Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)

jena-isba8

Some information is already available from ISBA 8 (see programme in PDF), thanks to the tweets from Alexander M. Kim.

Official abstracts are listed first (emphasis mine), then reports and images with link to Kim’s tweets. Here is the list for quick access:

Updates (17:00 CET):

Turkic and Hunnic expansions

Tracing the origin and expansion of the Turkic and Hunnic confederations, by Flegontov et al.

Turkic-speaking populations, now spread over a vast area in Asia, are highly heterogeneous genetically. The first confederation unequivocally attributed to them was established by the Göktürks in the 6th c. CE. Notwithstanding written resources from neighboring sedentary societies such as Chinese, Persian, Indian and Eastern Roman, earlier history of the Turkic speakers remains debatable, including their potential connections to the Xiongnu and Huns, which dominated the Eurasian steppe in the first half of the 1st millennium CE. To answer these questions, we co-analyzed newly generated human genome-wide data from Central Asia (the 1240K panel), spanning the period from ca. 3000 to 500 YBP, and the data published by de Barros Damgaard et al. (137 ancient human genomes from across the Eurasian steppes, Nature, 2018). Firstly, we generated a PCA projection to understand genetic affinities of ancient individuals with respect to present-day Tungusic, Mongolic, Turkic, Uralic, and Yeniseian-speaking groups. Secondly, we modeled hundreds of present-day and few ancient Turkic individuals using the qpAdm tool, testing various modern/ancient Siberian and ancient West Eurasian proxies for ancestry sources.

A majority of Turkic speakers in Central Asia, Siberia and further to the west share the same ancestry profile, being a mixture of Tungusic or Mongolic speakers and genetically West Eurasian populations of Central Asia in the early 1st millennium CE. The latter are themselves modelled as a mixture of Iron Age nomads (western Scythians or Sarmatians) and ancient Caucasians or Iranian farmers. For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

jeong-population-clines
Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.
siberian-genetic-component-chronology
Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

New interesting information on the gradual arrival of the “Uralic-Yeniseian” (Siberian) ancestry in eastern Europe with Iranian and Turkic-speaking peoples. We already knew that Siberian ancestry shows no original relationship with Uralic-speaking peoples, so to keep finding groups who expanded this ancestry eastwards in North Eurasia should be no surprise for anyone at this point.

Central Asia and Indo-Iranian

The session The Genomic Formation of South and Central Asia, by David Reich, on the recent paper by Narasimhan et al. (2018).

bmac-reich
One important upside of dense genomic sampling at single localities – greater visibility of outliers and better constraints on particular incoming ancestries’ arrival times. Gonur Tepe as a great case study of this. Alexander M. Kim
ani-asi-steppe-cline
– Tale of three clines, with clear indication that “Indus Periphery” samples drawn from an already-cosmopolitan and heterogeneous world of variable ASI & Iranian ancestry. (I know how some people like to pore over these pictures – so note red dots = just dummy data for illustration.)
– Some more certainty about primary window of steppe ancestry injection into S. Asia: 2000-1500 BC
Alexander M. Kim

British Isles

Ancient DNA and the peopling of the British Isles – pattern and process of the Neolithic transition, by Brace et al.

Over recent years, DNA projects on ancient humans have flourished and large genomic-scale datasets have been generated from across the globe. Here, the focus will be on the British Isles and applying aDNA to address the relative roles of migration, admixture and acculturation, with a specific focus on the transition from a Mesolithic hunter-gatherer society to the Neolithic and farming. Neolithic cultures first appear in Britain ca. 6000 years ago (kBP), a millennium after they appear in adjacent areas of northwestern continental Europe. However, in Britain, at the margins of the expansion the pattern and process of the British Neolithic transition remains unclear. To examine this we present genome-wide data from British Mesolithic and Neolithic individuals spanning the Neolithic transition. These data indicate population continuity through the British Mesolithic but discontinuity after the Neolithic transition, c.6000 BP. These results provide overwhelming support for agriculture being introduced to Britain primarily by incoming continental farmers, with surprisingly little evidence for local admixture. We find genetic affinity between British and Iberian Neolithic populations indicating that British Neolithic people derived much of their ancestry from Anatolian farmers who originally followed the Mediterranean route of dispersal and likely entered Britain from northwestern mainland Europe.

british-isles
Millennium of lag between farming establishment in NW mainland Europe & British Isles. Only 25 Mesolithic human finds from Britain. Alexander M. Kim.
british-admixture
– Evidently no resurgence of hunter-gatherer ancestry across Neolithic
– Argument for at least two geographically distinct entries of Neolithic farmers
Alexander M. Kim.

MN Atlantic / Megalithic cultures

Genomics of Middle Neolithic farmers at the fringe of Europe, by Sánchez Quinto et al.

Agriculture emerged in the Fertile Crescent around 11,000 years before present (BP) and then spread, reaching central Europe some 7,500 years ago (ya.) and eventually Scandinavia by 6,000 ya. Recent paleogenomic studies have shown that the spread of agriculture from the Fertile Crescent into Europe was due mainly to a demic process. Such event reshaped the genetic makeup of European populations since incoming farmers displaced and admixed with local hunter-gatherers. The Middle Neolithic period in Europe is characterized by such interaction, and this is a time where a resurgence of hunter-gatherer ancestry has been documented. While most research has been focused on the genetic origin and admixture dynamics with hunter-gatherers of farmers from Central Europe, the Iberian Peninsula, and Anatolia, data from farmers at the North-Western edges of Europe remains scarce. Here, we investigate genetic data from the Middle Neolithic from Ireland, Scotland, and Scandinavia and compare it to genomic data from hunter-gatherers, Early and Middle Neolithic farmers across Europe. We note affinities between the British Isles and Iberia, confirming previous reports. However, we add on to this subject by suggesting a regional origin for the Iberian farmers that putatively migrated to the British Isles. Moreover, we note some indications of particular interactions between Middle Neolithic Farmers of the British Isles and Scandinavia. Finally, our data together with that of previous publications allow us to achieve a better understanding of the interactions between farmers and hunter-gatherers at the northwestern fringe of Europe.

megalithic-europe
-Novel genomic data from 21 individuals from 6 sites.
– “Megalithic” individuals not systematically diff. from geographically proximate “non-megalithic” burials
– Mild evidence for over-representation of males in some British Isles megalithic tombs
– Megalithic tombs in W & N Neolithic Europe may have link to kindred structures
Alexander M. Kim

Central European Bronze Age

Ancient genomes from the Lech Valley, Bavaria, suggest socially stratified households in the European Bronze Age, by Mittnik et al.

Archaeogenetic research has so far focused on supra-regional and long-term genetic developments in Central Europe, especially during the third millennium BC. However, detailed high-resolution studies of population dynamics in a microregional context can provide valuable insights into the social structure of prehistoric societies and the modes of cultural transition.

Here, we present the genomic analysis of 102 individuals from the Lech valley in southern Bavaria, Germany, which offers ideal conditions for such a study. Several burial sites containing rich archaeological material were directly dated to the second half of the 3rd and first half of the 2nd millennium BCE and were associated with the Final Neolithic Bell Beaker Complex and the Early and Middle Bronze Age. Strontium isotope data show that the inhabitants followed a strictly patrilocal residential system. We demonstrate the impact of the population movement that originated in the Pontic-Caspian steppe in the 3rd millennium BCE and subsequent local developments. Utilising relatedness inference methods developed for low-coverage modern DNA we reconstruct farmstead related pedigrees and find a strong association between relatedness and grave goods suggesting that social status is passed down within families. The co-presence of biologically related and unrelated individuals in every farmstead implies a socially stratified complex household in the Central European Bronze Age.

lech-bavaria
Diminishing steppe ancestry and resurgent Neolithic ancestry over time. Alexander M. Kim

Notice how the arrival of Bell Beakers, obviously derived from Yamna settlers in Hungary, and thus clearly identified as expanding North-West Indo-Europeans all over Europe, marks a decrease in steppe ancestry compared to Corded Ware groups, in a site quite close to the most likely East BBC homeland. Copenhagen’s steppe ancestry = Indo-European going down the toilet, step by step…

UPDATES

Russian Far East populations

Gene geography of the Russian Far East populations – faces, genome-wide profiles, and Y-chromosomes, by Balanovsky et al.

Russian Far East is not only a remote area of Eurasia but also a link of the chain of Pacific coast regions, spanning from East Asia to Americas, and many prehistoric migrations are known along this chain. The Russian Far East is populated by numerous indigenous groups, speaking Tungusic, Turkic, Chukotko-Kamchatka, Eskimo-Aleut, and isolated languages. This linguistic and geographic variation opens question about the patterns of genetic variation in the region, which was significantly undersampled and received minor attention in the genetic literature to date. To fill in this gap we sampled Aleuts, Evenks, Evens, Itelmens, Kamchadals, Koryaks, Nanais, Negidals, Nivkhs, Orochi, Udegeis, Ulchi, and Yakuts. We also collected the demographic information of local populations, took physical anthropological photos, and measured the skin color. The photos resulted in the “synthetic portraits” of many studied groups, visualizing the main features of their faces.

north-eurasia

far-east-pca
Impressive North Eurasian biobank including 30,500 individual samples with broad consent, some genealogical info, phenotypic data. Alexander M. Kim

Finland AD 5th-8th c.

Sadly, no information will be shared on the session A 1400-year transect of ancient DNA reveals recent genetic changes in the Finnish population, by Salmela et al. We will have to stick to the abstract:

Objectives: Our objective was to use aDNA to study the population history of Finland. For this aim, we sampled and sequenced 35 individuals from ten archaeological sites across southern Finland, representing a time transect from 5th to 18th century.

Methods: Following genomic DNA extraction and preparation of indexed libraries, the samples were enriched for 1,2 million genomewide SNPs using in-solution capture and sequenced on an Illumina HighSeq 4000 instrument. The sequence data were then compared to other ancient populations as well as modern Finns, their geographical neighbors and worldwide populations. Authenticity testing of the data as well as population history inference were based on standard computational methods for aDNA, such as principal component analysis and F statistics.

Results: Despite the relatively limited temporal depth of our sample set, we are able to see major genetic changes in the area, from the earliest sampled individuals – who closely resemble the present-day Saami population residing markedly further north – to the more recent ancient individuals who show increased affinity to the neighboring Circum-Baltic populations. Furthermore, the transition to the present-day population seems to involve yet another perturbation of the gene pool.

So, most likely then, in my opinion – although possibly Y-DNA will not be reported – Finns were in the Classical Antiquity period mostly R1a with secondary N1c in the Circum-Baltic region (similar to modern Estonians, as I wrote recently), while Saami were probably mostly a mix of R1a-Z282 and I1 in southern Finland. That’s what the first transition after the 5th c. probably reflects, the spread of Finns (with mainly N1c lineages) to the north, while the more recent transition shows probably the introduction of North Germanic ancestry (and thus also R1b-U106, R1a-Z284, and I1 lineages) in the west.

Dairying in ancient Mongolia

The History of Dairying in ancient Mongolia, by Wilkin et al.

The use of mass spectrometry based proteomics presents a novel method for investigating human dietary intake and subsistence strategies from archaeological materials. Studies of ancient proteins extracted from dental calculus, as well as other archaeological material, have robustly identified both animal and plant-based dietary components. Here we present a recent case study using shotgun proteomics to explore the range and diversity of dairying in the ancient eastern Eurasian steppe. Contemporary and prehistoric Mongolian populations are highly mobile and the ephemerality of temporarily occupied sites, combined with the severe wind deflation common across the steppes, means detecting evidence of subsistence can be challenging. To examine the time depth and geographic range of dairy use in Mongolia, proteins were extracted from ancient dental calculus from 32 individuals spanning burial sites across the country between the Neolithic and Mongol Empire. Our results provide direct evidence of early ruminant milk consumption across multiple time periods, as well as a dramatic increase in the consumption of horse milk in the late Bronze Age. These data provide evidence that dairy foods from multiple species were a key part of subsistence strategies in prehistoric Mongolia and add to our understanding of the importance of early pastoralism across the steppe.

The confirmation of the date 3000-2700 BC for dairying in the eastern steppe further supports what was already known thanks to archaeological remains, that the pastoralist subsistence economy was brought for the first time to the Altai region by expanding late Khvalynsk/Repin – Early Yamna pastoralists that gave rise to the Afanasevo culture.

Neolithic transition in Northeast Asia

Genomic insight into the Neolithic transition peopling of Northeast Asia, by C. Ning

East Asian representing a large geographic region where around one fifth of the world populations live, has been an interesting place for population genetic studies. In contrast to Western Eurasia, East Asia has so far received little attention despite agriculture here evolved differently from elsewhere around the globe. To date, only very limited genomic studies from East Asia had been published, the genetic history of East Asia is still largely unknown. In this study, we shotgun sequenced six hunter-gatherer individuals from Houtaomuga site in Jilin, Northeast China, dated from 12000 to 2300 BP and, 3 farming individuals from Banlashan site in Liaoning, Northeast China, dated around 5300 BP. We find a high level of genetic continuity within northeast Asia Amur River Basin as far back to 12000 BP, a region where populations are speaking Tungusic languages. We also find our Compared with Houtaomuga hunter-gatherers, the Neolithic farming population harbors a larger proportion of ancestry from Houtaomuga related hunter-gathers as well as genetic ancestry from central or perhaps southern China. Our finding further suggests that the introduction of farming technology into Northeast Asia was probably introduced through demic diffusion.

A detail of the reported haplogroups of the Houtaomuga site:

houtaomuga-site-y-dna-mtdna

Y-DNA in Northeast Asia shows thus haplogroup N1b1 ~5000 BC, probably representative of the Baikal region, with a change to C2b-448del lineages before the Xiongnu period, which were later expanded by Mongols.

A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP

indo-european-indo-iranian-migrations

New open access paper (in Chinese) A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP, by liu et al. Acta Anthropologica Sinitica (2018)

Abstract:

The Keriyan, Lopnur and Dolan peoples are isolated populations with sparse numbers living in the western border desert of our country. By sequencing and typing the complete Y-chromosome of 179 individuals in these three isolated populations, all mutations and SNPs in the Y-chromosome and their corresponding haplotypes were obtained. Types and frequencies of each haplotype were analyzed to investigate genetic diversity and genetic structure in the three isolated populations. The results showed that 12 haplogroups were detected in the Keriyan with high frequencies of the J2a1b1 (25.64%), R1a1a1b2a (20.51%), R2a (17.95%) and R1a1a1b2a2 (15.38%) groups. Sixteen haplogroups were noted in the Lopnur with the following frequencies: J2a1 (43.75%), J2a2 (14.06%), R2 (9.38%) and L1c (7.81%). Forty haplogroups were found in the Dolan, noting the following frequencies: R1b1a1a1 (9.21%), R1a1a1b2a1a (7.89%), R1a1a1b2a2b (6.58%) and C3c1 (6.58%). These data show that these three isolated populations have a closer genetic relationship with the Uygur, Mongolian and Sala peoples. In particular, there are no significant differences in haplotype and frequency between the three isolated populations and Uygur (f=0.833, p=0.367). In addition, the genetic haplotypes and frequencies in the three isolated populations showed marked Eurasian mixing illustrating typical characteristics of Central Asian populations.

population-distribution-map
Figure 1. The populations distribution map. Left: Uluru. Center: Dali Yabuyi. Right: Kaerqu.

My knowledge of written Chinese is almost zero, so here are some excerpts with the help of Google Translate:

The source of 179 blood samples used in the study is shown in Figure 1. The Keriyan blood samples were collected from Dali Yabuyi Township, Yutian County (39 samples). The blood samples of the Lopnur people were collected from Kaerqu Township, Yuli County (64 cases); the blood samples of the Dolan people were collected from the town of Uluru, Awati County (76).

haplotype-frequency-uighur
Columns one and two are the Keriyan haplotypes and frequencies, respectively; the third and fourth columns are the Lopnur haplotypes and frequencies; the last four columns are the Daolang haplotypes and frequencies.

The composition and frequency of the Keriyan people’s haplogroup are closest to those of the Uighurs, and both Principal Component Analysis and Phylogenetic Tree Analysis show that their kinship is recent. We initially infer that the Keriyan are local desert indigenous people. They have a connection with the source of the Uighurs. Chen et al. [42] studied the patriarchal and maternal genetic analysis of the Keriyan people and found that they are not descendants of the Tibetan ethnic group in the West. The Keriyan people are a mixed group of Eastern and Western Europeans, which may originate from the local Vil group. Duan Ranhui [43] and other studies have shown that the nucleotide variability and average nucleotide differences in the Keriyan population are between the reported Eastern and Western populations. The phylogenetic tree also shows that the populations in Central Asia are between the continental lineage of the eastern population and the European lineage of the western population, and the genetic distance between the Keriyan and the Uighurs is the closest, indicating that they have a close relationship.

y-chromosome-pca

Regarding the origin of the Lopnur people, Purzhevski judged that it was a mixture of Mongolians and Aryans according to the physical characteristics of the Lopnur people. In 1934, the Sino-Swiss delegation discovered the famous burials of the ancient tombs in the Peacock River. After research, they were the indigenous people before the Loulan period; the researcher Yang Lan, a researcher at the Institute of Cultural Relics of the Chinese Academy of Social Sciences, said that the Lopnur people were descendants of the ancient “Landan survivors”. However, the Loulan people speaking an Indo-European language, and the Lopnur people speaking Uyghur languages contradict this; the historical materials of the Western Regions, “The Geography of the Western Regions” and “The Western Regions of the Ming Dynasty” record the Uighurs who lived in Cao Cao in the late 17th and early 18th centuries. Because of the occupation of the land by the Junggar nobles and their oppression, they fled. Some of them were forced to move to the Lop Nur area. There are many similar archaeological discoveries and historical records. We have no way to determine their accuracy, but they are at different times, and there is a great difference in what is heard in the same region. (…) The genetic characteristics of modern Lopnur people are the result of the long-term ethnic integration of Uyghurs, Mongols, and Europeans. This is also consistent with the similarity of the genetic structure of the Y chromosome of Lopnur in this study with the Uighurs and Mongolians. For example, the frequency of J haplogroup is as high as 59.37%, while J and its downstream sub-haplogroup are mainly distributed in western Europe, West Asia and Central Asia; the frequency of O, R haplogroup is close to that of Mongolians.

y-chromosome-frequency
1) KA: Keriya, LB: Rob, DL: Daolang, HTW: Hetian Uygur, HTWZ: and Uygur, TLFW: Turpan Uighur, HZ: Hui, HSKZ: Kazakh, WZBKZ: Wuhuan Others, TJKZ: Tajik, KEKZZ: Kirgiz, TTEZ: Tatar, ELSZ: Russian XBZ: Xibo, MGZ: Mongolian, SLZ: Salar, XJH: Xinjiang Han, GSH: Gansu Han, GDH: Guangdong Han SCH: Sichuan Han. 2) Reference population data source literature 19-22. After the population names in the table have been marked, all the shorthands in the text are referred to in this table. 3) Because the degree of haplotypes of each reference population is different to each sub-group branch, the sub-group branches under the same haplogroup are merged when the population haplogroup data is aggregated, for example: for haplogroup G Some people are divided into G1a and G2a levels, others are assigned to G1, G2, and G3, while some people can only determine G this time. Therefore, each subgroup is merged into a single group G.

According to Ming History·Western Biography, the Mongolians originated from the Mobei Plateau and later ruled Asia and Eastern Europe. Mongolia was established, and large areas of southern Xinjiang and Central Asia were included. Later, due to the Mongolian king’s struggle for power, it fell into a long-term conflict. People of the land fled to avoid the war, and the uninhabited plain of the lower reaches of the Yarkant River naturally became a good place to live. People from all over the world gathered together and called themselves “Dura” and changed to “Dang Lang”. The long-term local Uyghur exchanges that entered the southern Mongolian monks and “Dura” were gradually assimilated [44]. According to the report, locals wore Mongolian clothes, especially women who still maintained a Mongolian face [45]. In 1976, the robes and waistbands found in the ancient time of the Daolang people in Awati County were very similar to those of the ancients. Dalang Muqam is an important part of Daolang culture. It is also a part of the Uyghur Twelve Muqam, and it retains the ancient Western culture, but it also contains a larger Mongolian culture and relics. The above historical records show that the Daolang people should appear in the Chagatai Khanate and be formed by the integration of Mongolian and Uighur ethnic groups. Through our research, we also found that the paternal haplotype of the Daolang people is contained in both Uygur and Mongolian, and the main haplogroups are the same, whereas the frequencies are different (see Table 3). The principal component analysis and the NJ analysis are also the same. It is very close to the Uyghur and the Mongolian people, which establishes new evidence for the “mixed theory” in molecular genetics.

main-haplogroup-uighur
Genetic relationship between the three isolated populations: the Uygur and the Mongolian is the closest, and the main haplogroup can more intuitively compare the source composition of the genetic structure of each population. Haplogroups C, D, and O are mainly distributed in Asia as the East Asian characteristic haplogroup; haplogroups G, J, and R are mainly distributed in continental Europe, and the high frequency distribution is in Europe and Central Asia.

If the nomenclature follows a recent ISOGG standard, it appears that:

The presence of exclusively R1a-Z93 subclades and the lack of R1b-M269 samples is compatible with the expansion of R1a-Z93 into the area with Proto-Tocharians, at the turn of the 3rd-2nd millennium BC, as suggested by the Xiaohe samples, supposedly R1a(xZ93).

Now that it is obvious from ancient DNA (as it was clear from linguistics) that Pre-Tocharians separated earlier than other Late PIE peoples, with the expansion of late Khvalynsk/Repin into the Altai, at the end of the 4th millennium, these prevalent R1a (probably Z93) samples may be showing a replacement of Pre-Tocharian Y-DNA with the Andronovo expansion already by 2000 BC.

Lacking proper assessment of ancient DNA from Proto-Tocharians, this potential early Y-DNA replacement is still speculative*. However, if that is the case, I wonder what the Copenhagen group will say when supporting this, but rejecting at the same time the more obvious Y-DNA replacement in East Yamna / Poltavka in the mid-3rd millennium with incoming Corded Ware-related peoples. I guess the invention of an Indo-Tocharian group may be near…

*NOTE. The presence of R1b-M269 among Proto-Tocharians, as well as the presence of R1b-M269 among Tarim Basin peoples in modern and ancient times is not yet fully discarded. The prevalence of R1a-Z93 may also be the sign of a more recent replacement by Iranian peoples, before the Mongolian and Turkic expansions that probably brought R1b(xM269).

Also, the presence of R1b (xM269) samples in east Asia strengthens the hypothesis of a back-migration of R1b-P297 subclades, from Northern Europe to the east, into the Lake Baikal area, during the Early Mesolithic, as found in the Botai samples and later also in Turkic populations – which are the most likely source of these subclades (and probably also of Q1a2 and N1c) in the region.

Related

Common pitfalls in human genomics and bioinformatics: ADMIXTURE, PCA, and the ‘Yamnaya’ ancestral component

invasion-from-the-steppe-yamnaya

Good timing for the publication of two interesting papers, that a lot of people should read very carefully:

ADMIXTURE

Open access A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots, by Daniel J. Lawson, Lucy van Dorp & Daniel Falush, Nature Communications (2018).

Interesting excerpts (emphasis mine):

Experienced researchers, particularly those interested in population structure and historical inference, typically present STRUCTURE results alongside other methods that make different modelling assumptions. These include TreeMix, ADMIXTUREGRAPH, fineSTRUCTURE, GLOBETROTTER, f3 and D statistics, amongst many others. These models can be used both to probe whether assumptions of the model are likely to hold and to validate specific features of the results. Each also comes with its own pitfalls and difficulties of interpretation. It is not obvious that any single approach represents a direct replacement as a data summary tool. Here we build more directly on the results of STRUCTURE/ADMIXTURE by developing a new approach, badMIXTURE, to examine which features of the data are poorly fit by the model. Rather than intending to replace more specific or sophisticated analyses, we hope to encourage their use by making the limitations of the initial analysis clearer.

The default interpretation protocol

Most researchers are cautious but literal in their interpretation of STRUCTURE and ADMIXTURE results, as caricatured in Fig. 1, as it is difficult to interpret the results at all without making several of these assumptions. Here we use simulated and real data to illustrate how following this protocol can lead to inference of false histories, and how badMIXTURE can be used to examine model fit and avoid common pitfalls.

admixture-protocol
A protocol for interpreting admixture estimates, based on the assumption that the model underlying the inference is correct. If these assumptions are not validated, there is substantial danger of over-interpretation. The “Core protocol” describes the assumptions that are made by the admixture model itself (Protocol 1, 3, 4), and inference for estimating K (Protocol 2). The “Algorithm input” protocol describes choices that can further bias results, while the “Interpretation” protocol describes assumptions that can be made in interpreting the output that are not directly supported by model inference

Discussion

STRUCTURE and ADMIXTURE are popular because they give the user a broad-brush view of variation in genetic data, while allowing the possibility of zooming down on details about specific individuals or labelled groups. Unfortunately it is rarely the case that sampled data follows a simple history comprising a differentiation phase followed by a mixture phase, as assumed in an ADMIXTURE model and highlighted by case study 1. Naïve inferences based on this model (the Protocol of Fig. 1) can be misleading if sampling strategy or the inferred value of the number of populations K is inappropriate, or if recent bottlenecks or unobserved ancient structure appear in the data. It is therefore useful when interpreting the results obtained from real data to think of STRUCTURE and ADMIXTURE as algorithms that parsimoniously explain variation between individuals rather than as parametric models of divergence and admixture.

For example, if admixture events or genetic drift affect all members of the sample equally, then there is no variation between individuals for the model to explain. Non-African humans have a few percent Neanderthal ancestry, but this is invisible to STRUCTURE or ADMIXTURE since it does not result in differences in ancestry profiles between individuals. The same reasoning helps to explain why for most data sets—even in species such as humans where mixing is commonplace—each of the K populations is inferred by STRUCTURE/ADMIXTURE to have non-admixed representatives in the sample. If every individual in a group is in fact admixed, then (with some exceptions) the model simply shifts the allele frequencies of the inferred ancestral population to reflect the fraction of admixture that is shared by all individuals.

Several methods have been developed to estimate K, but for real data, the assumption that there is a true value is always incorrect; the question rather being whether the model is a good enough approximation to be practically useful. First, there may be close relatives in the sample which violates model assumptions. Second, there might be “isolation by distance”, meaning that there are no discrete populations at all. Third, population structure may be hierarchical, with subtle subdivisions nested within diverged groups. This kind of structure can be hard for the algorithms to detect and can lead to underestimation of K. Fourth, population structure may be fluid between historical epochs, with multiple events and structures leaving signals in the data. Many users examine the results of multiple K simultaneously but this makes interpretation more complex, especially because it makes it easier for users to find support for preconceptions about the data somewhere in the results.

In practice, the best that can be expected is that the algorithms choose the smallest number of ancestral populations that can explain the most salient variation in the data. Unless the demographic history of the sample is particularly simple, the value of K inferred according to any statistically sensible criterion is likely to be smaller than the number of distinct drift events that have practically impacted the sample. The algorithm uses variation in admixture proportions between individuals to approximately mimic the effect of more than K distinct drift events without estimating ancestral populations corresponding to each one. In other words, an admixture model is almost always “wrong” (Assumption 2 of the Core protocol, Fig. 1) and should not be interpreted without examining whether this lack of fit matters for a given question.

admixture-pitfalls
Three scenarios that give indistinguishable ADMIXTURE results. a Simplified schematic of each simulation scenario. b Inferred ADMIXTURE plots at K= 11. c CHROMOPAINTER inferred painting palettes.

Because STRUCTURE/ADMIXTURE accounts for the most salient variation, results are greatly affected by sample size in common with other methods. Specifically, groups that contain fewer samples or have undergone little population-specific drift of their own are likely to be fit as mixes of multiple drifted groups, rather than assigned to their own ancestral population. Indeed, if an ancient sample is put into a data set of modern individuals, the ancient sample is typically represented as an admixture of the modern populations (e.g., ref. 28,29), which can happen even if the individual sample is older than the split date of the modern populations and thus cannot be admixed.

This paper was already available as a preprint in bioRxiv (first published in 2016) and it is incredible that it needed to wait all this time to be published. I found it weird how reviewers focused on the “tone” of the paper. I think it is great to see files from the peer review process published, but we need to know who these reviewers were, to understand their whiny remarks… A lot of geneticists out there need to develop a thick skin, or else we are going to see more and more delays based on a perceived incorrect tone towards the field, which seems a rather subjective reason to force researchers to correct a paper.

PCA of SNP data

Open access Effective principal components analysis of SNP data, by Gauch, Qian, Piepho, Zhou, & Chen, bioRxiv (2018).

Interesting excerpts:

A potential hindrance to our advice to upgrade from PCA graphs to PCA biplots is that the SNPs are often so numerous that they would obscure the Items if both were graphed together. One way to reduce clutter, which is used in several figures in this article, is to present a biplot in two side-by-side panels, one for Items and one for SNPs. Another stratagem is to focus on a manageable subset of SNPs of particular interest and show only them in a biplot in order to avoid obscuring the Items. A later section on causal exploration by current methods mentions several procedures for identifying particularly relevant SNPs.

One of several data transformations is ordinarily applied to SNP data prior to PCA computations, such as centering by SNPs. These transformations make a huge difference in the appearance of PCA graphs or biplots. A SNPs-by-Items data matrix constitutes a two-way factorial design, so analysis of variance (ANOVA) recognizes three sources of variation: SNP main effects, Item main effects, and SNP-by-Item (S×I) interaction effects. Double-Centered PCA (DC-PCA) removes both main effects in order to focus on the remaining S×I interaction effects. The resulting PCs are called interaction principal components (IPCs), and are denoted by IPC1, IPC2, and so on. By way of preview, a later section on PCA variants argues that DC-PCA is best for SNP data. Surprisingly, our literature survey did not encounter even a single analysis identified as DC-PCA.

The axes in PCA graphs or biplots are often scaled to obtain a convenient shape, but actually the axes should have the same scale for many reasons emphasized recently by Malik and Piepho [3]. However, our literature survey found a correct ratio of 1 in only 10% of the articles, a slightly faulty ratio of the larger scale over the shorter scale within 1.1 in 12%, and a substantially faulty ratio above 2 in 16% with the worst cases being ratios of 31 and 44. Especially when the scale along one PCA axis is stretched by a factor of 2 or more relative to the other axis, the relationships among various points or clusters of points are distorted and easily misinterpreted. Also, 7% of the articles failed to show the scale on one or both PCA axes, which leaves readers with an impressionistic graph that cannot be reproduced without effort. The contemporary literature on PCA of SNP data mostly violates the prohibition against stretching axes.

pca-how-to
DC-PCA biplot for oat data. The gradient in the CA-arranged matrix in Fig 13 is shown here for both lines and SNPs by the color scheme red, pink, black, light green, dark green.

The percentage of variation captured by each PC is often included in the axis labels of PCA graphs or biplots. In general this information is worth including, but there are two qualifications. First, these percentages need to be interpreted relative to the size of the data matrix because large datasets can capture a small percentage and yet still be effective. For example, for a large dataset with over 107,000 SNPs for over 6,000 persons, the first two components capture only 0.3693% and 0.117% of the variation, and yet the PCA graph shows clear structure (Fig 1A in [4]). Contrariwise, a PCA graph could capture a large percentage of the total variation, even 50% or more, but that would not guarantee that it will show evident structure in the data. Second, the interpretation of these percentages depends on exactly how the PCA analysis was conducted, as explained in a later section on PCA variants. Readers cannot meaningfully interpret the percentages of variation captured by PCA axes when authors fail to communicate which variant of PCA was used.

Conclusion

Five simple recommendations for effective PCA analysis of SNP data emerge from this investigation.

  1. Use the SNP coding 1 for the rare or minor allele and 0 for the common or major allele.
  2. Use DC-PCA; for any other PCA variant, examine its augmented ANOVA table.
  3. Report which SNP coding and PCA variant were selected, as required by contemporary standards in science for transparency and reproducibility, so that readers can interpret PCA results properly and reproduce PCA analyses reliably.
  4. Produce PCA biplots of both Items and SNPs, rather than merely PCA graphs of only Items, in order to display the joint structure of Items and SNPs and thereby to facilitate causal explanations. Be aware of the arch distortion when interpreting PCA graphs or biplots.
  5. Produce PCA biplots and graphs that have the same scale on every axis.

I read the referenced paper Biplots: Do Not Stretch Them!, by Malik and Piepho (2018), and even though it is not directly applicable to the most commonly available PCA graphs out there, it is a good reminder of the distorting effects of stretching. So for example quite recently in Krause-Kyora et al. (2018), where you can see Corded Ware and BBC samples from Central Europe clustering with samples from Yamna:

NOTE. This is related to a vertical distorsion (i.e. horizontal stretching), but possibly also to the addition of some distant outlier sample/s.

pca-cwc-yamna-bbc
Principal Component Analysis (PCA) of the human Karsdorf and Sorsum samples together with previously published ancient populations projected on 27 modern day West Eurasian populations (not shown) based on a set of 1.23 million SNPs (Mathieson et al., 2015). https://doi.org/10.7554/eLife.36666.006

The so-called ‘Yamnaya’ ancestry

Every time I read papers like these, I remember commenters who kept swearing that genetics was the ultimate science that would solve anthropological problems, where unscientific archaeology and linguistics could not. Well, it seems that, like radiocarbon analysis, these promising developing methods need still a lot of refinement to achieve something meaningful, and that they mean nothing without traditional linguistics and archaeology… But we already knew that.

Also, if this is happening in most peer-reviewed publications, made by professional geneticists, in journals of high impact factor, you can only wonder how many more errors and misinterpretations can be found in the obscure market of so many amateur geneticists out there. Because amateur geneticist is a commonly used misnomer for people who are not geneticists (since they don’t have the most basic education in genetics), and some of them are not even ‘amateurs’ (because they are selling the outputs of bioinformatic tools)… It’s like calling healers ‘amateur doctors’.

NOTE. While everyone involved in population genetics is interested in knowing the truth, and we all have our confirmation (and other kinds of) biases, for those who get paid to tell people what they want to hear, and who have sold lots of wrong interpretations already, the incentives of ‘being right’ – and thus getting involved in crooked and paranoid behaviour regarding different interpretations – are as strong as the money they can win or loose by promoting themselves and selling more ‘product’.

As a reminder of how badly these wrong interpretations of genetic results – and the influence of the so-called ‘amateurs’ – can reflect on research groups, yet another turn of the screw by the Copenhagen group, in the oral presentations at Languages and migrations in pre-historic Europe (7-12 Aug 2018), organized by the Copenhagen University. The common theme seems to be that Bell Beaker and thus R1b-L23 subclades do represent a direct expansion from Yamna now, as opposed to being derived from Corded Ware migrants, as they supported before.

NOTE. Yes, the “Yamna → Corded Ware → Únětice / Bell Beaker” migration model is still commonplace in the Copenhagen workgroup. Yes, in 2018. Guus Kroonen had already admitted they were wrong, and it was already changed in the graphic representation accompanying a recent interview to Willerslev. However, since there is still no official retraction by anyone, it seems that each member has to reject the previous model in their own way, and at their own pace. I don’t think we can expect anyone at this point to accept responsibility for their wrong statements.

So their lead archaeologist, Kristian Kristiansen, in The Indo-Europeanization of Europé (sic):

kristiansen-migrations
Kristiansen’s (2018) map of Indo-European migrations

I love the newly invented arrows of migration from Yamna to the north to distinguish among dialects attributed by them to CWC groups, and the intensive use of materials from Heyd’s publications in the presentation, which means they understand he was right – except for the fact that they are used to support a completely different theory, radically opposed to those defended in Heyd’s model

Now added to the Copenhagen’s unending proposals of language expansions, some pearls from the oral presentation:

  • Corded Ware north of the Carpathians of R1a lineages developed Germanic;
  • R1b borugh [?] Italo-Celtic;
  • the increase in steppe ancestry on north European Bell Beakers mean that they “were a continuation of the Yamnaya/Corded Ware expansion”;
  • Corded Ware groups [] stopped their expansion and took over the Bell Beaker package before migrating to England” [yep, it literally says that];
  • Italo-Celtic expanded to the UK and Iberia with Bell Beakers [I guess that included Lusitanian in Iberia, but not Messapian in Italy; or the opposite; or nothing like that, who knows];
  • 2nd millennium BC Bronze Age Atlantic trade systems expanded Proto-Celtic [yep, trade systems expanded the language]
  • 1st millennium BC expanded Gaulish with La Tène, including a “Gaulish version of Celtic to Ireland/UK” [hmmm, dat British Gaulish indeed].

You know, because, why the hell not? A logical, stable, consequential, no-nonsense approach to Indo-European migrations, as always.

Also, compare still more invented arrows of migrations, from Mikkel Nørtoft’s Introducing the Homeland Timeline Map, going against Kristiansen’s multiple arrows, and even against the own recent fantasy map series in showing Bell Beakers stem from Yamna instead of CWC (or not, you never truly know what arrows actually mean):

corded-ware-migrations
Nørtoft’s (2018) maps of Indo-European migrations.

I really, really loved that perennial arrow of migration from Volosovo, ca. 4000-800 BC (3000+ years, no less!), representing Uralic?, like that, without specifics – which is like saying, “somebody from the eastern forest zone, somehow, at some time, expanded something that was not Indo-European to Finland, and we couldn’t care less, except for the fact that they were certainly not R1a“.

This and Kristiansen’s arrows are the most comical invented migration routes of 2018; and that is saying something, given the dozens of similar maps that people publish in forums and blogs each week.

NOTE. You can read a more reasonable account of how haplogroup R1b-L51 and how R1-Z645 subclades expanded, and which dialects most likely expanded with them.

We don’t know where these scholars of the Danish workgroup stand at this moment, or if they ever had (or intended to have) a common position – beyond their persistent ideas of Yamnaya™ ancestral component = Indo-European and R1a must be Indo-European – , because each new publication changes some essential aspects without expressly stating so, and makes thus everything still messier.

It’s hard to accept that this is a series of presentations made by professional linguists, archaeologists, and geneticists, as stated by the official website, and still harder to imagine that they collaborate within the same professional workgroup, which includes experienced geneticists and academics.

I propose the following video to close future presentations introducing innovative ideas like those above, to help the audience find the appropriate mood:

Related

The origin of social complexity in the development of the Sintashta culture

kamenni-ambar

Very interesting PhD thesis by Igor Chechushov, Bronze Age human communities in the Southern Urals steppe: Sintashta-Petrovka social and subsistence organization (2018).

Abstract:

Why and how exactly social complexity develops through time from small-scale groups to the level of large and complex institutions is an essential social science question. Through studying the Late Bronze Age Sintashta-Petrovka chiefdoms of the southern Urals (cal. 2050–1750 BC), this research aims to contribute to an understanding of variation in the organization of local communities in chiefdoms. It set out to document a segment of the Sintashta-Petrovka population not previously recognized in the archaeological record and learn about how this segment of the population related to the rest of the society. The Sintashta-Petrovka development provides a comparative case study of a pastoral society divided into sedentary and mobile segments.

Subsurface testing on the peripheries of three Sintashta-Petrovka communities suggests that a group of mobile herders lived outside the walls of the nucleated villages on a seasonal basis. During the summer, this group moved away from the village to pasture livestock farther off in the valley, and during the winter returned to shelter adjacent to the settlement. This finding illuminates the functioning of the year-round settlements as centers of production during the summer so as to provide for herd maintenance and breeding and winter shelter against harsh environmental conditions.

The question of why individuals chose in this context to form mutually dependent relationships with other families and thus give up some of their independence can be answered with a combination of two necessities: to remain a community in a newly settled ecological niche and to protect animals from environmental risk and theft. Those who were skillful at managing communal construction of walled villages and protecting people from military threats became the most prominent members of the society. These people formed the core of the chiefdoms but were not able to accumulate much wealth and other possessions. Instead, they acquired high social prestige that could even be transferred to their children. However, this set of relationships did not last longer than 300 years. Once occupation of the region was well established the need for functions served by elites disappeared, and centralized chiefly communities disintegrated into smaller unfortified villages.

sintashta-petrovka-archaeological
Research area: map of the Sintashta-Petrovka archaeological sites. Settlements: 101 – Stepnoye; 102 – Shibaeyvo 1; 103 – Chernorechye 3; 104 – Bakhta; 105 – Paris; 106 – Isiney; 107 – Kuisak; 108 – Ust’ye; 109 – Rodniki; 110 – Konoplyanka; 111 – Zhurumbay; 112 – Arkaim; 113 – Sintashta; 114 – Sintashta 2; 115 – Kamennyi Ambar; 116 – Alandskoye; 117 – Chekatay; 118 – Selek; 119 – Sarym- Sakly; 120 – Kamysty; 121 – Kizilskoye; 122 – Bersuat; 123 – Andreyevskoe; 124 – Ulak; 125 – Streletskoye; 126 – Zarechnoye 4; 127 – Kamennyi Brod. Cemeteries: 201 – Ozernoye 1; 202 – Krivoe Ozero; 203 – Stepnoye M; 204 – Kamennyi Ambar-5; 205 – Stepnoye 1; 206 – Tsarev Kurgan; 207 – Ubagan 2; 208 – Solntse 2; 209 – Bolshekaraganskyi; 210 – Aleksandrovsky 4; 211 – Sintashta; 212 – Solonchanka 1a; 213 – Knyazhenskyi; 214 – Bestamak; 215 – Ishkinovka 1; 216 – Ishkinovka 2; 217 – Novo–Kumakskyi; 218 – Zhaman–Kargala 1; 219 – Tanabergen 2; 220 – Novo-Petrovka; 221 – Semiozernoye 2; 222 – Khalvayi 3

Some interesting excerpts (emphasis mine):

The quintessential archaeological evidence of Sintashta-Petrovka communities takes the form of highly nucleated and fortified settlements paired with easily-recognized kurgan (burial mound) cemeteries. This pattern spread across Northern Central Eurasia in a relatively short period of about 300 years (cal. 2050–1750 BC), and the period consists of two chronological phases (Hanks et al. 2007). The earlier Sintashta phase (cal. 2050–1850 BC) is distinguished from the later Petrovka phase (cal. 1850–1750 BC) by some differences in ceramic styles and some techniques of bronze metallurgy (Degtyareva et al. 2001; Vinogradov 2013). Bronze Age subsistence patterns apparently relied on a wide variety of resources, among which meat and milk production played a major role (…). The most outstanding graves are individual male burials accompanied by weaponry (projectile weapons and chariots), the insignia of power (stone mace heads), craft tools, and a specific set of sacrificed animals (horses, cows, and dogs). (…) there were at least two adults buried with chariots and one with sacrificed horses (Epimakhov 1996b). Chariots – the most famous and spectacular material component of Sintashta-Petrovka society – are known exclusively from burial contexts. Two-wheeled vehicles represent complex technology, incorporating some crucial innovations and the investment of substantial resources. Highly developed craft and military skills were required for their production and use. Burials with chariots probably represent military elites who used them (Anthony 2009; Chechushkov 2011; Frachetti 2012:17) and played especially important social roles in Sintashta-Petrovka societies. This pattern strongly suggests that military leadership extended into the realm of ideology and general social prestige (Earle 2011:32–33).

The following sequence of archaeological cultures – based on the sample of radiocarbon dates (Epimakhov 2007a; 2010a), – is adopted: (1) the Sintashta-Petrovka phase 1 dated to cal. 2050–1750 BC and (2) the Srubnaya-Alakul’ phase 2 dated to cal. 1750–1350 BC.

(…) control of craft might have provided a source of power for elites in the fortified settlements (Steponaitis 1991). Some bronze tools, such as chisels, adzes, and handsaws seem more abundantly represented at some fortified settlements than at others, raising the possibility of a stronger focus on different craft products and some degree of exchange and interdependence between fortified settlements. (…) Zdanovich (1995:35) estimates 2500 people within the walls at Arkaim. He bases his conclusion an average house size of 140 m2 and the idea that Arkaim households consisted of an extended family of several generations, similar to Iroquois longhouse inhabitants. He also suggests that the entire population did not live in the “town” all the time, but moved around. The fully permanent residents were shamans, warriors, and craftsmen, i.e., elites and attached specialists.

Summarizing, excavated households represent very strongly similar architectural patterns, similar levels of wealth and prestige, little productive differentiation, and no evidence of elites amassing wealth through control of craft or subsistence production or any other mechanism (Earle 1987). These observations sharply contradict the burial record, where strong social differentiation is visible. The description above recalls the Regional Classic period elites of the Alto Magdalena whose standard of living differed little if at all from anyone else’s. Their elaborate tombs and sculptures suggest supernatural powers and ritual roles were much more important bases of their social prominence than economic control or accumulation of wealth (Drennan 1995:96–97). On the other hand, craft activities (especially metal production) are highly obvious in the Sintashta-Petrovka settlements. Defensive functions could also have played some role for the entire population. This benefit might attract people in an unstable or wild environment to spend much of their time in or near such settlements (Earle 2011:32–33). Since the construction of ditches and outer walls, as well as dwellings with shared walls, requires planning and organization, purposeful collective effort must have been a key feature of Sintashta-Petrovka communities (Vinogradov 2013; Zdanovich 1995). Sintashta-Petrovka communities thus evidence substantial investment of effort in non-subsistence activities, potentially resulting in a subsistence deficit in an economy with a heavy emphasis on herding. Altogether, this makes it plausible to think of the known Sintashta-Petrovka communities as special places where elites for whom military activities were important resided, and where metal production and possibly other crafts were carried out. It remains unclear just how a subsistence economy relying heavily on herding was managed from these substantial sedentary communities. Moving herds around the landscape seasonally is generally thought to be a part of subsistence strategy in Inner Eurasia (Frachetti 2008; Bachura 2013). In this area migration to exploit seasonal pastures is the best strategy for maintaining a regular supply of food for livestock due to shortages of capital or of labor pool to produce, harvest, and store fodder (Dyson-Hudson and Dyson-Hudson 1980:17). The recent stable isotope studies support this notion showing high likelihood that during the Bronze Age livestock was raised locally (Kiseleva et al. 2017).

The above raises the possibility that the residential remains that have been excavated within the fortifications of Sintashta-Petrovka communities represent only a portion of the population (Hanks and Doonan 2009, Johnson and Hanks 2012). It could be (along with the general lines suggested by D. Zdanovich [1997]) that the archaeological remains of the ordinary people who made up the majority of the population, built the impressive fortifications and stoked the subsistence economy have gone largely undetected. In global comparative perspective, many societies with the features known for Sintashta-Petrovka organization consisted of elite central-place settlements and hinterland populations. In such a scenario, the “missing” portion of the Sintashta population would reside in smaller unfortified settlements scattered around in the vicinity of the fortified ones.

kamenni-ambar-cultural-layer

In terms of wealth and productive differentiation, the inside assemblage of Kamennyi Ambar demonstrates a higher degree of richness and diversity in its material assemblage, leading to the conclusion that the outside materials may represent a semi-mobile group of people who used significantly less durable materials and accumulated less possessions. As for the diversity within the inside artifact assemblage, some households at Kamennyi Ambar demonstrate more diverse artifact assemblages than others, as well as bigger sizes, that could be related to differences in productive activities and/or wealth differentiation between families. A focus on specific objects of ceramic production in House 1 suggests some degree of productive specialization, while the elite goods in House 5 clearly point out the presence of elite members of the society.

There are two possible social scenarios that explain the settlement situation during the Sintashta-Petrovka phase. The first scenario considers all three communities as simultaneous and the second scenario suggests seeing the three sites as the same community that moved around the landscape during the Late Bronze Age in order to keep the pasture grounds from degradation.

Since no remains of permanent structures were found and any people living outside the walls must have stayed in temporary shelters. If this was the case, then the outside part of the population consisted of a semi-mobile group of people who moved to live near the fortified settlement during the winter. The pattern of animal slaughtering supports this conclusion. Animal teeth found near Kamennyi Ambar and Konoplyanka demonstrate a tendency for animal butchering during the fall, throughout the winter and spring, with less evidence of summer meat consumption. Moreover, since the Bronze Age subsistence strategy relied heavily on pastoralism, herds had to be grazed during the summer and kept safe during the winter. This strongly suggests that the part of the population responsible for management of animals spent their time in the summer pastures with the livestock. During the winter the animals had to be kept in the warm and safe environment of the walled settlements (as suggested by the highest level of phosphorus on the house floors) while the herders stayed in portable shelters in close to the walls.

(…) the outsiders used a less diverse set of tools, as well as less durable materials (for example, wooden instead of metal) in their everyday life and did not accumulate much in the way of archaeologically visible possessions. On the other hand, a few stone and lithic artifacts demonstrate that craft activities were carried out using cheap and abundant raw materials. The artefact assemblages also point out that the people inside accumulated wealth in the form of material belongings and luxury goods, especially, things like metal artifacts and symbolic or military-related stone artifacts, while people outside did not do that. However, the presence of semi-precious stones could signify some kind of wealth accumulation by the segment of population outside the walls. Since there are limits to our ability to assess social relationships from material remains, it is difficult to say if the people who lived outside the walls were oppressed or less respected. Their possible concentration on herding-related activities and livestock keeping might suggest less prestigious social status. The most prominent members of the society were, nonetheless, buried with the attributes of warriors or craft specialists, not those of shepherds, suggesting that those involved in livestock management had less social prestige.

Furthermore, Kuzmina (1994:72) cites linguistic studies demonstrating that the Sanskrit word for a permanent village earlier meant a circle of mobile wagon homes, situated together for defensive purposes for an overnight camp (Kuzmina 1994:72).

The likely population of semi-mobile herders represented some 30%–60% of the entire local community, while the other of 40%–70% were inhabitants of the walled settlement. The almost completely excavated kurgan cemetery of Kamennyi Ambar-5 (only two kurgans remain unstudied) yielded about 100 individuals, or about 2%–5% of the total of 4,896±1,960 individuals in four generations who lived at the nearby settlement for 100 years. In other words, no more than 10% of the population was entitled to be buried under the kurgan mound and this proportion can be taken as an estimate of those with elevated social status. Perhaps, these elites were kin, since analysis of the burial patterns suggests sex/age rather than wealth/prestige differentiation between buried individuals within this elite group (Epimakhov and Berseneva 2011; Ventresca Miller 2013). The remaining non-elite members of the permanently resident community, then, represented some 30%–60% of the complete local community, but did not show evidence of standards of living particularly lower than the elites eventually interred in the kurgan.

(…) The buried population in the Sintashta Cemetery is about 80 individuals or only about 2%–3% of the total estimated population. However, these few individuals were buried with extremely rich offerings, like complete chariots, decorations made of precious metals or sacrifices of six horses (equal to about 900 kg of meat), etc. With such a low proportion of the population assigned such high prestige, the Sintashta local community can easily be labeled a local chiefdom. In Pitman and Doonan’s view (2018) the social structure of the chifedom consisted of a chief and his kin at the highest level; warriors, religious specialists, and craftsmen in the middle; and the pastoral community at the bottom level.

kamenni-ambar-excavations

In the Bronze Age, the people who comprised the majority of the permanent population were involved in craft activities, including extraction of copper ores, metallurgy, bone, leather, and woodwork. The most important and labor-intensive part of the economy, however, was haymaking. The evidence of hay found in the cultural layer near Kamennyi Ambar supports the idea that animals were fed during the winter. Nowadays, hay cutting is typically done in July-August, the period of most intensive grazing for animals. Thus, the part of the collective that remained in the settlement had to provide the labor force for haymaking.

In the wintertime, the herders returned to the settlements with the herds, and animals were kept inside the walls––a practice which is known archaeologically (Zakh 1995) and ethnographically (Shahack-Gross et al. 2004)––while herders stayed outside in their tents.

In sum, the Sintashta-Petrovka chiefdoms demonstrate a three-part social order. In Kuzmina’s (1994) view, this is similar to the Varna system of ancient India, that consisted of priests (Sansk. Brahmanis), rulers and warriors (Sansk. Kshatriyas), free producers (Sansk. Vaishyas) and laborers and service providers (Sansk. Shudras). In the Sintashta-Petrovka chiefdom, the elite 2%–5% of the population would have consisted of priests and warriors; 48%–55% would have been dependent producers; and 50%–60% would have been herders of lower social rank.

sintashta-petrovka-settlements
The map of the Bronze Age sites in the Karagaily-Ayat Valley Sites of Phase 1: 101 – Konoplyanka; 102 – Zhurumbay; 103 – Kamennyi Ambar; 104 – Kamennyi Ambar-5 Sites of Phase 2: 201 – Konoplyanka 1; 202 – Varshavskoye-1; 203 – Zhurumbay-1; 204 – Varshavskoye-3; 205 – Varshavskoye-5; 206 – Varshavskoye-9; 207 – Kamennyi Ambar-8; 208 – Kamennyi Ambar; 209 – Elizavetpolskoye-3; 210 – Elizavetpolskoye-2; 211 – Karagayli-26; 212 – Elizavetpolskoye-7; 213 – Elizavetpolskoye- 9; 214 – Yuzhno-Stepnoyi (1); 215 – Yuzhno-Stepnoyi (2)

Conclusions

In the case of the Sintashta-Petrovka chiefdoms, the questions of why and how exactly social complexity developed through time and why individuals choose to integrate and give up their independence can be answered as some combination of two necessities: to persist as a larger community in the ecological niche of the newly settled region, and to protect herds from theft.

There is general agreement among researchers that the Sintashta phenomenon had no local roots and originated with a large-scale migration of pastoral communities from Eastern Europe to the marginal area of the Southern Urals. This process forced families to stay together and fueled the necessity in the walled villages for ensuring the reproduction of herds in the extreme climatic conditions of the southern Urals that are colder and dryer than the eastern Black Sea region from which the Sintashta populations are thought to have migrated (Kuzmina 1994, 2007; Anthony 2007; Vinogradov 2011, etc.). At the same time, the herds needed protection from animal and human predators. Probably, the risk of losing animals was a threat to survival that created tensions between neighboring communities, and the Neolithic hunter-gatherers who had populated the Urals before the arrival of Sintashta people could have hunted the domestic animals. Apparently, those who were talented in managing the construction of closely-packed villages surrounded by ditches and walls to protect people and livestock from threats from neighbors, and who otherwise served the community in the newly colonized zone became the most prominent members of society. Theses people formed the core of the Sintashta-Petrovka chiefdom but were not able to accumulate much personal wealth in the form of material possessions. Instead, they acquired high social prestige that could even be transferred to their children (since up to 65% of the buried elite population consists of infants [Razhev and Epimakhov 2005). In this sense, the Sintashta-Petrovka elites were simmilar to their counterparts in the Alto Magdalena of Colombia (Drennan 1995; Gonzalez Fernandez 2007; Drennan and Peterson 2008).

However, this situation did not last longer than 300 years, since after the initial phase of colonization of the Southern Urals was over, the need for social services provided by an elite disappeared and centralized chiefly communities disintegrated into the smaller unfortified villages of the Srubnaya-Alakul’ period.

As I have said many times already (see e.g. here) the outsider pastoralists, forming originally the vast majority of the population, were most likely Pre-Proto-Indo-Iranian speakers of haplogroup R1b-Z2103, and their elite groups (whose inheritance system was based on kinship) probably incorporated gradually Uralic-speaking families of haplogroup R1a-Z93, whose relative importance increased gradually, and then eventually expanded massively with the migrations of Andronovo and Srubna, creating a second Y-chromosome bottleneck that favoured again Z93 subclades. The adaptation of Pre-Proto-Indo-Iranian to the Uralic pronunciation, and the adoption of PII vocabulary in neighbouring Proto-Finno-Ugric bear witness to this process.

Related

On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers

steppe-eneolithic-migrations

A recent comment on the hypothetical Central European origin of PIE helped me remember that, when news appeared that R1b-L51 had been found in Khvalynsk ca. 4250-4000 BC, I began to think about alternative scenarios for the expansion of this haplogroup, with one of them including Central Europe.

Because, if YFull‘s (and Iain McDonald‘s) estimation of the split of R1b-L23 in L51 and Z2103 (ca. 4100 BC, TMRCA ca. 3700 BC) was wrong, by as much as the R1a-Z645 estimates proved wrong, and both subclades were older than expected, then maybe R1b-L51 was not part of the Yamna expansion, but rather part of an earlier expansion with Suvorovo-Novodanilovka into central Europe.

That is, R1b-L51 and R1b-Z2103 would have expanded wih Khvalynsk-Novodanilovka migrants, and they would have either disappeared among local populations, or settled and expanded with successful lineages in certain regions. I think this may give rise to two potential models.

A hidden group in the European east-central steppes?

Here is what Heyd (2011), for example, has to say about the effect of the Khvalynsk-Novodanilovka expansion in the 4th millennium BC, with the first Kurgan wave that shuttered the social, economic, and cultural foundations of south-eastern Europe (before the expansion of west Yamna migrants in the region):

indo-european-anatolian-uralic-migrations
Proto-Anatolian migrations with Khvalynsk-Novodanilovka expansion, including ADMIXTURE data from Wang et al. (2018).

As the Boleraz and Baden tumuli cases in Serbia and Hungary demonstrate, there are earlier, 4th millennium cal. B.C. round tumuli in the Carpathian basin. There are also earlier north-Pontic steppe populations who infiltrated similar environments west of the Black Sea prior to the rise of the Yamnaya culture. This situation can be traced back to the 2nd half of the 5th millennium cal. B.C. to a group of distinct burials, zoomorphic maceheads, long flint blades, triangular flint points, etc., summarized under the term Suvurovo-Novodanilovka (Govedarica 2004; Rassamakin 2004; Anthony 2007; Heyd forthcoming 2011). They also erected round personalized tumuli, though smaller in size and height, above inhumations of single individuals. Suvorovo and Casimcea are the key examples in the lower Danube region of Romania. In northeast Bulgaria, the primary grave of Polska Kosovo (ochre-stained supine extended body position: information communicated by S. Alexandrov) can also be seen as such, as should the Targovishte-“Gonova mogila” primary grave 1 in the Thracian plain with a burial arranged in a supine position with flexed legs, southeast-northwest orientated, and strewed with ochre (Kanchev 1991 , p. 56- 57; Ivanova Gaydarska 2007). In addition to the many copper and shell beads, the 17.4cm long obsidian blade is exceptional, which links this grave to the Csongrád-“Kettoshalom” grave in the south Hungarian plain (Ecsedy 1979). It also yielded an obsidian blade ( 13.2cm long) and copper, shell and limestone beads.

suvorovo-novodanilovka-expansion-europe
The Southeast European distribution of graves of the Suvorovo-Novodanilovka group and such unequipped ones mentioned in the text which can be attributed by burial custom and stratigraphic position in the barrow, plus zoomorphic and abstract animal head sceptres as well as specific maceheads with knobs as from Decea Maresului (mid-5th millennium until around 4000 BC). Heyd (2016).

However, no traces of a tumulus have been recorded above the Kettoshalom tomb. Conventionally, it is dated to the Bodrogkeresztur-period in east Hungary, shortly after 4000 cal. B.C., which would correspond very well with the suggested Cernavodă I (or its less known cultural equivalent in the Thracian plain) attribution for the “Gonova mogila” grave, a cultural background to which the Csongrád grave should have also belonged. Bodrogkeresztur and Cernavodă I periods are not the only examples of 4th millennium cal. B.C. tumuli and burials displaying this steppe connection. Indeed we can find this early steppe impact throughout the 4th millennium cal. B.C. These include adscriptions to the Horodiștea II (Corlateni-Dealul Stadole, grave I: Burtanescu l 998, p. 37; Holbocai, grave 34: Coma 1998, p. 16); to Gordinești-Cernavodă 11 (Liești-Movila Arbănașu, grave 22: Brudiu 2000); to Gorodsk-Usatovo (Corlăteni Dealul Cetăţii, grave I: Comșa 1998, p. 17- 18, in Romania; Durankulak, grave 982: Vajsov 2002, in Bulgaria); and to Cernavodă III(Golyama Detelina, tum. 4: Leshtakov, Borisov 1995), and early (end of 4th millennium cal. B.C.) Ezero in Ovchartsi, primary grave (Kalchev 1994, p. 134-138) and Golyama Detelina, tum. 2 (Kanchev 1991) in Bulgaria. Also the Boleráz and Baden tumuli of Banjevac-Tolisavac and Mokrin in the south Carpathian basin account for this, since one should perhaps take into account primary grave 12 of the Sárrédtudavari-Orhalom tumulus in the Hungarian Alfold: a left-sided crouched juvenile ( 15- 17 y) individual in an oval, NW-SE orientated grave pit 14C dated to 3350-3100 cal. B.C. at 2 sigma (Dani, Ncpper 2006). Neither the burial custom (no ochre strewing or depositing a lump of ochre has been recorded), nor date account for its ascription to the Yamnaya!

All of these tumuli and burials demonstrate, though, that there is already a constant but perhaps low-level 4th millennium cal. B.C. steppe interaction, linking the regions of the north of the Black Sea with those of the west, and reaching deep into the Carpathian basin. This has to be acknowledged. even if these populations remain small, bounded to their steppe habitat with an economy adapted to this special environment, and are not always visible in the record. Indirect hints may help in seeing them, such as the frequent occurrence of horse bones, regarded as deriving from domesticated horses, in Hungarian Baden settlements (Bokonyi 1978; Benecke 1998), and in those of the south German Cham Culture (Matuschik 1999, p. 80-82) and the east German Bernburg Culture (Becker 1999; Benecke 1999). These occur, however, always in low numbers, perhaps not enough to maintain and regenerate a herd. Does this point us towards otherwise archaeologically hidden horsebreeders in the Carpathian basin, before the Yamnaya? In any case, I hope to make one case clear: these are by no means Yamnaya burials in the strict definition! Attribution to the Yamnaya in its strict definition applies.

pit-graves-central-europe
Distribution of Pit-Grave burials west of the Black Sea likely dating to the 2nd half of the 4th millennium BC (triangles: side-crouched burials; filled circles: supine extended burials; open circles: suspected). In Alin Frînculeasa, Bianca Preda, Volker Heyd, Pit-Graves, Yamnaya and Kurgans along the Lower Danube.

Also, about the expansion of Yamna settlers along the steppes:

However, it should have been made clear by the distribution map of the Western Yamnaya that they were confining themselves solely to their own, well-known, steppe habitat and therefore not occupying, or pushing away and expelling, the locally settled farming societies. Also, living solely in the steppes requires another lifestyle, and quite different economic and social bases, most likely very different to the established farming societies. Although surely regarded as incoming strangers, they may therefore not have been seen as direct competitors. This argument can be further enforced when remembering that the lowlands and the steppes in the southeast of Europe had already been populated throughout the 4th millennium cal. B.C., as demonstrated above, by societies with a similar north-Pontic steppe origin and tradition, albeit in lower numbers. It is only for these groups that the Yamnaya may have become a threat, but their common origin and perhaps a similar economic/ social background with comparable lifestyles would surely have assisted to allow rapid assimilation. More important, though, is that farming societies in this region may therefore have been accustomed to dealing and interacting with different people and ethnic strangers for a long time. (…)

When assessing farming and steppe societies’ interaction from a general point of view, attitudes can diverge in three main directions:

  1. the violent one; with raids, fights, struggles, warfare, suppression and finally the superiority and exploitation of the one over the other;
  2. the peaceful one; with a continuous exchange of gifts, goods, work, information and genes in a balanced reciprocal system, leading eventually to the merging of the two societies and creation of a new identity;
  3. the neutral one; with the two societies ignoring each other for a long time.

What we see from trying to understand the record of the Yamnaya, based on their tumuli and burials, and the local and neighbouring contemporary societies, based on their settlements, hoards, and graves, is likely a mixture of all three scenarios, with the balance perhaps more towards exchange in a highly dynamic system with alterations over time. However, violence and raids cannot be ruled out; they would be difficult to see in the archaeological record; or only indirectly, such as the building of hill forts, particularly the defence-like chain of Vucedol hillforts along the south shore of the Danube on the Serbian/Croatian border zone (Tasic 1995a), and the retreat of people into them (Falkenstein 1998, p. 261-262), with other interpretations also possible. And finally, we are dealing here with very different local and neighbouring societies, as well as with more distant contemporary ones, looking, in reality, rather like a chequer board of societies and archaeological cultures (see Parzinger 1993 for the overview). These display different regional backgrounds and traditions leading to different social and settlement organizations, different economic bases and material cultures in the wide areas between Prut and Maritza rivers, and Black Sea and Tisza river. They surely found their individual way of responding to the incoming and settling Yamnaya people.

yamna-tumuli-west-carpathians
Yamnaya tumuli signalling the expansion of West Yamna from ca. 3100 BC (especially after ca. 2950 BC). Heyd (2011).

The best data we have about this potential non-Yamna origin of R1b-L51 – and thus in favour of its admixture in the Carpathian basin – lies in:

  1. The majority of R1a-Z2103 subclades found to date among Yamna samples.
  2. The presence of R1b-Z2103 in the Catacomb culture – in the Northern Caucasus and in Ukraine.
  3. The limited presence of (ancient and modern) R1b-L51 in eastern Europe and India, whose isolated finds are commonly (and simplistically) attributed to ‘late migrations’.
  4. The presence of R1b-L51 (xZ2103) in cultures related to the ‘Yamna package’, but supposedly not to Yamna settlers. So for example I7043, of haplogroup R1b-L151(xU106,xP312), ca. 2500-2200 BC from Szigetszentmiklós-Üdülősor, probably from the Bell Beaker (Csepel group), but maybe from the early Nagýrev culture.
  5. The expansion of its subclades apparently only from a single region, around the Carpathian basin, in contrast to R1b-Z2103.
  6. The already ‘diluted’ steppe admixture found in the earliest samples with respect to Yamna, which points to the appearance after the Yamna admixture with the local population.
  7. Ukrainian archaeologists (in contrast to their Russian colleagues) point to the relevance of North Pontic cultures like Kvitjana and Lower Mikhailovka in the development of Early Yamna in the west, and some eastern European researchers also believe in this similarity.
  8. If R1b-Z2103 and R1b-L51 had expanded with Suvorovo-Novodanilovka migrants to the west, and had admixed later as Hungary_LCA-LBA-like peoples with Yamna migrants during the long-term contacts with other ‘kurganized cultures’ ca. 2900-2500 BC in the Great Hungarian Plains, it could explain some peculiar linguistic traits of North-West Indo-European, and also why R1b-Z2103 appears in cultures associated with this earlier ‘steppe influence’ (i.e. not directly related to Yamna) such as Vučedol (with a R1b-Z2103 sample, see below). That could also explain the presence of R1b-L151(xP312, xU106) in similar Balkan cultures, possibly not directly related to Yamna.
PCA-r1b-l51
Image modified from Wang et al. (2018). PCA of ancient and modern samples. Red circle in dashed line around Varna, Greece Neolithic, and (approximate position of) Smyadovo outliers, part of Khvalynsk-Novodanilovka settlers.

A hidden group among north or west Pontic Eneolithic steppe cultures?

The expansion of Khvalynsk as Novodanilovka into the North Pontic area happened through the south across the steppe, near the coast, with the forest-steppe region working as a clear natural border for this culture of likely horse-riding chieftains, whose economy was probably based on some rudimentary form of mobile pastoralism.

Although archaeologists are divided as to the origin of each individual Middle Eneolithic group near the Black Sea after the end of the Khvalynsk-Novodanilovka period, it seems more or less clear that steppe cultures like Cernavodă, Lower Mikhailovka, or Kvitjana are closer (or “more archaic”) in their steppe features, which connects them to Volga–Ural and Northern Caucasus cultures, like Northern Caucasus, Repin or Khvalynsk.

On the other hand, forest-steppe cultures like Dereivka (including Alexandria) show innovative traits and contacts with para- or sub-Neolithic cultures to the north, like Comb-Pit Ware groups, apart from corded decoration influenced by Trypillian groups to the west, especially in their later (‘Proto-Corded Ware‘) stage after ca. 3500 BC.

If Ukrainian researchers like Rassamakin are right, Early Yamna expanded not only from Repin settlers, but also from local steppe cultures adopting Repin traits to develop an Early Yamna culture, similar to how eastern (Volga–Ural groups) seem to have synchronously adopted Early Yamna without massive affluence of Repin settlements.

Furthermore, local traits develop in southern groups, like anthropomorphic stelae (shared with Kemi-Oba, direct heir of Lower Mikhailovka), and rich burials featuring wagons. These traits are seen in west Yamna settlers.

north-pontic-kvityana-dereivka-repin
Modified from Rassamakin (1999), adding red color to Repin expansion. The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug.

Problems of this model include:

  1. On the North Pontic area – in contrast to the Volga–Ural region – , there was a clear “colonization” wave of Repin settlers, also supported by Ukrainian researchers, based on the number of new settlements and burials, and on the progressive retreat of Dereivka, Kvitjana, as well as (more recent) Maykop- and Trypillia-related groups from the North Pontic area ca. 3350/3300 BC. It seems unlikely that these expansionist, semi-nomadic, cattle-breeding, patrilineally-related steppe clans that were driving all native populations out of their territories suddenly decided, at some point during their spread into the North Pontic area ca. 3300-3100 BC, to join forces with some foreign male lineages from the area, and then continue their expansion to the west…
  2. Similar to the fate of R1b-P297 subclades in the Baltic after the expansion of Corded Ware migrants, previous haplogropus of the North Pontic region – such as R1a, R1b-V88, and I2 subclades basically disappeared from the ancient DNA record after the expansion of Khvalynsk-Novodanilovka, and then after the expansion of Yamna, as is clear from Yamna, Afanasevo, and Bell Beaker samples obtained to date. This, in combination with what we know about Y-chromosome bottlenecks in post-Neolithic expansions, leaves little space to think that a big enough territorial group with a majority of “native” haplogroups could survive later expansions (be it R1b-L51 or R1a-Z645).
  3. Supporting an expansion of the same male (and partly female) population, the Yamna admixture from east to west is quite homogeneous, with the only difference found in (non-significant) EEF-like proportion which becomes elevated in distant areas [apart from significant ‘southern’ contribution to certain outlier samples]. Based on the also homogeneous Y-DNA picture, the heterogeneity must come, in general, from the female exogamy practiced by expanding groups.
  4. There is a short period, spanning some centuries (approximately 3300-2700 BC), in which the North Pontic area – especially the forest-steppe territories to the west of the Dnieper, i.e. the Upper Dniester, Boh, and Prut-Siret areas – are a chaos of incoming and emigrating, expanding and shrinking groups of different cultures, such as late Trypillian groups, Maykop-related traits, TRB, GAC, (Proto-)Corded Ware, and Early Yamna settlements. No natural geographic frontier can be delimited between these groups, which probably interacted in different ways. Nevertheless, based on their cultural traits, admixture, and especially on their Y-DNA, it seems that they never incorporated foreign male lineages, beyond those they probably had during their initial expansion trends.
  5. The further expansionist waves of Early Yamna seen ca. 3100 BC, from the Danube Delta to the west, give an overall image of continuously expanding patrilineal clans of R1b-M269 subclades since the Khvalynsk-Novodanilovka migration, in different periodic steps, mostly from eastern Pontic-Caspian nuclei, usually overriding all encountered cultures and (especially male) populations, rather than showing long-term collaboration and interaction. Such interaction is seen only in exceptional cases, e.g. the long-term admixture between Abashevo and Poltavka, as seen in Proto-Indo-Iranian peoples and their language.
PCA-Ukraine-r1b-l51
Image modified from Wang et al. (2018). PCA of ancient and modern samples. Arrows depicting Khvalynsk -> Yamna drift (blue), and hypothetic approximate Ukraine Eneolithic -> Yamna drift accompanying R1b-L51 (red).

Consequences

We are living right now an exemplary ego-, (ethno-)nationalism-, and/or supremacy-deflating moment, for some individuals of eastern and northern European descent who believed that R1a or ‘steppe ancestry proportions’ meant something special. The same can be said about those who had interiorized some social or ethnolinguistic meaning for the origin of R1b in western Europe, N1c in north-eastern Europe, as well as Greeks, Iranians, Armenians, or Mediterranean peoples in general of ‘Near Eastern’ ancestry or haplogroups, or peoples of Near Eastern origin and/or language.

These people had linked their haplogroups or ancestry with some fantasy continuity of ‘their’ ancestral populations to ‘their’ territories or languages (or both), and all are being proven wrong.

Apart from teaching such people a lesson about what simplistic views are useful for – whether it is based on ABO or RH group, white skin, blond hair, blue eyes, lactase persistence, or on the own ancestry or Y-DNA haplogroup -, it teaches the rest of us what can happen in the near future among western Europeans. Because, until recently, most western Europeans were comfortably settled thinking that our ancestors were some remnant population from an older, Palaeolithic or Mesolithic population, who acquired Indo-European languages by way of cultural diffusion in different periods, including only minor migrations.

Judging by what we can see now among some individuals of Northern and Eastern European descent, the only thing that can worsen the air of superiority among western Europeans is when they realize (within a few years, when all these stupid battles to control the narrative fade) that not only are they the cultural ‘heirs’ of the Graeco-Roman tradition that began with the Roman Empire, but that most of them are the direct patrilineal descendants of Khvalynsk, Yamna, Bell Beaker, and European Bronze Age peoples, and thus direct descendants of Middle PIE, Late PIE, and NWIE speakers.

steppe-chalcolithic-migrations
Steppe-related migrations ca. 3100-2600 BC with tentative linguistic identification.

The finding of R1b-L51 and R1b-Z2103 among expanding Suvorovo-Novodanilovka chieftains, with pockets of R1b-L51 remaining in steppe-like societies of the Balkans and the Carpathian Basin, would have beautifully complemented what we know about the East Yamna admixture with R1a-Z93 subclades (Uralic speakers) ca. 2600-2100 BC to form Proto-Indo-Iranian, and about the regional admixtures seen in the Balkans, e.g. in Proto-Greeks, with the prevalent J subclades of the region.

It would have meant an end to any modern culture or nation identifying themselves with the ‘true’ Late PIE and Yamna heirs, because these would be exclusively associated with the expansion of R1b-Z2103 subclades with late Repin, and later as the full-fledged Late PIE with Yamna settlers to south-east and central Europe, and to the southern Urals. The language would have had then obviously undergone different language changes in all these territories through long-lasting admixture with other populations. In that sense, it would have ended with the ideas of supremacy in western Europe before they even begin.

The most likely future

However limited the evidence, it seems that R1b-L51 expanded with Yamna, though, based on the estimates for the haplogroups involved, and on marginal hints at the variability of L23 subclades within Yamna and neighbouring populations. If R1b-L51 expanded with West Repin / Early Yamna settlers, this is why they have not yet been found among Yamna samples:

steppe-eneolithic-migrations
Simplified map of Repin expansions from ca. 3500/3400 BC.
  • The subclade division of Yamna settlers needs not be 50:50 for L51:Z2103, either in time or in space. I think this is the simplistic view underlying many thoughts on this matter. Many different expanding patrilineal clans of L23 subclades may have been more or less successful in different areas, and non-Z2103 may have been on the minority, or more isolated relative to Z2103-clans among expanding peoples on the steppe, especially on the east. In fact, we usually talk in terms of “Z2103 vs. L51” as if
    1. these two were the only L23 subclades; and
    2. both had split and succeeded (expanding) synchronously;

    that is, as if there had not been multiple subclades of both haplogroups, and as if there had not been different expansion waves for hundreds of years stemming from different evolving nuclei, involving each time only limited (successful) clans. Many different subclades of haplogroups L23 (xZ2103, xL51), Z2103, and L51 must have been unsuccessful during the ca. 1,500 years of late Khvalynsk and late Repin-Early Yamna expansions in which they must have participated (for approximately 60-75 generations, based on a mean 20-25 years).

  • If we want to imagine a pocket of ‘hidden’ L51 for some region of the North Pontic or Carpathian region, the same can be imagined – and much more likely – for any unsampled territory of expanding late Repin/Early Yamna settlers from the Lower Don – Lower Volga region (probably already a mixed society of L51 and Z2103 subclades since their beginning, as the early Repin culture, ca. 3800 BC), with L51 clans being probably successful to the west.
  • The Repin culture expanded only in small, mobile settlements from the Lower Don – Lower Volga to the north, east, and south, starting ca. 3500/3400 BC, in the waves that eventually gave a rather early distant offshoot in the Altai region, i.e. Afanasevo. Starting ca. 3300 BC in the archaeological record, the majority of R1b-Z2103 subclades found to date in Afanasevo also supports either
    • a mixed Repin society, with Z2103-clans predominating among eastern settlers; or
    • a Repin society marked by haplogroup L51, and thus a cultural diffusion of late Repin/Early Yamna traits among neighbouring (Khvalynsk, Samara, etc.) groups of essentially the same (early Khvalynsk-Novodanilovka) genetic stock in the Volga–Ural region.

    Both options could justify a majority of Z2103 in the Lower Volga–Ural region, with the latter being supported by the scattered archaeological remains of late Repin in the region before the synchronous emergence of Early Yamna findings in the whole Pontic-Caspian steppe.

  • Most Z2103 from Yamna samples to date are from around 3100 BC (in average) onward, and from the right bank of the Lower Don to the east, particularly from the Lower Volga–Ural area (especially the Samara region), which – based on the center of expansion of late Repin settlers – may be depicting an artificially high Z2103-distribution of the whole Yamna community.
repin-expansion-khvalynsk-cultures
Repin expansion into the Volga–Ural region from ca. 3500/3400 BC. Map made by me based on maps and data from Morgunova (2014, 2016). Lopatino is marked with number 64.
  • Yamna sample I0443, R1b-L23 (Y410+, L51-), ca. 3300-2700 BCE from Lopatino II, points to an intermediate subclade between L23 and L51, near one of the supposed late Repin sites (based on kurgan burials with late Repin cultural traits) in the Samara region.
  • Other Balkan cultures potentially unrelated to the Yamna expansion also show Z2103 (and not only L51) subclades, like I3499 (ca. 2884-2666 calBC), of the Vučedol culture, from Beli Manastir-Popova zemlja, which points to the infiltration of Yamna peoples in other cultures. In any case, the appearance of R1b-L23 subclades in the region happens only after the Yamna expansion ca. 3100 BC, probably through intrusions into different neighbouring regions, if these Balkan cultures are not directly derived from Yamna settlements (which is probably the case of the Csepel Bell Beaker or early Nagýrev sample, see above).
  • The diversity of haplogroups found in or around the Carpathian Basin in Late Chalcolithic / Early Bronze Age samples, including L151(xP312, xU106), P312, U106, Z2103, makes it the most likely sink of Yamna settlers, who spread thus with expanding family clans of different R1b-L23 subclades.
  • Even though some Yamna vanguard groups are known to have expanded up to Saxony-Anhalt before ca. 2700 BC, haplogroup Z2103 seems to be restricted to more eastern regions, which suggests that R1b-L51 was already successful among expanding West Yamna clans in Hungary, which gave rise only later to expanding East Bell Beakers (overwhelmingly of L151 subclades). The source of R1b-L51 and L151 expansion over Z2103 must lie therefore in the West Yamna period, and not in the Bell Beaker expansion.
indo-european-uralic-migrations-yamna-gac
Yamna migrants ca. 3300-2600. Most likely site of admixture with GAC circled in red.
  • The R1b-Z2103 found in Poltavka, Catacomb, and to the south point to a late migration displacing the western R1b-L51, only after the late Repin expansion. This is also seen in the steppe ancestry and R1b-Z2103 south of the Caucasus, in Hajji Firuz, which points to this route as a potential source of the supposed “Earliest Proto-Indo-Iranian” (the mariannu term) of the Near East. A similar replacement event happened some centuries later with expanding R1a-Z93 subclades from the east wiping out haplogroup R1b-Z2103 from the Pontic-Caspian steppe.
  • Many ancient samples from Khvalynsk, Northern Caucasus, Yamna, or later ones are reported simply as R1b-M269 or L23, without a clear subclade, so the simplistic ‘Yamna–Z2103’ picture is not real: if one takes into account that Z2103 might have been successful quite early in the eastern region, it is more likely to obtain a successful Y-SNP call of a Z2103 subclade in the Volga–Ural region than a xZ2103 one.
  • There are some modern samples of R1b-L51 in eastern Europe and Asia, whose common simplistic attribution to “late expansions” is usually not substantiated; and also ancient R1b-L51 samples might be confirmed soon for Asia.
  • ‘Western’ features described by archaeologists for West Yamna settlers, associated with Kemi Oba and southern Yamna groups in the North Pontic area – like rich burials with anthropomorphic stelae and wagons – are actually absent in burials from settlers beyond Bulgaria, which does not support their affiliation with these local steppe groups of the Black Sea. Also, a mix with local traditions is seen accross all Early Yamna groups of the Pontic-Caspian steppe, and still genetics and common cultural traits point to their homogeneization under the same patrilineal clans expanding continuously for centuries. The maintenance of local traditions (as evidenced by East Bell Beakers in Iberia related to Iberian Proto-Beakers) is often not a useful argument in genetics, especially when the female population is not replaced.
yamna-settlers-hungary
Yamna settlers in the Great Pannonian Plain, showing only kurgans of Hungary ca. 2950-2500 BC. Yamna Hungary was one of the biggest West Yamna provinces. From Hórvath et al. (2013).

Conclusion

This is what we know, using linguistics, archaeology, and genetics:

  • Middle Proto-Indo-European expanded with Khvalynsk-Novodanilovka after ca. 4800 BC, with the first Suvorovo settlements dated ca. 4600 BC.
  • Archaic Late Proto-Indo-European expanded with late Repin (or Volga–Ural settlers related to Khvalynsk, influenced by the Repin expansion) into Afanasevo ca. 3500/3400 BC.
  • Late Proto-Indo-European expanded with Early Yamna settlers to the west into central Europe and the Balkans ca. 3100 BC; and also to the east (as Pre-Proto-Indo-Iranian) into the southern Urals ca. 2600 BC.
  • North-West Indo-European expanded with Yamna Hungary -> East Bell Beakers, from ca. 2500 BC.
  • Proto-Indo-Iranian expanded with Sintashta, Potapovka, and later Andronovo and Srubna from ca. 2100 BC.

It seems that the subclades from Khvalynsk ca. 4250-4000 BC were wrongly reported – like those of Narasimhan et al. (2018). However, even if they are real and YFull estimates have to be revised, and even if the split had happened before the expansion of Suvorovo-Novodanilovka, the most likely origin of R1b-L51 among Bell Beakers will still be the expansion of late Repin / Early Yamna settlers, and that is what ancient DNA samples will most likely show, whatever the social or political consequences.

The only relevance of the finding of R1b-L51 in one place or another – especially if it is found to be a remnant of a Middle PIE expansion coupled with centuries of admixture and interaction in the Carpathian Basin – is the potential influence of an archaic PIE (or non-IE) layer on the development of North-West Indo-European in Yamna Hungary -> East Bell Beaker. That is, more or less like the Uralic influence related to the appearance of R1a-Z93 among Proto-Indo-Iranians, of R1a-Z284 among Pre-Germanic peoples, and of R1a-Z282 among Balto-Slavic peoples.

I think there is little that ancient DNA samples from West Yamna could add to what we know in general terms of archaeology or linguistics at this point regarding Late PIE migrations, beyond many interesting details. I am sure that those who have not attributed some random 6,000-year-old paternal ancestor any magical (ethnic or nationalist) meaning are just having fun, enjoying more and more the precise data we have now on European prehistoric populations.

As for those who believe in magical consequences of genetic studies, I don’t think there is anything for them to this quest beyond the artificially created grand-daddy issues. And, funnily enough, those who played (and play) the ‘neutrality’ card to feel superior in front of others – the “I only care about the truth”-type of lie, while secretly longing for grandpa’s ethnolinguistic continuity – are suffering the hardest fall.

Related

Mitogenomes show likely origin of elevated steppe ancestry in neighbouring Corded Ware groups

west-yamna-corded-ware

Open Access Mitochondrial genomes reveal an east to west cline of steppe ancestry in Corded Ware populations, by Juras et al., Scientific Reports (2018) 8:11603.

Interesting excerpts (emphasis mine, references have been deleted for clarity):

Ancient DNA was extracted from the Corded Ware culture individuals excavated in southeastern Poland (N = 12) and Moravia (N = 3). Late Eneolithic (N = 5) and Bronze Age human remains (N = 25) originated from western Ukraine and came from the Yampil barrow cemetery complex located in the north–western region of the Black Sea. Bronze Age individuals were associated with different archaeological cultures, including Yamnaya (N = 14), Catacomb (N = 2), Babyno (N = 4) and Noua (N = 5).

The PCA results described 50.62% of the variability and were combined with the k-means clustering (with the k value of 5 as the best representation of the data, at the average silhouette of 0.2608). Based on these results individuals associated with the western and eastern Yamnaya horizon (YAE and YAW in Fig. 2) were grouped within a cluster consisting of populations from central Eurasia and Europe (blue cluster) including people associated with eastern Corded Ware culture (CWPlM) and Baltic Corded Ware culture (CWBal). This cluster did not contain any populations linked with early Neolithic farmers (red), or hunter-gatherers (green and yellow). On the other hand, k-means clustering linked the western Corded Ware culture-associated population (CWW) with Near East and Neolithic farmer ancestry groups from western and central Europe.

pca-cwc-yamna
Modified image, from the paper. PCA based on mitochondrial DNA haplogroup frequencies with k-means clustering. The two principal components explained 50.62% of the total variance. Loading vectors, representing mitochondrial haplogroup contributions, are highlighted as grey arrows. Populations are grouped into four clusters according to k-means. Population abbreviations are as follows: BABA – Bronze Age Balkans; CAT – Catacomb Culture; CWPlM – Corded Ware Culture from Poland and Moravia; CWBal – Baltic Corded Ware Culture; IAK – Iron Age Kazakchstan; IASI – Iron Age Syberia – Aldy Bel Culture; SCA – Scytho-Siberian Pazyryk (Altai); SCR – Rostov-Scythians, Samara; SCU – Scythians from Moldova and Ukraine; TAG – Tagar Culture; GAC – Globular Amphora Culture; YAW – western Yamnaya horizon population from Ukraine and Bulgaria; YAE – eastern Yamnaya horizon population; BAC – Baalberge Culture; BANE – Bronze Age Near East; BEC – Bernburg Culture; CHAHu – Chalcolithic Hungary; CWW – Corded Ware Culture west; CHABA – Chalcolitic Balkans; EBAG – Early Bronze Age Germany; FBC – Funnel Beaker Culture; IAG – Iron Age Germany; MNG – Middle Neolithic Germany; LBK – Linear Pottery Culture; LDN – Late Danubian Neolithic; MIC – Minoans; NEBA – Neolithic Balkans; PPNE – Pre-Pottery Near East; SCG – Schöningen group; SMC – Salzmünde Culture; AND – Andronovo Culture; BASI – Bronze Age Siberia; PWC – Pitted Ware Culture; HGE – eastern hunter-gatherers; NEUk- Neolithic Ukraine; HGS – southern hunter-gatherers; HGBal – Baltic hunter-gatheres; HGC – central huther-gatherers.

Pairwise mtDNA-based FST values, visualized on MDS using the raw non-linearized FST (stress value = 0.099) (Fig. 4), also supported the PCA results and indicated that western and eastern Yamnaya horizon groups (YAW and YAE) were closer to people associated with the eastern Corded Ware culture (CWPlM) (FST = 0.00; FST = 0.01, respectively; both p > 0.05) and Baltic Corded Ware culture (CWBal) (FST = 0.00; FST = 0.00, respectively; both p > 0.05), than to populations associated with the western Corded Ware culture (CWW) (FST = 0.047 and FST = 0.059, respectively; both statistically significant p < 0.05). Western and eastern Yamnaya horizon groups also showed close genetic affinity to the Iron Age western Scythians (SCU) (FST = 0.0022 and FST = 0.006, respectively, both p > 0.05). The most distant populations to the Yamnaya horizon groups were western hunter-gatherers (HGW) (FST = 0.23 and FST = 0.15, p < 0.001). The FST-based MDS reflected the general European population history in the post-LGM period as the three highest FST scores were detected between western hunter-gatherers (HGW) and people associated with Linear Pottery culture (LBK) (FST = 0.33, p < 0.001), between eastern hunter-gatherers (HGE) and Baltic hunter-gatherers (HGBal) (FST = 0.35, p < 0.05), and between western (HGW) and eastern hunter-gatherers (HGE) (FST = 0.36, p < 0.05). The Yamnaya horizon groups (YAE and YAW) were placed centrally between northern hunter-gatherers (HGN) and Neolithic farmers (LDN), in direct proximity to the Bronze and Iron Age populations from Eastern Europe (SCU, BARu, SRU) and close to individuals associated with eastern and Baltic Corded Ware culture.

yamna-corded-ware-pca
Modified image, from the paper. In circles, relevant European groups for the question of ‘steppe ancestry’. MDS plot based on FST values calculated from mitochondrial genomes. Population abbreviations: BBC – Bell Beaker Culture; BAHu – Bronze Age Hungary; BARu – Bronze Age Russia; CWPlM – Corded Ware Culture from Poland and Moravia; CWW – western Corded Ware Culture; CWBal – Baltic Corded Ware Culture; EBAG – Early Bronze Age Germany; GAC – Globular Amphora Culture; HGE – eastern hunter-gatherers; HGN – northern hunter-gatherers; HGW – western hunter-gatherers; HGBal – Baltic hunter-gatherers; LBK – Linear Pottery Culture; LDN – Late Danubian Neolithic; MNE – Middle Neolithic; NENE – Near Eastern Neolithic; SCU – Scythians from Moldova and Ukraine; SRU – Rostov-Scythians, Samara.

Among the analyzed samples, we identified two Catacomb culture-associated individuals (poz220 and poz221) belonging to hg X4. They are the first ancient individuals assigned to this particular lineage. Haplogroup X4 is rare among present day populations and has been found only in one individual each from Central Europe, Balkans, Anatolia and Armenia.

Moreover, we have reported mtDNA haplotypes that might be associated with the migration from the steppe and point to genetic continuity in the north Pontic region from Bronze Age until the Iron Age. These haplotypes were assigned to hgs U5, U4, U2 and W3. MtDNA hgs U5a and U4, identified in this study among Yamnaya, Late Eneolithic and Corded Ware culture-associated individuals, have previously been found in high frequencies among northern and eastern hunter-gatherers. Moreover, they appeared in the north Pontic region in populations associated with Mesolithic (hg U5a), Eneolithic (Post-Stog) (hg U4), Yamnaya (hgs U5, U5a), Catacomb (hgs U5 and U5a) and Iron Age Scythians (hg U5a), suggesting genetic continuity of these particular mtDNA lineages in the Pontic region from, at least, the Bronze Age. Hgs U5a and U4-carrying populations were also present in the eastern steppe, along with individuals from the Yamnaya culture from Samara region, the Srubnaya and the Andronovo from Russia. Interestingly, hg U4c1 found in the Yamnaya individual (poz224) has so-far been found only in two Bell Beaker- associated individuals and one Late Bronze Age individual from Armenia, which might suggest a steppe origin for hg U4c1. A steppe origin can possibly also be assigned to hg U4a2f, found in one individual (poz282) but not reported in any other ancient populations to date, and to U5a1- the ancestral lineage of U5a1b, reported for individual poz232, which was identified not only in Corded Ware culture-associated population from central and eastern Europe, but also in representatives of Catacomb culture from the north Pontic region, Yamnaya from Bulgaria and Russia, Srubnaya and Andronovo-associated groups. Hg U2e, reported for Late Eneolithic individual (poz090), was also identified in western Corded Ware culture-associated individual and in succeeding Sintashta, Potapovka and Andronovo groups, suggesting possible genetic continuity of U2e1 in the western part of the north Pontic region.

Hgs W3a1 and W3a1a, found in two Yamnaya individuals from this study (poz208 and poz222), were also identified in Yamnaya-associated individuals from the Russia Samara region and later in Únětice and Bell Beaker groups from Germany, supporting the idea of an eastern European steppe origin of these haplotypes and their contribution to the Yamnaya migration toward the central Europe. The W3a1 lineage was not identified in Neolithic times and, thus, we assume that it appeared in the steppe region for the first time during the Bronze Age. Notably, hgs W1 and W5, which predate the Bronze Age in Europe, were found only in individuals associated with the early Neolithic farmers from Starčevo in Hungary (hg W5), early Neolithic farmers from Anatolia (hg W1-T119C), and from the Schöningen group (hg W1c) and Globular Amphora culture from Poland (hg W5).

west-yamna-west-corded-ware

Some comments

The most recent radiocarbon dates show that Early Yamna expanded to the west with Repin settlers of the Lower Don ca. 3350/3300 BC. At the end of the 4th millennium, then, these settlers dominated over groups whose population had in turn also elevated ‘steppe ancestry’ (at least from ca. 4000 BC, as shown by Ukraine Eneolithic samples from the forest-zone), and probably replaced the male population completely, as evidenced by other Yamna and Poltavka, and later Bell Beaker, Catacomb, and Sintashta samples.

The ‘second wave’ of expansion of Yamna settlers to the west, into east-central European steppes, began probably ca. 3100/3000 BC, and – based on material culture – stemmed mainly from the North Pontic area. The Yampil Barrow Complex on the Dnieper (which I recently wrote about) seems to be part of one of the groups of western Yamna migrants: those who migrated westward from the left bank of the Dniester to the west into the Prut-Siret region, and north along the Prut.

This region is the key for population movements that gave rise to the Corded Ware culture (see another recent post on Corded Ware origins). It is quite likely that we will see a dance of late Trypillia / Usatovo, GAC, (Proto-)Corded Ware, and Yamna samples in this area. Judging by the clear-cut Y-DNA bottlenecks we are seeing in Neolithic populations, especially among steppe pastoralists, the difference between groups in recovered ancient samples will not only be clear from their culture, but also from their male lineages.

Based on the number of burials studied from the different settlement regions for West Yamna migrants, the Prut-Siret group was one of the smallest new Yamna ‘provinces’ in south-eastern Europe, and was probably overrun early, although – since kurgan findings continued into the Catacomb culture in the Yampil complex – the Dnieper region was well-enough connected to the core North Pontic area to be kept into its retreating territory by 2500 BC, as was the Danube delta, in contrast with other east-central European areas.

steppe-chalcolithic-migrations
Steppe-related migrations ca. 3100-2600 BC with tentative linguistic identification.

Taking into account that the earliest Corded Ware burials are from ca. 2900 BC (in the Single Grave culture), and that the earliest A-horizon pottery expanded from Lesser Poland (a syncretic pottery based on the previous GAC-type) a century later, it is likely that what this paper shows for Corded Ware in eastern Europe and the Baltic is what I have suggested many times (see here, or here) as the most likely reason for elevated steppe ancestry (and close PCA cluster) of the Baltic LN ‘outliers’: the exogamy of Corded Ware groups with females from Yamna or a North Pontic steppe culture with similar ancestry.

If Proto-Corded Ware populations of the North Pontic region did not have an identical “steppe ancestry” to these eastern CW groups already during the Eneolithic (which is the other possibility), I might be right in their more recent exogamy, and this could be seen in this study by the close cluster of east Corded Ware (especially Baltic) mtDNA to GAC and Yamna West groups, and distant from previous hunter-gatherer populations of the area, which suggests that expanding males from the Volhynia/Podolia region practiced exogamy mainly with southern groups.

I think this is probably related to demographic pressure imposed on other populations by the explosive expansion of pastoralists with their new subsistence economy (part of the “Secondary Products Revolution”), which the hunter-gatherer and farmer population of Europe could not keep up with (as seen later in the admixture of expanding East Bell Beakers), although studies on European prehistoric demography are scarce and too general to tell us anything relevant for this precise period and region.

Related

Yamna female shows decoration of bones after body decomposition

Interesting press release from the Institute of Archaeology at Adam Mickiewicz University in Poznań:

In an open access report last year, Anthropological Description of Skeletal Material from the Dniester Barrow-cemetery Complex, Yampil Region, Vinnitsa Oblast (Ukraine), the team lead by Liudmyla Litvinova – of the Ukrainian Academy of Science – published their findings from the skeletons in different burial mounds along the border with Moldavia, ranging from Eneolithic to Iron Age burials.

yampil-barrows-ukraine
Map of Yampil barrows, showing administrative borders: 1 – Klembivka barrow 1; 2 – Porohy, barrow 3A; 3 – Pidlisivka, barrow 1; 4 – Prydnistryanske, barrows 1-4; 5 – barrows; 6 – excavated barrows; 7 – Ukrainian-Moldovan frontier; 8 – Yampil Region border

In one Yamnaya burial rested a young woman aged 25-30. It was so described in the original paper:

Barrow 3A, feature 10. A very poorly-preserved skeleton with a badly damaged skull. The preserved bones include small fragments of the cranial vault and mandible and larger ones of the upper and lower limbs, pelvis fragments and vertebrae. The skeleton belonged to a female aged 25-30 years (adultus). Due to the poor state of preservation of long bones, it was not possible to reconstruct her stature. Palaeopathological lesions: LEH on both lower canines (age of the individual at the time of both defects: 4.5-5.0 years); caries on the upper left third molar.

reconstruction-yamna-female
Burial and reconstruction. Foto by Michał Podsiadło.

This is what the team has discovered since then:

While drawing and photographing the burial, our attention was drawn to regular patterns, such as parallel lines visible on both elbow bones. At first, we approached the discovery with caution – maybe the traces were left by animals, we wondered

– Says Danuta Żurkiewicz from the Institute of Archaeology, Adam Mickiewicz University in Poznań, who prepared an article on the decorations.

It is surprising that the procedure of decorating the bones had to be done after death and the process of body decomposition. This is clearly indicated by the location of the decoration on the bone surface and the way dye was applied.

yamna-female-marks-forearm
Detail of the forearm, from Żurkiewicz. Modified by me, I added rectangles around the marks on the distal end and middle third of the cubitus. You can see the marks on the cubitus with more detail in the original article.

Some time after the woman’s death the grave was reopened, bone decoration was performed and the bones were re-arranged in anatomical order.

According to Żurkiewicz, this discovery is unique – so far, no comparable custom among other prehistoric communities in Europe has been recorded.

Until now, the few similar discoveries have been interpreted as remnants of tattoos, but none of them have been analysed using so many modern methods, which is why they can not be confirmed with full confidence

Żurkiewicz believes that:

However, women were rarely buried in them. The deceased, whose bones were covered with patterns, had to be an important member of the community.

These findings will be detailed in volume 22 of Baltic-Pontic Studies, which will be available online on the De Gruyter Open platform in August.

My opinion – without knowing anything about the case, site, or archaeology of kurgans in general, just from my knowledge in Orthopaedic Surgery – is that it would be quite easy to make those marks on the cubitus post-mortem, because the cubitus has a very easy surgical access (just under the skin, mostly). On the other hand, opening the grave after decomposition to take the bone, make those marks, and put it back, seems too much work to achieve the same result…

If the marks had been on another anatomical site (say, the anterior aspect of the sacrum, or the inner aspect of the cranium, etc.) maybe the butchery needed to mark the bones would not be worth it (especially for a relative of the deceased), but in this case I hope they have a good reason to support why it must have been made after decomposition.

EDIT (4 AUG 2018): The published paper on this specific burial and the marks: Ritual position and “tattooing” techniques in the funeral practices of the “Barrow cultures” of the Pontic-Caspian steppe/forest-steppe area Porohy 3A, Yampil region, Vinnytsia Oblast: Specialist analysis research perspectives, by Żurkiewicz et al. (2018).

See also on the same region Eneolithic, Yamnaya and Noua culture cemeteries from the first half of the 3rd and the middle of the 2nd millennium BC, Porogy, site 3A, Yampil region, Vinnitsa oblast: Archaeometric and Chronometric Description, Ritual and Tazonomic-Topogenetic identification, by Viktor Klochko et al. (2015), B-P S, vol. 20, P. 78-141.

Related

Trypillia and Greece Neolithic outliers: the smoking gun of Proto-Anatolian migrations?

neolithic-migrations-khvalynsk-novodanilovka-anatolian

(Continued from the post Corded Ware culture origins: The Final Frontier).

Looking at the PCA of Wang et al. (2018), I realized that Sredni Stog / Corded Ware peoples seem to lie somewhere between:

  • the eastern steppe (i.e. Khvalynsk-Yamna); and
  • Lower Danube and Balkan cultures affected by Anatolian- and steppe-related (i.e. Khvalynsk-Novodanilovka) migrations.

This multiethnic interaction of the western steppe fits therefore the complex archaeological description of events in the North Pontic, Lower Danube, and Dnieper-Dniester regions. Here are some interesting samples related to those long-lasting contacts:

1. I3719 (mtDNA H1, Y-DNA I2a2a) Ukraine Neolithic sample from Dereivka ca. 4949–4799 BC, described in Mathieson et al. (2018) as of “entirely northwestern-Anatolian-Neolithic-related ancestry”.

2. ANI163 from Varna I ca. 4711–4550 BC (mtDNA H7a1), and I2181 from Balkans Chalcolithic (Smyadovo, in Bulgaria) ca. 4500 BC (mtDNA HV15, Y-DNA R) show the first steppe ancestry in regions known to be affected by the expansion of Suvorovo chiefs.

3. The Yamna Bulgaria outlier (Y-DNA I2a2a1b1b), 3012-2900 calBCE, shows apparently an admixture with cultures of that region (but 1,500 years later).

PCA-trypillia-greece-neolithic-outlier-anatolian
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Trypillia and Corded Ware

4. There is one ‘Trypillia outlier’ among five samples from the Verteba cave in Wang et al. (2018): I1927 (Y-DNA G2a2b2a1a1b1a1a1, mtDNA H1b), ca. 3619-2936 BC, a sample published previously in Nikitin et al. (2017) and Mathieson et al. (2017). We were very quick to dismiss Trypillia (three samples of haplogroup G2a, one sample E) and GAC as a source of Corded Ware admixture, but archaeology clearly shows important population movements at the end of the fourth millennium between late Trypillia groups, GAC, and post-Sredni Stog populations, and genetics is showing that in both cultures, too.

I am not a fan of the ‘lack of samples’ argument, but (similar to Old Hittite samples related to all Anatolian speakers) one site is not enough to describe a culture that spanned millennia and many different early and late groups. One among five Trypillian samples (from a single site), showing a late date (ca. 3228 BC) compared to the other samples (ca. 3700 BC), and quite close to the only three Ukraine Eneolithic samples we have may mean much more than what we may a priori think, i.e. some simplistic unidirectional punctual ‘intrusion’ of steppe ancestry, and instead hint at the known close contacts of late Trypillian groups and North Pontic cultures, including also the Caucasus.

NOTE. The big difference in PCA among GAC-like Hungary LCA – EBA samples (see above two star symbols close to Ukraine Neolithic outlier in the PCA, in contrast with the other three at the bottom) may also be significant, although we don’t have any data about their culture, sites, or the relationship between them.

trypillia-verteba-cave
Location of Verteba Cave in relation to different stages and neighbouring groups of the Cucuteni-Trypillia culture. Image from the paper A Subterranean Sanctuary of the Cucuteni-Trypillia Culture in Western Ukraine, by Kadrow and Pokutta (2016).

Greece Neolithic outlier: Proto-Anatolians?

5. Especially interesting is I6423, one of the Greece Neolithic samples referred to in Wang et al. (2018), which is obviously an outlier among the three used in the paper. It does not seem to correspond to any of the ancient DNA samples published to date; it is not in Hofmanova et al. (2016), in Lazaridis et al. (2017), or in Mathieson et al. (2018).

Since the Neolithic in Greece could mean any period from ca. 6500 BC to ca. 3200 BC, I guess we are talking here about some migration related to the expansion of Khvalynsk-Novodanilovka chieftains after ca. 4500 BC, because it appears on the PCA precisely on the same spot as Varna and Smyadovo outliers, and its ADMIXTURE shows similar components

admixture-ukraine-eneolithic-greece-neolithic
Image modified from Wang et al. (2018). “ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)”. ‘Outlier’ samples referred to in this post have been marked in red. See the original file here.

So, this may be the smoking gun of Proto-Anatolian (or maybe early Common Anatolian) expansion with steppe migrants up to the border of Western Anatolia, and we may be able to get rid of those unfounded doubts about Anatolian origins once and for all…

NOTE. Also interesting seems another Greece Neolithic sample, I6420, in ADMIXTURE, although its position in the PCA (near Minoans and Mycenaeans) does not necessarily point to potential steppe influence, but rather to the extra ‘eastern (Caucasus/Iran-related) ancestry’ contribution found in Minoans and in Mycenaeans (and Anatolia Chalcolithic) compared to previous samples of the region. The third Greece Nelithic sample, I5427 (mtDNA K1a24), from Diros, Alepotrypa Cave, is dated 6005-5879 BC (mean 5892 BC), and appeared first in Mathieson et al. (2018).

greece-neolithic
Modified from Wang et al. (2018) (Greece_Neolithic in red). Supplementary Table 6. P values of rank=1 in modelling the two-way admixture in the Caucasus cluster. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic. Source 2 populations in bold print are used as examples in modelling the Caucasus cluster groups (See Supplementary Table 7).
greece-neolithic-caucasus
Modified from Wang et al. (2018) (Greece_Neolithic in red). Supplementary Table 10. P values of rank=2 and ancestry proportions in modelling a three-way admixture in the Caucasus cluster testing additional contribution from Iran_ChL. Here, we used an extended set of outgroup populations populations to constrain standard errors: Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic, EHG, WHG, Levant_N.

If this Greece Neolithic sample is not related to Yamna migrations – and its use for statistical analysis of Caucasus samples from Wang et al. (2018) suggests that it is not – , it may have important consequences:

If it is located near the Western Anatolian coast – especially near Troy – there won’t be much to add about the potential site of entry of Common Anatolian languages into Anatolia… I have read some comments about how ‘impossible’ it was for steppe migrants and their language to ‘invade’ the more advanced cultures of Anatolia from the west, but it seems as ‘impossible’ as it was for Barbarians to invade the Roman Empire and impose their language as elites in certain regions. (And yes, we have at least one important weak political period among Middle Eastern cultures in the early 3rd millennium BC, similar to the period of the Fall of the Western Roman Empire).

indo-european-anatolian-uralic-migrations
Most likely Proto-Anatolian expansion in the North Pontic and Balkan area with Khvalynsk-Novodanilovka chieftains, including ADMIXTURE data from Wang et al. (2018).

If it is located somewhere more ‘central’ in the Greek Peninsula, then it could also be used to support the Anatolian nature of the controversial Pre-Greek (‘Pelasgian’) substrate. While we know that Greek (at least since Mycenaean) shows a strong Pre-Greek cultural and linguistic heritage (also reflected in its genetic continuity), the nature of that language is usually believed to be non-Indo-European, and Anatolian contacts are rather few and coincident with the Mycenaean period. I don’t think this sample can tell much about the Pre-Greek language, though, because – if it is really Neolithic, and comparing it with later Minoan and Mycenaean samples – it seems a clear outlier.

suvorovo-novodanilovka-expansion-europe
Heyd (2016): The Southeast European distribution of graves of the Suvorovo-Novodanilovka group and such unequipped ones mentioned in the text which can be attributed by burial custom and stratigraphic position in the barrow, plus zoomorphic and abstract animal head sceptres as well as specific maceheads with knobs as from Decea Maresului (mid-5th millennium until around 4000 BC). The site in the south-west Balkans is Suvodol-Šuplevec, Northern Macedonia (FYROM).

If it is, however, related to later Yamna migrations after ca. 3000 BC (and, like the ‘Ukraine Eneolithic’ sample that is likely from Catacomb, it is classified as Neolithic just because it cannot be attributed to precise Helladic periods), then we may be in front of the first obvious Yamna migrants in Greece. If that is the case (which I doubt), the sample wouldn’t be so informative for PIE dialectal expansions, because by now it is evident that we will find steppe ancestry and R1b-Z2103 subclades accompanying Yamna migrants in the southern Balkans, and probably well into Mycenaean Greece.

NOTE. Whatever the case, I am sure that for those fond of absurd autochthonous continuity theories, as well as for anti-steppe conspirationists, this sample will be just another good way of arguing for anything, ranging from a rejection of the Middle PIE – Late PIE division, to a support for some mythic ancient autochtonous Proto-Graeco-Anatolian group, or maybe some ancient Graeco–Indo-Slavonic split, or whatever new dialectal stage one can invent to support the own genealogical fantasies…

So, if it actually is a Neolithic sample, let’s hope that it shows a clear R1b-M269 (xL23 or early L23) subclade distinct from those (likely Z2103) expanded later with Late PIE-speaking Yamna (and probably to be found among Mycenaeans), so that there can be no more place for ethnic fantasies.

EDIT (28 JUL 2018): Added information on Greece Neolithic and Trypillia samples

Related

Corded Ware culture origins: The Final Frontier

corded-ware-yamna-bell-beaker

As you can imagine from my latest posts (on kurgan origins and on Sredni Stog), I am right now in the middle of a revision of the Corded Ware culture for my Indo-European demic diffusion model, to see if I can add something new to the draft. And, as you can see, even with ancient DNA on the table, the precise origin of the Corded Ware migrants – in spite of the imaginative efforts of the Copenhagen group to control the narrative – are still unknown.

Corded Ware origins

The main objects of study in Corded Ware origins are necessarily the region where the oldest Corded Ware vessels appeared, Lesser Poland, as well as the adjacent (traditionally considered Proto-Corded Ware regions) Volhynia, Podolia, and upper Dniester river basin. These are some relevant points, continuing where I left the Eneolithic steppe developments (following Szmyt 1999, Rassamakin 1999, Kadrow 2008, Furholt 2014):

gac-trypillia-yamna-usatovo
Kadrow (2008). Cultural interactions around Carpathians at the beginnings of the 3rd millennium BC: 1 – Globular Amphora culture; 2 – Sofievka group of Trypillia culture; 3 – Funnel Beaker culture; 4 – Baden culture; 5 – Kostolac culture; 6 – Coţofeni culture; 7 – Cernavoda II culture; 8 – Yamnaya culture and Usatovo group of Trypillia culture (apud Kadrow, 2001).
  • More frequent contacts were seen ca. 3500-3000 BC, with an interaction showing multidirectional migrations of larger human groups in the centuries around 3000 BC, involving a significant part of the population of central-east Europe.
  • The easternmost area of the Funnel Beaker culture had become more Baden-like with the expansion of the Baden culture in its western area ca. 3300-2900 BC (with findings up to 2600 BC), and these younger groups with Baden features moved increasingly into the western part of Volhynia.
  • The influence of the neighbouring Trypillian culture is seen in the eastern parts of Volhynia, from ca. 3000 BC, either from a younger phase CII (cf. Troyaniv, Koshilivtsy, Brînzeni, Zhvaniets, or Vychvatintsy) or later groups (cf. Gorodsk, Kasperivtsy, Sofievka, Horodiştea-Folteşti, Usatovo).
  • In the forest-steppe zone, herding and hunting activities intensified, while agricultural traditions were preserved, as shown by the Sofievka, Kasperivtsy, and Gorodsk groups. From the end of the 4th millennium BC mobile parts of the late Trypillian populations moved to the steppe zone, absorbing more and more steppe elements; among others, cord ornamentation (in Vykhvatintsy, Troyaniv, and Gorodsk groups), pottery forms (Vykhvatintsy, which served as prototype for the Thuringian Apmphorae, dispersed along the Dniester river, too), flat burials with bodies in contracted position on the left or right side (Vykhvatintsy, reminding of Polgár culture different male-female position, and later Corded Ware burials, and also Lower Mikhailovka, under a mound without stone constructions). At the end of the Trypillia culture, its agricultural system collapsed completely.
gac-trypillia-usatovo-corded-ware
Globular Amphorae culture „exodus” to the Danube Delta: a – Globular Amphorae culture; b – GAC (1), Gorodsk (2), Vykhvatintsy (3) and Usatovo (4) groups of Trypillia culture; c – Coţofeni culture; d – northern border of the late phase of Baden culture;red arrows – direction of Globular Amphora culture expansion; blue arrow – direction of „reflux” of Globular Amphora culture (apud Włodarczak, 2008, with changes).
  • Slash and burn techniques of agriculture – especially those practiced by Trypillian and Funnel Beaker populations – must have intensified effects of natural growth of humidity (ca. 3400-2400), increasing fluvial activities in west Ukrainian river valleys, and increasing deforestation processes, which favoured pastoralism and nomadisation of the settlement system, and a consequent change of the social structure
  • At the same time, Yamna communities expanded along the lower and central Danube to the west, while the populations of the late phase of the Baden culture took the opposite direction and reached as far as Kiev in the north-east, contributing to the culture of the Sofievka group.
  • Globular Amphora communities migrated from the north-west, from eastern Poland, towards the Danube Delta and as far as the Dnieper in the east, destroying the primary structures of the communities in the supposed cradle territories of the Corded Ware culture. These communities found refuge and conditions for further development in south-eastern margin zone of the Funnel Beaker culture territories, penetrating at first the upper parts of the loess uplands like typical Funnel Beaker sites, but on the margins of their range, and also on areas avoided by Funnel Beaker settlement agglomerations. They brought with them the so-called Thuringian amphora up to Lesser Poland, borrowed from the late Trypillian Usatovo group. This resulted in the Złota culture, which eventually gave rise to the A-Amphorae.
funnelbeaker-trypillia-corded-ware
Map of territorial ranges of Funnel Beaker Culture (and its settlement concentrations in Lesser Poland), local Tripolyan groups and Corded Ware Culture settlements (■) at the turn of the 4th/3rd millennia BC.

In the end, we are left with this information about the oldest CWC (Furholt 2014):

  • The earliest radiocarbon-dated groups associated with the Corded Ware culture come from new single graves from Jutland in Denmark and Northern Germany, ca. 2900 BC. This Early Single Grave culture is associated with the appearance of individual graves (some time after the decline of the megalithic constructions), composed of a small round barrow and a new gender-differentiated burial practice emphasising male individuals orientated west-east (with regional exceptions), combined with the internment with new local battle-axe types (A-Axe). However, there is no single type of burial or burial custom in Corded Ware:
    • In southern Sweden the prevailing orientation is north-east – south-west, and south-north, contrary to the supposed rule male individuals are regularly deposited on their left and females on their right side.
    • In the Danish Isles and north-eastern Germany, the Final Neolithic / Single Grave Period is characterized by a majority of megalithic graves, with only some single graves from typical barrows. In south Germany, west-east and collective burials prevail, while in Switzerland no graves are found.
    • In Kujawia (south-eastern Poland), Hesse (Germany), or the Baltic, west-east orientation and gender differentiation cannot be proven statistically.
corded-ware-regions-main
Furholt (2014). Map of the Corded Ware regions of central Europe. The dark shading indicates those regions where Corded Ware burial rituals are present regularly
  • The oldest Corded Ware vessels (the A-Amphorae, which define the A-Horizon of the CWC) come probably from the Złota (or a related) group in Lesser Poland, where a mixed archaeological culture connecting Funnel Beaker, Baden, Globular Amphorae and Corded Ware appears ca. 2900-2600 BC. No cultural (typological) break is seen between earlier Globular Amphorae and the first Corded Ware Amphorae, but rather a continuum of traits and characteristics among the recovered vessels. This strengthens the connection of Corded Ware with Globular Amphorae peoples. The A-horizon expanded thus probably from Lesser Poland ca. 2800-2600, as seen in local contexts.
  • And of course we have a third way of defining Corded Ware individuals, which is the presence of herding, and thus a transition from hunter-gatherers to agropastoralists. This is how some Baltic Late Neolithic individuals with no archaeological data have been classified as members of the Corded Ware culture: Even though no cultural remains were extracted with the two ‘outlier’ individuals, their haplogroup and ancestry point to a direct origin in or around the steppe and forest-steppe region (yes, that risks circular reasoning).
globular-amphorae-corded-ware-zlota-amphorae
Correspondence analysis of amphorae from the Złota-graveyards reveals that there is no typological break between Globular Amphorae and Corded Ware Amphorae, including ‘Strichbündelamphorae’ (after Furholt 2008)

Corded Ware peoples in genetics

So, no clear origin of Corded Ware migrants, a lot of data pointing to intense migrations and interaction among GAC, Trypillia and the western steppe population (remember Kristiansen’s ‘long-lasting GAC-CWC connection’, now ignored to favour their Yamnaya admixture™ concept), and also three ways of defining Corded Ware culture…

Maybe genetics can help:

Ukraine Neolithic cultures – mainly from Dereivka – show haplogroups R1b-V88, R1a1, and R1b-L754 (xP297, xM269), which is similar to the haplogroup distribution found in Ukraine Mesolithic, but apparently with an expanding group marked by haplogroup I2a2a1b1 (possibly I2a2a1b1b).

The first thing that stands out about Ukraine Eneolithic samples is that only two of them can be said to be really Ukraine Eneolithic (i.e. from “Sredni Stog”-related groups):

  • I5876 (Y-DNA R1a-Z93(Y3+), mtDNA U5a2a), from Alexandria, 4045-3974 calBCE (5215±20BP, PSUAMS-2832)
  • I4110 (mtDN AJ2b1), from Dereivka, 3634-3377 calBCE (4725±25 BP, UCIAMS-186349), J2b1

The other two samples are quite late, and in fact one of them is clearly too late (maybe from the Catacomb culture):

  • I5882 (mtDNA U5a2a), from Dereivka, 3264-2929 calBCE (4420±20BP, PSUAMS-2826)
  • I3499 (Y-DNA R1b-Z2103, mtDNA T2e), from Dereivka, 2890-2696 calBCE (4195±20BP, PSUAMS-2828)

Corded Ware samples from Mittnik et al. (2018) offer very wide radiocarbon dates, so it is unclear which of them may be the oldest one. Most of them cluster closely to the older Ukraine Eneolithic sample I5876, but also to later steppe_MLBA samples i.e. Sintashta, Potapovka, and especially Srubna and Andronovo). This points to a genetic continuity from Pre-Corded Ware to Classic and late Corded Ware peoples. Therefore, much like Khvalynsk-Yamna and apparently many other Neolithic cultures, these peoples did not really admix; at least not with the male population.

pca-mittnik-late-neolithic
File modified by me from Mittnik et al. (2018) to include the approximate position of the most common ancestral components, and an identification of potential outliers. Zoomed-in version of the European Late Neolithic and Bronze Age samples. “Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline).

Lucky for us, even though the culture remains undefined, haplogroup R1a-Z645 seems like a unifying trait, as I said long ago, so we only have to wait for more samples to trace their origin. Nevertheless, it is clear that Corded Ware may not have been as genetically homogeneous as Khvalynsk, Yamna and Yamna-related cultures, further supporting its archaeological complexity:

  • Jagodno1 and Jagodno2 (Silesia), dated ca. 2800 BC, show haplogroup G? and I/J? – compatible with an origin of CWC in common with Trypillia (which shows 3 samples of haplogroup G2a2b2a, and one E) and Ukraine Neolithic (showing the expansion of I2a2a1b1 subclades).
  • I7272, from Brandýsek (Czech Republic), dated ca. 2900-2200 BC shows haplogroup I2a2a2 (compatible with an origin in Ukraine Neolithic peoples – this haplogroup is also found in Yamna Kalmykia and in the Yamna Bulgaria outlier, i.e. late western samples from the Early Yamna culture).

NOTE. This precise subclade is only present to date in Chalcolithic samples from Iberia, which points (possibly like the Esperstedt family) to local Central European haplogroups integrated in a mixed Proto-Corded Ware population. The upper subclade I2a2a is found in Neolithic samples from Iberia, the British Isles, Hungary (Koros EN, ALPc), and also south-east European Mesolithic and Neolithic samples.

  • RISE1, from Oblaczkowo (Greater Poland), ca. 2865-2578 BC, shows haplogroup R1b1.
  • The Esperstedt family samples have been analysed as R1a-M417 (xZ645), although the supposed ‘xZ645’ has not been confirmed – not even in the risky new Y-calls from Wang et al. (2018) supplementary materials.
corded-ware-regions-network
Network analysis based on the quantitative occurrence of Corded Ware pottery forms, pottery ornamentation styles, tools,
weapons and ornaments as stated in Table 1, based on the catalogues given in Table 2, line thickness representing similarity

Maybe this heterogeneity is a problem of better defining the culture, but from what we can see the oldest CWC regions and the unifying ‘Corded Ware province’ – formed after ca. 2700 BC by Jutland and Northern Germany, the Netherlands, Saale, Bohemia, Austria and the Upper Danube regions – are for the moment not the most genetically homogeneous groups.

Homogeneity comes later – which we may tentatively identify with the expansion of the A-horizon from the northern Dnieper-Dniester and Lesser Poland area – , as seen around the Baltic (like the Battle Axe culture) with R1a-Z283 subclades, and around Sintashta (i.e. probably Abashevo – Balanovo) with R1a-Z93 subclades, which is compatible with the late spread of different Z645 groups (and potentially a unifying language) .

Related

Sredni Stog, Proto-Corded Ware, and their “steppe admixture”

steppe-eneolithic-migrations

Once the haplogroups of the announced West Yamna and Yamna settlers in Hungary and Khvalynsk from Ekaterinovka appear, it is to be expected that there won’t be much discussion on the Y-DNA bottlenecks that affected Khvalynsk – Yamna migrations.

So let’s cut to the chase and see where Corded Ware peoples (mainly of R1a-Z645 subclades) got their so-called “steppe admixture” different from that of Yamna. Because, as you might have realized by now, Sredni Stog – and consequently Corded Ware – remains nowadays an undefined (archaeological) mess.

Rassamakin explains it quite well, in the chapter Eneolithic of the Black Sea Steppe; In Levine M., Rassamakin Yu., Kislenko A. and Tatarintseva N., 1999. Late Prehistoric Exploitation of the Eurasian Steppe. McDonald Institute Monographs, University of Cambridge.

NOTE. These are only certain relevant excerpts. The whole chapter is worth a thorough read, whatever position you hold regarding steppe expansions. In fact, he supports the Skelya cultural (macro-)group instead of Khvalynsk-Novodanilovka vs. Sredni Stog, he does not believe in significant expansions from the east (but in local movements and a ‘general evolution’ of Pontic-Caspian steppe cultures to Early Yamna), and offers e.g. the presence of copper and trade from the west (and its poor presence in the east) as an example of the importance of the North Pontic area vis-à-vis Khvalynsk/Repin. Not an interested party in supporting Gimbutas or Anthony, then, if you fear that.

Cultural groups in the North Pontic area

Telegin divided the Sredny Stog culture into three local variants – the Dnepr Culture variant, the Oskol-Donets (Aleksandriya) Culture variant, and the Lower Don (Konstantinovka) Culture variant. He elaborated a periodization based on the evolution of decorative motifs in the pottery assemblages.

At first, the internal contradictions of the Sredny Stog culture were not accorded particular prominence, despite clear intimations of problems when, for example, sites like the settlement of Konstantinovka on the Lower Don, was identified as actually belonging to another, independent culture (Kiyashko 1974). The first real blow to the integrity of the Sredny Stog culture was dealt by Telegin himself, when he removed five Novodanilovka-type sites, and accorded them the status of an independent cultural phenomenon (Telegin 1985a). Until that point, sites of this type had were customarily considered to be within the framework of the late group of Sredny Stog cemeteries, despite having been for long regarded by some as representative of an earlier, independent cultural group (Movsha & Chebotarenko 1969; Zbenovich 1973, 74-5; Gimbutas, Merpert and Danilenko passim). Indeed, it was unclear why these cemeteries had initially been assigned to the Late, rather than the Early, Sredny Stog culture. Now these sites were mechanically stripped out of the one system, but their place in the new system was not clearly defined.

rassamakin-skelya-culture
Rassamakin (1999) concept of cultural development of burial rituals in the North Pontic steppe.

Thus a paradox arose. Sites that had served to a considerable extent as the initial basis for the Sredny Stog culture, for the elaboration of its periodization and chronology, were now accepted as forming the core of an essentially different culture. Because of this, by the mid 1980s, both the Sredny Stog culture and the Eneolithic systematization as a whole were becoming rather amorphous. Essentially, the Sredny Stog culture was associated in the minds of many researchers solely with the settlement site at Dereivka, while they had only a confused and indistinct idea of the nature of early Sredny Stog sites. (…) Ultimately a situation developed where all attempts to view new evidence, new local groups, or even cultures through the prism of the Sredny Stog culture were futile, since researchers were unclear about of the essence of the culture itself, and often qualified themselves in footnotes with references to ‘preCorded Ware’ or ‘Corded Ware’ stages, or by relating their observations back directly to the specific sites of Sredny Stog II or Dereivka.

Thus, in the Middle Eneolithic, a number of independent cultures (Kvityana, Repin, Konstantinovka, and, to some degree, Dereivka, Cernavoda and Lower Mikhailovka) emerged in the region that had in the Early Eneolithic been occupied by the Skelya culture, either as lineal successors to this culture or under its influence. But the principal stimuli in this period were the Tripolye tribes, direct imports from whom reach the southern zone of the Dnepr left bank.

It is apparent that, for all their conceptual differences, if we remove Danilenko’s subdivisions, Telegin’s and Danilenko’s models are identical in terms of site periodization and sequence: first Kvityana, then Sredny Stog II, and finally Dereivka.

The North Pontic area in the Eneolithic (4000-3500 BC)

kvityana-dereivka-repin-trypolie-maykop
The Kvityana and Dereivka cultures in relation to other sites: 1) Molyukhov Bugor (settlement); 2) Dereivka (settlement); 3) Aleksandriya (settlement); 4) Minevsky Yar (settlement); 5) Khutor Repin (settlement).

Tripolye influence is seen most clearly in the development of the Lower Mikhailovka culture and a new burial rite which spread as far as the Molochnaya. Changes are apparent in kurgan architecture; that is, in the construction of stone chambers, sanctuaries comprising upright elements, and ring-shaped ditches (Rassamakin 1990; 1993; 1994; Pleshivenko & Rassamakin 1994 ). Lower Mikhailovka sites in the northwestern Black Sea coast region are known by a whole series of different designations, one of which, as I have already noted above, is ‘the Bessarabian variant of the Cernavoda I culture’ (Manzura 1993).

The formation of the Kvityana culture should be considered both in the context of the development of the Lower Mikhailovka culture, and in terms of the influence of the Sredny Stog II pottery assemblage. The first is manifested in the development of the kurgan ritual itself, with such structural elements as cromlechs, orthostats and stone cists. These are most apparent to the south, in the zone of contact with the Lower Mikhailovka culture. The second is apparent in the similarity between Kvityana pottery and Sredny Stog II pottery, notably in a number of shared compositional and technical elements, despite the fact that the shapes, techniques and style are all quite different.

As a whole, the Kvityana culture is notably conservative and archaic in appearance; this is manifest both in the preservation of a burial rite involving a supine position, and in the appearance of the pottery which, on the basis of the absence of corded or caterpillar track decoration, was until recently considered the earliest Sredny Stog ware.

(…) we still lack sufficient evidence to trace in detail the path by which the Kvityana culture spread from the Dnepr into the Dnestr-Danube region. The southern steppe route is excluded, but Kvityana sites are recorded on the Southern Bug, in the Dnestr region, and even along the forest-steppe boundary on the Prut Gudging by the numerous excavations of kurgans in this belt. This route in some respects repeats that along which the Skelya elite groups moved. Southward movement along the Southern Bug and its tributaries into the steppe zone is indicated only by isolated sites, the number of which is far smaller than in the Dnestr-Danube region, despite the intensive excavation of kurgans in this region. Evidence for Kvityana penetration into the northwestern Black Sea coast is provided by the appearance in Usatovo assemblages of typical Kvityana figural tubular bone beads, with diagnostic lateral notches on the sides (Malyukevich & Petrenko 1993).

kvityana-cucuteni-tripolye-expansions
Expansions of Kvityana and Trypillia cultures. Rassamakin (1999)

[The Dereivka] culture is currently only known only from settlement material, notably from sites in the Dnepr region (Dereivka and Molyukhov Bugor), but also from typologically distinctive pottery in the Eneolithic layer of the settlement of Aleksandriya on the Oskol. Dereivka culture pottery has also been recorded at a number of locations in the forest-steppe Dnepr region and the Seversky Donets, at Tetyanchino, Kamennye Pataki, and Minevsky Yar. The ceramic assemblage is well-defined and easily recognizable: vessels consistently display a weak profile and slightly elongated proportions, with high, straight mouths, evenly cut off at the rim, and conical bases (Fig. 3.23). The Dereivka culture occupies the southern part of the forest-steppe region and is bounded to the south by the Kvityana culture.

Telegin rightly noted that Dereivka and Kvityana pottery bore some resemblance to one another. Several fragments of the latter were found in the Dereivka assemblage, and provide evidence for the contemporaneous existence of the two cultures. The Molyukhov Bugor pottery assemblage stands out in terms of a prevalence of pottery with corded decoration, which only occurs in insignificant amounts at Dereivka and Aleksandriya. However, artefactual analysis has not produced any clear guidance for a chronological organization of these sites, as was postulated by Telegin.

sredni-stog-yamnaya
Rassamakin’s (1999) periodization of the North Pontic cultures

Late Phase and Final Eneolithic (3500-3000 BC)

In the Dnestr region, southward pressure from Tripolye led to the formation of, firstly, Vykhvatinsk-type sites, and then, in the steppe zone, Usatovo-type sites, which had undoubtedly absorbed some features of the Lower Mikhailovka culture. In the Prut and Middle Dnestr regions, sites of the Gordineşti (Kasperovkao) types are formed (these correspond, in the Romanian Prut region and on the Siret, to sites of the Horodiştea-Erbiceni type, and on the Lower Danube to the Cernavoda III culture: Morintz & Roman 1968; Dinu 1980; 1987). Movsha considers that sites of this type (Kasperovkao in her terminology) also occur in the Southern Bug region.

Sofievka-type sites emerge in the forest-steppes of the Middle Dnepr. A number of researchers (Zbenovich, Dergachev, and Sorokin), taking account of the change in the Tripolye culture at stage C2, propose a special division, considering sites of this period alone as ‘Late Tripolye’. In their view (with which I agree), stage Cl in culture-historical terms still corresponds to ‘Middle Tripolye’.

(…) existing evidence allows us to put forward the following scheme (Fig. 3.49:2). To the east of the Usatovo sites, from the lower reaches of the Southern Bug to the Azov region, encroaching on the Crimean steppes, the Lower Mikhailovka culture remains intact. To the north, upstream along the Dnepr and its tributaries, the Kvityana culture survives in its initial core zone. Between the Southern Bug and the Dnepr, in the contact zone between the three cultures (Tripolye, Lower Mikhailovka and Kvityana) the Dnepr-Bug group of sites emerges, displaying mixed features (Nikolova & Rassamakin 1985; Rassamakin 1988) Tripolye influence on the Dereivka culture appears to increase, as manifested in the appearance of late cultural elements (corded decoration, plastic art, bowls). The fate of the Pivikha culture is unclear. On the Lower Don, the late phase of the Konstantinovka culture (corresponding to the settlements of Konstantinovka and Razdorskoe I: Level 7) continued.

The final stage

The final stage of this period is characterized by two waves of migration, which properly speaking conclude the development of the Eneolithic.(…)

The first migration is connected with the breakdown of that system of Late Tripolye forest-steppe sites of the Prut-Dnestr and Southern Bug regions, dealt with by Movsha within the framework of the Kasperovo local group (and termed Gordineşti by others such as Dergachev, Manzura, and Petrenko). Almost all researchers into the Tripolye culture note the widespread occurrence of diagnostic elements of this group in the south, in the zone of the Usatovo sites and, in the east and southeast, towards the Dnepr and its left bank (Movsha 1984; 1990; 1993; Subbotin & Petrenko 1986; Manzura 1990a). (…)

The migrational wave that left Zhivotilovo-Volchanskoe-type burials in the steppe also linked up the forest-steppe Bug, Dnestr, and Prut regions with the Lower Don region, and, possibly with the North Caucasus, where the late stage of the Maikop culture (the Novosvobodnaya sites) continued. The identical rites of the Maikop culture and Zhivotilovo-Volchanskoe sites makes it difficult to establish the direction of migration, or which was the active side in the process. A number of researchers have given precedence to the Maikop culture. But the spread of the Tripolye assemblage unambiguously indicates the active involvement of the Tripolye tribes.

north-pontic-kvityana-dereivka
The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug

The second migration, at the very end of the Eneolithic, is connected with the spread of the Repin culture (in its second phase) from the Middle Don. Sinyuk defined three main directions: north, to the Upper Don; southwest, into the Dnepr region; and south, to the Lower Don and the Lower Volga. Trifonov considers this broad expansion of the Repin culture to be colonization (Trifonov 1996). The Repin culture level at Razdorskoe I (Razdorskoe I: Level 8) overlies the Konstantinovka levels (Levels 6 and 7), signalling that the Konstantinovka culture had apparently ceased to exist (Kiyashko 1994, 80). It seems that the expansion of the Repin culture is also associated with a reduction in the territorial extent of the Kvityana and Dereivka cultures. Repin burial assemblages, settlements and temporary camps appear in the Seversky Donets basin and in the Eastern Azov region (at Trekhizbenka, Kapitanovo, Aleksandriya, and Razdolnoe). The same complexes are also widely distributed towards the Dnepr (Marina 1992). The most striking western manifestation of Repin elements is seen in the upper horizon of the middle level of the Mikhailovka settlement (Lagodovska et al. 1962, 39-46).

Khvalynsk-Yamna and Sredni Stog-Corded Ware

We already know that Ukraine Eneolithic samples showed steppe ancestry and had apparently began a process of convergence coinciding with (or after) the first Khvalynsk-related migrations. It is unclear what had happened before (i.e. how much “CHG ancestry” was absorbed by Ukraine Neolithic groups in their transition to the Eneolithic before ca. 4500 BC), although in principle we can assume that all Caucasus-related admixture received by North Pontic cultures ca. 4500-4000 BC was mediated by westward movements from Khvalynsk-related peoples.

PCA-caucasus-lola-ane-chg
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them.See the original file here.

Contacts with (and later absorption of) Khvalynsk-Novodanilovka-related migrants, as well as heir cultures, like those in the steppe adjacent to the Black Sea coast, and also direct contacts with Caucasus-related populations through Zhivotilovo-Volchanskoe can justify a greater contribution of CHG ancestry ca. 4000-3500 BC. Close contacts with Cucuteni-Trypillia (through Mikhailovka and maybe Kvityana, possibly with WHG and CHG admixture related to Khvalynsk-Novodanilovka) and GAC peoples to the north are the obvious source of further similarities with Yamna. Distinct similarities, that is, if we take into account the different sources and timing of such ancestral components, and Y-chromosome bottlenecks…

Therefore, after a process of convergence ca. 4500-4000 BC, and potentially more contacts with late Eneolithic North Pontic steppe cultures ca. 4000-3500 BC, Proto-Corded Ware peoples must have finally spread from the northernmost (forest-steppe) areas previously occupied by Dereivka, Pivikha, or Sofievka groups from ca. 3300 BC onwards – a date roughly coincident with the expansion of late Khvalynsk/Repin to the west developing the Early Yamna culture, with which it likely entered in contact (hence potentially a source for further admixture convergence ca. 3500-3000 BC).

Only later happened the great migration ca. 3000-2800 BC of Classical Corded Ware culture migrants, at the same time as Early Yamna migrants expanded to the west, and some groups also to the north along the Prut (possibly directly connected to the admixture found in the two Baltic LN/CWC ‘outliers’).

steppe-chalcolithic-migrations
Steppe-related migrations ca. 3100-2600 BC with tentative linguistic identification.

We didn’t know much about Sredni Stog or Corded Ware, and we still don’t. I can’t see the future, and I don’t have access to information from Reich-Jena or Copenhagen groups, and never have. But I just don’t see the need to explain Corded Ware as derived from (coeval) Early Yamna, and I haven’t since the 2015 papers. It was not the best explanation for the data that was published, and the more information we receive, the less sense this theory makes.

However, I guess we will see some groups still resorting to the good old Yamnaya ancestral component™ = Indo-European no matter what, consciously ignoring that a proportion of ancestral components (some combination of EHG:CHG:WHG in this case) means nothing without a proper explanation of their precise temporal and regional origin, and how they connect with Yamna; just like the CHG ancestry = Indo-European trend we are living right now does not make any sense.

Publishing only selected results after trying every possible combination of samples with bioinformatic tools does not help strengthen this connection, either.

Related