Demographic history and genetic adaptation in the Himalayan region

Open access Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations, by Arciero et al. Mol. Biol. Evol (2018), accepted manuscript (msy094).

Abstract (emphasis mine):

We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India or Tibet at over 500,000 SNPs, and analysed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively-selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 (EPAS1) and Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.

Population samples analysed in this study. A. Map of South and East Asia, highlighting the four regions examined, and the colour assigned to each. B. Samples from the Tibetan Plateau. C.Samples from Nepal. D. Samples from Bhutan and India. The circle areas are proportional to the sample sizes. The three letter population codes in B-D are defined in supplementary table S1.

Relevant excerpts:

Genetic affinity to ancestral populations

We explored the genetic affinity between the Himalayan populations and five ancient genomes using f3-outgroup statistics. Himalayans show greater affinity to Eurasian hunter-gatherers (MA-1, a 24,000- year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya, than to European farmers (5,500-4,800 years ago; Fig. 5A) or to European hunter-gatherers (La Braña, 7,000 years ago; Fig. 5B), like other South and East Asian populations. We further explored the affinity of Himalayan populations by comparing them with the 45,000-year-old Upper Palaeolithic hunter-gatherer (Ust’-Ishim) and each of MA-1, La Braña, or Yamnaya. Himalayan individuals cluster together with other East Asian populations and show equal distance from Ust’-Ishim and the other ancient genomes, probably because Ust’-Ishim belongs to a much earlier period of time (supplementary fig. S15). We also explored genetic affinity between modern Himalayan populations and five ancient Himalayans (3,150 1,250 years old) from Nepal. The ancient individuals cluster together with modern Himalayan populations in a worldwide PCA (supplementary fig. S16), and the f3-outgroup statistics show modern high-altitude populations have the closest affinity with these ancient Himalayans, suggesting that these ancient individuals could represent a proxy for the first populations residing in the region (supplementary fig. S17 and supplementary table S4). Finally, we explored the genetic affinity of Himalayan samples with the archaic genomes of Denisovans and Neanderthals (Skoglund and Jakobsson 2011), and found that they show a similar sharing pattern with Denisovans and Neanderthals to the other South and East Asian populations. Individuals belonging to four Nepalese, one Cambodian, and three Chinese populations show the highest Denisovan sharing (after populations from Australia and Papua New Guinea) but these values are not significantly greater than other South and East Asian populations (supplementary figs. S18 and S19).

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. A. PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. B. PCA of the Himalayan populations alone. Each dot represents a sample, coded by country or region as indicated. Most samples lie on an arc between Bhutanese and Nepalese samples; Toto (India) are seen as extreme outlier in the bottom left corner, while Dhimal (Nepal) and Bodo (India) also form outliers.

NOTE. The variance explained in the PCA graphics seems to be too high. This happened recently also with the Damgaard et al. (2018) papers (see here the comment by Iosif Lazaridis).

Similarities and differences between high-altitude Himalayan

The most striking example is provided by the Toto from North India, an isolated tribal group with the lowest genetic diversity of the Himalayan populations examined here, indicated by the smallest long-term Ne (supplementary fig. S5), and a reported census size of 321 in 1951 (Mitra 1951), although their numbers have subsequently increased. Despite this extreme substructure, shared common ancestry among the high-altitude populations (Fig. 2C and Fig. 3) can be detected, and the Nepalese in general are distinguished from the Bhutanese and Tibetans (Fig. 2C) and they also cluster separately (Fig. 3). In a worldwide context, they share an ancestral component with South Asians (supplementary fig. S2). On the other hand, the Tibetans do not show detectable population substructure, probably due to a much more recent split in comparison with the other populations (Fig. 2C and supplementary fig. S6). The genetic similarity between the high-altitude populations, including Tibetans, Sherpa and Bhutanese, is also supported by their clustering together on the phylogenetic tree, the PCA generated from the co-ancestry matrix generated by fineSTRUCTURE (supplementary fig. S10 and S11), the lack of statistical significance for most of the D-statistics tests (Yoruba, Han; high-altitude Himalayan 1, high-altitude Himalayan 2), and the absence of correlation between the increased genetic affinity to lowland East Asians and the spatial location of the Himalayan populations (supplementary figs. S12 and S13). Together, these results suggest the presence of a single ancestral population carrying advantageous variants for high-altitude adaptation that separated from lowland East Asians, and then spread and diverged into different populations across the Himalayan region. (…)

Recent admixture events

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. C. ADMIXTURE (K values of 2 to 6, as indicated) analysis of the Himalayan samples. Note that most increases in the value of K result in single population being distinguished. Population codes in C are defined in supplementary table S1.

Himalayan populations show signatures of recent admixture events, mainly with South and East Asian populations as well as within the Himalayan region itself. Newar and Lhasa show the oldest signature of admixture, dated to between 2,000 and 1,000 years ago. Majhi and Dhimal display signatures of admixture within the last 1,000 years. Chetri and Bodo show the most recent admixture events, between 500 and 200 years ago (Fig. 4, supplementary tables S3). The comparison between the genetic tree and the linguistic association of each Himalayan population highlights the agreement between genetic and linguistic sub-divisions, in particular in the Bhutanese and Tibetan populations. Nepalese populations show more variability, with genetic sub-clusters of populations belonging to different linguistic affiliations (Fig. 3B). Modern high-altitude Himalayans show genetic affinity with ancient genomes from the same region (supplementary fig. S17), providing additional support for the idea of an ancient high-altitude population that spread across the Himalayan region and subsequently diverged into several of the present-day populations. Furthermore, Himalayan populations show a similar pattern of allele sharing with Denisovans as other South-East Asian populations (supplementary fig. S18 and S19). Overall, geographical isolation, genetic drift, admixture with neighbouring populations and linguistic subdivision played important roles in shaping the genetic variability we see in the Himalayan region today.


Copenhagen group: Germanic and Balto-Slavic from Bell Beaker; Indo-Anatolian homeland in the Caucasus

Article of general knowledge in Der Spiegel, Invasion from the Steppe, with comments from Willerslev and Kristiansen, appeared roughly at the same time as the Damgaard et al. Nature (2018) and Science (2018) papers were published.

NOTE. You can read the article (in German) from Kristiansen’s account.

Excerpts translated from German (emphasis mine):

On the Y-DNA data

Particularly striking is the genetic signature from the steppe on the Y chromosome. From this the researchers conclude that the majority of migrants were males. Kristian Kristiansen, chief archaeologist in the Willerslev team, also has an idea of ​​how this could be explained: “Maybe it’s a rite of initiation, as it was spread among the steppe peoples,” he says.

The younger sons of the Yamnaya herders, who were excluded from the succession, had to seek their fortune on their own. As part of a solemn ritual, they threw themselves to wolves’ skins and then swarmed in warlike gangs to buy their own herds by cattle-stealing.


An ally that they seem to have brought from their homeland may also have contributed to the genetic success of the steppe people: Yersinia pestis, the plague bacterium. Its genes were found by researchers from the Max Planck Institute in Jena – and apparently it emerged exactly at the same time as the Yamnaya thrust began.

About the Hittites

(…) And yet now, where Asia and Europe meet geographically, there is no trace of the Yamnaya genes. The wander-loving people from the Pontic-Caspian steppe apparently found neither the way across the Balkans nor through the Caucasus mountains.

Now the researchers are puzzled: How can it be that a language goes on a walk, without the accompanying speakers coming along? Is it possible that the Indo-European seeped into Anatolia, much like the English language spread today without the need for Englishmen?

Archaeologist Kristiansen does not believe it. The researchers would find it hard to reconsider their theories, he says: “Especially the first chapter of the story has to be rewritten.”

He suspects that there was a predecessor of the Yamnaya culture, in which a kind of Proto-Proto-Indo-European was spoken. And he also has a suspicion, where this people could have drifted around: The Caucasus, says Kristiansen, was their homeland. But that remains unproven: “There’s another hole left,” he admits.

Spread of Indo-European languages

About the Botai

The study of [the Botai] genome revealed that it was genetically radically different from the members of the Yamnaya culture. The Botai, it seems, consistently avoided any contact with their neighbors – even though they must have crossed the territory of the Botai on their migratory waves.

Willerslev assumes that the art of keeping horses from the Yamnaya steppe nomads was adopted from these peoples, and then they developed it further. At some point, the Botai could then have itself become doomed by its groundbreaking innovation: While the descendants of the Yamnaya spread over half of Eurasia, the Botai disappeared without leaving a trace.

Even more interesting than the few words that set the Copenhagen group’s views for future papers (such as the expected Maykop samples with EHG ancestry) is the artistic sketch of the Indo-European migrations, probably advised by the group.

A simple map does not mean that all members of the Danish workgroup have changed their view completely, but I would say it is a great improvement over the previous “arrows of migration” (see here), and it is especially important that they show a more realistic picture of ancient migrations to general readers.

NOTE. Especially absurd is the identification of the ‘Celtic’ expansion with the first Bell Beakers in the British Isles (that idea is hold by few, such as Koch and Cunliffe in their “Celtic from the West” series). Also inexact, but not so worrying, are the identification of ‘Germanic’ in Germany/Únětice, or the spread of ‘Baltic’ and ‘Slavic’ directly to East Europe (i.e. I guess Mierzanowice/Nitra -> Trzciniec), which is probably driven by the need to assert a close connection with early Iranians and thus with their satemization trends.

Also, as we know now thanks to Narasimhan et al. (2018), there is no need to support that convoluted west arrow (representing CWC) from West Yamna to Central Europe, and then to East Yamna, since the Proto-Indo-Iranian community – represented by the Steppe MLBA cloud that later expanded Indo-Aryan and Iranian languages – has a more direct connection with the in situ admixture of Poltavka/Abashevo within the Volga-Ural region.

I think we can keep this from the article:

Their results, as well as those of the competition labs at Harvard University and Jena’s Max Planck Institute for the History of Humanity, leave no doubt: Yes, the legendary herdsmen in the Pontic-Caspian steppe really existed. They belonged to the so-called Yamnaya culture, and they spread, as linguists had predicted, in massive migrations towards Central Europe and India – a later triumph for linguists.

This can be added to a recent comment by de Barros Damgaard:

The project has been an extremely enriching and exciting process. We were able to direct many very different academic fields towards a single coherent approach. By asking the right questions, and keeping limitations of the data in mind, contextualizing, nuancing, and keeping dialogues open between scholars of radically different backgrounds and approaches, we have carved out a path for a new field of research. We have already seen too many papers come out in which models produced by geneticists working on their own have been accepted without vital input from other fields, and, at the other extreme, seen archaeologists opposing new studies built on archaeogenetic data, due to a lack of transparency between the fields.

Data on ancient DNA is astonishing for its ability to provide a fine-grained image of early human mobility, but it does stand on the shoulders of decades of work by scholars in other fields, from the time of excavation of human skeletons to interpreting the cultural, linguistic origins of the samples. This is how cold statistics are turned into history.


The unique elite Khvalynsk male from a Yekaterinovskiy Cape burial

Recent paper (behind paywall) The Unique Burial of the Ekaterinovsky Cape Early Eneolithic Cemetery in the Middle Volga Region, by Korolev et al. Stratum Plus (2018) Nº2.

Abstract (official, in English):

This is the first time we published the results of a comprehensive study of burial 45 of the eneolithic cemetery called Ekaterinovsky Cape. The burial contains the skeleton of a young man with traumatic injuries of the skull, leg and hand bones of other individuals, skeleton of a young specimen of a domestic goat (Capra hircus) that was abundantly sprinkled with red ocher. Grave goods include three stone scepters of different types, a large item made of horn in the shape of a bird’s head, a stone adze, knife-like plates of quartzite, beads from the flaps of the shells (Unio), marmot cutters, decoration made from a beaver’s tooth. The uniqueness of the burial is determined by the combination of the composition of the grave goods and traces of ritual practices. To conclude, we suggest the buried man could belong to the elite of the society that left this burial ground.

NOTE. About my terminology, Russian has a lenited pronunciation of E in this case, hence the “Ye-” transliteration of the name of the town (and the site) in Google as Yekaterinovka. The “more etymological” transliteration is with “E”, as they use here, although Russians paradoxically use phonetic transliterations of foreign terms. I prefer the lenited transliteration to distinguish the Russian site from other Ekaterinovkas, though.

Schematic view from burial 45. Male of 20-25 years, ca. 4400-4200 BC.

Interesting excerpt (translated from Russian):

Perhaps, we should correlate three very closely related damages [on the skull] with certain rituals, with which scepters could be associated. Each scepter could be a symbolic expression of a part of society, a type of activity, reaching a certain age and social status. This assumption does not seem incredible in combination with other extant, no less impressive, details of the funeral rite. Of great interest is the ornithomorphic rod of the horn. The location of the wand in the head and right half of the breast emphasizes its special significance in ritual practice and in funeral rites. Direct analogies to this product in other burial places of the cemetery are absent, and outside it authors are not known.

NOTE. Although the paper is in Russian and is behind paywall, it is really cheap, and can be easily translated with Google Translate if you can’t read Russian, so – unlike usual papers from the big publishing companies – you could support the journal by paying for it. You can read more about this burial at Pikabu, too. Photos and text in that post are not the same as in the paper, though, so it seems that the author of the text got the information either directly or from another source.

On the genetic data

Here is what I could gather about the report I shared of R1b-L51 lineages in Samara:

1) Yes, the comment at contains a more or less accurate summary of the oral communication actually given. And no, no more interesting data – from a genetic point of view – was presented.

2) What A.A. Khokhlov reported was preliminary genetic information from some samples, and an outside lab shared this information with him.

NOTE. It is well-known that David Anthony, also part of the Samara Valley project, provided the Reich Lab with Khvalynsk and Yamna samples from the region, so it would not be a surprise that these had been in fact assessed by the Reich Lab, too. This is my assumption, though, and I may be wrong.

3) What the report conveys is that “all samples investigated” belonged to R1b-P312 and R1b-U106, so I understand there are in principle more than two samples, whatever Google Translate says.

4) As R. Rocca said in Anthrogenica, the reported R1b1a1a2a1a1c2b2b1a2 (U106 subclade) is exactly the same one reported in Narasimhan et al. (2018) for the sample from the Iron Age site Loebanr 1 (Swat proto-historic graves) ca. 950 BC.

NOTE. That would be another hint at the origin of the preliminary data, together with the timing of the report (January), probably coinciding with the final assessment of samples which appeared in Narasimhan et al. (2018). That would explain the similar weird Y-SNP calls from software yHaplo (as reported by Narasimhan in Twitter). This is all again conjecture, though.

R1b-P312 is not reported in Narasimhan et al. (2018) for any sample (that would be “R1b1a1a2a1b”, following the standard used in their tables). Because the V88 sample in Khvalynsk, as well as other previously known V88 samples, are correctly reported as within the V88 branch, we may be talking about anything in the R1b tree from L754 (xV88) on. Most likely at or beyond the subclade of the Zvejnieki sample of hg R1b1a1 (classified as of R1b1a1a2a1), i.e. from P297 on.

NOTE. Since R1b-Z2103 samples are correctly reported, it is unlikely that the reported samples are from this branch, either.

Graphic reconstruction from the elite male of grave 45, by R. M. Galeev.

It is possible, then, that we will have haplogroup R1b-M269 or L23 instead of L51, after all, and there would be then no major corrections to be made, either to the estimated dates from McDonald or Yfull (with their current differences), or to my predictions for early and late Khvalynsk, Repin, and Yamna

NOTE. In fact, the appearance of R1b-M269* and/or L23* linked to expanding Khvalynsk could be the perfect end to the resurging theories on Armenian or Western European origin of this haplogroup.

5) The full official genetic data is expected within a year (precise date unknown), so unless someone knows of a related draft in the making (which could publish them earlier), I would keep my expectations low for an official confirmation of the precise subclade any time soon.

NOTE. The best likely proxy for the reported data, if the above assumptions on Y-SNP calls and the software used are correct, is therefore to check out – whenever the corrected tables are published – the samples in Narasimhan et al. (2018) now classified as of R1b1a1a2a1(-) subclades. Or to experiment with the software and available BAM files to see which ones give this result…

6) I don’t know if Khokhlov’s book on Samaran archaeology will contain a reference to the samples, but I doubt it could contribute much more to the genetic data.

The meaning of Yekaterinovka

Of course, the Yekaterinovskiy Cape burials are just a tiny sampling of the dozens of settlements known from Khvalynsk, and the known ones represent just a tiny part of the hundreds that the culture probably had while it developed for more than a thousand years. In that sense, you may say that it is statistically not significant.

Nevertheless, as Anthony’s team recently said when explaining the relevance of their findings at Radzorskoe, the potential implications of any discovery at any of the few studied sites are very important. In this case, by confirming that late Khvalynsk became dominated early by R1b-M269, as was later Yamna, and as were early Yamna offshoots like Afanasevo and Bell Beaker.

I really don’t have anything more to add, whether in comments or per email. That’s as much information and speculation as you can get from me (or from them, I guess). If you want more, you can write to the team members yourselves.


The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna


Open access The genetic prehistory of the Greater Caucasus, by Wang et al. bioRxiv (2018).

The Caucasus Mountains as a prehistoric barrier

I think the essential message we can extract from the paper is that the Caucasus was a long-lasting cultural and genetic barrier, although (obviously) it was not insurmontable.

Our results show that at the time of the eponymous grave mound of Maykop, the North Caucasus piedmont region was genetically connected to the south. Even without direct ancient DNA data from northern Mesopotamia, the new genetic evidence suggests an increased assimilation of Chalcolithic individuals from Iran, Anatolia and Armenia and those of the Eneolithic Caucasus during 6000-4000 calBCE23, and thus likely also intensified cultural connections. Within this sphere of interaction, it is possible that cultural influences and continuous subtle gene flow from the south formed the basis of Maykop.

The zoomed map shows the location of sites in the Caucasus. The size of the circle reflects number of individuals that produced genome-wide data. The dashed line illustrates a hypothetical geographic border between genetically distinct Steppe and Caucasus clusters.

Also, unlike more recent times, the North Caucasian piedmont and foothill of the Caucasus region was more strongly connected to Northern Iran than to the steppe, at least until the Bronze Age.

(…) our data shows that the northern flanks were consistently linked to the Near East and had received multiple streams of gene flow from the south, as seen e.g. during the Maykop, Kura-Araxes and late phase of the North Caucasus culture.

Northern Caucasus dominated by R1b, southern Caucasus by J and G2

Comparison of Y-chromosome (A) 1123 and mitochondrial (B) haplogroup distribution in the Steppe and Caucasus cluster.

The first samples from the Eneolithic (one ca. 4300 BC?, the other ca. 4100 BC) are R1b1, without further subclades, so it is difficult to say if they were V88. On the PCA, they seem to be an important piece of the early Khvalynsk -> early Yamna transition period, since they cluster closer to (or even among) subsequent Yamna samples.

From 3000 BC onwards, all samples from the Northern Caucasus group of Yamna are R1b-M269, which right now is probably no surprise for anyone.

The Catacomb culture is dominated by R1b-Z2103, which agrees with what we saw in the unclassified Ukraine Eneolithic sample. However, the new samples (clustering close to Yamna, but with slightly ‘to the south’ of it) don’t seem to cluster closely to that first sample, so that one may still remain a real ‘outlier’, showing incoming influence (through exogamy) from the north.

If anyone was still wondering, no R1a in any of the samples, either. This, and the homogeneous R1b-Z2103 community in Catacomb (a culture in an intermediate region between Late Yamna to the West, and Poltavka to the East), together with Poltavka dominated by R1b-Z2103, too, should put an end to the idea that Steppe MLBA (Sintashta-Petrovka/Potapovka) somehow formed in the North Pontic steppe and appeared directly in the Volga-Ural region. A Uralic/Indo-Iranian community it is, then.

The admixed population from the Caucasus probably points to an isolated region of diverse peoples and languages even in this period, which justifies the strong differences among the historic language families attested in the Caucasus.

So, not much space for Anatolian migrating with those expected Maykop samples with EHG ancestry, unless exogamy is proposed as a source of language change.

ADMIXTURE and PCA results, and chronological order of ancient Caucasus individuals. Samples from Hungary are surrounded by red circles (see below for ADMIXTURE data) (a) ADMIXTURE results (k=12) of the newly genotyped individuals (fillbred symbols with black outlines) sorted by genetic clusters (Steppe and Caucasus) and in chronological order (coloured bars indicate the relative archaeological dates, (b) white circles the mean calibrated radiocarbon date and the errors bars the 2-sigma range. (d) shows these projected onto a PCA of 84 modern-day West Eurasian populations (open symbols).

Yamna Hungary, and the previous Yamna “outliers”

Those western “Yamna outliers”, as I expected, were part of some late Khvalynsk/early Yamna groups that cluster “to the south” of eastern Yamna samples:

Another important observation is that all later individuals in the steppe region, starting with Yamnaya, deviate from the EHG-CHG admixture cline towards European populations in the West. This documents that these individuals had received Anatolian farmer-related ancestry, as documented by quantitative tests and recently also shown for two Yamnaya individuals from Ukraine (Ozera) and one from Bulgaria24. For the North Caucasus region, this genetic contribution could have occurred through immediate contact with groups in the Caucasus or further south. An alternative source, explaining the increase in WHG-related ancestry, would be contact with contemporaneous Chalcolithic/EBA farming groups at the western periphery of the Yamnaya culture distribution area, such as Globular Amphora and Tripolye (Cucuteni–Trypillia) individuals from Ukraine, which also have been shown to carry Anatolian Neolithic farmer-derived ancestry24.

On the other hand, it is interesting that – although no information is released about these samples – Yamna Bulgaria is now a clear outlier, among very “Yamnaya”-like Yamna settlers from Hungary, most likely from the Carpathian basin, and new Yamna LCA/EBA samples, possibly from Late Yamna (see them also marked in the PCA above):

Modified image, with red rectangles surrounding (unexplained) Hungarian samples (c) ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)

The important admixture of Yamna settlers with native populations, seen in expanding East Bell Beakers of R1b-L23 lineages from ca. 2500 BC on, must have therefore happened at the same time as the adoption of the proto-Bell Beaker package, i.e. precisely during the Carpathian Basin / Lower Danube settlements, and not in West Yamna.

Modified image, with red rectangles surrounding (unexplained) Yamna samples Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups

So, it can’t get clearer that Late Neolithic Baltic and Corded Ware migrants, sharing R1a-Z645 lineages and a different admixture, related to Eneolithic North Pontic groups such as Sredni Stog (see above ADMIXTURE graphics of CWC and Eneolithic Ukraine samples), did not come from West Yamna migrants, either.

So much for the R1a/R1b Yamna community that expanded Late PIE into Corded Ware.

NOTE. Andrew Gelman has coined a term for a curious phenomenon (taken from an anonymous commenter): “Eureka bias”, which refers not only to how researchers stick to previously reported incorrect results or interpretations, but also to how badly they react to criticism, even if they understand that it is well-founded. Directly applicable to the research groups that launched the Yamna-CWC idea (and the people who followed them) based on the fallacious “Yamnaya ancestry” concept, and who are still rooting for some version of it, from now on with exogamy, patron-client relationships, Eneolithic Indo-Slavonic, and whatnot. Unless, that is, Anthony’s latest model is right, and Yamna Hungary is suddenly full of R1a-Z645 samples…

Images used are from the article. They are available under a CC-BY-NC-ND 4.0 International license. (Yes, I know, I modified them. To mark special newly reported samples from Yamna Hungary and Yamna LCA/EBA. I expect this to count as fair use).


Linguistic continuity despite genetic replacement in Remote Oceania


Review of recent papers on East Asia, quite relevant these days: Human Genetics: Busy Subway Networks in Remote Oceania? by Anders Bergström & Chris Tyler-Smith, Current Biology (2018) 28.

Interesting excerpts (emphasis mine):

Ancient DNA is transforming our understanding of the human past by forcing geneticists to confront its real complexity [1]. Historians and archaeologists have long known that the development of human societies was complex and often haphazard, but geneticists have persistently tried to explain present-day patterns of genetic variation using simple models.

Early genetic analyses of present-day populations revealed a mix of Asian (Taiwanese) and Papuan (New Guinea or nearby) ancestries throughout Remote Oceania, with maternally-inherited mitochondrial DNA being predominantly Asian, paternally-inherited Y chromosomes mainly Papuan, and autosomes intermediate [7]. This led to the simple model mentioned above of an Austronesian-speaking population starting out from Taiwan, developing the Lapita culture in the islands near New Guinea while mixing with local Papuans, and then boldly launching out into the unknown Pacific.

The surprise came with the first studies of ancient DNA, when early Lapita people from Vanuatu and Tonga (ca. 2,500-3,000 yBP) showed completely Asian genetic ancestry, so the Papuan genetic component must have entered later.

This is what the most recent ancient DNA papers found:


There thus seems to have been a migration of Papuan-ancestry people from the Bismarck archipelago off the coast of New Guinea, into the islands of Remote Oceania, shortly after those very islands were first settled by people from Asia. Few traces of such a migration and its cultural or technological underpinnings have been found in the archaeological record or in linguistic relationships, which is why it comes as such a surprise. The fact that these Near Oceanian people made the long journey to Vanuatu so soon after the Asian seafarers arrived in their neighbourhood, having had tens of thousands of years to do so previously, strongly suggest that the migration was somehow triggered by interactions with the new Austronesian-speaking arrivals and adoption of their sophisticated seafaring technology. The excess of Y chromosomes of Papuan origin in Remote Oceania, somewhat difficult to explain under the traditional model, might also make sense in the light of an active expansion of people from Near Oceania, as such expansions have often found to be male-biased [10]. Both studies speculate that the arrival of these Papuan-ancestry people might have contributed to the end of the Lapita period and its cultural unity.

The very first settlers of Vanuatu would have spoken Austronesian languages, and the Papuan-ancestry people who arrived shortly after would very likely have spoken Papuan languages. Yet today, all languages of Vanuatu are Austronesian. The arrivals from Near Oceania thus seem to have largely replaced the first settlers but adopted their languages. Posth and colleagues [5] argue that the languages of Vanuatu actually contain some elements of Papuan origin, and that the ancient DNA results are compatible with a more gradual process of cultural interaction and genetic mixing, rather than sudden replacement. Nonetheless, linguistic continuity in the face of this almost complete genetic replacement is extremely unusual in human history, perhaps even unprecedented as Posth and colleagues [5] suggest.

We are seeing now from the Anatolian expansion and in the formation of the Indo-Iranian community that such processes were actually not as unusual as some had previously thought…


Consequences of Damgaard et al. 2018 (II): The late Khvalynsk migration waves with R1b-L23 lineages


This post should probably read “Consequences of Narasimhan et al. (2018),” too, since there seems to be enough data and materials published by the Copenhagen group in Nature and Science to make a proper interpretation of the data that will appear in their corrected tables.

The finding of late Khvalynsk/early Yamna migrations, identified with early LPIE migrants almost exclusively of R1b-L23 subclades is probably one of the most interesting findings in the recent papers regarding the Indo-European question.

Although there are still few samples to derive fully-fledged theories, they begin to depict a clearer idea of waves that shaped the expansion of Late Proto-Indo-European migrants in Eurasia during the 4th millennium BC, i.e. well before the expansion of North-West Indo-European, Palaeo-Balkan, and Indo-Iranian languages.

Late Khvalynsk expansions and archaic Late PIE

Like Anatolian, Tocharian has been described as having a more archaic nature than the rest of Late PIE. However, Pre-Tocharian belongs to the Late PIE trunk, clearly distinguishable phonetically and morphologically from Anatolian.

It is especially remarkable that – even though it expanded into Asia – it has more in common with North-West Indo-European, hence its classification (together with NWIE) as part of a Northern group, unrelated to Graeco-Aryan.

The linguistic supplement by Kroonen et al. accepts that peoples from the Afanasevo culture (ca. 3000-2500 BC) are the most likely ancestors of Tocharians.

NOTE. For those equating the Tarim Mummies (of R1a-Z93 lineages) with Tocharians, you have this assertion from the linguistic supplement, which I support:

An intermediate stage has been sought in the oldest so-called Tarim Mummies, which date to ca. 1800 BCE (Mallory and Mair 2000; Wáng 1999). However, also the language(s) spoken by the people(s) who buried the Tarim Mummies remain unknown, and any connection between them and the Afanasievo culture on the one hand or the historical speakers of Tocharian on the other has yet to be demonstrated (cf. also Mallory 2015; Peyrot 2017).

New samples of late Khvalynsk origin

These are are the recent samples that could, with more or less certainty, correspond to migration waves from late Khvalynsk (or early Yamna), from oldest to most recent:

  • The Namazga III samples from the Late Eneolithic period (in Turkmenistan), dated ca. 3360-3000 BC (one of haplogroup J), potentially showing the first wave of EHG-related steppe ancestry into South Asia. Not related to Indo-Iranian migrations.

NOTE. A proper evaluation with further samples from Narasimhan et al. (2018) is necessary, though, before we can assert a late Khvalynsk origin of this ancestry.

  • Afanasevo samples, dated ca. 3081-2450 BC, with all samples dated before ca. 2700 BC uniformly of R1b-Z2103 subclades, sharing a common genetic cluster with Yamna, showing together the most likely genomic picture of late Khvalynsk peoples.

NOTE 1. Anthony (2007) put this expansion from Repin ca. 3300-3000 BC, while his most recent review (2015) of his own work put its completion ca. 3000-2800. While the migration into Afanasevo may have lasted some time, the wave of migrants (based on the most recent radiocarbon dates) must be set at least before ca. 3100 BC from Khvalynsk.

NOTE 2. I proposed that we could find R1b-L51 in Afanasevo, presupposing the development of R1b-L51 and R1b-Z2103 lineages with separating clans, and thus with dialectal divisions. While finding this is still possible within Khvalynsk regions, it seems we will have a division of these lineages already ca. 4250-4000 BC, which would require a closer follow-up of the different inner late Khvalynsk groups and their samples. For the moment, we don’t have a clear connection through lineages between North-West Indo-European groups and Tocharian.

Early Copper Age migrations in Asia ca. 3300-2800, according to Anthony (2015).
  • Subsequent and similar migration waves are probably to be suggested from the new sample of Karagash, beyond the Urals (attributed to the Yamna culture, hence maintaining cultural contacts after the migration waves), of R1b-Z2103 subclade, ca. 3018-2887 BC, potentially connected then to the event that caused the expansion of Yamna migrants westward into the Carpathians at the same time. Not related to Indo-Iranian migrations.
  • The isolated Darra-e Kur sample, without cultural adscription, ca. 2655 BC, of R1b-L151 lineage. Not related to Indo-Iranian migrations.
  • The Hajji Firuz samples: I4243 dated ca. 2326 BC, of haplogroup I1b, with a clear inflow of steppe ancestry; and I2327 (probably to be dated to the late 3rd millennium BC or after that), of R1b-Z2103 lineage. Not related to Indo-Iranian migrations.

NOTE. A new radiocarbon dating of I2327 is expected, to correct the currently available date of 5900-5000 BC. Since it clusters nearer to Chalcolithic samples from the site than I4243 (from the same archaeological site), it is possible that both are part of similar groups receiving admixture around this period, or maybe I2327 is from a later period, coinciding with the Iron Age sample F38 from Iran (Broushaki et al. 2016), with which it closely clusters. Also, the finding of EHG-related ancestry in Maykop samples dated ca. 3700-3000 BC (maybe with R1b-L23 subclades) offers another potential source of migrants for this Iranian group.

NOTE. Samples from Narasimhan et al. (2018) still need to be published in corrected tables, which may change the actual subclades shown here.

These late Khvalynsk / early Yamna migration waves into Asia are quite early compared to the Indo-Iranian migrations, whose ancestors can only be first identified with Volga-Ural groups of Yamna/Poltavka (ca. 3000-2400 BC), with its fully formed language expanding only with MLBA waves ca. 2300-1200 BC, after mixing with incoming Abashevo migrants.

While the authors apparently forget to reference the previous linguistic theories whereby Tocharian is more archaic than the rest of Late PIE dialects, they refer to the ca. 1,000-year gap between Pre-Tocharian and Proto-Indo-Iranian migrations, and thus their obvious difference:

The fact that Tocharian is so different from the Indo-Iranian languages can only be explained by assuming an extensive period of linguistic separation.

Potential linguistic substrates in the Middle East

A few words about relevant substrate language proposals.

Euphratic language

What Gordon Whittaker proposes is a North-West Indo-European-related substratum in Sumerian language and texts ca. 3500 BC, which may explain some non-Sumerian, non-Semitic word forms. It is just one of many theories concerning this substratum.

Diachronic map of Eneolithic migrations ca. 4000-3100 BC

This is a summary of his findings from his latest writing on the subject (a chapter of a book on Indo-European phonetics, from the series Copenhagen Studies in Indo-European):

In Sumerian and Akkadian vocabulary, the cuneiform writing system, and the names of deities and places in Southern Mesopotamia a body of lexical material has been preserved that strongly suggests influence emanating from a superstrate of Indo-European origin. his Indo-European language, which has been given the name Euphratic, is, at present, attested only indirectly through the filters of Sumerian and Akkadian. The attestations consist of words and names recorded from the mid-4th millennium BC (Late Uruk period) onwards in texts and lexical lists. In addition, basic signs that originally had a recognizable pictorial structure in proto-cuneiform preserve (at least from the early 3rd millennium on) a number of phonetic values with no known motivation in Sumerian lexemes related semantically to the items depicted. This suggests that such values are relics from the original logographic values for the items depicted and, thus, that they were inherited from a language intimately associated with the development of writing in Mesopotamia. Since specialists working on proto-cuneiform, most notably Robert K. Englund of the Cuneiform Digital Library Initiative, see little or no evidence for the presence of Sumerian in the corpus of archaic tablets, the proposed Indo-European language provides a potential solution to this problem. It has been argued that this language, Euphratic, had a profound influence on Sumerian, not unlike that exerted by Sumerian and Akkadian on each other, and that the writing system was the primary vehicle of this influence. he phonological sketch drawn up here is an attempt to chart the salient characteristics of this influence, by comparing reconstructed Indo-European lexemes with similarly patterned ones in Sumerian (and, to a lesser extent, in Akkadian).

His original model, based on phonetic values in basic proto-cuneiform signs, is quite imaginative and a very interesting read, if you have the time. His account hosts most of his papers on the subject.

We could speculate about the potential expansion of this substrate language with the commercial contacts between Uruk and Maykop (as I did), now probably more strongly supported because of the EHG found in Maykop samples.

NOTE. We could also put it in relation with the Anatolian language of Mari, but this would require a new reassessment of its North-West Indo-European nature.

Nevertheless, this theory is far from being mainstream, anywhere. At least today.

NOTE. The proposal remains still hypothetic, because of the flaws in the Indo-European parallels – similar to Koch’s proposal of Indo-European in Tartessian inscriptions. A comprehensive critic approach to the theory is found in Sylvie Vanséveren’s A “new” ancient Indo-European language? On assumed linguistic contacts between Sumerian and Indo-European “Euphratic”, in JIES (2008) 36:3&4.

Gutian language

References to Gutian are popping up related to the Hajji Firuz samples of the mid-3rd millennium.

The hypothesis was put forward by Henning (1978) in purely archaeological terms.

This is the relevant excerpt from the book:

(…) Comparativists have asserted that, in spite of its late appearance, Tokharian is a relatively archaic form of Indo-European.3 This claim implies that the speakers of this group separated from their Indo-European brethren at a comparatively early date. They should accordingly have set out on their migrations rather early, and should have appeared within the Babylonian sphere of influence also rather early. Earlier, at any rate, than the Indo-Iranians, who spoke a highly developed (therefore probably later) form of Indo-European. Moreover, as some of the Indo-Iranians after their division into Iranians and Indo-Aryans4 appeared in Mesopotamia about 1500 B.C., we should expect the Proto-Tokharians about 2000 B.C. or even earlier.

If, armed with these assumptions as our working hypothesis, we look through the pages of history, we find one nation – one nation only – that perfectly fulfills all three conditions, which, therefore, entitles us to recognize it as the “Proto-Tokharians”. Tis name was Guti; the intial is also spelled with q (a voiceless back velar or pharyngeal), but the spelling with g is the original one. The closing -i is part of the name, for the Akkadian case-endings are added to it, nom. Gutium etc. Guti (or Gutium, as some scholars prefer) was valid for the nation, considered as an entity, but also for the territory it occupied.

The text goes on to follow the invasion of Babylonia by the Guti, and further eastward expansions supposedly connected with these, to form the attested Tocharians.

The referenced text by Thorkild Jakobsen offers the interesting linguistic data:

Among the Gutian rulers is one Elulumesh, whose name is evidently Akkadian Elulum slightly “Gutianized” by the Gutian case(?) ending -eš.40 This Gutian ruler Elulum is obviously the same man whom we find participating in the scramble for power after the death of Shar-kali-sharrii; his name appears there in Sumerian form without mimation as Elulu.

The Gutian dynasty, from ca. 22nd c. BC appears as follows:


I don’t think we could derive a potential relation to any specific Indo-European branch from this simple suffix repeated in Gutian rulers, though.

The hypothesis of the Tocharian-like nature of the Guti (apart from the obvious error of considering them as the ancestors of Tocharians) remains not contrasted in new works since. It was cited e.g. by Gamkrelidze and Ivanov (1995) to advance their Armenian homeland, and by Mallory and Adams in their Encyclopedia (1997).

It lies therefore in the obscurity of undeveloped archaeological-linguistic hypotheses, and its connection with the attested R1b-Z2103 samples from Iran is not (yet) warranted.


Consequences of Damgaard et al. 2018 (I): EHG ancestry in Maykop samples, and the potential Anatolian expansion routes


This is part I of two posts on the most recent data concerning the earliest known Indo-European migrations.

Anatolian in Armi

I am reading in forums about “Kroonen’s proposal” of Anatolian in the 3rd millennium. That is false. The Copenhagen group (in particular the authors of the linguistic supplement, Kroonen, Barjamovic, and Peyrot) are merely referencing Archi (2011. “In Search of Armi”. Journal of Cuneiform Studies 63: 5–34) in turn using transcriptions from Bonechi (1990. “Aleppo in età arcaica; a proposito di un’opera recente”. Studi Epigrafici e Linguistici sul Vicino Oriente Antico 7: 15–37.), who asserted the potential Anatolian origin of the terms. This is what Archi had to say about this:

Most of these personal names belong to a name-giving tradition different from that of Ebla; Arra-ti/tulu(m) is attested also at Dulu, a neighbouring city-state (Bonechi 1990b: 22–25).28 We must, therefore, deduce that Armi belonged to a marginal, partially Semitized linguistic area different from the ethno-linguistic region dominated by Ebla. Typical are masculine personal names ending in -a-du: A-la/li-wa-du/da, A-li/lu-wa-du, Ba-mi-a-du, La-wadu, Mi-mi-a-du, Mu-lu-wa-du. This reminds one of the suffix -(a)nda, -(a)ndu, very productive in the Anatolian branch of Indo-European (Laroche 1966: 329). Elements such as ali-, alali-, lawadu-, memi-, mula/i- are attested in Anatolian personal names of the Old Assyrian period (Laroche 1966: 26–27, 106, 118, 120).

Ebla’ first kingdom at its height c. 2340 BC. Hipothetical location of Armi depicted. The first Eblaite kingdom extended from Urshu in the north,1 to Damascus area in the south.2 And from Phoenicia and the coastal mountains in the west,3 4 to Tuttul,5 and Haddu in the east.6 The eastern kingdom of Nagar controlled most of the Khabur basin from the river junction with the Euphrates to the northwestern part at Nabada.7 Page 101. From Wikipedia.

This was used by Archi to speculatively locate the state of Armi, in or near Ebla territory, which could correspond with the region of modern north-western Syria:

The onomastic tradition of Armi, so different from that of Ebla and her allies (§ 5), obliges us to locate this city on the edges of the Semitized area and, thus, necessarily north of the line running through Hassuwan – Ursaum – Irritum – Harran. If Armi were to be found at Banat-Bazi, it would have represented an anomaly within an otherwise homogenous linguistic scenario.34

Taken as a whole, the available information suggests that Armi was a regional state, which enjoyed a privileged relationship with Ebla: the exchange of goods between the two cities was comparable only to that between Ebla and Mari. No other state sent so many people to Ebla, especially merchants, lú-kar. It is only a hypothesis that Armi was the go-between for Ebla and for the areas where silver and copper were extracted.

This proposal is similar to the one used to support Indo-Aryan terminology in Mittanni (ca. 16th-14th c. BC), so the scarce material should not pose a problem to those previously arguing about the ‘oldest’ nature of Indo-Aryan.

NOTE. On the other hand, the theory connecting ‘mariannu‘, a term dated to 1761 BC (referenced also in the linguistic supplement), and put in relation with PIIr. *arya, seems too hypothetical for the moment, although there is a clear expansion of Aryan-related terms in the Middle East that could support one or more relevant eastern migration waves of Indo-Aryans from Asia.

Potential routes of Anatolian migration

Once we have accepted that Anatolian is not Late PIE – and that only needed a study of Anatolian archaisms, not the terminology from Armi – , we can move on to explore the potential routes of expansion.

On the Balkan route

A current sketch of the dots connecting Khvalynsk with Anatolia is as follows.

1—39 — sceptre bearers of the type Giurgiuleşti and Suvorovo; 40—60 — Gumelniţa-Varna-Bolgrad-Aldeni cultural sphere; 61 — Fălciu; 62 — Cainari; 63 — Giurgiuleşti; 64 — Suvorovo; 65 — Casimcea; 66 — Kjulevča; 67 — Reka Devnja; 68 — Drama; 69 — Gonova Mogila; 70 — Reževo.

First, we have the early expansion of Suvorovo chieftains spreading from ca. 4400-4000 BC in the lower Danube region, related to Novodanilovka chiefs of the North Pontic region, and both in turn related to Khvalynsk horse riders (read a a recent detailed post on this question).

Then we have Cernavoda I (ca. 3850-3550 BC), a culture potentially derived from the earlier expansion of Suvorovo chiefs, as shown in cultural similarities with preceding cultures and Yamna, and also in the contacts with the North Pontic steppe cultures (read a a recent detailed post on this question).

We also have proof of genetic inflow from the steppe into populations of cultures near those suggested to be heirs of those dominated by Suvorovo chiefs, from the 5th millennium BC (in Varna I ca. 4630 BC, and Smyadovo ca. 4500 BC, see image below).

If these neighbouring Balkan peoples of ca. 4500 BC are taken as proxies for Proto-Anatolians, then it becomes quite clear why Old Hittite samples dated 3,000 years after this migration event of elite chiefs could show no or almost no ancestry from Europe (for this question, read my revision of Lazaridis’ preprint).

NOTE. A full account of the crisis in the lower Danube, as well as the Suvorovo-Novodanilovka intrusion, is available in Anthony (2007).

Modified image, including PCA and supervised ADMIXTURE data from Mathieson et al. (2018). Blue arrow represents incoming ancestry from Suvorovo chiefs, red line represents distance from the majority of the neighbouring Balkan population in this period studied to date. Northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green).

The southern Balkans and Anatolia

The later connection of Cernavoda II-III and related cultures (and potentially Ezero) with Troy, on the other hand, is still blurry. But, even if a massive migration of Common Anatolian is found to happen from the Balkans into Anatolia in the late 4th / beginning of the 3rd millennium, the people responsible for this expansion could show a minimal trace of European ancestry.

A new paper has appeared recently (in Russian), Dubene and Troy: Gold and Prosperity in the Third Millennium Cal. BCE in Eurasia. Stratum Plus, 2 (2018), by L. Nikolova, showing commercial contacts between Troy and cultures from Bulgaria:

Earlier third millennium cal BCE is the period of development of interconnected Early Bronze Age societies in Eurasia, which economic and social structures expressed variants of pre-state political structures, named in the specialized literature tribes and chiefdoms. In this work new arguments will be added to the chiefdom model of third millennium cal BC societies of Yunatsite culture in the Central Balkans from the perspectives of the interrelations between Dubene (south central Bulgaria) and Troy (northwest Turkey) wealth expression.

Possible explanations of the similarity in the wealth expression between Troy and Yunatsite chiefdoms is the direct interaction between the political elite. However, the golden and silver objects in the third millennium cal BCE in the Eastern Mediterranean are most of all an expression of economic wealth. This is the biggest difference between the early state and chiefdoms in the third millennium cal BCE in Eurasia and Africa. The literacy and the wealth expression in the early states was politically centralized, while the absence of literacy and wider distribution of the wealth expression in the chiefdoms of the eastern Mediterranean are indicators, that wider distribution of wealth and the existed stable subsistence layers prevented the formation of states and the need to regulate the political systems through literacy.

The only way to link Common Anatolians to their Proto-Anatolian (linguistic) ancestors would therefore be to study preceding cultures and their expansions, until a proper connecting route is found, as I said recently.

These late commercial contacts in the south-eastern Balkans (Nikolova also offers a simplified presentation of data, in English) are yet another proof of how Common Anatolian languages may have further expanded into Anatolia.

NOTE. One should also take into account the distribution of modern R1b-M269* and L23* subclades (i.e. those not belonging to the most common subclades expanding with Yamna), which seem to peak around the Balkans. While those may just belong to founder effects of populations preceding Suvorovo or related to Yamna migrants, the Balkans is a region known to have retained Y-DNA haplogroup diversity, in contrast with other European regions.

On a purely linguistic aspect, there are strong Hattic and Hurrian influences on Anatolian languages, representing a unique layer that clearly differentiates them from LPIE languages, pointing also to different substrates behind each attested Common Anatolian branch or individual language:

  • Phonetic changes, like the appearance of /f/ and /v/.
  • Split ergativity: Hurrian is ergative, Hattic probably too.
  • Increasing use of enclitic pronoun and particle chains after first stressed word: in Hattic after verb, in Hurrian after nominal forms.
  • Almost obligatory use of clause initial and enclitic connectors: e.g. semantic and syntactic identity of Hattic pala/bala and Hittite nu.

NOTE. For a superficial discussion of this, see e.g. An Indo-European Linguistic Area and its Characteristics: Ancient Anatolia. Areal Diffusion as a Challenge to the Comparative Method?, by Calvert Watkins. You can also search for any of the mentioned shared isoglosses between Middle Eastern languages and Anatolian if you want more details.

On the Caucasus route

It seems that the Danish group is now taking a stance in favour of a Maykop route (from the linguistic supplement):

The period of Proto-Anatolian linguistic unity can now be placed in the 4th millennium BCE and may have been contemporaneous with e.g. the Maykop culture (3700–3000 BCE), which influenced the formation and apparent westward migration of the Yamnaya and maintained commercial and cultural contact with the Anatolian highlands (Kristiansen et al. 2018).

In fact, they have data to support this:

The EHG ancestry detected in individuals associated with both Yamnaya (3000–2400 BCE) and the Maykop culture (3700–3000 BCE) (in prep.) is absent from our Anatolian specimens, suggesting that neither archaeological horizon constitutes a suitable candidate for a “homeland” or “stepping stone” for the origin or spread of Anatolian Indo- European speakers to Anatolia. However, with the archaeological and genetic data presented here, we cannot reject a continuous small-scale influx of mixed groups from the direction of the Caucasus during the Chalcolithic period of the 4th millennium BCE.

While it is difficult to speak about the consequences of this find without having access to this paper in preparation or its samples, we already knew that Maykop had obvious cultural contacts with the steppe.

It will not be surprising to find not only EHG, but also R1b-L23 subclades there. In my opinion, though, the most likely source of EHG ancestry in Maykop (given the different culture shown in other steppe groups) is exogamy.

The question will still remain: was this a Proto-Anatolian-speaking group?

Diachronic map of Eneolithic migrations ca. 4000-3100 BC

My opinion in this regard – again, without access to the study – is that you would still need to propose:

  • A break-up of Anatolian ca. 4500 BC represented by some early group migrating into the Northern Caucasus area.
  • For this group – who were closely related linguistically and culturally to early Khvalynsk – to remain isolated in or around the Northern Caucasus, i.e. somehow ‘hidden’ from the evolving LPIE speakers in late Khvalynsk/early Yamna peoples.
  • Then, they would need to have migrated from Maykop to Anatolian territory only after ca. 3700 BC – while having close commercial contacts with Khvalynsk and the North Pontic cultures in the period 3700-3000 BC -, in some migration wave that has not showed up in the archaeological records to date.
  • Then appear as Old Hittites without showing EHG ancestry (even though they show it in the period 3700-3000 BC), near the region of the Armi state, where Anatolian was supposedly spoken already in the mid-3rd millennium.

Not a very convincing picture, right now, but indeed possible.

Also, we have R1b-Z2103 lineages and clear steppe ancestry in the region probably ca. 2500 BC with Hajji Firuz, which is most likely the product of the late Khvalynsk migration waves that we are seeing in the recent papers.

These migrations are then related to early LPIE-speaking migrants spreading after ca. 3300 BC – that also caused the formation of early Yamna and the expansion of Tocharian-related migrants – , which leaves almost no space for an Anatolian expansion, unless one supports that the former drove the latter.

NOTE. In any case, if the Caucasus route turned out to be the actual Anatolian route, I guess this would be a way as good as any other to finally kill their Indo-European – Corded Ware theory, for obvious reasons.

On the North Iranian homeland

A few thoughts for those equating CHG ancestry in IE speakers (and especially now in Old Hittites) with an origin in North Iran, due to a recent comment by David Reich:

In the paper it is clearly stated that there is no Neolithic Iranian ancestry in the Old Hittite samples.

Ancestry is not people, and it is certainly not language. The addition of CHG ancestry to the Eneolithic steppe need not mean a population or linguistic replacement. Although it could have been. But this has to be demonstrated with solid anthropological models.

NOTE. On the other hand, if you find people who considered (at least until de Barros Damgaard et al. 2018) steppe (ancestry/PCA) = Indo-European, then you should probably confront them about why CHG in Hittites and the arrival of CHG in steppe groups is now not to be considered the same, i.e why CHG / Iran_N ≠ PIE.

Since there has been no serious North Iranian homeland proposal made for a while, it is difficult to delineate a modern sketch, and I won’t spend the time with that unless there is some real anthropological model and genetic proof of it. I guess the Armenian homeland hypothesis proposed by Gamkrelidze and Ivanov (1995) would do, but since it relies on outdated data (some of which appears also in Gimbutas’ writings), it would need a full revision.

NOTE. Their theory of glottalic consonants (or ejectives) relied on the ‘archaism’ of Hittite, Germanic, and Armenian. As you can see (unless you live in the mid-20th century) this is not very reasonable, since Hittite is attested quite late and after heavy admixture with Middle Eastern peoples, and Germanic and Armenian are some of the latest attested (and more admixed, phonetically changed) languages.

This would be a proper answer, indeed, for those who would accept this homeland due to the reconstruction of ‘ejectives’ for these languages. Evidently, there is no need to posit a homeland near Armenia to propose a glottalic theory. Kortlandt is a proponent of a late and small expansion of Late PIE from the steppe, and still proposes a reconstruction of ejectives for PIE. But, this was the main reason of Gamkrelidze and Ivanov to propose that homeland, and in that sense it is obviously flawed.

Those claiming a relationship of the North Iranian homeland with such EHG ancestry in Maykop, or with the hypothetic Proto-Euphratic or Gutian, are obviously not understanding the implications of finding steppe ancestry coupled with (likely) early Late PIE migrants in the region in the mid-4th millennium.


No large-scale steppe migration into Anatolia; early Yamna migrations and MLBA brought LPIE dialects in Asia


Another, simultaneous paper with the Eurasian samples from Nature, The first horse herders and the impact of early Bronze Age steppe expansions into Asia, by de Barros Damgaard et al., Science (2018).

A lot of interesting data, I will try to analyse its main implications, if only superficially, in sections.

Anatolian samples

Anatolia_EBA from Ovaören, and Anatolia_MLBA (this including Assyrian and Old Hittite samples), all from Kalehöyük, show almost no change in Y-DNA lineages (three samples J2a, one G2a), and therefore an origin of these people in common with CHG and Iranian Neolithic populations is likely. No EHG ancestry is found. And PCA cluster is just somehow closer to Europe, but not to EHG populations.

NOTE. Hittite is attested only in the late first half of the 2nd millennium, although the authors cite (in the linguistic supplement) potential evidence from the palatial archives of the ancient city of Ebla in Syria to argue that Indo-European languages may have been already spoken in the region in the late 3rd millennium BCE.

Regarding the Assyrian samples (one J2a) from Ovaören:

Layer V of GT-137 was the richest in terms of architectural finds and dates to the Early Bronze Age II. In this layer, 2 different structures and a well were uncovered. The well was filled with stones, pottery, and human skeletons (Figs. S2 and S3). In total, skeletons belonging to 22 individuals, including adults, young adults, and children, must belong to the disturbed Early Bronze Age II graves adjacent to the well (103). Pottery and stones found below the skeletons demonstrate that the water well was consciously filled and closed. The fill consists of dumped stones, sherds and skeletons, and the closing stones demonstrate that the water well was consciously filled and cancelled.

Regarding the site most likely associated with the emergence of Old Hittite (two samples J2a1, one G2a2b1), this is what we know:

The Middle Bronze Age at Kaman-Kalehöyük represented by stratum IIIc yields material remains (seals and ceramics) contemporary with the international trade system managed by expatriate Assyrian merchants evidenced at the nearby site of Kültepe/Kanesh. It is therefore also referred to as belonging to the “Assyrian Colony Period” (98). The stratum has revealed three burned architectural units, and it has been suggested that the seemingly site-wide conflagration might be connected to a destruction event linked with the emergence of the Old Hittite state (99). (…) Omura (100) suggests that the rooms could belong to a public building, and that it might even be a small trade center based on the types of artifacts recovered. Omura (100) has concluded that the evidence from the first complex indicates a battle between 2 groups took place at the site. It is possible that a group died inside the buildings, mostly perishing in the fire, while another group died in the courtyard.

NOTE. For more on the Old Hittite period, you can read this for example.

Regarding PCA:

The PCA (Fig. 2B) indicates that all the Anatolian genome sequences from the Early Bronze Age ( -2200 BCE) and Late Bronze Age (-1600 BCE) cluster with a previously sequenced Copper Age ( -3900- 3700 BCE) individual from Northwestern Anatolia and lie between Anatolian Neolithic (Anatolia_ N) samples and CHG samples but not between Anatolia_N and EHG samples.

(…) we are not able to reject a two-population qpAdm model in which these groups derive -60% of their ancestry from Anatolian farmers and -40% from CHG-related ancestry (p-value = 0.5). This signal is not driven by Neolithic Iranian ancestry.

Principal Component Analysis estimated with ancient and modern Eurasians.

NOTE. Anatolian Iron Age samples, from the Hellenistic period, which was obviously greatly influenced by different, later Indo-European migrations, does show a change in PCA.

Regarding CHG ancestry:

Ancient DNA findings suggest extensive population contact between the Caucasus and the steppe during the Copper Age (-5000-3000 BCE) (1, 2, 42). Particularly, the first identified presence of Caucasian genomic ancestry in steppe populations is through the Khvalynsk burials (2, 47) and that of steppe ancestry in the Caucasus is through Armenian Copper Age individuals (42). These admixture processes likely gave rise to the ancestry that later became typical of the Yamnaya pastoralists (7), whose IE language may have evolved under the influence of a Caucasian language, possibly ‘from the Maykop culture (50, 55). This scenario is consistent with both the “Copper Age steppe” (4) and the “Caucasian” models for the origin of the Proto-Anatolian language (56).

The CHG specific ancestry and the absence of EHG-related ancestry in Bronze Age Anatolia would be in accordance with intense cultural interactions between populations in the Caucasus and Anatolia observed during the late 5th millennium BCE that seem to come to an end in the first half of the 4th millennium BCE with the village-based egalitarian Kura-Araxes society (59, 60), thus preceding the emergence and dispersal of Proto-Anatolian.

Our results indicate that the early spread of IE languages into Anatolia was not associated with any large-scale steppe-related migration, as previously suggested (61). Additionally, and in agreement with the later historical record of the region (62), we find no correlation between genetic ancestry and exclusive ethnic or political identities among the populations of Bronze Age Central Anatolia, as has previously been hypothesized ( 63).

The Anatolian question

There is no steppe ancestry or R1b-M269 lineages near early historic Hittites. Yet.

Nevertheless, we already know about potentially similar cases:

So there seems to be thus no theoretical problem in accepting:

  • That neither steppe ancestry nor R1b-M269 subclades, already diminished in Bulgaria in the mid-5th millennium, did reach Anatolia, but only those Common Anatolian-speaking Aegean groups over whose ancestors Proto-Anatolians (marked by incoming EHG ancestry) would have previously dominated in the Balkans.
  • That steppe ancestry and R1b-M269 subclades did in fact arrive in the Aegean, but EHG was further diluted among the CHG-related population by the time of the historic Anatolian-speaking peoples in central Anatolia. Or, the most likely option, that their trace have not been yet found. Probably the western Luwian peoples, near Troy, were genetically closer to Common Anatolians.

Both of these scenarios are interesting, in that they show potential links between Pre-Greek peoples of Hellas (related to Anatolians) and the Pelasgian substrate of early Greek dialects, since they show a similar recent CHG-related wave from the East.

What we can assert right now is that Proto-Anatolian must have separated quite early for this kind of data to show up. This should mean an end to the Late PIE origin of Anatolian, if there was some lost soul from the mid-20th century still rooting for this.

As I said in my review of Lazaridis’ latest preprint, we will have to wait for the appropriate potential routes of expansion of Proto-Anatolian to be investigated. As he answered, the lack of EHG poses a problem for steppe expansion into Anatolia, but there is still no better alternative model proposed.

Model-based clustering analysis of present-day and ancient individuals assuming K = 6 ancestral components. The main ancestry components at K = 6 correlate well with CHG (turquoise), a major component of Iran_N, Namazga_CA and South Asian dines; EHG (pale blue), a component of the steppe dine and present in South Asia; East Asia (yellow ochre), the other component of the steppe d ine also in Tibeto-Burman South Asian populations; South Indian (pink), a core component of South Asian populations; Anatolian_N (purple), an important component of Anatolian Bronze Age and Steppe_MLBA; Onge (dark pink) forms its own component.

This is what the authors have to say:

Our findings are thus consistent with historical models of cultural hybridity and “Middle Ground” in a multi-cultural and multi-lingual but genetically homogeneous Bronze Age Anatolia (68, 69). Current linguistic estimations converge on dating the Proto-Anatolian split from residual PIE to the late 5th or early 4th millennia BCE (58, 70) and place the breakup of Anatolian IE inside Turkey prior to the mid-3rd millennium (53, 71,72).

We cannot at this point reject a scenario in which the introduction of the Anatolian IE languages into Anatolia was coupled with the CHG-derived admixture prior to 3700 BCE, but note that this is contrary to the standard view that PIE arose in the steppe north of the Caucasus (4) and that CHG ancestry is also associated with several non-IE-speaking groups, historical and current. Indeed, our data are also consistent with the first speakers of Anatolian IE coming to the region by way of commercial contacts and small-scale movement during the Bronze Age. Among comparative linguists, a Balkan route for the introduction of Anatolian IE is generally considered more likely than a passage through the Caucasus, due, for example, to greater Anatolian IE presence and language diversity in the west (73). Further discussion of these options is given in the archaeological and linguistic supplementary discussions (48, 49).

If you are asking yourselves why the Danish school (of Allentoft, Kristiansen, and Kroonen, co-authors of this paper) was not so fast to explain the findings the same way the proposed their infamous Indo-European – steppe ancestry association (i.e. ancestry = language, ergo CHG = PIE in this case), and resorted to mainstream anthropological models instead to explain the incongruence, I can think of two main reasons:

The possibility of having an early PIE around the Caucasus, potentially closely related not only to Uralic to the north, but also to Caucasian languages, Sumerian, Afroasiatic, Elamo-Dravidian, etc. could be a good reason for those excited with these few samples to begin dealing with macro-language proposals, such as Eurasiatic and Nostratic. If demonstrated to be true, a Northern Iranian origin of Middle PIE would also help relieve a little bit the pressure that some are feeling about the potentially male-driven Indo-European continuity (even if not “autochthonous”) associated with the expansion of R1b-L23 subclades.

On the other hand, I am a firm supporter of solid anthropological models of migration, and of “late and small” language expansions, usually accompanied by demic diffusion, which has been demonstrated to be linked with haplogroup expansion and reduction in variability.

Therefore, for the moment, even if it is weak – as weak as it always was (but still stronger than Gimbutas’ Maykop route) – the Balkan route seems like the best fit for all the data combined.

In fact, we already have steppe ancestry moving into the Lower Danube and Bulgaria in the mid-5th millennium. Let’s not forget that.

Yamna expansion to the East

Interesting data from an early East Yamna offshoot at Karagash, ca. 3018-2887 BC, of R1b-Z2106 lineage, which shows some ancestry, lineage, and cultural continuity in Sholpan, ca. 2620-2468 BC, in Kazakhstan.

This sample might be part of another descendant group from the migration waves that reached Afanasevo, and can thus be related to other early Asian R1b-L23 samples found in Narasimhan et al. (2018).

On the formation of Yamna and its CHG contribution, from the supplementary material:

  1. An admixture event, where Yamnaya is formed from a CHG population related to KK1 [=Kotias, dated ca. 7800 BC] and an ANE population related to Sidelkino and Botai. We inferred 54% of the Yamnaya ancestry to come from CHG and the remaining 46% to come from ANE.
  2. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time [see below graphic]).
  3. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
  4. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
  5. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.
A 10-leaf model based on combining the models in Fig. S16 and Fig. S19 and re-estimating the model parameters.

On the expansion of domestication

CHG is not found in Botai, no gene flow from Yamna is found in its samples, and they are more related to East Asians, while Yamna is related to West Eurasians:

The lack of evidence of admixture between Botai horse herders and western steppe pastoralists is consistent with these latter migrating through the central steppe but not settling until they reached the Altai to the east (4). More significantly, this lack of admixture suggests that horses were domesticated by hunter-gatherers not previously familiar with farming, as were the cases for dogs (38) and reindeer (39). Domestication of the horse thus may best parallel that of the reindeer, a food animal that can be milked and ridden, which has been proposed to be domesticated by hunters via the “prey path” (40); indeed anthropologists note similarities in cosmological beliefs between hunters and reindeer herders (41). In contrast, most animal domestications were achieved by settled agriculturalists (5).

NOTE. I am not sure, but they seem to hint that there were separate events of horse domestication and horse-riding technique by the Botai and Yamna populations due to their lack of genetic contribution from the latter to the former. I guess they did not take into account farming spreading to the steppe without genetic contribution beyond the Dnieper… In fact, the superiority in horse-riding shown by the expanding Yamna peoples – as they state – should also serve to suggest from where the original technique expanded.

Indo-Iranian migrations

On the expansion of Yamna, and the different expansion of Steppe MLBA (with Indo-Iranian speakers) into Asia, further supporting Narasimhan et al. (2018), they have this to say:

However, direct influence of Yamnaya or related cultures of that period is not visible in the archaeological record, except perhaps for a single burial mound in Sarazm in present-day Tajikistan of contested age (44, 45). Additionally, linguistic reconstruction of proto-culture coupled with the archaeological chronology evidences a Late (-2300-1200 BCE) rather than Early Bronze Age (-3000-2500 BCE) arrival of the Indo-Iranian languages into South Asia (16, 45, 46). Thus, debate persists as to how and when Western Eurasian genetic signatures and IE languages reached South Asia.

Samples from the Namazga region (current Turkmenistan) from the Iron Age show an obvious influence from steppe MLBA (ca. 2300-1200 BC), and not steppe EBA (i.e. Yamna), population, in contrast with samples from the Chalcolithic (ca. 3300 BC), which don’t show this influence. This helps distinguish prior contacts with Iran Neolithic from the actual steppe population that expanded Indo-Iranian into Asia.

Very interesting therefore the Namazga CA sample (ca. 855 BC), of R1a-Z93 subclade, showing the sign of immigrant Indo-Aryans in the region. For more on this we will need an evaluation in common with the corrected data from Narasimhan et al. (2018), and all, including de Barros (Nature 2018), in combination with statistical methods to ascertain differences between early Indo-Aryans and Iranians.

A summary of the four qpAdm models fitted for South Asian populations. For each modern South Asian population. we fit different models with qpAdm to explain their ancestry composition using ancient groups and present the f irst model that we could not reject in the following priority order: 1. Namazga_CA + Onge, 2. Namazga_CA + Onge + Late Bronze Age Steppe, 3. Namazga_CA + Onge + Xiongnu_lA (East Asian proxy). and 4. Turkmenistan_lA + Xiongnu_lA. Xiongnu_lA were used here to represent East Asian ancestry. We observe that while South Asian Dravidian speakers can be modeled as a mixture of Onge and Namazga_CA. an additional source related to Late Bronze Age steppe groups is required for IE speakers. In Tibeto-Burman and Austro-Asiatic speakers. an East Asian rather than a Steppe_MLBA source is required.

Siberian peoples and N1c lineages

We have already seen how the paper on Eurasian steppe samples tries to assign Uralic to Neolithic peoples east of the Urals. The association with Okunevo is unlikely, since most are of haplogroup Q1a2, but they seem to suggest (combining both papers) that they accompanied N lineages from Siberian hunter-gatherers (present e.g. in Botai or Shamanka II, during the Early Neolithic), and formed part of (or suffered from) different demic diffusion waves:

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

NOTE. Also interesting to see no R1a in Baikal hunter-gatherers after ca. 3500 BC, and a prevalence of N lineages as supported in a previous paper on the Kitoi culture, which some had questioned in the past.

In fact, the only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, apparently before the expansion of Q1a2a lineages during the EBA period. While this sample may be related to those expanded later in Finno-Ugric territory (although it may only be related to those expanded much later with Yakuts), other samples are not clearly from those found widely distributed among North-East Europeans only after the Iron Age, or – as in the case of Shamanka II (N1c2), they are clearly not of the same haplogroup.

Geographical location of ancient samples belonging to major clade N of the Y-chromosome.


It is great to see the paper and the supplementary material deal with Y-DNA haplogroups and their relevance for migrations with such detail. Especially because this paper comes from the same Copenhagen-based research group that originally associated ancestry with language, creating thus today’s mess based on steppe ancestry.

Regarding Y-DNA data, once again almost 100% of samples from late Khvalynsk/Yamna and derived cultures (like Afanasevo and Bell Beaker) are R1b-L23, no single R1a-M417 lineage found, and few expected by now, if any, within Late Proto-Indo-European territory.

While they claim to take Y-DNA into account to assess migrations – as they do for example with Asian cultures – , their previous model of a Yamna “R1a-R1b community” remains oddly unchanged, and they even insist on it in the supplementary materials, as they do in their parallel Nature paper.

They have also expressly mitigated the use of ancestral components to assess populations, citing the ancestral and modern association of CHG ancestry with different ethnolinguistic groups in the Middle East, to dismiss any rushed conclusions on the origin of Anatolian, and consequently of Middle PIE. And they did so evidently because it did not fit the anthropological data that is mainstream today (supporting a Balkan route), which is the right thing to do.

However, they have apparently not stopped to reconsider the links of CWC and steppe ancestry to ancestral and modern Uralic peoples – although they expressly mention the strong connection with modern Karelians in the supplementary material.

Also, after Narasimhan et al. (2018), there is a clear genetic continuity with East Yamna (in ancestry as in R1b-L23 subclades), so their interpretations about Indo-Iranian in this paper and especially de Barros (Nature 2018) – regarding the Abashevo -> Sintashta/Srunba/Andronovo connection – come, again, too late.


Eurasian steppe dominated by Iranian peoples, Indo-Iranian expanded from East Yamna


The expected study of Eurasian samples is out (behind paywall): 137 ancient human genomes from across the Eurasian steppes, by de Barros Damgaard et al. Nature (2018).

Dicussion (emphasis mine):

Our findings fit well with current insights from the historical linguistics of this region (Supplementary Information section 2). The steppes were probably largely Iranian-speaking in the first and second millennia bc. This is supported by the split of the Indo-Iranian linguistic branch into Iranian and Indian33, the distribution of the Iranian languages, and the preservation of Old Iranian loanwords in Tocharian34. The wide distribution of the Turkic languages from Northwest China, Mongolia and Siberia in the east to Turkey and Bulgaria in the west implies large-scale migrations out of the homeland in Mongolia since about 2,000 years ago35. The diversification within the Turkic languages suggests that several waves of migration occurred36 and, on the basis of the effect of local languages, gradual assimilation to local populations had previously been assumed37. The East Asian migration starting with the Xiongnu accords well with the hypothesis that early Turkic was the major language of Xiongnu groups38. Further migrations of East Asians westwards find a good linguistic correlate in the influence of Mongolian on Turkic and Iranian in the last millennium39. As such, the genomic history of the Eurasian steppes is the story of a gradual transition from Bronze Age pastoralists of West Eurasian ancestry towards mounted warriors of increased East Asian ancestry—a process that continued well into historical times.

This paper will need a careful reading – better in combination with Narasimhan et al. (2018), when their tables are corrected – , to assess the actual ‘Iranian’ nature of the peoples studied. Their wide and long-term dominion over the steppe could also potentially explain some early samples from Hajji Firuz with steppe ancestry.

Principal component analyses. The principal components 1 and 2 were plotted for the ancient data analysed with the present-day data (no projection bias) using 502 individuals at 242,406 autosomal SNP positions. Dimension 1 explains 3% of the variance and represents a gradient stretching from Europe to East Asia. Dimension 2 explains 0.6% of the variance, and is a gradient mainly represented by ancient DNA starting from a ‘basal-rich’ cluster of Natufian hunter-gatherers and ending with EHGs. BA, Bronze Age; EMBA, Early-to-Middle Bronze Age; SHG, Scandinavian hunter-gatherers.

For the moment, at first sight, it seems that, in terms of Y-DNA lineages:

  • R1b-Z93 (especially Z2124 subclades) dominate the steppes in the studied periods.
  • R1b-P312 is found in Hallstatt ca. 810 BC, which is compatible with its role in the Celtic expansion.
  • R1b-U106 is found in a West Germanic chieftain in Poprad (Slovakia) ca. 400 AD, during the Migration Period, hence supporting once again the expansion of Germanic tribes especially with R1b-U106 lineages.
  • A new sample of N1c-L392 (L1025) lineage dated ca. 400 AD, now from Lithuania, points again to a quite late expansion of this lineage to the region, believed to have hosted Uralic speakers for more than 2,000 years before this.
  • A sample of haplogroup R1a-Z282 (Z92) dated ca. 1300 AD in the Golden Horde is probably not quite revealing, not even for the East Slavic expansion.
  • Also, interestingly, some R1b(xM269) lineages seem to be associated with Turkic expansions from the eastern steppe dated around 500 AD, which probably points to a wide Eurasian distribution of early R1b subclades in the Mesolithic.

NOTE. I have referenced not just the reported subclades from the paper, but also (and mainly) further Y-SNP calls studied by Open Genomes. See the spreadsheet here.

Interesting also to read in the supplementary materials the following, by Michaël Peyrot (emphasis mine):

1. Early Indo-Europeans on the steppe: Tocharians and Indo-Iranians

The Indo-European language family is spread over Eurasia and comprises such branches and languages as Greek, Latin, Germanic, Celtic, Sanskrit etc. The branches relevant for the Eurasian steppe are Indo-Aryan (= Indian) and Iranian, which together form the Indo-Iranian branch, and the extinct Tocharian branch. All Indo-European languages derive from a postulated protolanguage termed Proto-Indo-European. This language must have been spoken ca 4500–3500 BCE in the steppe of Eastern Europe21. The Tocharian languages were spoken in the Tarim Basin in present-day Northwest China, as shown by manuscripts from ca 500–1000 CE. The Indo-Aryan branch consists of Sanskrit and several languages of the Indian subcontinent, including Hindi. The Iranian branch is spread today from Kurdish in the west, through a.o. Persian and Pashto, to minority languages in western China, but was in the 2nd and 1st millennia BCE widespread also on the Eurasian steppe. Since despite their location Tocharian and Indo-Iranian show no closer relationship within Indo-European, the early Tocharians may have moved east before the Indo-Iranians. They are probably to be identified with the Afanasievo Culture of South Siberia (ca 2900 – 2500 BCE) and have possibly entered the Tarim Basin ca 2000 BCE103.

The Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) towards the east. The rise of the Indo-Iranian language, of which no direct records exist, must be connected with the Abashevo / Sintashta Culture (ca 2100 – 1800 BCE) in the southern Urals and the subsequent rise and spread of Andronovo-related Culture (1700 – 1500 BCE). The most important linguistic evidence of the Indo-Iranian phase is formed by borrowings into Finno-Ugric languages104–106. Kuz’mina (2001) identifies the Finno-Ugrians with the Andronoid cultures in the pre-taiga zone east of the Urals107. Since some of the oldest words borrowed into Finno-Ugric are only found in Indo-Aryan, Indo-Aryan and Iranian apparently had already begun to diverge by the time of these contacts, and when both groups moved east, the Iranians followed the Indo-Aryans108. Being pushed by the expanding Iranians, the Indo-Aryans then moved south, one group surfacing in equestrian terminology of the Anatolian Mitanni kingdom, and the main group entering the Indian subcontinent from the northwest.

Summary map. Depictions of the five main migratory events associated with the genomic history of the steppe pastoralists from 3000 bc to the present. a, Depiction of Early Bronze Age migrations related to the expansion of Yamnaya and Afanasievo culture. b, Depiction of Late Bronze Age migrations related to the Sintashta and Andronovo horizons. c, Depiction of Iron Age migrations and sources of admixture. d, Depiction of Hun-period migrations and sources of admixture. e, Depiction of Medieval migrations across the steppes.

2. Andronovo Culture: Early Steppe Iranian

Initially, the Andronovo Culture may have encompassed speakers of Iranian as well as Indo-Aryan, but its large expansion over the Eurasian steppe is most probably to be interpreted as the spread of Iranians. Unfortunately, there is no direct linguistic evidence to prove to what extent the steppe was indeed Iranian speaking in the 2nd millennium BCE. An important piece of indirect evidence is formed by an archaic stratum of Iranian loanwords in Tocharian34,109. Since Tocharian was spoken beyond the eastern end of the steppe, this suggests that speakers of Iranian spread at least that far. In the west of the Tarim Basin the Iranian languages Khotanese and Tumshuqese were spoken. However, the Tocharian B word etswe ‘mule’, borrowed from Iranian *atswa- ‘horse’, cannot derive from these languages, since Khotanese has aśśa- ‘horse’ with śś instead of tsw. The archaic Iranian stratum in Tocharian is therefore rather to be connected with the presence of Andronovo people to the north and possibly to the east of the Tarim Basin from the middle of the 2nd millennium BCE onwards110.

Since Kristiansen and Allentoft sign the paper (and Peyrot is a colleague of Kroonen), it seems that they needed to expressly respond to the growing criticism about their recent Indo-European – Corded Ware Theory. That’s nice.

They are obviously trying to reject the Corded Ware – Uralic links that are on the rise lately among Uralicists, now that Comb Ware is not a suitable candidate for the expansion of the language family.

IECWT-proponents are apparently not prepared to let it go quietly, and instead of challenging the traditional Neolithic Uralic homeland in Eastern Europe with a recent paper on the subject, they selected an older one which partially fit, from Kuz’mina (2001), now shifting the Uralic homeland to the east of the Urals (when Kuz’mina asserts it was south of the Urals).

Different authors comment later in this same paper about East Uralic languages spreading quite late, so even their text is not consistent among collaborating authors.

Also interesting is the need to resort to the questionable argument of early Indo-Aryan loans – which may have evidently been Indo-Iranian instead, since there is no way to prove a difference between both stages in early Uralic borrowings from ca. 4,500-3,500 years ago…

EDIT (10/5/2018) The linguistic supplement of the Science paper deals with different Proto-Indo-Iranian stages in Uralic loans, so on the linguistic side at least this influence is clear to all involved.

A rejection of such proposals of a late, eastern homeland can be found in many recent writings of Finnic scholars; see e.g. my references to Parpola (2017), Kallio (2017), or Nordqvist (2018).

NOTE. I don’t mind repeating it again: Uralic is one possibility (the most likely one) for the substrate language that Corded Ware migrants spread, but it could have been e.g. another Middle PIE dialect, similar to Proto-Anatolian (after the expansion of Suvorovo-Novodanilovka chiefs). I expressly stated this in the Corded Ware substrate hypothesis, since the first edition. What was clear since 2015, and should be clear to anyone now, is that Corded Ware did not spread Late PIE languages to Europe, and that some east CWC groups only spread languages to Asia after admixing with East Yamna. If they did not spread Uralic, then it was a language or group of languages phonetically similar, which has not survived to this day.

Their description of Yamna migrations is already outdated after Olalde et al. & Mathieson et al. (2018), and Narasimhan et al. (2018), so they will need to update their model (yet again) for future papers. As I said before, Anthony seems to be one step behind the current genetic data, and the IECWT seems to be one step behind Anthony in their interpretations.

At least we won’t have the Yamna -> Corded Ware -> BBC nonsense anymore, and they expressly stated that LPIE is to be associated with Yamna, and in particular the “Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) to the East” (which will evidently show an East Yamna / Poltavka society of R1b-L23 subclades), so that earlier Eneolithic cultures have to be excluded, and Balto-Slavic identification with East Europe is also out of the way.


The origin of non-canonical case marking of subjects in Early Proto-Indo-European


Interesting recent paper The Origin of Non-Canonical Case Marking of Subjects in Proto-Indo-European: Accusative, Ergative, or Semantic Alignment (2018), by Roland Pooth, Peter Alexander Kerkhof, Leonid Kulikov, and Jóhanna Barðdal, (Ghent University), ERC-funded Project: EVALISA (The Evolution of Case, Alignment and Argument Structure in Indo-European).


For a long time one of the most bewildering conundrums of Indo-European linguistics has been the issue of how to reconstruct the alignment system of this ancient language state, given the lack of distinction between S and O marking in the Proto-Indo-European neuters nouns and the problem of the Hittite ergative. An additional complication stems from the existence of argument structure constructions where the subject(-like) argument is case marked in a different case than the nominative, like the accusative or the dative. Our aim with the present article is to fill two needs with one deed and offer a unified account of this century-long bone of contention. In contribution to the ongoing discussion in the field, we claim that a semantic alignment system, in the terms of Donohue & Wichmann (2008), might not only fit better with the morphological data that are currently reconstructed for the ancestral language, but also with the existence of non-canonically case-marked subjects in general (Barðdal et al. 2013; Danesi, Johnson & Barðdal 2017).

Conclusions (emphasis mine):

For the past decades, the general assumption in the field of Indo-European syntax has been that the alignment of Proto-Indo-European must have been ergative-absolutive, rather than nominative-accusative. However, a reconstruction of the case morphology of Proto-Indo-European corroborates neither of the two analyses. Instead, it suggests a ‘Fluid-S’ system where case marking was semantically driven and the case marking of one-participant clauses was motivated by semantic factors such as whether the referent had an agent role or not. We have laid out the morphological details of the reconstructed semantic alignment stage of Proto-Indo-European where an antipassive-like construction played a key role for the development from semantic alignment to the attested accusative system found in the Indo-European daughter languages today. This antipassive-like construction was reanalyzed as a transitive construction and the earlier agentive *-s marker was generalized into a subject marker, irrespective of the semantics of the subject referent, yielding an accusative system. As a part of this general process we have identified the Early PIE protoconstructions that have developed into the attested accusative and dative subject constructions, respectively. The first one involves the older *-m allative-marking of nonneuters which also developed into the accusative object marker. Through the construction with the *-m or the zero-marking on subjects of one-participant clauses with proto-middle and proto-active marking on the verb, respectively, the accusative subject construction emerged. Out of experiencer constructions involving the old locative ending *-i, one subconstruction of the dative subject construction arose.


To conclude, we have presented an attempt to elucidate how non-canonical case marking of subjects are in line within the most recent discussions on PIE alignment. Our aim has been to show how a Fluid-S or semantic alignment model for the Proto-Indo-European ancestor language may aptly explain the presence of archaic instances of non-canonical subject marking in the ancient IE languages. Although some instances of non-canonical subject marking may be relatively young, as is argued for Latin by Matasović (2011, 2013) and for Hittite by Hoffner & Melchert (2009), this does not necessarily entail that noncanonically case-marked subject constructions should be considered an innovation which affected the daughter languages separately. Instead, we have argued that non-canonical case marking of subjects is a relic of the semantically-marked experiencer and undergoer role. Later, the separate daughter languages may have added new predicate-specific oblique subject constructions to these already existing schematic patterns. We therefore believe it worthwhile to reevaluate the evidence of Latin and Hittite with regard to noncanonically case-marked subjects, since fossils of the old PIE intransitive construction may yet be found there. Also, the exact relationship of non-canonically case-marked subjects to PIE labile verbs and the proto-middle voice category (Pooth 2014), should be explored in full. These questions deserve further research and we will return to these in future publications.

Interesting not only for its intrinsic value, but also because an ancestral common trend may have been found to be more likely than multiple independent dialectal innovations, as we propose for the process of laryngeal loss.

See also: