya with political or social power were more successful at competing for local mates than men from the local groups. The most striking example I know is from Iberia in far southwestern Europe, where Yamnaya-derived ancestry arrived suddenly at the onset of the Bronze Age between 4,500 and 4,000 years ago. Daniel Bradley’s laboratory and my laboratory independently produced ancient DNA from individuals of this period.14 We find that in the first Iberians with Yamnaya-derived ancestry, the proportion of Yamnaya ancestry across the whole genome is almost never more than around 15 percent. However, around 90 percent of males who carry Yamnaya ancestry have a Y-chromosome type of steppe origin that was absent in Iberia prior to that time. It is clear that there were extraordinary hierarchies and imbalances in power at work in the Yamnaya expansions.

David Reich clearly doesn’t give a damn about how other people might react to his commentaries. That’s nice.

In any case, if anyone was still in denial, R1b-M269 expanded with Yamna (through the Bell Beaker expansion) into Iberia, hence yes, 90% of modern Basque male lineages have an origin in the steppe, like the R1b-DF27 sample recently found, and their common ancestor spoke Late Proto-Indo-European.

Findings like these, which should be taken as normal developments of research, are apparently still a trauma for many – like R1a-fans from India realizing most of their paternal ancestors came from the steppe, or its fans from Northern Europe understanding that their paternal ancestors probably spoke Uralic or a related language; or N1c-fans seeing how their paternal ancestors probably didn’t speak Uralic. It seems life isn’t fair to stupid simplistic ethnolinguistic ideas

Let’s see which Y-DNA haplogroups we find in West Yamna, to verify the latest migration model of Late PIE speakers of the Reich Lab (featured image).

Check out also the BBC News coverage of David Reich and Nick Patterson, the two most influential researchers of the moment in Human Ancestry: How ancient DNA is transforming our view of the past.

Related:

Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations

pca-korea-japanese-han

Open access Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations, by Wang, Lu, Chung, and Xu, Hereditas (2018) 155:19.

Abstract (emphasis mine):

Background
Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied.

Results
We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant.

Conclusions
These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

pca-phylogenetic-tree-east-asia
Population level phylogenetic Tree and Principal component analysis (PCA). (A) The maximum likelihood tree was constructed based on pair-wise FST matrix. And the marked number are bootstrap value; (B) The top two PCs of individuals representing six East Asian populations, mapped to their corresponding geographic locations (generated by R 2.15.2 and Microsoft Excel 2010)

Interesting excerpts:

It is obvious that the genetic difference among the three East Asian groups initially resulted from population divergence due to pre-historical or historical migrations. Subsequently, different geographical locations where the three populations are located, mainland of China, Korean Peninsular and Japanese archipelago, respectively, apparently facilitated population differentiation due to physical isolation and independent genetic drift. Our estimations of population divergence time among the three groups, 1.2~ 3.6 KYA, are largely consistent with known history of the three populations and those related. However, considering that recent admixture could have reduced genetic difference between populations, it is likely the divergence time was underestimated.

We detected substantial gene flow among the three populations and also from the surrounding populations. For example, based on our analysis with the F3 test, Korean received gene flow from Han Chinese and Japanese, and gene flow also happened between Han Chinese and Japanese (Additional file 12: Table S3). These gene flows are expected to have reduced the genetic differentiation between the three ethnic groups. On the other hand, we also detected considerable gene flow from surrounding populations to the three populations studied. For instance, an ancestral population represented by Ryukyuan have contributed greater to Japanese than to Han Chinese, while southern ethnic group like Dai have contributed more to continent populations than to island and peninsula populations. Contrary to the gene flow among the three populations, these gene flows from surrounding populations are expected to have increased genetic difference among the three populations if they occurred independently and from different source populations. According to our results, the major source of gene flow to the three ethnic groups were substantially different, for example, the major source of gene flow to Han Chinese was from southern ethnic groups, the major source of gene flow to Japanese was from southern islands, and the major source of gene flow to Korean were from both mainland and islands. Therefore, those gene flows might have significantly contributed to further genetic differentiation of the three populations.

The three populations have similar but not identical demographical history; they all experience a strong population expansion in the last 20,000 years. However, according to different geographic distribution, their effective population size and population expansion are different.

Although based on modern populations, the study is interesting in light of the potential implications for a Macro-Altaic proposal.

Related:

Ancient Patagonian genomes suggest origin and diversification of late maritime hunter-gatherers

ancient-patagonia-admixture

Genomic insights into the origin and diversification of late maritime hunter-gatherers from the Chilean Patagonia, by de la Fuente et al. PNAS (2018) published ahead of print.

Abstract (emphasis mine):

Patagonia was the last region of the Americas reached by humans who entered the continent from Siberia ∼15,000–20,000 y ago. Despite recent genomic approaches to reconstruct the continental evolutionary history, regional characterization of ancient and modern genomes remains understudied. Exploring the genomic diversity within Patagonia is not just a valuable strategy to gain a better understanding of the history and diversification of human populations in the southernmost tip of the Americas, but it would also improve the representation of Native American diversity in global databases of human variation. Here, we present genome data from four modern populations from Central Southern Chile and Patagonia (n = 61) and four ancient maritime individuals from Patagonia (∼1,000 y old). Both the modern and ancient individuals studied in this work have a greater genetic affinity with other modern Native Americans than to any non-American population, showing within South America a clear structure between major geographical regions. Native Patagonian Kawéskar and Yámana showed the highest genetic affinity with the ancient individuals, indicating genetic continuity in the region during the past 1,000 y before present, together with an important agreement between the ethnic affiliation and historical distribution of both groups. Lastly, the ancient maritime individuals were genetically equidistant to a ∼200-y-old terrestrial hunter-gatherer from Tierra del Fuego, which supports a model with an initial separation of a common ancestral group to both maritime populations from a terrestrial population, with a later diversification of the maritime groups.

pca-ancient-south-american
PCA of ancient and present-day South American populations. All of the ancient individuals were projected onto the first two PCs by using the lsq option from smartpca.

Related:

Consequences of O&M 2018 (III): The Balto-Slavic conundrum in Linguistics, Archaeology, and Genetics

This is part of a series of posts analyzing the findings of the recent Nature papers Olalde et al.(2018) and Mathieson et al.(2018) (abbreviated O&M 2018).

The recent publication of Narasimhan et al. (2018) has outdated the draft of this post a bit, and it has made it at the same time still more interesting.

While we wait for the publication of the dataset (and the actual Y-DNA haplogroups and precise subclades with the revision of the paper), and as we watch the wrath of Hindu nationalists vented against the West (as if the steppe was in Western Europe) and science itself, we have already seen confirmation from the Reich Lab of their new approach to Late Proto-Indo-European migrations.

Yamna/Steppe EMBA, previously identified as the direct source of “steppe” ancestry (AKA Yamnaya‘ ancestry) and Late Indo-European migrations in Asia – through Corded Ware, it is to be understood – has been officially changed. In the case of Indo-Iranian migrations it is the “Steppe MLBA cloud”, after a direct contribution to it of Yamna/Steppe EMBA, which expanded Indo-Iranian, as I predicted ancient DNA could support.

In Twitter, the main author responded the following when asked for this change regarding the origin of steppe ancestry in Asian migrants (emphasis mine):

Our reasons are:

  1. The Turan samples show no elevated steppe ancestry till 2000BC.
  2. MLBA is R1a
  3. Indus periphery doesn’t have steppe ancestry but Swat does, and EMBA doesn’t work both in terms of time or genetic ancestry to explain the difference.
yamna-late-proto-indo-european
Image modified from Narasimhan et al. (2018), including the most likely proto-language identification of different groups. Original description “Modeling results including Admixture events, with clines or 2-way mixtures shown in rectangles, and clouds or 3-way mixtures shown in ellipses”. Yes, this map is the latest official view on migrations from the Reich Lab now. See the original full image here.

I am glad to see finally recognized that Y-DNA haplogroups and time have to be taken into account, and happy also to see an end to the by now obsolete ‘ADMIXTURE/PCA-only relevance’ in Human Ancestry. The timing of archaeological migrations, the cultural attribution of each sample, and the role of Y-DNA variability reduction and expansion have been finally recognized as equally important to assess potential migrations, as I requested.

This change was already in the making some months ago, when David Anthony – who has worked with the group for this paper and others before it – already changed his official view on Corded Ware – from his previous support of the 2015 model. His latest theory, which linked Yamna settlements in Hungary with a potential mixed society of migrants (of R1b-L23 and R1a-Z645 lineages) from West Yamna, is most likely wrong, too, but it was clearly a brave step forward in the right direction.

The only reasonable model now is that Yamna expanded Late Proto-Indo-European languages with steppe ancestry + R1b-L23 subclades.

You can either accept this change, or you can deny it and wait until one sample of R1a-Z645 appears in West Yamna or central Europe, or one sample of R1b-L23 appears in Corded Ware (as it is obvious it could happen), to keep spreading the wrong ideas still some more years, while the rest of the world goes on: Mallory, Anthony, and other archaeologists co-authoring the latest paper (probably part of the stronger partnership with academics that we were going to see), who had formally put forward complex, detailed theories, investing their time and name in them, have rejected their previous migration models to develop new ones based on the most recent findings. If they can do that, I am sure any amateur geneticist out there can, too.

yamna-expansion-malopolska
Modified image, from Narasimhan et al. (2018). Anthony’s new model of a Yamna Hungary -> Corded Ware (Małopolska) migration arrow in red. Notice also how they keep the arrow from West Yamna to the north (in black), due probably to the Baltic Late Neolithic samples (see below).

The Balto-Slavic dialect and its homeland

An interesting question in Linguistics and Archaeology, now that Corded Ware cannot be identified as “Indo-Slavonic” or any other imaginary ancient group (like Indo-Slavo-Germanic), remains thus mostly unchanged since before the famous 2015 genetic papers:

  • Was Balto-Slavic a dialect of the expanding North-West Indo-European language, a Northern LPIE dialect, as we support, based on morphological and lexical isoglosses?
  • Or was it part of an Indo-Slavonic group in East Yamna, i.e. a Graeco-Aryan dialect, based mainly on the traditional Satem-Centum phonological division?

I am a strong supporter of Balto-Slavic being a member of a North-West Indo-European group. That’s probably because I educated myself first with the main Spanish books* on Proto-Indo-European reconstruction, and its authors kept repeating this consistent idea, but I have found no relevant data to reject it in the past 15 years.

* Today two of the three volumes are available in English, although they are from the early 1990s, hence a bit outdated. They also maintain certain peculiarities from Adrados’ own personal theories, such as multiple (coloured) laryngeals, 5 cases – with a common ancestral oblique case – for Middle PIE, etc. But it has lots of detailed discussions on the different aspects of the reconstruction. It is not an easy introductory manual to the field, though; for that you have already many famous short handbooks out there, like those of Fortson (N.American), Beekes (Leiden), or Meier-Brügger (Germany).

Fernando and I have always maintained that North-West Indo-European must have formed a very recent community, probably connected well into the early 2nd millennium BC for certain recent isoglosses to spread among its early dialects, based on our guesstimates*, and on our belief that it formed at some point not just a dialect continuum, but probably a common language, so we estimated that the expansion was associated with the pan-European influence of Únětice and close early Bronze Age European contacts.

NOTE. I know, you must be thinking “linguistic guesstimates? Bollocks, that’s not Science”. Right? Wrong. When you learn a dozen languages from different branches, half a dozen ancient ones, and then still study some reconstructed proto-languages from them, you begin to make your own assumptions about how the language changes you perceive could have developed according to your mental time frames. If you just learned a second language and some Latin in school, and try to make assumptions as to how language changes, or you believe you can judge it with this limited background, you have evidently the wrong idea of what a guesstimate is. I accept criticism to this concept from a scientist used only to statistical methods, since it comes from pure ignorance of what it means. And I accept alternative guesstimates from linguists whose language backgrounds may differ (and thus their perception of language change). However, I would not accept a glottochronological or otherwise (supposedly) statistical model instead (or a religious model, for that matter), so we have no alternatives to guesstimates for the moment.

In fact, guesstimates and dialectalization have paved the way to the steppe hypothesis, first with the kurgan hypothesis by Marija Gimbutas, then complemented further in the past 60 years by linguists and archaeologists into a detailed Khvalynsk -> Yamna -> Afanasevo/Bell Beaker/Sintashta-Andronovo expansion model, now confirmed with genomics. So either you trust us (or any other polyglot who deals with Indo-European matters, like Adrados, Lehmann, Beekes, Kloekhorst, Kortlandt, etc.), or you begin learning ancient languages and obtaining your own guesstimates, whichever way you prefer. The easy way of numbers + computer science does not exist yet, and is quite far from happening – until we can understand how our brains summarize and select important details involved in obtaining estimates – , no matter what you might be reading (even in Nature or Science) recently

proto-indo-european-expansion
Proto-Indo-European dialectal expansion according to Adrados (1998).

Data from the 2015 papers changed my understanding of the original NWIE-speaking community, and I have since shifted my preffered anthropological model (from a Northern dialect in Yamna spreading into a loose NWIE-speaking Corded Ware -> Únětice) to a quite close group formed by late Yamna settlers in the Carpathian Basin, expanded as East Bell Beakers, and later continuing with close contacts through Central European EBA.

NOTE. As you can read, we initially rejected Gimbutas’ and Anthony’s (2007) notion of a Late PIE splitting suddenly into all known dialects (viz. Italo-Celtic with Vučedol/Bell Beaker), and looked thus for a common NWIE spread with Corded Ware migrants, with help from inferences of modern haplogroup distribution (as was common in the early 2000s). Language reconstruction was the foundation of that model, and it was right in its own way. It probably gave the wrong idea to geneticists and archaeologists, who quite easily accepted some results from the 2015 papers as supporting this model. But it also helped us develop a new model and predict what would happen in future papers, as demonstrated in O&M 2018. Any alternative linguistic and archaeological model could explain what is seen today in genomics, but our model of North-West Indo-European reconstruction is obviously at present the best fit for it.

calcolithic-expansion
Map of Chalcolithic migrations (A Grammar of Modern Indo-European, 2nd ed. 2008): Corded Ware as the vector of Indo-European languages.

Nevertheless, one of the most important Balticists and Slavicists alive, Frederik Kortlandt, posits that there was in fact an Indo-Slavonic group, so one has to take that possibility into account. Not that his ideas are flawless, of course: he defends the glottalic theory – which is still held today by just a handful of researchers – , and I strongly oppose his description of Balto-Slavic and Germanic oblique cases in *-m- (against other LPIE *-bh-) as an ancestral remnant related to Anatolian (an ending which few scholars would agree correspond to what he claims), since that would probably represent an older split than warranted in our model. I believe genetics is proving that the dialectalization of Late PIE happened as Fernando López-Menchero and I described.

NOTE. The idea with these examples of how he has been wrong in LPIE and MPIE reconstruction is not to observe the common ad hominem arguments used by amateur geneticists to dismiss academic proposals (“he said that and was wrong, ergo he is wrong now”). It is to bring into attention that the argument from authority is important for the academic community insofar as it creates a common ground, i.e. especially when there are many relevant scholars agreeing on the same subject. But, indeed, any model can and should be challenged, and all authorities are capable of being wrong, and in fact they often are.

The most common explanation today for the dialectal development *-m- is an innovation (not an archaism), whether morphological (viz. Ita. and Gk. them. pl *-i) or phonological (as I defend); and the most commonly repeated model for the satemization trend (even for those supporting a three-dorsal theory for PIE) is areal contact, whether driven by a previous (most likely Uralic) substratum, or not. Hence, if Kortlandt’s main different phonological and morphological assessments of the parent language are flawed, and they are the basis for his dialectal scheme, it should be revised.

The ‘atomic bomb’ that Indo-Slavonic proponents launched, in my opinion, was Holzer’s Temematic (born roughly at the same time as the renewed Old European concept in North-West Indo-European model of Oettinger) – and indeed Kortlandt’s acceptance of it. It seems to me like the linguistic equivalent of the archaeological “patron-client relationship” proposed by Anthony for a cultural diffusion of Late PIE into different Corded Ware regions: almost impossible to be fully rejected, if the Indo-Slavonic superstrate is proposed for a relatively early time.

In my opinion, the shared morphological layer with North-West Indo-European is obviously older than Iranian influence on Slavic, and I think this is communis opinio today. But how could we disentangle the dialectalization of Balto-Slavic, if there is (as it seems) an ancestral substrate layer (most likely Uralic) common to both Balto-Slavic and Indo-Iranian? It seems a very difficult task.

bronze_age_early_Unetice.
Diachronic map of migrations in Europe ca. 2250-1750 BC

The expansion of Balto-Slavic

In any case, there are two, and only two mainstream choices right now.

NOTE. Mainstream, as in representing trends current today among Indo-Europeanists, so that many programs around the world would explain these alternative models to their students, or they would easily appear in most handbooks. Not like the word “mainstream” you read in any comment out there by anyone who has never been interested in Indo-European studies, and uses any text from any author, written who knows how long ago, merely to justify their ethnic preconceptions coupled with certain genomic finds.

You can agree with:

A) The Spanish and German schools of thought, together with many American and British scholars, as well as archaeologists like Heyd, Mallory, or Prescott, and now Anthony, too: the language ancestral to Balto-Slavic, Germanic, and Italo-Celtic accompanied expanding West Yamna/East Bell Beakers into Europe, and then their speakers – like the rest of peoples everywhere in Europe – admixed later in the different regions.

B) Frederik Kortlandt and other Indo-Slavicists. The ‘original’ Balto-Slavic would have spread with Srubna (and likely Potapovka before it), as a product of the admixture of East Yamna’s Indo-Slavonic with incoming Corded Ware migrants (this would correspond to my description of Indo-Iranian). ‘True’ Balto-Slavic speakers would have then absorbed the Temematic-speaking migrants (equivalent to early Balto-Slavic migrants as described in the demic diffusion model) spreading from the west, most likely in the steppe. Later developments from the steppe would have then brought Baltic to the north, and Slavic to the west.

Therefore, in both cases the language spoken by early R1a-Z645 lineages in Únětice or Mierzanowice/Nitra EBA cultures would have been an eastern North-West Indo-European dialect associated with expanding Bell Beakers, and closely related to Germanic and Italo-Celtic. In the second case, the ancient samples we see genetically closer to modern West Slavs could thus be identified with those speaking the Temematic substrate absorbed later by Balto-Slavic, or maybe by Balts migrating northward, and Slavs spreading west- and southward.

NOTE. In any case, we know that R1a-Z645 subclades resurged in Central-East Europe after the expansion of Bell Beakers, potentially showing an ancient link with the prevalent R1a subclades in the region today. We know that some ancient Central European populations cluster near modern West Slavs, but in other interesting regions (like the British Isles, Central Europe, Scandinavia, or Iberia) we also see close clusters, and nevertheless observe historically documented radical ethnolinguistic changes, as well as many different subsequent genetic inflows and founder effects, that have significantly altered the anthropological picture in these regions, so it could very well be that the lineages we find in ancient samples do not correspond to modern West Slavic lineages, or even similar ancient and modern lineages could show a radical cultural discontinuity (as is likely the case in this to-and-from-the-steppe migration scheme).

bronze-age-tollense-battle
Diachronic map of migrations in Europe ca. 1250-750 BC.

Since we are going to see signs of both – west and east admixture – in early Slavic communities near the steppe, and the distribution from South, West, and East Slavs will include a wide “cloud” connecting Central, East, and South-East Europe, as it is evident already from early Germanic samples, it may be interesting to shift our attention to the Tollense valley and Lusatian samples, and their predominant Y-DNA haplogroups. Once again, tracking male-driven migrations from Central Europe to the Baltic region and the steppe, and back again to much of Central and South Europe, will determine which groups expanded this eastern NWIE dialect initially and in later times.

Since Baltic and Slavic languages are attested quite late, genetics is likely to help us select among the different available models for Balto-Slavic, although (it is worth repeating it) these lineages may not be the same that later expanded each dialect.

NOTE. Bronze and Iron Age samples might begin to depict the true Balto-Slavic migration map. Apart from the strong differences in the satemization processes seen among Baltic, Slavic, and Indo-Iranian, from an archaeological point of view the geographic location of the earliest attested Baltic languages and the prehistoric developments of the region seem to me almost incompatible with a homeland in the steppe. Anyway, in the worst-case scenario – for those of us who work with Balto-Slavic to reconstruct North-West Indo-European – there is consensus that there must an eastern North-West Indo-European language (which some would call Temematic), whose common traits with Germanic and Italo-Celtic we use to reconstruct their parent language. The question remains thus mostly theoretical, of limited pragmatic use for the reconstruction.

The third way: Baltic Late Neolithic

I have referred to Kristiansen and his group‘s position regarding Corded Ware as Indo-European as flawed before. While their latest interpretation (and language identification) was wrong, Kristiansen’s original idea of long-lasting contacts in the Dnieper-Dniester region with the area occupied by late Trypillia developing a Proto-Corded Ware culture was probably right, as we are seeing now.

New data in Mittnik et al. 2018 show some interesting early Late Neolithic samples from the Baltic region – Zvejnieki, Gyvakarai1 (R1a-Z645) and Plinkaigalis242 – , proving what I predicted: that elevated steppe ancestry and R1a-Z645 subclades would be found in the Dnieper-Dniester region unrelated to the Yamna expansion, and, it seems, to migrants of the Corded Ware A-horizon.

Funnily enough, this shows that there were probably ancient interactions in the region, as originally asserted by Kristiansen, and probably following some of Victor Klochko‘s proposed exchange paths, but earlier than predicted by him.

Nevertheless, linguist Guus Kroonen (from Kristiansen’s workgroup) issued a quick response to O&M 2018 in yet another twist of his agricultural substrate theory, changing Corded Ware from the vector to a vector of expansion of Late Proto-Indo-European languages (thus following again strictly Gimbutas’ oudated model), which fails thus to tackle the main inconsistencies of their previous models, as shown now with the latest paper on South Asian migrations. As I said, they were always one step behind Anthony, and they still are.

Funny also how Anthony, too – like Kristiansen – , may have been right all along since 2007, in proposing that Corded Ware (the nuclear Corded Ware migrants) stemmed from the Dnieper-Dniester region roughly at the same time as Yamna migrants expanded west, and that they did not have any genetic connection with each other.

neolithic_steppe-anatolian-migrations
Most likely Pre-Proto-Anatolian migration with Suvorovo-Novodanilovka chiefs in the North Pontic steppe and the Balkans.

Both researchers, who collaborated with the latest genomic research, remade their models, and have to revise now their most recent proposals with the new data, influencing each new paper published with their pressure to be right in their previous models, and with new genomic data compelling them to change their theories under the pressure not to be too wrong again, in this strange vicious circle. Had they remained silent and committed to their archaeological theories, they could have been right all along, each one in their own way.

NOTE. BTW, in case you see ad hominem here too, I feel compelled to say that only thanks to their commitment to disentangle the truth about ancient migrations, and their readiness to collaborate with genetic research – unlike many others in their field – we know today what we know. If they have been wrong many times, it is because they have tried to connect the genetic dots as they were told. Only because of their readiness to explore their science further they should be praised by all. But, again, that does not mean that they cannot be wrong in their models…

Thanks to Anthony’s latest change of mind, we don’t have to hear the “cultural diffusion” argument anymore, and I consider this a great advance for the field.

NOTE. Not that there could not be prehistoric cultural diffusion events of language (i.e. not accompanied by genetic admixture), of course, but such theories, almost impossible to disprove, probably need much more than a simple “patron-client relationship” proposal and anthropometry to justify them, in a time when we will be able to see almost every meaningful personal exchange in Genomics…

Today – since the finding of Ukraine_Eneolithic sample I6561, of haplogroup R1a-Z93, dated ca. 4200 BC, and likely from the Sredni Stog culture – it seems more likely than ever that the expansion of R1a-Z645 subclades was in fact associated with the spread of steppe admixture probably near the North Pontic forest-steppe region, most likely from the Dnieper-Dniester or Upper Dniester region.

The appearance of a ‘late’ Z93 subclade already at such an early date, with steppe admixture, makes it still more likely that the Proto-Corded Ware culture, from where Corded Ware migrants of R1a-Z645 lineages later spread, was probably associated with this wide region.

In a parallel but unrelated migration, as it is now clear, steppe admixture also expanded with Yamna settlers of R1b-L23 lineages into the North Pontic steppe – from the North Caspian steppe, where it had developed previously as the Khvalynsk and (likely) Repin cultures -, roughly at the same time as Proto-Corded Ware expanded to the north, ca. 3300-3000 BC, and then expanded to the west into the Balkans (contributing to the formation of Balkan EBA cultures, and to the East Bell Beaker group).

NOTE. A migration of Yamna settlers northward along the Prut dated ca. 3000 BC or later could have justified the appearance of steppe admixture in the Dnieper-Dniester region, as I proposed for the Zvejnieki sample, although dates from Baltic samples are likely too early for that. For this to be corroborated, migrants should be accompanied up to a certain region by R1b-L23 lineages, and this could mean in turn a revival of Anthony’s original model of cultural diffusion of 2007. The most likely scenario, however, as predicted by Heyd, given the early appearance of steppe admixture and R1a-Z93 subclades in the forest-steppe during the 5th millennium, is that the admixture happened much earlier than that, fully unrelated to Late PIE migrations.

indo-european-yamna-corded-ware
Diachronic map of Copper Age migrations in Europe ca. 3100-2600 BC

The modern Baltic and Slavic conundrum

As for some people of Northern European ancestry previously supporting a bulletproof Yamna (R1a/R1b) -> Corded Ware migration that was obviously wrong; now supporting different Sredni Stog -> Corded Ware groups representing Indo-Slavonic (and Germanic??) in a model that is clearly wrong: how are these attempts different from Western Europeans supporting the autochthonous continuity of R1b-P312 lineages against all recent data, from Indians supporting the autochthonous continuity of R1a-M417 lineages no matter what, and from the more recent trend of autochthonous continuity theories for N1c lineages and Uralic in Eastern Europe?

Modern Germanic-speaking peoples can trace their common language to Nordic Iron Age Proto-Germanic, Celts to La Tène’s expansion of Proto-Celtic, and Romance speakers to the Roman expansion (and to an earlier Proto-Italic), all three dating approximately to the Iron Age. Proto-Slavic is dated much later than that, and probably Proto-Baltic too (or maybe earlier depending on the dialectal proposal), with Balto-Slavic being possibly coeval with Pre-Proto-Germanic and Italo-Celtic, but probably slightly later than that. Also, the language ancestral to Slavic may be (like a theoretical Proto-Romance language) impossible to reconstruct with precision, due to multiple substrate (or superstrate?) influences on the forming and expanding Proto-Slavic communities from different steppe peoples.

We know that proto-historic Germanic, Celtic, and Italic peoples spread from relatively small regions, and had almost nothing to do with historic groups speaking their daughter languages, let alone modern speakers. Baltic and Slavic are not different.

NOTE. We have read that Weltzin samples clustered closely to Central Europeans (especially Austrians), and at a certain distance from modern Poles. That’s the conclusion of Sell’s PhD thesis, and it may be right, if you take only modern samples for comparison. However, if you have read or thought that they represented some kind of “ancestral Germanic vs. Slavic” battle, please imagine Trump’s voice for my opinion: Wrroonng, wrroonng, wrroonng. They cluster closely with Bell Beaker migrants, Poland BA, and Únětice (in this order), which we now know thanks to the data from O&M 2018 and Mittnik et al. 2018. And we also know who they don’t cluster close too: Corded Ware and Trzciniec samples. Therefore, people from the region near the most likely homelands of Pre-Proto-Germanic and Proto-Balto-Slavic are – as expected – likely descendants from Bell Beaker migrants in Central Europe. The genetic relationship of those ancient samples to modern inhabitants of Central-East Europe? Not obvious – at all.

tollense-welzin
PCA of samples from Tollense Valley battlefield and some ancient and modern samples.

We also know (and have known for a long time, well before these recent papers) that the oldest attested Indo-European languagesMycenaean, early Anatolian languages, and Indo-Aryan (through certain words in Mitanni inscriptions) – do not show continuity from the places where they were first attested to the Late and Middle Proto-Indo-European (steppe) homeland either. There should be no problem then in accepting that there is no linguistic, archaeological, or common sense reason to support that Balto-Slavic is older or shows more regional continuity than other IE languages from Europe.

NOTE. Oh yes, Balts saying “Baltic is the most similar language to PIE” I hear you thinking? Uh-huh, sure. And according to some Greeks (supported e.g. by the conclusions from Lazaridis et al. 2017) Mycenaeans were ‘autochthonous’, and Proto-Greek the most similar to PIE. For many Hindus, Vedic Sanskrit is in fact PIE), and the latest paper by Narasimhan et al. (2018) only reinforces this idea (don’t ask me why). Also, Caucasian scholar Gamkrelidze (with Ivanov) supported the origin of the language precisely in the Caucasus, with Armenian being thus the purest language. For Italians fans of Virgil and the Roman Empire, Latin (like Aeneas) comes from Anatolian linguistically and genetically, hence it must be the ‘oldest’ IE dialect alive… No, wait, Danish scholars Kroonen and Iversen quite recently asserted that Germanic is the oldest to branch off, then it should thus be nearest to PIE! I think you can see a pattern here…And don’t forget about the new Vasconic-Uralic hypotheses going on now, with Vasconic fans of R1b changing from Palaeolithic to Mesolithic, and now to European Neolithic and whatnot, or Uralic fans of N1c changing now from Mesolithic EHG to Siberia (for ancestry) or Central Asia (for N1c subclades), or whatever is necessary to believe in ‘continuity’ of their people following the newest genetic papers… Just pick whatever theory you want, call it “mainstream”, and that’s it.

So, if there is no reliable archaeological model connecting Bronze or Iron Age cultures to Eastern European cultures which are supposed to represent the Proto-Slavic and Proto-Baltic homelands…why on earth would any reasonable amateur (not to speak about scholars) dare propose any sort of genetic or linguistic continuity for thousands of years from PIE to early Slavs, a people whose first blurry appearance in historical records happened during the Middle Ages in rather turbulent and genetically admixed regions? It does not make any sense, and it had all odds against it. Blond hair, blue eyes, lactase persistence? Sure, and ABO group, brachycephaly, anthropometry… All very scientifish.

antiquity_classical_Europe_przeworsk
Diachronic map of migrations during Classical Antiquity in Europe 250 BC – 250 AD.
Where’s Proto-Slavic Wally?

Wrap-up

Human ancestry can only help refine solid academic theories, it cannot create one. Every new pet theory used to satisfy modern cultural pre- and misconceptions has failed, and it will fail again, and again, and again…

To have an own anthropological model of prehistoric migration requires time and study. It is not enough to play with software and to misuse traditional academic disciplines just to ‘prove’ some completely irrelevant, meaningless, and false continuity.

Related:

Homo sapiens in Arabia by 85,000 years ago

Homo sapiens in Arabia by 85,000 years ago, by Groucutt et al. Nat Ecol. Evol. (2018).

Abstract (emphasis mine):

Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130–90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60–50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95–86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.

Related:

Ancient DNA reveals temporal population structure of pre-Incan and Incan periods in South‐Central Andes area

Ancient DNA reveals temporal population structure within the South‐Central Andes area, by Russo et al. Am. J. Phys. Anthropol. (2018).

Abstract (emphasis mine):

Objectives
The main aim of this work was to contribute to the knowledge of pre‐Hispanic genetic variation and population structure among the South‐central Andes Area by studying individuals from Quebrada de Humahuaca, North‐western (NW) Argentina.

Materials and methods
We analyzed 15 autosomal STRs in 19 individuals from several archaeological sites in Quebrada de Humahuaca, belonging to the Regional Developments Period (900–1430 AD). Compiling autosomal, mitochondrial, and Y‐chromosome data, we evaluated population structure and differentiation among eight South‐central Andean groups from the current territories of NW Argentina and Peru.

andes-populations
Location of the archaeological sites analyzed in this study (stars) and the South-central Andean populations used for comparisons (triangles). The punctuated line indicates the north-south subdivision of Quebrada de Humahuaca.1: Pe~nas Blancas, 2: San José, 3: Huacalera, 4: Banda de Perchel, 5: Juella, 6: Sarahuaico, 7: Tilcara, 8: Muyuna, 9: Los Amarillos, 10: Las Pirguas, 11: Tompullo 2, 12: Puca, 13: Acchaymarca, 14: Lauricocha. Map constructed from the obtained with the R package ggmap (Kahle & Wickham, 2013)

Results
Autosomal data revealed a structuring of the analyzed populations into two clusters which seemed to represent different temporalities in the Andean pre‐Hispanic history: pre‐Inca and Inca. All pre‐Inca samples fell into the same cluster despite being from the two different territories of NW Argentina and Peru. Also, they were systematically differentiated from the Peruvian Inca group. These results were mostly confirmed by mitochondrial and Y‐chromosome analyses. We mainly found a clearly different haplotype composition between clusters.

Discussion
Population structure in South America has been mostly studied on current native groups, mainly showing a west‐to‐east differentiation between the Andean and lowland regions. Here we demonstrated that genetic population differentiation preceded the European contact and might have been more complex than thought, being found within the South‐central Andes Area. Moreover, divergence among temporally different populations might be reflecting socio‐political changes occurred in the evermore complex pre‐Hispanic Andean societies.

pcoa-andes
Principal coordinates analysis (PCoA) based on individual genetic distances obtained with autosomal STRs data. Percentage of variance explained by each coordinate is shown in parenthesis. Colors were assigned according to the two clusters discovered with structure

See also: