Baltic Finns in the Bronze Age, of hg. R1a-Z283 and Corded Ware ancestry

estonian-bronze-age-dna

Open access The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East, by Saag et al. Current Biology (2019).

Interesting excerpts:

In this study, we present new genomic data from Estonian Late Bronze Age stone-cist graves (1200–400 BC) (EstBA) and Pre-Roman Iron Age tarand cemeteries (800/500 BC–50 AD) (EstIA). The cultural background of stone-cist graves indicates strong connections both to the west and the east [20, 21]. The Iron Age (IA) tarands have been proposed to mirror “houses of the dead” found among Uralic peoples of the Volga-Kama region [22].

(…) The 33 individuals included 15 from EstBA, 6 from EstIA, 5 from Pre-Roman to Roman Iron Age Ingria (500 BC–450 AD) (IngIA), and 7 from Middle Age Estonia (1200–1600 AD) (EstMA) and yielded endogenous DNA ∼4%–88%, average genomic coverages ∼0.017–0.734×, and contamination estimates <4% (Table S1). We analyzed the data in the context of modern and other ancient individuals, including from Neolithic Estonia [13].

estonian-y-dna-bronze-iron-age
Archaeological Information, Genetic Sex, mtDNA and Y Chromosome Haplogroups, and Average Coverage of the Individuals of This Study. Modified from the paper to mark distinct Y-DNA haplogroups in the LBA and IA.

We identified chrY hgs for 30 male individuals (Tables 1 and S2; STAR Methods). All 16 successfully haplogrouped EstBA males belonged to hg R1a, showing no change from the CWC period, when this was also the only chrY lineage detected in the Eastern Baltic [11, 13, 30, 31]. Three EstIA and two IngIA individuals also belonged to hg R1a, but three EstIA males belonged to hg N3a, the earliest so far observed in the Eastern Baltic. Three EstMA individuals belonged to hg N3a, two to hg R1a, and one to hg J2b. ChrY lineages found in the Baltic Sea region before the CWC belong to hgs I, R1b, R1a5, and Q [10, 11, 12, 13, 17, 32]. Thus, it appears that these lineages were substantially replaced in the Eastern Baltic by hg R1a [10, 11, 12, 13], most likely through steppe migrations from the east [30, 31]. (…) Our results enable us to conclude that, although the expansion time for R1a1 and N3a3′5 in Eastern Europe is similar [25], hg N3a likely reached Estonia or at least became comparably frequent to modern Estonia [1] only during the BA-IA transition.

A clear shift toward West Eurasian hunter-gatherers is visible between European LN and BA (including Baltic CWC) and EstBA individuals, the latter clustering together with Latvian and Lithuanian BA individuals [11]. EstIA, IngIA, and EstMA individuals project between BA individuals and modern Estonians, partially overlapping with both.

(…) EstBA individuals are clearly distinguishable from Estonian CWC individuals as the former have more of the blue component most frequent in WHGs and less of the brown and yellow components maximized in Caucasus hunter-gatherers and modern Khanty, respectively. The individuals of EstBA, EstIA, IngIA, EstMA, and modern Estonia are quite similar to each other on average, indicating that the relatively high proportion of WHG ancestry in modern Eastern Baltic populations compared to other present-day Europeans [15] traces back to the BA.

estonian-pca-published
Detail of the PCA, modified from the paper to label populations. Estonian Bronze Age and Iron Age samples cluster close to Early Corded Ware from the Baltic.. Principal-component analysis results of modern West Eurasians with ancient individuals projected onto the first two components (PC1 and PC2). BA, Bronze Age; EF, early farmers; HG, hunter-gatherers; IA, Iron Age; IMA, Iron/Middle Ages; LN, Late Neolithic; LNBA, Late Neolithic/Bronze Age; MA, Middle Ages

When comparing Estonian CWC and EstBA using autosomal outgroup f3 and Patterson’s D statistics (Table S3), the latter is more similar to other Baltic BA populations, to Baltic IA and Middle Age (MA) populations, and also to populations similar to WHGs and Scandinavian hunter-gatherers (SHGs), but not to Estonian CCC (Figures 2A and S2A; Data S1). The increase in WHG or SHG ancestry could be connected to western influences seen in material culture [20, 21] and facilitated by a decline in local population after the CCC-CWC period [20]. A slight trend of bigger similarity of Estonian CWC to forest or steppe zone populations and of EstBA to European early farmer populations can also be seen.

(…) When comparing to modern populations, Estonian CWC is slightly more similar to Caucasus individuals but EstBA to Baltic populations and Finnic speakers (Figure 2B; Data S1). Outgroup f3 and D statistics do not reveal apparent differences when comparing EstBA to EstIA, EstIA to IngIA, and EstIA to EstMA (Data S1).

estonian-ba-ia-ancestry
qpAdm results. Error bars indicate one SE. Central MN, Central European Middle Neolithic; EstBA, Estonian Bronze Age; EstIA, Estonian Iron Age; IngIA, Ingrian Iron Age; EstMA, Estonian Middle Ages; WHG, western hunter-gatherers.

These results highlight how uniparental and autosomal data can lead to different demographic inferences—the genetic change between CWC and BA not seen in uniparental lineages is clear in autosomal data and the appearance of chrY hg N in the IA is not matched by a clear shift in autosomal profiles.

EstBA individuals have no Nganasan-related ancestry and EstIA, IngIA, and EstMA individuals on average have 2% or 4% (Figure 3; Data S1). The differentiation remains when using BA or IA Fennoscandian populations [26] instead of Nganasans (Data S1). Notably, the proportion of Nganasan-related ancestry varies between 0% and 12% among sampled EstIA, IngIA, and EstMA individuals (Data S1), which may suggest its relatively recent admixture into the target population. Moreover, two individuals from Kunda (0LS10 and V10) have the highest proportions of Nganasan ancestry among EstIA (6% and 8%), one of them has chrY hg N3a, and isotopic analysis suggests neither individual being born in Kunda [34].

About these two males from Tarand-graves, ‘foreign’ to Kunda:

0LS10: Male from tarand III (burial 9; TÜ 1325: L777), age 17–25 years [34]. He had a fragment of a sheep/goat bone and ceramics as grave goods. This burial has two radiocarbon dates: 2430 ± 35 BP (Poz-10801; 760–400 cal BC) and 2530 ± 41 BP (UBA-26114; 800–530 cal BC) [34]. According to the isotopic analysis, the person was not born in the vicinity of Kunda; his place of birth is still unknown (but south-western Finland and Sweden are excluded) [34]. Sampled tooth r P1.

V10: Male from tarand XI (burial 24; TÜ 1325: L1925), age 25–35 years [34], date 2484 ± 40 BP (UBA-26115; 790–430 cal BC) [34]. He had a few potsherds near the skull. Likewise, this person was not locally born [34]. Sampled tooth l P1.

estonia-bronze-iron-age-steppe-siberian
Autosomal Analyses’ Results for Gyvakarai1 as the closest available Corded Ware source for Balto-Finnic populations.

The paper shows thus:

  • Major continuity of ancestry from Corded Ware to modern Estonians, with only slight changes in different periods. In fact, one of the best fits for the Late Bronze Age ancestry is Gyvakarai1, one of the Corded Ware “outliers” described as “closer to Yamna”, which I already said may be closer to Sredni Stog/EHG populations instead. Another interesting take is that the change from Bronze Age to Iron Age corresponds to an increase in Baltic Corded Ware-related ancestry, rather than being driven by Siberian ancestry.
  • pca-mittnik-gyvakarai
    File modified by me from Mittnik et al. (2018) to include the approximate position of the most common ancestral components, and an identification of potential outliers. Zoomed-in version of the European Late Neolithic and Bronze Age samples. “Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). From Mittnik et al. (2018).
  • A Volosovo-related migration of hg. N1c with Netted Ware into the area seems to be discarded, based on the full replacement of paternal lines and continuity of R1a-Z283. It is only during the Tarand-grave period when a system of chiefdoms (spread from Ananyino/Akozino) brings haplogroup N1c to the Gulf of Finland. During the Iron Age, the proportion of paternal lineages is still clearly in favour of R1a (50% in the coast, 100% in Ostrobothnia), which indicates a gradual replacement led by elites, likely because of the incorporation of Akozino warrior-traders spreading all over the Baltic, bringing the described shared Mordvinic traits in Fennic.
  • finno-ugric-haplogroup-n
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).
  • The arrival of Akozino warrior-traders (bringing N1c and R1a lineages) was probably linked to this minimal “Nganasan-like” ancestry of some samples in the transition to the Iron Age. This arrival is supported by samples 0LS10 (the earliest hg. N1c) and V10 (of hg. R1a), both dated to ca. 800-400 BC, with V10 showing the highest “Nganasan-like” ancestry with 4.8%, both of them neighbouring samples showing 0%. This variable admixture among local and foreign paternal lineages might support the described social system of family alliances with intermarriages. In fact, a medieval sample, 0LS03_1 (hg. R1a) also shows a recent “Nganasan-like” ancestry, which probably points to the integration of different Arctic-related ancestry components among Modern Estonians, in this case related to Finnish expansions and thus integration of Levänluhta-related ancestry, as per the supplementary data.
  • NOTE. Such minimal proportions of “Nganasan-like” ancestry evidence the process of admixture of Volga Finns in Akozino territory through their close interactions with Permians of Ananyino, who in turn acquired this Palaeo-Arctic admixture most likely during the expansion of the linguistic community to hunter-gatherer territories, to the north of the Cis-Urals. This process of stepped infiltration and expansion without language change is not dissimilar to the one seen among Indo-Iranians and Balto-Slavs of hg. R1b, or Vasconic speakers of hg. I2a, although in the case of Baltic Finns of hg. R1a the process of infiltration and expansion of hg. N1c is much less dramatic, with no radical replacement anywhere before the huge bottlenecks observable in Finns.

  • The expansion of haplogroup N1c among Finnic populations, as we are going to see in samples from the Middle Ages such as Luistari, is the consequence of late founder effects after huge bottlenecks expected based on the analysis of modern populations. The expansion of N1c-VL29 is different in origin from that of N1c-Z1936 among Samic (later integrated into Finnish populations), most likely from the east and originally associated with Lovozero Ware.
haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders. Map from Ilumäe et al. (2016).

In spite of all this, the conclusion of the paper is (surprise!) that Siberian ancestry and hg. N heralded the arrival of Finnic to the Gulf of Finland in the Iron Age… However, this conclusion is supposedly* supported, not by their previous papers, but by a recent phylogenetic study by Honkola et al. (2013), which doesn’t actually argue for such a late ‘arrival’: it argues for the split of Balto-Finnic around 1500 BC.

NOTE. I say ‘supposedly’ because Kristiina Tambets, for example, has been following the link of Uralic with haplogroup N since the 2000s, so this is not some conclusion they just happened to misread from some random paper they Googled. In those initial assessments, she argued that the “ancient homeland” of the Tat C mutation suggested that Finno-Ugrians were in Fennoscandia before Indo-Europeans. Apparently, since haplogroup N appears later and from the east, it is now more important to follow this haplogroup than what is established in archaeology and linguistics.

Even in the referred paper, this split is considered an in situ development, since the phylogenetic study takes the information – among others – 1) from Parpola and Carpelan, who consider Netted Ware, a culture derived from Fatyanovo/Abashevo and Volosovo, as the culprit of the Finno-Ugric expansion; and 2) from Kallio (2006), who clearly states that Proto-Balto-Finnic (like Proto-Finno-Samic) was spoken around the Gulf of Finland during the Bronze Age. Both of them set the terminus ante quem of the language presence in the Baltic ca. 1900 BC.

Anyways, as a consequence of geneticists keeping these untenable pre-ancient DNA haplogroup-based arguments today, I expect to see this “Finnic” language expansion also described for the Western Baltic, Scandinavia or northern Europe, when this same proportion of hg. N1c and “Nganasan” ancestry is observed in Iron Age samples around the Baltic Sea. The nativist trends that this domination of “Finns” all over Northern Europe 2,500 years ago will create will be even more fun to read than the current ones…

EDIT (10 May 2019) How I see the reaction of many to ancient DNA, in keeping their old theories:

Related

Uralic speakers formed clines of Corded Ware ancestry with WHG:ANE populations

steppe-forest-tundra-biomes-uralic

The preprint by Jeong et al. (2018) has been published: The genetic history of admixture across inner Eurasia Nature Ecol. Evol. (2019).

Interesting excerpts, referring mainly to Uralic peoples (emphasis mine):

A model-based clustering analysis using ADMIXTURE shows a similar pattern (Fig. 2b and Supplementary Fig. 3). Overall, the proportions of ancestry components associated with Eastern or Western Eurasians are well correlated with longitude in inner Eurasians (Fig. 3). Notable outliers include known historical migrants such as Kalmyks, Nogais and Dungans. The Uralic- and Yeniseian-speaking populations, as well as Russians from multiple locations, derive most of their Eastern Eurasian ancestry from a component most enriched in Nganasans, while Turkic/Mongolic speakers have this component together with another component most enriched in populations from the Russian Far East, such as Ulchi and Nivkh (Supplementary Fig. 3). Turkic/Mongolic speakers comprising the bottom-most cline have a distinct Western Eurasian ancestry profile: they have a high proportion of a component most enriched in Mesolithic Caucasus hunter-gatherers and Neolithic Iranians and frequently harbour another component enriched in present-day South Asians (Supplementary Fig. 4). Based on the PCA and ADMIXTURE results, we heuristically assigned inner Eurasians to three clines: the ‘forest-tundra’ cline includes Russians and all Uralic and Yeniseian speakers; the ‘steppe-forest’ cline includes Turkic- and Mongolic-speaking populations from the Volga and Altai–Sayan regions and Southern Siberia; and the ‘southern steppe’ cline includes the rest of the populations.

eurasian-clines-uralic-altaic
The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the northsouth cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

For the forest-tundra populations, the Nganasan + Srubnaya model is adequate only for the two Volga region populations, Udmurts and Besermyans (Fig. 5 and Supplementary Table 8).

For the other populations west of the Urals, six from the northeastern corner of Europe are modelled with additional Mesolithic Western European hunter-gatherer (WHG) contribution (8.2–11.4%; Supplementary Table 8), while the rest need both WHG and early Neolithic European farmers (LBK_EN; Supplementary Table 2). Nganasan-related ancestry substantially contributes to their gene pools and cannot be removed from the model without a significant decrease in the model fit (4.1–29.0% contribution; χ2 P ≤ 1.68 × 10−5; Supplementary Table 8).

west-urals-finno-ugrians-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the 13 populations west of the Urals, we present a four-way admixture model, Nganasan+Srubnaya+WHG+LBK_EN, or its minimal adequate subset. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

NOTE. It doesn’t seem like Hungarians can be easily modelled with Nganasan ancestry, though…

For the 4 populations east of the Urals (Enets, Selkups, Kets and Mansi), for which the above models are not adequate, Nganasan + Srubnaya + AG3 provides a good fit (χ2 P ≥ 0.018; Fig. 5 and Supplementary Table 8). Using early Bronze Age populations from the Baikal Lake region (‘Baikal_EBA’; Supplementary Table 2) as a reference instead of Nganasan, the two-way model of Baikal_EBA + Srubnaya provides a reasonable fit (χ2 P ≥ 0.016; Supplementary Table 8) and the three-way model of Baikal_EBA + Srubnaya + AG3 is adequate but with negative AG3 contribution for Enets and Mansi (χ2 P ≥ 0.460; Supplementary Table 8).

east-urals-ugric-samoyedic-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the four populations east of the Urals, we present three admixture models: Baikal_EBA+Srubnaya, Baikal_EBA+Srubnaya+AG3 and Nganasan+Srubnaya+AG3. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Bronze/Iron Age populations from Southern Siberia also show a similar ancestry composition with high ANE affinity (Supplementary Table 9). The additional ANE contribution beyond the Nganasan + Srubnaya model suggests a legacy from ANE-ancestry-rich clines before the Late Bronze Age.

bronze-age-iron-age-karasuk-mezhovska-tagar-qpadm
Supplementary Table 9. QpAdm-based admixture modeling of Bronze and Iron Age populations of southern Siberia. For ancieint individuals associated with Karasuk and Tagar cultures, Nganasan+Srubnaya model is insufficient. For all five groups, adding AG3 as the third ancestry or substituting Nganasan with Baikal_EBA with higher ANE affinity provides an adequate model. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Models with p-value ≥ 0.05 are highlighted in bold face. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Lara M. Cassidy comments the results of the study in A steppe in the right direction (you can read it here):

Even among the earliest available inner Eurasian genomes, east–west connectivity is evident. These, too, form a longitudinal cline, characterized by the easterly increase of a distinct ancestry, labelled Ancient North Eurasian (ANE), lowest in western European hunter-gatherers (WHG) and highest in Palaeolithic Siberians from the Baikal region. Flow-through from this ANE cline is seen in steppe populations until at least the Bronze Age, including the world’s earliest known horse herders — the Botai. However, this is eroded over time by migration from west and east, following agricultural adoption on the continental peripheries (Fig. 1b,c).

Strikingly, Jeong et al. model the modern upper steppe cline as a simple two-way mixture between western Late Bronze Age herders and Northeast Asians (Fig. 1c), with no detectable residue from the older ANE cline. They propose modern steppe peoples were established mainly through migrations post-dating the Bronze Age, a sequence for which has been recently outlined using ancient genomes. In contrast, they confirm a substantial ANE legacy in modern Siberians of the northernmost cline, a pattern mirrored in excesses of WHG ancestry west of the Urals (Fig. 1b). This marks the inhospitable biome as a reservoir for older lineages, an indication that longstanding barriers to latitudinal movement may indeed be at work, reducing the penetrance of gene flows further south along the steppe.

eurasian-clines-uralic-turkic-mongol-altaic
The genomic formation of inner Eurasians. b–d, Depiction of the three main clines of ancestry identified among Inner Eurasians. Sources of admixture for each cline are represented using proxy ancient populations, both sampled and hypothesised, based on the study’s modelling results. The major eastern and western ancestries used to model each cline are shown in bold; the peripheral admixtures that gave rise to these are also shown. Additional contributions to subsections of each cline are marked with dashed lines. b, The northernmost cline, illustrating the legacy of WHG and ANE-related populations. c,d, The upper (c) and lower (d) steppe clines are shown, both of which have substantial eastern contributions related to modern Tungusic speakers. The authors propose these populations are themselves the result of an admixture between groups related to the Nganasan, whose ancestors potentially occupied a wider range, and hunter-gatherers (HGs) from the Amur River Basin. While the upper steppe cline in c can be described as a mixture between this eastern ancestry and western steppe herders, the current model for the southern steppe cline as shown in d is not adequate and is likely confounded by interactions with diverse bordering ancestries. Credit: Ecoregions 2017, Resolve https://ecoregions2017.appspot.com/

Given the findings as reported in the paper, I think it should be much easier to describe different subclines in the “northernmost cline” than in the much more recent “Turkic/Mongolic cline”, which is nevertheless subdivided in this paper in two clines. As an example, there are at least two obvious clines with “Nganasan-related meta-populations” among Uralians, which converge in a common Steppe MLBA (i.e. Corded Ware) ancestry – one with Palaeo-Laplandic peoples, and another one with different Palaeo-Siberian populations:

siberian-clines-uralic-altaic
PCA of ancient and modern Eurasian samples. Ancient Palaeo-Laplandic, Palaeosiberian, and Altai clines drawn, with modern populations labelled. See a version with higher resolution.

The inclusion of certain Eurasian groups (or lack thereof) in the PCA doesn’t help to distinguish these subclines visually, and I guess the tiny “Naganasan-related” ancestral components found in some western populations (e.g. the famous ~5% among Estonians) probably don’t lend themselves easily to further subdivisions. Notice, nevertheless, the different components of the Eastern Eurasian source populations among Finno-Ugrians:

uralic-admixture-qpadm
Characterization of the Western and Eastern Eurasian source ancestries in inner Eurasian populations. [Modified from the paper, includes only Uralic populations]. a, Admixture f3 values are compared for different Eastern Eurasian (Mixe, Nganasan and Ulchi; green) and Western Eurasian references (Srubnaya and Chalcolithic Iranians (Iran_ChL); red). For each target group, darker shades mark more negative f3 values. b, Weights of donor populations in two sources characterizing the main admixture signal (date 1 and PC1) in the GLOBETROTTER analysis. We merged 167 donor populations into 12 groups (top right). Target populations were split into five groups (from top to bottom): Aleuts; the forest-tundra cline populations; the steppe-forest cline populations; the southern steppe cline populations; and ‘others’.

Also remarkable is the lack of comparison of Uralic populations with other neighbouring ones, since the described Uralic-like ancestry of Russians was already known, and is most likely due to the recent acculturation of Uralic-speaking peoples in the cradle of Russians, right before their eastward expansions.

west-eurasian-east-eurasian-ancestry
Supplementary Fig. 4. ADMIXTURE results qualitatively support PCA-based grouping of inner Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”). Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”).

A comparison of Estonians and Finns with Balts, Scandinavians, and Eastern Europeans would have been more informative for the division of the different so-called “Nganasan-like meta-populations”, and to ascertain which one of these ancestral peoples along the ancient WHG:ANE cline could actually be connected (if at all) to the Cis-Urals.

Because, after all, based on linguistics and archaeology, geneticists are not supposed to be looking for populations from the North Asian Arctic region, for “Siberian ancestry”, or for haplogroup N1c – despite previous works by their peers – , but for the Bronze Age Volga-Kama region…

Related

Pre-Germanic and Pre-Balto-Finnic shared vocabulary from Pitted Ware seal hunters

corded-ware-pitted-ware

I said I would write a post about topo-hydronymy in Europe and Iberia based on the most recent research, but it seems we can still enjoy some more discussions about the famous Vasconic Beakers, by people longing for days of yore. I don’t want to spoil that fun with actual linguistic data (which I already summarized) so let’s review in the meantime one of the main Uralic-Indo-European interaction zones: Scandinavia.

Seal hunting

One of the many eye-catching interpretations – and one of the few interesting ones – that could be found in the relatively recent article Talking Neolithic: Linguistic and Archaeological Perspectives on How Indo-European Was Implemented in Southern Scandinavia, by Iversen & Kroonen AJA (2017) was this:

The borrowing of lexical items from hunter-gatherers into Germanic refers to the potential adoption of Proto-Germanic *selhaz “seal” (Old Norse selr, Old English seolh, Old High German selah) as well as Early Proto-Balto-Finnic *šülkeš “seal” (Finnish hylje, Estonian hüljes) from the marine-oriented Sub-Neolithic Pitted Ware culture.

kroonen-iversen
Modified from Kristiansen et al. (2017), with red circle around the hypothesized interaction of Germanic with hunter-gatherers. “Schematic representation of how different Indo-European branches have absorbed words (circles) from a lost Neolithic language or language group (dark fill) in the reconstructed European linguistic setting of the third millennium BC, possibly involving one or more hunter gatherer languages (light fill) (after Kroonen & Iversen 2017)”.

This is what Kroonen thought about this word in his Etymological Dictionary of Proto-Germanic (2006):

Gmc. *selha– m. ‘seal’ – ON selr m. ‘id.’, Far. selur m. ‘id.’, OSw. siæl m. ‘id.’, Sw. själ c. ‘id.’, OE seolh m. ‘id.’, E seal, OS selah m. ‘id.’, EDu. seel, seel-hont m. ‘id.’, Du. zee-hond c. ‘id.’, OHG selah m. ‘id.’, MHG sele m. ‘id.’ (GM).

A Germanic word with no certain IE etymology. The link with Lith. selė́ti ‘to crawl’ (Torp 1909: 436) is erroneous, as this verb corresponds to PGm. *stelan- (q.v.). The *h may nevertheless correspond to the PIE animal suffix *-ko-, for which see *elha{n)- ‘elk’ and *baruga- ‘boar’.

Focusing on this substrate etymon, coupled with archaeology and ancient DNA, in the recent SAA 84th Annual Meeting (Abstracts in PDF):

Kroonen, Guus (Leiden University) and Rune Iversen

[196] The Linguistic Legacy of the Pitted Ware Culture

The Scandinavian hunter-, fisher- and gatherer-based Pitted Ware culture is chronologically situated in the Neolithic. However, it challenges our traditional view on cultural and social evolution by representing a return to an otherwise abandoned hunter-gatherer lifestyle. In general, the Pitted Ware culture must be seen as an offshoot of the “Sub-Neolithic” societies inhabiting wide parts of northern and northeastern Europe in the fourth and third millennium B.C.E.

Isotopic and aDNA studies have shown that people of the east Swedish Pitted Ware culture, both dietarily and genetically were distinct from the early farmers in this region, the Funnel Beaker culture. Isotopic data shows a marked predominance of seal in the diet, which has given the Pitted Ware people the nickname “Inuit of the Baltic”.

As regards language, it is to be expected that people practicing a Pitted Ware lifestyle spoke a non-Indo-European language. In fact, there is some linguistic evidence that can support this claim. It is conceivable that both the Germanic and Finnish word for “seal” were ultimately borrowed from a language spoken in a Pitted Ware context. Once more, the linguistic evidence turns out to offer important information complementary to that of archaeology and archaeo-genetics.

prehistoric-seal-hunters
Stone Age Seal Hunters, by Måns Sjöberg.

Apparently, the idea of non-IE substrate languages in contact with Germanic in Scandinavia is fashionable for the Copenhagen group, probably due to their particular interpretation of the recent genetic papers, hence the multiple Germanic-Fennic connections to be reviewed through this new prism. While the ulterior motive of this proposal may be to try and connect yet again Germanic with CWC Denmark, I would argue that the effect is actually the opposite.

An early borrowing via Uralic

The word has always been considered a more likely loan from one language to the other, and – because of the quite popular idea of Uralic native to Fennoscandia – it was often seen as a likely borrowing of Germanic from Balto-Finnic. In any possible case, the borrowing in either direction must be quite early, for obvious reasons:

  • If the borrowing had been via late Palaeo-Germanic, the ending in *-xa– would have been reflected in Balto-Finnic, hence an early Palaeo-Germanic to Pre-Balto-Finnic stage would be necessary.
  • If the borrowing had been via late Balto-Finnic, the initial sibilant would be already aspirated, being adopted as *-x– in Palaeo-Germanic, while the ending in *-k– would have remained as such if it was adopted after Grimm’s law ceased to be active.
  • Similarly, a borrowing from a common, non-Indo-European & non-Uralic source would require that it happened during the early stages of both proto-languages to have undergone their respective phonetic changes, and both borrowings chronologically close to each other, to assume a similar vocalism and consonantism of the ultimate source.
wiik-indo-european-uralic-substrate
The idea of seal-hunting Uralic substrate of Pitted Ware is not new. Image modified from The Uralic and Finno-Ugric Phonetic Substratum, by Kalevi Wiik, Linguistica Uralica (1997).

Furthermore, regarding the most likely way of expansion of this loanword, due to the different vowels and sibilants present in Uralic but not in Indo-European:

  • A direct loan from Pre-Germanic **selkos – which shows a regular thematic declension – to Pre-Balto-Finnic *šülkeš doesn’t seem to be a reasonable assumption.
  • NOTE. A Germanic borrowing from alternative Gmc. genitive *silxis could only work in a Pre-Germanic to Pre-Balto-Finnic model, hence only if the Gmc. form can be reconstructed for an earlier stage. Even then, for the same reason stated above, the opposite could be more reasonably argued, i.e. that this form is the original one adopted in Germanic: Pre-PBF *šülkeš > Pre-Gmc. *silkis, reinterpreted as an -o- stem in its declension.

  • If we reconstruct an older Pre-Finno-Samic (i.e. with Finno-Permic-like vocalism) **šëlkëš, a borrowing into Pre-Germanic **selkos would work. Even though no Saami derivative exists to confirm such a possibility, this would be supported by the known common evolution of Finno-Samic dialects in close contact with Pre-Germanic.
  • Admittedly, even accepting the existence of a Finno-Samic stem, a potential substrate word could not be discarded. In fact, while **šëlkë- could perfectly be a Uralic root, the ending in *-š can’t be easily interpreted. Therefore, a third, non-Indo-European & non-Uralic source is a plausible explanation.

NOTE. Arguably, Proto-Finno-Samic could have adopted Gmc. *kh or *x exceptionally as PFS *k. However, early Palaeo-Germanic borrowings in Finno-Samic show a consistent regular consonant change as described above. For more on this, see Finno-Samic borrowings.

This likely Uralic first nature of the loanword is important for the discussion below.

Pitted Ware culture

pitted-ware-pyheensilta-ware-culture
Middle Neolithic A period. Distribution of Pyheensilta Ware, Funnel Beaker Culture in Sweden, and Pitted Ware Culture in northern Europe during the Middle Neolithic A period, c. 3300–2800 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Image from Vanhanen et al. (2019).

About the Pitted Ware culture, this is what the recent paper by Vanhanen et al. (2019), from the University of Finland (including Volker Heyd) had to say:

The origins of the PWC are controversial. In one likely scenario, Comb Ceramic and Mesolithic hunter-gatherers first interacted with FBC during the last centuries of the EN and became specialized maritime hunter-gatherers. The PWC pushed south and westwards during the Middle Neolithic (MN), c. 3300–2300 BC, along the northern Baltic shoreline and adjacent islands, eventually reaching as far west as Denmark and southern Norway. Around 2800 BC, after the FBC ceased to exist, the Corded Ware Culture (CWC) migrated into the PWC area. The end date for the PWC and CWC is approximately 2300 BC, when the material culture was replaced by the Late Neolithic (LN) culture<. Spanning nearly a millennium virtually unchanged, the PWC maintained a coherent society and a successful economic model. PWC people lived in marine-oriented settlements, commonly dwelled in huts and produced relatively large amounts of ceramic vessels. This speaks to the partly sedentary nature of their habitation, at least for their base camps. These specialist hunter-gatherers obtained the great majority of their subsistence from maritime sources, such as seal, fish, and sea birds. Considering the amount of bones, sealing was of paramount importance, causing these peoples to be labelled ‘hard-core sealers’ or even the ‘Inuit of the Baltic’.

The Middle Neolithic Pitted Ware culture is dated ca. 3500–2300 BC, so we would be seeing here Pre-Germanic and Pre-Balto-Finnic peoples arriving near the Pitted Ware culture. That would leave us with one of both languages expanding with Corded Ware peoples, and the other with Bell Beakers. Since Battle Axe-derived cultures around the Gulf of Finland are associated with Balto-Finnic groups, and Bell Beakers arriving ca. 2400 started the Dagger Period, commonly associated with the Pre-Germanic community, I think the connection of each group with their language is self-evident.

pitted-ware-cored-ware-culture
Middle Neolithic B period. Distribution of Corded Ware Culture and Pitted Ware Culture in northern Europe during the Middle Neolithic B period, c. 2800–2300 cal BC. Find locations with numbers demarcate sites where cereal grains have been found and later AMS radiocarbon dated. Figure was created by SV using QGIS 3.4. (https://www.qgis.org/) and Natural Earth data (https://www.naturalearthdata.com/). Modified from Vanhanen et al. (2019).

NOTE. You can read some interesting information about prehistoric and recent seal hunting in the Baltic in the blog post “Själen” – Seal Hunting in the Northern Baltic Sea.

Germanic-Fennic phonetic evolution

The common Germanic – Balto-Finnic phonetic evolution, especially Verner’s law in Palaeo-Germanic and qualitative gradation in Proto-Balto-Finnic, has been variably interpreted as:

  • Uralic in Scandinavia influenced by Germanic (Verner’s law source of the gradation), by Koivulehto and Vennemann (1996).
  • Germanic over a Uralic substratum in Scandinavia, by Wiik (1997).
  • Both Germanic and Balto-Finnic influenced by a third language, an “extinct non-Uralic source” spoken in Fennoscandia before the arrival of Uralic and Indo-European, by Kallio (2001); maybe the same substrate proposed to have influenced the accent shift in Germanic similar to Uralic.
  • Balto-Finnic speakers adopting Pre-Germanic in Scandinavia, in contact with Balto-Finnic speakers retaining their language, by Schrijver in Language Contact and the Origins of the Germanic Languages (2014)– although first suggested by him in the 1990s.

NOTE. There are other (some much older) proposals of a Uralic substrate in Scandinavia, but I think those above summarize the most common positions tenable today.

If you add all linguistic, archaeological, and now genetic connections, it is really strange to keep arguing for so many surprisingly fitting common substrates and/or contact languages for both. Especially because the Pre-Germanic community – if originally from southern Scandinavia and not further south (see e.g. Kortlandt’s theory) – was marked by the Dagger Period, as accepted by most archaeologists (including Kristiansen), and we know that Bell Beakers – who triggered the Dagger period – might have arrived a little late to the Pitted Ware disintegration in most seal-hunting areas of southern Scandinavia.

bell-beaker-density
Density analysis based (Bell Beaker per km2) on the distribution of Bell Beaker per region (ca. 2700-2200 BC). Combination of different levels of b-spline interpolation. Exaltation of the values through square root usage. Modified from Michael Bilger (2018).

In other words, how many common substrate languages can we propose for Germanic (and Balto-Finnic)? Just from Kroonen we have already the Semitic-like TRB, and the seal-hunting Pitted Ware culture. Apparently, the culprit of the common phonetic evolution must be some (other?) culture that both Pre-Germanic and Pre-Balto-Finnic assimilated (or with which both were in contact) in Fennoscandia.

NOTE. I believe no data supports the attribution of those Germanic borrowings to the TRB culture, especially if one assumes they belong to an Afroasiatic branch, as did Kroonen. His initial assumption about an expansion of R1b-M269 associated with the Neolithic from Anatolia, and thus with Afroasiatic, must today be rejected. Much more likely is the incorporation of most of these loanwords during the expansion of North-West Indo-Europeans from Yamna Hungary.

How many “common” substrates from different regions and cultures is too much? Arguably, it’s not a question of quantity (because the overall probability remains the same), but a question of quality of arguments.

In my opinion, both a) the marked seal-hunting subsistence economy of the Pitted Ware culture and b) the difficult reconstruction of a fitting ‘natural’ PIE or PU stem warrant this proposal of a third source, just like the European agricultural substrate of North-West Indo-European and Palaeo-Balkan languages, as well as the Asian agricultural substrate of Indo-Iranian are the most logical interpretation of words not found in other IE dialects. The only problem in this case is the lack of other Scandinavian substrate words to compare its typology against.

scandinavia-neolithic-flint-daggers
Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

Common Scandinavian substratum

The theory of a Pitted Ware borrowing is therefore quite convincing from a cultural point of view, at the same time as it fits the linguistic data. However, one reason why I dislike the interpretation of a dual origin is that our knowledge of Uralic languages is fairly limited, whereas that of Indo-European branches and hence Proto-Indo-European is huge. To put it otherwise: if a common word appears in both, and it is most likely (culturally and linguistically) not Indo-European, it certainly means that it was borrowed in Germanic. What are the a priori chances of it coming directly from a third substrate language for both dialects, instead of coming directly from Pre-Balto-Finnic?

From Schrijver (2014):

What did happen, apparently, is that Finnic speakers had enough access to the way in which Germanic speakers pronounced Balto-Finnic in order to model their own pronunciation of Balto-Finnic on it. In other words, Balto-Finns conversed with bilingual speakers of Germanic and Balto-Finnic whose pronunciation of both was essentially Germanic. But access to the Germanic language itself was not sufficient to allow Balto-Finns to become bilingual themselves, either because social segregation prevented this or because contact with Germanic was severed before widespread bilingualism set in. This limited access to Germanic would allow us to understand why Balto-Finnic did not go the way of the vernacular languages that came in contact with Latin in the Roman Empire, where access to Latin was open to almost everybody and massive language shift in favour of Latin ensued.

NOTE. For a more detailed discussion, you can read the whole chapter dedicated to this question. I summarized it in Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia.

On the other hand, about the ad hoc interpretation by Kallio (2001) of hypothetic third languages strongly influencing in the same way both the Palaeo-Germanic- and Balto-Finnic-speaking communities, Schrijver (2014) comments:

The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

early-bronze-age-nordic-dagger-period
Early Bronze Age cultures of Northern Europe (roughly ca. 2200-1750). Dagger period representing the expansion of BBC-derived groups from southern Scandinavia.

NOTE. The proposal of some kind of “SHG/EHG-based Fennoscandian substrate” seems funny to me, for two reasons: firstly, there is usually no talk about which culture spread that common language, how it survived, how it was in contact with both groups and until when, etc. (see below for possibilities); secondly, apparently the evident survival of West European EEF communities driven by at least two cultural groups – El Argar and the poorly known groups from the Atlantic façade north of the Pyrenees – is, for the same people proposing this simplistic SHG/EHG idea, somehow not fitting for the prehistory of Proto-Iberian and Proto-Aquitanian, respectively…

The same argument that one could use against the direct borrowing of both dialects from Pitted Ware, but much more strongly, can be thus wielded against a common, centuries-long phonetic evolution of both Balto-Finnic and Germanic caused by close interactions with (and/or substrate influence of) some third language. Which unitary culture and when exactly could that have happened around the Baltic Sea?

  • Was it Pitted Ware the mysterious substrate language? Seems rather unlikely, due to the early demise of the Pitted Ware culture in contrast to the long-lasting common influence seen in both dialects.
  • Was it Pitted Ware in southern Scandinavia, but Comb Ware in the Gulf of Finland? Is there a direct genetic connection between both cultures? And how likely is a common phonology of an ancestral Comb Ware-like substrate language surviving separately in Finland and Sweden? Even accepting these assumptions, we would be stuck again in the Indo-European Beakers vs. Uralic Battle Axe model.
  • Was it a succession of cultures, from some Scandinavian culture that was replaced by some incoming ethnolinguistic group, then influencing the other? This non-IE, non-Uralic substrate would then need to be proposed, given the chronological and archaeological constraints, as an effect of Pitted Ware over Pre-Finno-Baltic spoken by Battle Axe peoples in Scandinavia, then replaced by Pre-Germanic peoples arriving later with Bell Beakers. A reverse direction and later chronology (say, Germanic replaced by Balto-Finnic from Netted Ware arriving from the Volga) wouldn’t work as well.
  • Was it Asbestos Ware as a late Comb Ware group influencing both? How likely is such a continued influence in Southern Scandinavia and the Gulf of Finland? Even if we accepted this influence that miraculously didn’t affect Samic (most likely located between the Balto-Finnic-speaking Gulf of Finland and northern Fennoscandian Asbestos Ware groups), it would necessarily mean that Germanic and Balto-Finnic were spoken neighbouring exactly the same Asbestos Ware groups in Scandinavia. That is, essentially, that the BBC-derived Dagger Period represented Pre-Germanic, while Battle Axe-derived groups around the Gulf of Finland were Balto-Finnic.

Mixing linguistics with archaeology (now complemented with genetics) also risks circular reasoning. But, how else can someone propose a third substrate language for a phonetic change, necessarily represented by Fennoscandian groups potentially separated by thousands of years? In this age of population genomics we can’t simply talk about theoretical models anymore: we must refer to Fennoscandian cultures and populations in a very specific time frame, as Kronen & Iversen do in their proposal. Not only is such a third unknown language usually a weak explanation for a common development of two unrelated languages; in this case it finds no support whatsoever.

Seals and the Arctic

Another interesting aspect about this Fennic-Germanic comparandum is its relevance to the Uralic homeland problem.

uralic-languages-modern
Current distribution of Uralic languages. Nenets and Saami are among the best positioned to retain the ‘original’ Uralic seal-hunting vocabulary.

Since the publication of Mittnik et al. (2018), Lamnidis et al. (2018), and Sikora et al. (2018), the new normal is apparently to consider Corded Ware Finland as Germanic-speaking, the Gulf of Finland as Balto-Slavic-speaking, while the Kola peninsula and whichever Palaeo-Arctic peoples preceded Nganasans and Nenets as ancient Uralians. Uh-huh, OK.

But, if prehistoric Arctic peoples practiced specialized seal-hunting economies, and Uralians were one among such populations – supposedly one widespread from the Barents Sea to the Lapteve Sea…how come no common Uralic word for ‘seal’ exists? In other words, why would these True™ Uralic peoples expanding from the Arctic need to borrow a word for ‘seal’ from neighbouring populations in every single seal-hunting region they are attested?

grey-seal-distribution
Historical distribution of grey seals, an important part of the diet around the Baltic Sea. Image modified from Wikimedia to include Skagerrak and Kattegat regions.

About Saami, which some have recklessly proposed to be derived from Bronze Age N1c-L392 samples from the Kola Peninsula (against the good judgment of the authors of the paper), this is what we know from their word for ‘seal’, from Grünthal (2004):

Ter Saami vīrre ‘seal; wolf’ displays two meanings that refer to clearly different animals. Neither of them is borrowed from the source language because the word descends from Russian zver’ ‘animal’ (T.I.Itkonen 1958: 756). Another word, Skolt Saami näúdd ‘seal, wolf’, has been similarly used in the two meanings. The evidence of North Saami návdi ‘wolf; creature, fur animal; beast’ (Sammallahti 1989: 305; Lagercrantz (1939: 518) presents the alternative meanings in the opposite order; E. Itkonen (1969: 148) lists the meanings ‘wildes Tier; Raubtier (bes. Wolf); Pelztier’) suggesting that ‘wolf’ is the primary sense and ‘seal’ is a metaphorical extension of it. More precisely, it is an example of a mythic metaphor (cf. Siikala 1992). According to the old folk belief, seal was a wolf and the Skolt Saamis preferred not to eat its meat (T.I.Itkonen 1958: 906). Before that the metonymic meaning ‘wolf’ rose from the less specified meanings, and originally návdi is a Scandinavian or Finnic loan word in Saamic, cf. Old Norse naut ‘vieh, rind’, Icelandic and Norwegian naut, Swedish nöt < Germanic *nauta ‘property’ (Hellquist 1980: 721, T.I.Itkonen 1958: 275, Lagercrantz 1939: 518, de Vries 1961: 406; E. Itkonen (1969: 148) considers Finnic, cf. Finnish nauta ‘bovine’ (< Germanic) as a possible alternative source for the Saamic word).

NOTE. Possibly comparable, for the mythic metaphor proper of Scandinavian folk belief, are Germanic derivatives built as ‘seal-hound’ and/or ‘sea-hound’.

sea-distribution-arctic
Seals formed a great part of the diet for Palaeo-Arctic populations. Boundaries of regions used to predict sea ice, superimposed over the distributions of the five ringed seal subspecies. Image modified from Kelly et al. (2010).

About Nenets (quite close to the Naganasans of pure “Siberian ancestry”), here is what Edward Vajda, an expert in Palaeo-Siberian languages, has to say:

Nenets techniques for hunting the animals of the Arctic Ocean seem to have been borrowed from the first Arctic aborigines. Thus, the Nenets word for seal is nyak, the Eskimo word is nesak. Also, the Nenets word for a one-piece Arctic clothing is lu; the Korak word on the Kamchatka peninsula for clothing is l’ku. All of these groups may have borrowed the words from some original circumpolar aborigines. More probably, the first settlers of Arctic Europe were cousins of the present-day Eskimo, Chukchi and other residents of the far northeast region of Asia. Nenets folklore also speaks of the aborigines living in ice dugouts (igloos).

On the other hand, Proto-Uralic shows a Chalcolithic steppe-like culture, with common words for metal and metalworking, for agriculture, and for domesticated animals, most likely including cattle. They were close to Indo-Europeans since at least before the Tocharian split, and probably earlier than that (even if one does not accept the Indo-Uralic phylum). And there were clearly strong contacts of Finno-Ugric with Indo-Iranian, and especially of Finno-Samic with Germanic.

uralic-cline
Uralic clines from Corded Ware groups to the east. A clear reason for the lack of common seal-hunting vocabulary. Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations. You can see another PCA including ancient samples.

Some among my readers may now be thinking about these totally believable proposals of prehistoric cultures around Lake Baikal representing the True™ Uralic homeland; because haplogroup N1c, and because some 0.5% more “Devil’s Gate Cave ancestry” in Estonians than in Lithuanians; despite the fact that 1) the so-called “Siberian ancestry” formed an ancestral cline with EHG in North Eurasia, that 2) N1c-L392 lineages seem to appear among many Asian peoples of different languages, and that 3) recent prehistoric N1c-L392 lines expanded clearly with Micro-Altaic languages.

Like, who would have hunted seals in Lake Baikal, right? The problem is, seals represented one of their main game, essential for their subsistence economy. From Novokonova et al. (2015):

One of the key reasons for the density of human settlement in the Baikal region compared to adjacent areas of Siberia is that the lake and its nearby rivers offer an abundance of aquatic food resources, including several endemic species, with perhaps the most well known being the Baikal seal. This freshwater seal is only found in Lake Baikal and portions of its tributaries. It shares lifecycle and behavioral patterns with other small northern ice-adapted seals, and is genetically and morphologically most closely related to the ringed seal (Pusa hispida). The nerpa can grow up to 1.8 m long and weigh as much as 130 kg, with the males tending to be slightly larger than the females.

Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting and processing location for yearling and juvenile seals taken on the lake ice. After 4800 years ago, seal use declined at the site, while the relative importance of ungulate hunting and fishing increased. Pastoralists began occupying Sagan-Zaba at some point during the Late Holocene, and these groups too utilized the lake’s seals. Domesticated animals are increasingly common after about 2000 years ago, a pattern seen elsewhere in the region, but spring and some summer hunting of seals was still occurring. This use of seals by prehistoric herders mirrors patterns of seal use among the region’s historic and modern groups.

Bronze Age movements in Fennoscandia

Regarding the shrinkage and expansion of different farming economic strategies in Scandinavia since the Neolithic, with potential relevance for population movements and thus ethnolinguistic change – either from Balto-Finnic peoples migrating back from eastern Sweden, or Germanic peoples moving to eastern Finland – from Vanhanen et al. (2019):

Cultivated plants at CWC sites in Finland were not discovered in the current investigation (Supplementary Results) or earlier studies. In Finland, the keeping of domestic animals is indicated by the evidence of dairy lipids and mineralized goat hairs. Charred remains and impressions of cultivated plants have been discovered at CWC sites in Estonia and east-central Sweden (Fig. 3: 12). In the eastern Baltic region, the earliest bones of domestic animals and a shift in subsistence occurred with the CWC. Whether CWC produced the cereals and other agricultural products found at PWC sites is difficult to estimate because only small amounts of plant remains have ever been discovered at CWC sites. The CWC seemingly reached east-central Sweden from regions further to the east, where there is evidence of animal husbandry, but only very few signs of plant cultivation.

For the Late Neolithic (LN), cereal grains have been found north of Mälaren and along the Norrland coast. In mainland Finland, the first cereal grains occur during the LN or Bronze Age, c. 1900–1250 cal BC. The earliest bones of sheep/goat from mainland Finland are earlier, dating back to 2200–1950 cal BC. Finds of Scandinavian bronze artefacts indicate an influx from east-central Sweden, which might well be a source area for these agricultural innovations. A similar development is found in the eastern Baltic region, where the earliest directly radiocarbon-dated cereals originate from the Bronze Age, 1392–1123 cal BC (2 sigma). Thus, agriculture was evident during the Bronze Age in the eastern Baltic, but at least animal keeping and probably crop cultivation were present earlier during the CWC phase.

It has been known for a while already that the only options left for the expansion of Finno-Saami into Fennoscandia are either Battle Axe (continued in Textile Ceramics) or Netted Ware (as proposed e.g. by Parpola), based, among other data, on language contacts, language estimates, cultural evolution, and population genomics. Data like this one on seal-hunting vocabulary also support the most likely option, which entails the identification of Corded Ware as the vector of expansion of Uralic languages.

NOTE. Also interesting in this regard is the lack of Slavic words for ‘seal’ – borrowed, in Russian from Samic, and in other Slavic dialects from Russian, Latin, or other languages -, and the coinage of a new term in East Baltic. Rather odd for an “autochthonous” Proto-Baltic (supposedly in contact with Pitted Ware, Germanic, and Balto-Finnic, then), and for a Proto-Slavic stemming from the Baltic. Quite appropriate, though, for a Proto-East Baltic arriving in the Baltic with Trzciniec and for a Proto-Slavic community evolving further south.

So, what new episode in this renewed 2000s R1b/R1a/N1c soap opera is it going to be, when eastern Fennoscandia shows Corded Ware-derived peoples of “steppe ancestry” (and mainly R1a-Z645 lineages) continue during the Bronze Age? Will the resurge and/or infiltration of I2 – maybe even N1c – lineages among Corded Ware-derived cultures of north-eastern Europe support or challenge this model, and why? Make your bet below.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

The complex origin of Samoyedic-speaking populations

uralic-turkic

Open access Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations, by Karafet et al. Am J Hum Biol (2018) e23194.

Interesting excerpts (emphasis mine):

Siberian groups

Consistent with their origin, Mongolic-speaking Buryats demonstrate genetic similarity with Mongols, and Turkic-speaking Altai-Kizhi and Teleuts are drawn close to CAS groups. The Tungusic-speaking Evenks collected in central and eastern Siberia cluster together and overlap with Yukagirs. Dolgans are widely scattered in the plot, justifying their recent origin from one Evenk clan, Yakuts, and Russian peasants in the 18th century (Popov, 1964). Uralic-speaking populations comprise a very wide cluster with Komi drawn to Europe, and Khants showing a closer affinity with Selkups, Tundra and Forest Nentsi. Yenisey-speaking Kets are intermingled with Selkups. Interestingly, Samoyedic-speaking Nganasans from the Taymyr Peninsula form a separate tight cluster closer to Evenks, Yukagirs, and Koryaks.

pca-siberian-uralic
Principal component analysis (PCA) using the “drop one in” technique for 27 present-day (N = 424) and 6 ancient populations (N = 20). PCA was performed on 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples

ADMIXTURE and the “Siberian component”

Among Siberians, the Komi are primarily Europeans, while Nganasans, Evenks, Yukagirs, and Koryaks are nearly 100% East Asians. At K = 4 finer scale subcontinental structure can be distinguished with the emergence of a “Siberian” component. This component is highly pronounced in the Nganasans. Outside Siberia, this component is present in Germany and in CAS at low frequency. Within ancient cultures, this component has the highest frequency in three BA Karasuk samples. It is also found in Mal’ta, ENE Afanasievo and BA Andronovo, but not in Ust’-Ishim and BA Okunevo. At K = 5, the “Siberian” component is roughly subdivided into two components with different geographic distributions. The “Nganasan” component is frequent in nearly all Siberian populations, except the Komi, Kets and Selkups. The newly derived “Selkup-Ket” component is found at high frequencies in western Siberian populations. It is observed in BA Karasuk and in Mal’ta. At K = 6, the western Siberian “Nentsi-Khant” ancestry component was developed in Forest and Tundra Nentsi, Khants. This component is also present at low levels in EUR, CAS, Tibet, and southern Siberia.

Identity-by-descent

The Dolgans share more segments with the Nganasans than within themselves (54.13 vs 41.72, Mann-Whitney test, P = .000000000001562546). The result is not surprising as the demographic data showed that the Nganasans were subjected to intense assimilation by the Dolgans in the second half of the 20th century (Goltsova, Osipova, Zhadanov, & Villems, 2005). Tundra Nentsi share more IBD with Forest Nentsi than within themselves (83.96 vs 50.3, P = .000055) possibly due to the common origin and long-term gene flow. The Ket and Selkup populations allocate significantly more IBD blocks between populations than with individuals from their own population (121.2 cM vs 85.9 cM for Kets, P = .000008, and 121.2 cM vs 114.9 cM for Selkups, P = .043).

admixture-siberian
ADMIXTURE plot. Clustering of 444 individuals from 27 present-day and 6 ancient populations (281 093 SNPs) assuming K6 to K7 clusters. Individuals are shown as vertical bars colored in ratio to their estimated ancestry within each cluster

Haplogroup N in Siberia

Although Siberia exhibits 42 haplogroups, the vast majority of Siberian Y-chromosomes belong only to 4 of the 18 major clades (N = 46.2%; C = 20.9%; Q = 14.4%; and R = 15.2%). The Y-chromosome haplogroup N is widely spread across Siberia and Eastern Europe (Ilumae et al., 2016; Karafet et al., 2002; Wong et al., 2016) and reaches its maximum frequency among Siberian populations such as Nganasans (94.1%) and Yakuts (91.9%). Within Siberia, two sister subclades N-P43 and N-L708 show different geographic distributions. N-P43 and derived haplogroups N-P63 and N- P362 (phylogenetically identical to N-B478* and N-B170, respectively) (Ilumae et al., 2016) are extremely rare in other major geographic regions. Likely originating in western Siberia, they are limited almost entirely to northwest Siberia, the Volga- Uralic regions, and the Taymyr Peninsula (ie, do not extend to eastern Siberia). Conversely, clade N-L708 is frequent in all Siberian populations except the Kets and Selkups, reaching its highest frequency in the Yakuts (91.9%).

Surprisingly, not a single sign of the proposed reindeer pastoralist horde led by Nganasans into north-eastern Europe. This is strange because “Siberian” migrants hypothetically imposed their language over Indo-Europeans quite recently, apparently after the Iron Age

Interesting comparisons among Siberian groups, though.

Related

Minimal gene flow from western pastoralists in the Bronze Age eastern steppes

jeong-steppes-mongolia

Open access paper Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Jeong et al. PNAS (2018).

Interesting excerpts (emphasis mine):

To understand the population history and context of dairy pastoralism in the eastern Eurasian steppe, we applied genomic and proteomic analyses to individuals buried in Late Bronze Age (LBA) burial mounds associated with the Deer Stone-Khirigsuur Complex (DSKC) in northern Mongolia. To date, DSKC sites contain the clearest and most direct evidence for animal pastoralism in the Eastern steppe before ca. 1200 BCE.

Most LBA Khövsgöls are projected on top of modern Tuvinians or Altaians, who reside in neighboring regions. In comparison with other ancient individuals, they are also close to but slightly displaced from temporally earlier Neolithic and Early Bronze Age (EBA) populations from the Shamanka II cemetry (Shamanka_EN and Shamanka_EBA, respectively) from the Lake Baikal region. However, when Native Americans are added to PC calculation, we observe that LBA Khövsgöls are displaced from modern neighbors toward Native Americans along PC2, occupying a space not overlapping with any contemporary population. Such an upward shift on PC2 is also observed in the ancient Baikal populations from the Neolithic to EBA and in the Bronze Age individuals from the Altai associated with Okunevo and Karasuk cultures.

pca-eurasians-karasuk-khovsgol
Image modified from the article. Karasuk cluster in green, closely related to sample ARS026 in red. Principal Component Analysis (PCA) of selected 2,077 contemporary Eurasians belonging to 149 groups. Contemporary individuals are plotted using three-letter abbreviations for operational group IDs. Group IDs color coded by geographic region. Ancient Khövsgöl individuals and other selected ancient groups are represented on the plot by filled shapes. Ancient individuals are projected onto the PC space using the “lsqproject: YES” option in the smartpca program to minimize the impact of high genotype missing rate.

(…) two individuals fall on the PC space markedly separated from the others: ARS017 is placed close to ancient and modern northeast Asians, such as early Neolithic individuals from the Devil’s Gate archaeological site (22) and present-day Nivhs from the Russian far east, while ARS026 falls midway between the main cluster and western Eurasians.

Upper Paleolithic Siberians from nearby Afontova Gora and Mal’ta archaeological sites (AG3 and MA-1, respectively) (25, 26) have the highest extra affinity with the main cluster compared with other groups, including the eastern outlier ARS017, the early Neolithic Shamanka_EN, and present-day Nganasans and Tuvinians (Z > 6.7 SE for AG3). Main cluster Khövsgöl individuals mostly belong to Siberian mitochondrial (A, B, C, D, and G) and Y (all Q1a but one N1c1a) haplogroups.

mongolia-botai-ehg-ane-cline
The genetic affinity of the Khövsgöl clusters measured by outgroup-f3 and -f4 statistics. (A) The top 20 populations sharing the highest amount of >genetic drift with the Khövsgöl main cluster measured by f3(Mbuti; Khövsgöl, X). (B) The top 15 populations with the most extra affinity with each of the three Khövsgöl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f4(Mbuti, X; Tuvinian/Khövsgöl, Khövsgöl/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f4 statistic.

Previous studies show a close genetic relationship between WSH populations and ANE ancestry, as Yamnaya and Afanasievo are modeled as a roughly equal mixture of early Holocene Iranian/ Caucasus ancestry (IRC) and Mesolithic Eastern European hunter-gatherers, the latter of which derive a large fraction of their ancestry from ANE. It is therefore important to pinpoint the source of ANE-related ancestry in the Khövsgöl gene pool: that is, whether it derives from a pre-Bronze Age ANE population (such as the one represented by AG3) or from a Bronze Age WSH population that has both ANE and IRC ancestry.

The amount of WSH contribution remains small (e.g., 6.4 ± 1.0% from Sintashta). Assuming that the early Neolithic populations of the Khövsgöl region resembled those of the nearby Baikal region, we conclude that the Khövsgöl main cluster obtained ∼11% of their ancestry from an ANE source during the Neolithic period and a much smaller contribution of WSH ancestry (4–7%) beginning in the early Bronze Age.

khovsgol-shamanka-sintashta
Admixture modeling of Altai populations and the Khövsgöl main cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA and (B and C) Khövsgöl, each colored block represents the proportion of ancestry derived from a corresponding ancestry source in the legend. Error bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN and AG3. The Khövsgöl main cluster is modeled as (B) a two-way admixture of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+AG3+Sintashta.

Apparently, then, the first individual with substantial WSH ancestry in the Khövsgöl population (ARS026, of haplogroup R1a-Z2123), directly dated to 1130–900 BC, is consistent with the first appearance of admixed forest-steppe-related populations like Karasuk (ca. 1200-800 BC) in the Altai. Interestingly, haplogroup N1a1a-M178 pops up (with mtDNA U5a2d1) among the earlier Khövsgöl samples.

I will repeat what I wrote recently here: Samoyedic arrived in the Altai with Karasuk and hg R1a-Z645 + Steppe_MLBA-like ancestry, admixed with Altai populations, clustering thus within an Ancient Altai cline. Only later did N1a1a subclades infiltrate Samoyedic (and Ugric) populations, bringing them closer to their modern Palaeo-Siberian cline. The shared mtDNA may support an ancestral EHG-“Siberian” cline, or else a more recent Afanasevo-related origin.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals. Read more.

Also interesting, Q1a2 subclades and ANE ancestry making its appearance everywhere among ancestral Eurasian peoples, as Chetan recently pointed out.

Related

Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions

haplogroup-uralians

This is the fourth of four posts on the Corded Ware—Uralic identification:

Let me begin this final post on the Corded Ware—Uralic connection with an assertion that should be obvious to everyone involved in ethnolinguistic identification of prehistoric populations but, for one reason or another, is usually forgotten. In the words of David Reich, in Who We Are and How We Got Here (2018):

Human history is full of dead ends, and we should not expect the people who lived in any one place in the past to be the direct ancestors of those who live there today.

Haplogroup N

Another recurrent argument – apart from “Siberian ancestry” – for the location of the Uralic homeland is “haplogroup N”. This is as serious as saying “haplogroup R1” to refer to Indo-European migrations, but let’s explore this possibility anyway:

Ancient haplogroups

We have now a better idea of how many ancient migrations (previously hypothesized to be associated with westward Uralic migrations) look like in genetic terms. From Damgaard et al. (Science 2018):

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

The only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, which – together with the Bronze Age sample from the Kola peninsula, and the medieval sample from Ust’Ida – gives a good idea of the overall expansion of N subclades and Siberian ancestry among the Circum-Arctic peoples of Eurasia, speakers of Palaeo-Siberian languages.

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

Modern haplogroups

What we should expect from Uralic peoples expanding with haplogroup N – seeing how Yamna expands with R1b-L23, and Corded Ware expands with R1a-Z645 – is to find a common subclade spreading with Uralic populations. Let’s see if it works like that for any N-X subclade, in data from Ilumäe et al. (2016):

haplogroup_n1
Geographic-Distribution Map of hg N3 / N1c / N1a.

Within the Eurasian circum-Arctic spread zone, N3 and N2a reveal a well-structured spread pattern where individual sub-clades show very different distributions:

N1a1-M46 (or N-TAT), formed ca. 13900 BC, TMRCA 9800 BC

   N1a1a2-B187, formed ca. 9800 BC, TMRCA 1050 AD:

The sub-clade N3b-B187 is specific to southern Siberia and Mongolia, whereas N3a-L708 is spread widely in other regions of northern Eurasia.

     N1a1a1a-L708, formed ca. 6800 BC, TMRCA 5400 BC.

       N1a1a1a2-B211/Y9022, formed ca. 5400 BC, TMRCA 1900 BC:

The deepest clade within N3a is N3a1-B211, mostly present in the Volga-Uralic region and western Siberian Khanty and Mansi populations.

         N1a1a1a1a-L392/L1026), formed ca. 4400 BC, TMRCA 2800 BC:

The neighbor clade, N3a3’6-CTS6967, spreads from eastern Siberia to the eastern part of Fennoscandia and the Baltic States

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders.

           N1a1a1a1a1a-CTS2929/VL29, formed ca. 2100 BC, TMRCA 1600 BC:

In Europe, the clade N3a3-VL29 encompasses over a third of the present-day male Estonians, Latvians, and Lithuanians but is also present among Saami, Karelians, and Finns (Table S2 and Figure 3). Among the Slavic-speaking Belarusians, Ukrainians, and Russians, about three-fourths of their hg N3 Y chromosomes belong to hg N3a3.

In the post on Finno-Permic expansions, I depicted what seems to me the most likely way of infiltration of N1c-L392 lineages with Akozino warrior-traders into the western Finno-Ugric populations, with an origin around the Barents sea.

This includes the potential spread of (a minority of) N1c-B211 subclades due to contacts with Anonino on both sides of the Urals, through a northern route of forest and forest-steppe regions (equivalent to the distribution of Cherkaskul compared to Andronovo), given the spread of certain subclades in Ugric populations.

NOTE. An alternative possibility is the association of certain B211 subclades with a southern route of expansion with Pre-Scythian and Scythian populations, under whose influence the Ananino culture emerged -which would imply a very quick infiltration of certain groups of haplogroup N everywhere among Finno-Ugrics on both sides of the Urals – , and also the expansion of some subclades with Turkic-speaking peoples, who apparently expanded with alliances of different peoples. Both (Scythian and Turkic) populations expanded from East Asia, where haplogroup N (including N1c) was present since the Neolithic. I find this a worse model of expansion for upper clades, but – given the YFull estimates and the presence of this haplogroup among Turkic peoples – it is a possibility for many subclades.

           N1a1a1a1a2-Z1936, formed ca. 2800 BC, TMRCA 2400 BC:

The only notable exception from the pattern are Russians from northern regions of European Russia, where, in turn, about two-thirds of the hg N3 Y chromosomes belong to the hg N3a4-Z1936—the second west Eurasian clade. Thus, according to the frequency distribution of this clade, these Northern Russians fit better among other non-Slavic populations from northeastern Europe. N3a4 tends to increase in frequency toward the northeastern European regions but is also somewhat unexpectedly a dominant hg N3 lineage among most Turcic-speaking Volga Tatars and South-Ural Bashkirs.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

The expansion of N1a-Z1936 in Fennoscandia is most likely associated with the expansion of Saami into asbestos ware-related territory (like the Lovozero culture) during the Late Iron Age – and mixture with its population – , and with the later Fennic expansion to the east and north, replacing their language, as well as with Arctic and forest populations assimilated during Permic, Ugric, and Samoyedic expansions to the north.

           N1a1a1a1a4-M2019 (previously N3a2), formed ca. 4400 BC, TMRCA 1700 BC:

Sub-hg N3a2-M2118 is one of the two main bifurcating branches in the nested cladistic structure of N3a2’6-M2110. It is predominantly found in populations inhabiting present-day Yakutia (Republic of Sakha) in central Siberia and at lower frequencies in the Khanty and Mansi populations, which exhibit a distinct Y-STR pattern (Table S7) potentially intrinsic to an additional clade inside the sub-hg N3a2

The second widespread sub-clade of hg N is N2a. (…):

   N1a2b-P43 (B523/FGC10846/Y3184), formed ca. 6800 BC, TMRCA ca. 2700 BC:

The absolute majority of N2a individuals belong to the second sub-clade, N2a1-B523, which diversified about 4.7 kya (95% CI = 4.0–5.5 kya). Its distribution covers the western and southern parts of Siberia, the Taimyr Peninsula, and the Volga-Uralic region with frequencies ranging from from 10% to 30% and does not extend to eastern Siberia (…)

haplogroup_n2
Geographic-Distribution Map of hg N2a1 / N1a2b-P43

The “European” branch suggested earlier from Y-STR patterns turned out to consist of two clades

     N1a2b2a-Y3185/FGC10847, formed ca. 2200 BC, TMRCA 800 BC:

N2a1-L1419, spread mainly in the northern part of that region.

     N1a2b2b1-B528/Y24382, formed ca. 900 BC, TMRCA ca. 900 BC:

N2a1-B528, spread in the southern Volga-Uralic region.

Haplogroup R1a

We also have a good idea of the distribution of haplogroup R1a-Z645 in ancient samples. Its subclades were associated with the Corded Ware expansion, and some of them fit quite well the early expansion of Finno-Permic, Ugric, and Samoyedic peoples to the east.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

This is how the modern distribution of R1a among Uralians looks like, from the latest report in Tambets et al. (2018):

  • Among Fennic populations, Estonians and Karelians (ca. 1.1 million) have not suffered the greatest bottleneck of Finns (ca. 6-7 million), and show thus a greater proportion of R1a-Z280 than N1c subclades, which points to the original situation of Fennic peoples before their expansion. To trust Finnish Y-DNA to derive conclusions about the Uralic populations is as useful as relying on the Basque Y-DNA for the language spread by R1b-P312
  • Among Volga-Finnic populations, Mordovians (the closest to the original Uralic cluster, see above) show a majority of R1a lineages (27%).
  • Hungarians (ca. 13-15 million) represent the majority of Ugric (and Finno-Ugric) peoples. They are mainly R1a-Z280, also R1a-Z2123, have little N1c, and lack Siberian ancestry, and represent thus the most likely original situation of Ugric peoples in 4th century AD (read more on Avars and Hungarians).
  • Among Samoyedic peoples, the Selkup, the southernmost ones and latest to expand – that is, those not heavily admixed with Siberian populations – , also have a majority of R1a-Z2123 lineages (see also here for the original Samoyedic haplogroups to the south).

To understand the relevance of Hungarians for Ugric peoples, as well as Estonians, Karelians, and Mordovians (and northern Russians, Finno-Ugric peoples recently Russified) for Finno-Permic peoples, as opposed to the Circum-Arctic and East Siberian populations, one has to put demographics in perspective. Even a modern map can show the relevance of certain territories in the past:

population-density
Population density (people per km2) map of the world in 1994. From Wikipedia.

Summary of ancestry + haplogroups

Fennic and Samic populations seem to be clearly influenced by Palaeo-Laplandic peoples, whereas Volga-Finnic and especially Permic populations may have received gene flow from both, but essentially Palaeo-Siberian influence from the north and east.

The fact that modern Mansis and Khantys offer the highest variation in N1a subclades, and some of the highest “Siberian ancestry” among non-Nganasans, should have raised a red flag long ago. The fact that Hungarians – supposedly stemming from a source population similar to Mansis – do not offer the same amount of N subclades or Siberian ancestry (not even close), and offer instead more R1a, in common with Estonians (among Finno-Samic peoples) and Mordvins (among Volga-Finnic peoples) should have raised a still bigger red flag. The fact that Nganasans – the model for Siberian ancestry – show completely different N1a2b-P43 lineages should have been a huge genetic red line (on top of the anthropological one) to regard them as the Uralian-type population.

We know now that ethnolinguistic groups have usually expanded with massive (usually male-biased) migrations, and that neighbouring locals often ‘resurge’ later without changing the language. That is seen in Europe after the spread of Bell Beakers, with the increase of previous ancestry and lineages in Scandinavia during the formation of the Nordic ethnolinguistic community; in Central-West Europe, with the resurgence of Neolithic ancestry (and lineages) during the Bronze Age over steppe ancestry; and in Central-East Europe (with Unetice or East European Bronze Age groups like Mierzanowice, Trzciniec, or Lusatian) showing an increase in steppe ancestry (and resurge of R1a subclades); none of them represented a radical ethnolinguistic change.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

It is not hard to model the stepped arrival, infiltration, and/or resurge of N subclades and “Siberian ancestries”, as well as their gradual expansion in certain regions, associated with certain migrations first – such as the expansions to the Circum-Arctic region, and later the Scythian- and Turkic-related movements – , as well as limited regional developments, like the known bottleneck in Finns, or the clear late expansion of Ugric and Samoyedic languages to the north among nomadic Palaeo-Siberians due to traditions of exogamy and multilingualism. This fits quite well with the different arrival of N (N1c and xN1c) lineages to the different Uralic-speaking groups, and to the stepped appearance of “Siberian ancestry” in the different regions.

The aternative

It is evident that a lot of people were too attached to the idea of Palaeolithic R1b lineages ‘native’ to western Europe speaking Basque languages; of R1a lineages speaking Indo-European and spreading with Yamna; and N lineages ‘native’ to north-eastern Europe and speaking Uralic, and this is causing widespread weeping and gnashing of teeth (instead of the joy of discovering where one’s true patrilineal ancestors come from, and what language they spoke in each given period, which is the supposed objective of genetic genealogy…)

Since an Indo-Germanic branch (as revived now by some in the Copenhaguen group to fit Kristiansen’s theory of the 1980s with recent genetic data) does not make any sense in linguistics, the finding of R1a in Yamna would not have led where some think it would have, because North-West Indo-European would still be the main Late PIE branch in Europe. Don’t take my word for it; take James P. Mallory’s (2013).

mallory-adams-tree
The levels of Indo-European reconstruction, from Mallory & Adams (2006).

If an (unlikely) Indo-Slavonic group were posited, though, such a group would still be bound (with Indo-Iranian) to the steppes with East Yamna/Poltavka (admixing with Abashevo migrants, but retaining its language), developing Sintashta/Potapovka → Srubna/Andronovo, and R1a lineages would have equally undergone the known bottlenecks of the steppes where they replaced R1b-Z2103 – which this eastern group shares with Balkan languages, a haplogroup that links therefore together the Graeco-Aryan group.

As far as I know – and there might be many other similar pet theories out there – there have been proposals of “modern Balto-Slavic-like” populations (in an obvious circular reasoning based on modern populations) in some Scythian clusters of the Iron Age.

NOTE. I will not enter into “Balto-Slavic-like R1a” of the Late Bronze Age or earlier because no one can seriously believe at this point of development of Population Genetics that autosomal similarity predating 1,500+ years the appearance of Slavs equates to their (ethnolinguistic) ancestral population, without a clear intermediate cultural and genetic trail – something we lack today in the Slavic case even for the late Roman period…

finno-saamic-palaeo-germanic-substratum
The Finnic and Saamic separation looks shallower than it actually is. Invisible convergence can be ‘triangulated’ with the help of Germanic layers of mutual loanwords (Häkkinen 2012).

We also know of R1a-Z280 lineages in Srubna, probably expanding to the west. With that in mind, and knowing that Palaeo-Germanic was in close contact with Finno-Samic while both were already separated but still in contact, and that Palaeo-Germanic was also in contact and closely related to a ‘Temematic’ distinct from Balto-Slavic (and also that early Proto-Baltic and Proto-Slavic from the Roman Iron Age and later were in contact with western Uralic) this will be the linguistic map of the Iron Age if R1a is considered to expand Indo-European from some kind of “patron-client” relationship with west Yamna:

palaeo-germanic-italo-celtic
Eastern European language map during the Late Bronze Age / Iron Age, if R1a spread Indo-European languages and Eastern Yamna spoke Indo-Slavonic. Palaeo-Germanic (i.e. Pre- to Proto-Germanic) needs to be in contact with both the Samic Lovozero population and the Fennic west Circum-Arctic one. Italic and Celtic in contact with Pre-Germanic. Germanic in contact with Temematic. Balto-Slavic in contact with Iranian, and near Fennic to allow for later loanwords. For Germanic and Temematic, see Kortlandt (2018).

You might think I have some personal or political reason against this kind of proposals. I haven’t. We have been proposing Indo-European to be the language of the European Union for more than 10 years, so to support R1b-Italo-Celtic in the whole Western Europe, R1a-Germanic in Central and Eastern Europe, and R1a-Indo-Slavonic in the steppes (as the Danish group seems to be doing) has nothing inherently bad (or good) for me. If anything, it gives more reason to support the revival of North-West Indo-European in Europe.

My problem with this proposal is that it is obviously beholden to the notion of the uninterrupted cultural, historic and ethnic continuity in certain territories. This bias is common in historiography (von Falkenhausen 1993), but it extends even more easily into the lesser known prehistory of any territory, and now more than ever some people feel the need to corrupt (pre)history based on their own haplogroups (or the majority haplogroups of their modern countries). However, more than on philosophical grounds, my rejection is based on facts: this picture is not what the combination of linguistic, archaeological, and genetic data shows. Period.

Nevertheless, if Yamna + Corded Ware represented the “big and early expansion” of Germanic and Italo-Celtic peoples proper of the dream Nazi’s Lebensraum and Fascist’s spazio vitale proposals; Uralians were Siberian hunter-gatherers that controlled the whole eastern and northern Russia, and miraculously managed to push (ethnolinguistically) Neolithic agropastoralists to the west during and after the Iron Age, with gradual (and often minimal) genetic impact; and Balto-Slavic peoples were represented by horse riders from Pokrovka/Srubna, hiding then somewhere around the forest-steppe until after the Scythian expansion, and then spreading their language (without much genetic impact) during the early Middle Ages…so be it.

See also

Related

Corded Ware—Uralic (III): “Siberian ancestry” and Ugric-Samoyedic expansions

siberian-ancestry-tambets

This is the third of four posts on the Corded Ware—Uralic identification. See

An Eastern Uralic group?

Even though proposals of an Eastern Uralic (or Ugro-Samoyedic) group are in the minority – and those who support it tend to search for an origin of Uralic in Central Asia – , there is nothing wrong in supporting this from the point of view of a western homeland, because the eastward migration of both Proto-Ugric and Pre-Samoyedic peoples may have been coupled with each other at an early stage. It’s like Indo-Slavonic: it just doesn’t fit the linguistic data as well as the alternative, i.e. the expansion of Samoyedic first, different from a Finno-Ugric trunk. But, in case you are wondering about this possibility, here is Häkkinen’s (2012) phonological argument:

ugro-samoyedic-uralic

The case of Samoyedic is quite similar to that of Hungarian, although the earliest Palaeo-Siberian contact languages have been lost. There were contacts at least with Tocharian (Kallio 2004), Yukaghir (Rédei 1999) and Turkic (Janhunen 1998). Samoyedic also:

a) has moved far from the related languages and has been exposed to strong foreign influence

b) shares a small number of common words with other branches (from Sammallahti 1988: only 123 ‘Uralic’ words, versus 390 ‘Uralic’ + ‘Finno-Ugric’ words found in other branches than Samoyedic = 31,5 %)

c) derives phonologically from the East Uralic dialect.

The phonological level is taxonomically more reliable, since it lacks the distortion caused by invisible convergence and false divergence at the lexical level. Thus we can conclude that the traditional taxonomic model, according to which Samoyedic was the first branch to split off from the Proto-Uralic unity, is just as incorrect as the view that Hungarian was the first branch to split off.

Seima-Turbino

Late Uralic can be traced back to metallurgical cultures thanks to terms like PU *wäśka ‘copper/bronze’ (borrowed from Proto-Samoyedic *wesä into Tocharian); PU *äsa and *olna/*olni, ‘lead’ or ‘tin’, found in *äsa-wäśka ‘tin-bronze’; and e.g. *weŋći ‘knife’, borrowed into Indo-Iranian (through the stage of vocalization of nasals), appearing later as Proto-Indo-Aryan *wāćī ‘knife, awl, axe’.

It is known that the southern regions of the Abashevo culture developed Proto-Indo-Iranian-speaking Sintashta-Petrovka and Pokrovka (Early Srubna). To the north, however, Abashevo kept its Uralic nature, with continuous contacts allowing for the spread of lexicon – mainly into Finno-Ugric – , and phonetic influence – mainly Uralisms into Proto-Indo-Iranian phonology (read more here).

The northern part of Abashevo (just like the south) was mainly a metallurgical society, with Abashevo metal prospectors found also side by side with Sintashta pioneers in the Zeravshan Valley, near BMAC, in search of metal ores. About the Seima-Turbino phenomenon, from Parpola (2013):

From the Urals to the east, the chain of cultures associated with this network consisted principally of the following: the Abashevo culture (extending from the Upper Don to the Mid- and South Trans-Urals, including the important cemeteries of Sejma and Turbino), the Sintashta culture (in the southeast Urals), the Petrovka culture (in the Tobol-Ishim steppe), the Taskovo-Loginovo cultures (on the Mid- and Lower Tobol and the Mid-Irtysh), the Samus’ culture (on the Upper Ob, with the important cemetery of Rostovka), the Krotovo culture (from the forest steppe of the Mid-Irtysh to the Baraba steppe on the Upper Ob, with the important cemetery of Sopka 2), the Elunino culture (on the Upper Ob just west of the Altai mountains) and the Okunevo culture (on the Mid-Yenissei, in the Minusinsk plain, Khakassia and northern Tuva). The Okunevo culture belongs wholly to the Early Bronze Age (c. 2250–1900 BCE), but most of the other cultures apparently to its latter part, being currently dated to the pre-Andronovo horizon of c. 2100–1800 BCE (cf. Parzinger 2006: 244–312 and 336; Koryakova & Epimakhov 2007: 104–105).

post-eneolithic-steppe-asia
Schematic map of the Middle Bronze Age cultures (steppe and foreststeppe
zone)

The majority of the Sejma-Turbino objects are of the better quality tin-bronze, and while tin is absent in the Urals, the Altai and Sayan mountains are an important source of both copper and tin. Tin is also available in southern Central Asia. Chernykh & Kuz’minykh have accordingly suggested an eastern origin for the Sejma-Turbino network, backing this hypothesis also by the depiction on the Sejma-Turbino knives of mountain sheep and horses characteristic of that area. However, Christian Carpelan has emphasized that the local Afanas’evo and Okunevo metallurgy of the Sayan-Altai area was initially rather primitive, and could not possibly have achieved the advanced and difficult technology of casting socketed spearheads as one piece around a blank. Carpelan points out that the first spearheads of this type appear in the Middle Bronze Age Caucasia c. 2000 BCE, diffusing early on to the Mid-Volga-Kama-southern Urals area, where “it was the experienced Abashevo craftsmen who were able to take up the new techniques and develop and distribute new types of spearheads” (Carpelan & Parpola 2001: 106, cf. 99–106, 110). The animal argument is countered by reference to a dagger from Sejma on the Oka river depicting an elk’s head, with earlier north European prototypes (Carpelan & Parpola 2001: 106–109). Also the metal analysis speaks for the Abashevo origin of the Sejma-Turbino network. Out of 353 artefacts analyzed, 47% were of tin-bronze, 36% of arsenical bronze, and 8.5% of pure copper. Both the arsenical bronze and pure copper are very clearly associated with the Abashevo metallurgy.

seima-turbino-phenomenon-parpola
Find spots of artefacts distributed by the Sejma-Turbino intercultural trader network, and the areas of the most important participating cultures: Abashevo, Sintashta, Petrovka. Based on Chernykh 2007: 77.

The Abashevo metal production was based on the Volga-Kama-Belaya area sandstone ores of pure copper and on the more easterly Urals deposits of arsenical copper (Figure 9). The Abashevo people, expanding from the Don and Mid-Volga to the Urals, first reached the westerly sandstone deposits of pure copper in the Volga and Kama basins, and started developing their metallurgy in this area, before moving on to the eastern side of the Urals to produce harder weapons and tools of arsenical copper. Eventually they moved even further south, to the area richest in copper in the whole Urals region, founding there the very strong and innovative Sintashta culture.

Regarding the most likely expansion of Eastern Uralic peoples:

Nataliya L’vovna Chlenova (1929–2009; cf. Korenyako & Ku’zminykh 2011) published in 1981 a detailed study of the Cherkaskul’ pottery. In her carefully prepared maps of 1981 and 1984 (Figure 10), she plotted Cherkaskul’ monuments not only in Bashkiria and the Trans-Urals, but also in thick concentrations on the Upper Irtysh, Upper Ob and Upper Yenissei, close to the Altai and Sayan mountains, precisely where the best experts suppose the homeland of Proto-Samoyed to be.

cherkaskul-andronovo
Distribution of Srubnaya (Timber Grave, early and late), Andronovo (Alakul’ and Fëdorovo variants) and Cherkaskul’ monuments. After Parpola 1994: 146, fig. 8.15, based on the work of N. L. Chlenova (1984: map facing page 100).

Ugric

The Cherkaskul’ culture was transformed into the genetically related Mezhovka culture (c. 1500–1000 BCE), which occupied approximately the same area from the Mid-Kama and Belaya rivers to the Tobol river in western Siberia (cf. Parzinger 2006: 444–448; Koryakova & Epimakhov 2007: 170–175). The Mezhovka culture was in close contact with the neighbouring and probably Proto-Iranian speaking Alekseevka alias Sargary culture (c. 1500–900 BCE) of northern Kazakhstan (Figure 4 no. 8) that had a Fëdorovo and Cherkaskul’ substratum and a roller pottery superstratum (cf. Parzinger 2006: 443–448; Koryakova & Epimakhov 2007: 161–170). Both the Cherkaskul’ and the Mezhovka cultures are thought to have been Proto-Ugric linguistically, on the basis of the agreement of their area with that of Mansi and Khanty speakers, who moreover in their Fëdorovo-like ornamentation have preserved evidence of continuity in material culture (cf. Chlenova 1984; Koryakova & Epimakhov 2007: 159, 175).

mezhovska-sargary-irmen
Cultures of the Final Bronze Age of the Urals and western Siberia (steppe
and forest-steppe zone).

The Mezhovka culture was succeeded by the genetically related Gamayun culture (c. 1000–700 BCE) (cf. Parzinger 2006: 446; 542–545).

From the Gamayun culture descend Trans-Urals cultures in close contact with Finno-Permic populations of the Cis-Ural region:

  • [Proto-Mansi] Itkul’ culture (c. 700–200 BCE) distributed along the eastern slope of the Ural Mountains (cf. Parzinger 2006: 552–556). Known from its walled forts, it constituted the principal Trans-Uralian centre of metallurgy in the Iron Age, and was in contact with both the Anan’ino and Akhmylovo cultures (the metallurgical centres of the Mid-Volga and Kama-Belaya region) and the neighbouring Gorokhovo culture.
    • [Proto-Hungarian] via the Vorob’evo Group (c. 700–550 BCE) (cf. Parzinger 2006: 546–549), to the Gorokhovo culture (c. 550–400 BCE) of the Trans-Uralian forest steppe (cf. Parzinger 2006: 549–552). For various reasons the local Gorokhovo people started mobile pastoral herding and became part of the multicomponent pastoralist Sargat culture (c. 500 BCE to 300 CE), which in a broader sense comprized all cultural groups between the Tobol and Irtysh rivers, succeeding here the Sargary culture. The Sargat intercommunity was dominated by steppe nomads belonging to the Iranian-speaking Saka confederation, who in the summer migrated northwards to the forest steppe
  • [Proto-Khanty] Late Bronze Age and Early Iron Age cultures related to the Gamayunskoe and Itkul’ cultures that extended up to the Ob: the Nosilovo, Baitovo, Late Irmen’, and Krasnoozero cultures (c. 900–500 BCE). Some were in contact with the Akhmylovo on the Mid-Volga.
sargat-gorokhovo-bolscherechye
Cultural groups of the Iron Age in the forest-steppe zone of western
Siberia. (

Samoyedic

Parpola (2012) connects the expansion of Samoyedic with the Cherkaskul variant of Andronovo. As we know, Andronovo was genetically diverse, which speaks in favour of different groups developing similar material cultures in Central Asia.

Juha Janhunen, author of the etymological dictionary of the Samoyed languages (1977), places the homeland of Proto-Samoyedic in the Minusinsk basin on the Upper Yenissei (cf. Janhunen 2009: 72). Mainly on the basis of Bulghar Turkic loanwords, Janhunen (2007: 224; 2009: 63) dates Proto-Samoyedic to the last centuries BCE. Janhunen thinks that the language of the Tagar culture (c. 800–100 BCE) ought to have been Proto-Samoyedic (cf. Janhunen 1983: 117– 118; 2009: 72; Parzinger 2001: 80 and 2006: 619–631 dates the Tagar culture c. 1000–200 BCE; Svyatko et al. 2009: 256, based on human bone samples, c. 900 BCE to 50 CE). The Tagar culture largely continues the traditions of the Karasuk culture (c. 1400–900 BCE), (…)

chicha-irmen-tagar-baraba-forest-siberian
Map showing the location of Chicha-1.

For the most recent expansions of Samoyedic languages to the north, into Palaeo-Siberian populations, read more about the traditional multilingualism of Siberian populations.

Genetics

Siberian ancestry

The use of a map of “Siberian ancestry” peaking in the arctic to show a supposedly late Uralic population movement (starting in the Iron Age!) seems to be the latest trend in population genomics:

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018) (see below for ADMIXTURE in specific populations).

I guess that would make this map of Neolithic farmer ancestry represent an expansion of Indo-European from the south, because Anatolia, Greece, Italy, southern France, and Iberia – where this ancestry peaks in modern populations – are among the oldest territories where Indo-European languages were recorded:

reich-farmer-ancestry
Modern genome-wide data shows that the primary gradient of farmer ancestry in Europe does not flow southeast-to-northwest but instead in an almost perpendicular direction, a result of a major migration of pastoralists from the east that displaced much of the ancestry of the first farmers.

Probably not the right interpretation of this kind of simplistic data about modern populations, though…

The most striking thing about the “Siberian ancestry” white whale is that nobody really knows what it is; just like we did not know what “Yamnaya ancestry” was, until the most recent data is making the picture clearer. Its nature is changing with each new paper, and it can be summed up by “some ancestry we want to find that is common to Uralic-speaking peoples, and should not be CWC-related”. Tambets et al. (2018) explain quite well how they “found it”:

Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a).

siberian-ancestry-modern
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). Image from Tambets et al. (2018).

However, this ‘something’ that some people occasionally find in some Uralic populations is also common to other modern and ancient groups, and not so common in some other Uralic peoples. Simply put:

siberian-ancestry-modern-populations
Image modified from Lamnidis et al. (2018). Red line representing maximum “Siberian admixture” in Eastern European hunter-gatherers. In blue, Uralic-speaking groups. “Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.”

I already said this in the recent publication of Siberian samples, where a renamed and radiocarbon dated Finnish_IA clearly shows that Late Iron Age Saami (ca. 400 AD) had little “Siberian ancestry”, if any at all, representing the most likely Fennic (and Samic) ancestral components before their expansion into central and northern Finland, where they admixed with circum-polar peoples of asbestos ware cultures.

I will say that again and again, any time they report the so-called “Siberian ancestry” in Uralic samples, no matter how it is defined each time: it does not seem to be that special something people are looking for, but rather (at least in a great part) a quite old ancestral component forming an evident cline with EHG, whose best proximate source are Baikal_EN (and/or Devil’s Gate) at this moment, and thus also East European hunter-gatherers for Western Uralic peoples:

dzudzuana-baikal-en-admixture
Image modified from Lazaridis et al. (2018). In red: samples with Baikal_EN ancestry in speculative estimates. In pink: samples with Baikal_EN ancestry in conservative estimates (probably marking a recent arrival of Baikal_En ancestry, see here). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

So either Samara_HG, Karelia_HG, and many other groups from eastern Europe all spoke Uralic according to this ADMIXTURE graphic (and the formation of steppe ancestry in the Volga-Ural region brought the Proto-Indo-European language to the steppes through the CHG/ANE expansion), or a great part of this “Siberian ancestry” found in modern Uralic-speaking populations is not what some people would like to think it is…

Modern populations

PCA clines can be looked for to represent expansions of ancient populations. Most recently, Flegontov et al. (2018) are attempting to do this with Asian populations:

For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

jeong-population-clines
Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.

There are potential errors with this approach:

The main one is practical – does a modern cline represent an ancestral language? The answer is: sometimes. It depends on the anthropological context that we have, and especially on the precision of the PCA:

clines-himalayan
Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. (A) PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. From Arciero et al. (2018).

The ‘Europe’, ‘Middle East’, etc. clines of the above PCA do not represent one language, but many. For starters, the PCA includes too many (and modern) populations, its precision is useless for ethnolinguistic groups. Which is the right level? Again, it depends.

The other error is one of detail of the clines drawn (which, in turn, depends on the precision of the PCA). For example, we can draw two paralell lines (or even one line, as in Flegontov et al. above) in one PCA graphic, but we still don’t have the direction of expansion. How do we know if this supposed “Uralic-speaking cline” goes from one region to the other? For that level of detail, we should examine closely modern Uralic-speaking peoples and Circum-Arctic populations:

uralic-cline
Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

The real ancient Uralic cluster (drawn above in blue) is thus probably from a North-East European source (probably formed by Battle Axe / Fatyanovo-Balanovo / Abashevo) to the east into Siberian populations, and to the north into Laplandic populations (see below also on Mezhovska ancestry for the drawn ‘European cline’, which some may a priori wrongly assume to be quite late).

The fact that the three formed clines point to an admixture of CWC-related populations from North-Eastern Europe, and that variation is greater at the Palaeo-Laplandic and Palaeo-Siberian extremities compared to the CWC-related one, also supports this as the correct interpretation.

However, judging by the two main clines formed, one could be alternatively inclined to interpret that Palaeo-Laplandic and Palaeo-Siberian populations formed a huge ancestral “Uralic” ghost cluster in Siberia (spanning from the Palaeo-Laplandic to the Palaeo-Siberian one), and from there expanded Finno-Samic on one hand, and “Volga-Ugro-Samoyed” on the other. That poses different problems: an obvious linguistic and archaeological one – which I assume a lot of people do not really care about – , and a not-so-obvious genetic one (see below for ancient samples and for the expansion of haplogroup N).

To understand the simplest solution better, one can just have a look at the PCA from Bell Beaker samples in Olalde et al. (2018), which (as Reich has already explained many times) expanded directly from Yamna R1b-L23 lineages:

olalde_pca_clines
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions.

Unlike this PCA with ancient samples, where Bell Beaker clines could be a rough approximation to the real sources for each population, and where a cluster spanning all three depicted Early Bronze Age clusters could give a rough proximate source of European Bell Beakers in Hungary (and where one can even distinguish the Y-DNA bottlenecks in the L23 trunk created by each cline) the PCA of modern Uralic populations is probably not suitable for a good estimate of the ancient situation, which may be found shifted up or down of the drawn “Uralic” cluster along East European groups.

After all, we already know that the Siberian cline shows probably as much an ancient admixture event – from the original Uralic expansion to the east with Corded Ware ancestry – as another more recent one – a westward migration of Siberian ancestry (or even more than one). While we know with more or less exactitude what happened with the Palaeo-Laplandic admixture by expanding Proto-Finno-Samic populations (see here), the Proto-Ugric and Pre-Samoyedic populations formed probably more than one cline during the different ancient migrations through central Asia.

Ancient populations

Apparently, the Corded Ware expansion to the east was not marked by a huge change in ancestry. While the final version of Narasimhan et al. (2018) may show a little more detail about other forest-steppe Seima-Turbino/Andronovo-related migrations (and thus also Eastern Uralic peoples), we have already had enough information for quite some time to get a good idea.

mezhovska-pca
Principal component analysis. PCA of ancient individuals (according colours see legend) projected on modern West Eurasians (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European huntergatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.dataset (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European hunter-gatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.

Mezhovska‘s position is similar to the later Pre-Scythian and Scythian populations. There are some interesting details: apart from haplogroup R1a-Z280 (CTS1211+), there is one R1b-M269 (PF6494+), probably Z2103, and an outlier (out of three) in a similar position to the recently described central/southern Scythian clusters.

NOTE. The finding of R1b-M269 in the forest-steppe is probably either 1) from an Afanasevo-Okunevo origin, or 2) from an admixture with neighbouring Andronovo-related populations, such as Sargary. A third, maybe less likely option is that this haplogroup admixed with Abashevo directly (as it happened in Sintashta, Potapovka, or Pokrovka) and formed part of early Uralic migrations. In any case, since Mezhovska is a Bronze Age society from the Urals region, its association with R1b-Z2103 – like the association of R1b-Z2103 in Scythian clusters – cannot be attributed to “Thracian peoples”, a link which is (as I already said) too simplistic.

The drawn “European cline” of Hungarians (see above), leading from ‘west-like’ Mansi to Hungarian populations – and hosting also Finnic and Estonian samples – , cannot therefore be attributed simply to late “Slavic/Balkan-like” admixture.

Karasuk – located further to the east – is basically also Corded Ware peoples showing clearly a recent admixture with local ANE / Baikal_EN-like populations. In terms of haplogroups it shows haplogroup Q, R1a-Z2124, and R1a-Z2123, later found among early Hungarians, and present also in ancient Samoyedic populations now acculturated.

The most interesting aspect of both Mezhovska and Karasuk is that they seem to diverge from a point close to Ukraine_Eneolithic, which is the supposed ancestral source of Corded Ware peoples (read more about the formation of “steppe ancestry”). This means that Eastern Uralians derive from a source closer to Middle Dnieper/Abashevo populations, rather than Battle Axe (shifted to Latvian Neolithic), which is more likely the source prevalent in Finno-Permic peoples.

Their initial admixture with (Palaeo-)Siberian populations is thus seen already starting by this time in Mezhovska and especially in Karasuk, but this process (compared to modern populations) is incomplete:

f4-test-karasuk-mezhovska
Visualization of f-statistics results. f4(Test, LBK; Han, Mbuti) values are plotted on x axis and f4(Test, LBK; EHG, Mbuti) values on y axis, positive deviations from zero show deviations from a clade between Test and LBK. A red dashed line is drawn between Yamnaya from Samara and Ami. Iron Age populations that can be modelled as mixtures of Yamnaya and East Eurasians (like the Ami) are arrayed around this line and appear to be distinct from the main North/South European cline (blue) on the left of the x axis.
karasuk-mezhovska-admixture
ADMIXTURE results for ancient populations. Red arrows point to the Iron Age Scythian individuals studied. LBK_EN: Early Neolithic Linearbandkeramik; EHG: Eastern European hunter-gatherer; Motala_HG: hunter-gatherer from Motala (Sweden); WHG: western hunter-gatherer; CHG: Caucasus hunter-gatherer; IA: Iron Age; EBA: Early Bronze Age; LBA: Late Bronze Age.

We know now that Samic peoples expanded during the Late Iron Age into Palaeo-Laplandic populations, admixing with them and creating this modern cline. Finns expanded later to the north (in one of their known genetic bottlenecks), admixing with (and displacing) the Saami in Finland, especially replacing their male lines.

So how did Ugric and Samoyedic peoples admix with Palaeo-Siberian populations further, to obtain their modern cline? The answer is, logically, with East Asian migrations related to forest-steppe populations of Central Asia after the Mezhovska and Karasuk periods, i.e. during the Iron Age and later. Other groups from the forest-steppe in Central Asia show similar East Asian (“Siberian”) admixture. We know this from Narasimhan et al. (2018):

(…) we observe samples from multiple sites dated to 1700-1500 BCE (Maitan, Kairan, Oy_Dzhaylau and Zevakinsikiy) that derive up to ~25% of their ancestry from a source related to present-day East Asians and the remainder from Steppe_MLBA. A similar ancestry profile became widespread in the region by the Late Bronze Age, as documented by our time transect from Zevakinsikiy and samples from many sites dating to 1500-1000 BCE, and was ubiquitous by the Scytho-Sarmatian period in the Iron Age.

We already have some information about these later migrations:

siberian-genetic-component-chronology
Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

The Ugric-speaking Sargat culture in Western Siberia shows the expected mixture of haplogroups (ca. 500 BC – 500 AD), with 5 samples of hg N and 2 of hg R1a1, in Pilipenko et al. (2017). Although radiocarbon dates and subclades are lacking, N lineages probably spread late, because of the late and gradual admixture of Siberian cultures into the Sargat melting pot.

The Samoyedic-speaking Tagar culture also shows signs of a genetic turnover in Pilipenko et al. (2018):

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains.

Before the Iron Age, the Karasuk and Mezhovska population were probably already somehow ‘to the north’ within the ancient Steppe-Altai cline (see image below9 created by expanding Seima-Turbino- and Andronovo-related populations. During the Iron Age, further Siberian contributions with Iranian expansions must have placed Uralians of the Central Asian forest-steppe areas much closer to today’s Palaeo-Siberian cline.

However, the modern genetic picture was probably fully developed only in historic times, when Samoyedic and Ugric languages expanded to the north, only in part admixing further with Palaeo-Siberian-speaking nomads from the Circum-Arctic region (see here for a recent history of Samoyedic Enets), which justifies their more recent radical ‘northern shift’.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

This late acquisition of the language by Palaeo-Siberian nomads (without much population replacement) also justifies the wide PCA clusters of very small Siberian populations. See for example in the PCA from Tambets et al. (2018):

uralic-ugric-samoyedic-modern-clines
Approximate Ugric and Samoyedic clines (exluding apparent outliers). Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

For their relationship with modern Mansi, we have information on Hungarian conqueror populations from Neparáczki et al. (2018):

Moreover, Y, B and N1a1a1a1a Hg-s have not been detected in Finno-Ugric populations [80–84], implying that the east Eurasian component of the Conquerors and Finno-Ugric people are probably not directly related. The same inference can be drawn from phylogenetic data, as only two Mansi samples appeared in our phylogenetic trees on the side branches (S1 Fig, Networks; 1, 4) suggesting that ancestors of the Mansis separated from Asian ancestors of the Conquerors a long time ago. This inference is also supported by genomic Admixture analysis of Siberian and Northeastern European populations [85], which revealed that Mansis received their eastern Siberian genetic component approximately 5–7 thousand years ago from ancestors of modern Even and Evenki people. Most likely the same explanation applies to the Y-chromosome N-Tat marker which originated from China [86,87] and its subclades are now widespread between various language groups of North Asia and Eastern Europe [88].

The genetic picture of Hungarians (their formed cline with Mansi and their haplogroups) may be quite useful for the true admixture found originally in Mansi peoples at the beginning of the Iron Age. By now it is clear even from modern populations that Steppe_MLBA ancestry accompanied the Uralic expansion to the east (roughly approximated in the graphic with Afanasievo_EBA + Bichon_LP EasternHG_M):

siberian-population-expansions
Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups. From Sikora et al. (2018).

Continue reading the final post of the series: Corded Ware—Uralic (IV): Haplogroups R1a and N in Finno-Ugric and Samoyedic.

See also

Related

  • The traditional multilingualism of Siberian populations
  • Iron Age bottleneck of the Proto-Fennic population in Estonia
  • Y-DNA haplogroups of Tuvinian tribes show little effect of the Mongol expansion
  • Corded Ware—Uralic (I): Differences and similarities with Yamna
  • Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups
  • The Iron Age expansion of Southern Siberian groups and ancestry with Scythians
  • Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)
  • Mitogenomes from Avar nomadic elite show Inner Asian origin
  • On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  • Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia
  • Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region
  • The concept of “Outlier” in Human Ancestry (III): Late Neolithic samples from the Baltic region and origins of the Corded Ware culture
  • Genetic prehistory of the Baltic Sea region and Y-DNA: Corded Ware and R1a-Z645, Bronze Age and N1c
  • More evidence on the recent arrival of haplogroup N and gradual replacement of R1a lineages in North-Eastern Europe
  • Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population
  • New Ukraine Eneolithic sample from late Sredni Stog, near homeland of the Corded Ware culture