ASoSaH Reread (II): Y-DNA haplogroups among Uralians (apart from R1a-M417)

corded-ware-yamna-ancestry

This is mainly a reread of from Book Two: A Game of Clans of the series A Song of Sheep and Horses: chapters iii.5. Early Indo-Europeans and Uralians, iv.3. Early Uralians, v.6. Late Uralians and vi.3. Disintegrating Uralians.

“Sredni Stog”

While the true source of R1a-M417 – the main haplogroup eventually associated with Corded Ware, and thus Uralic speakers – is still not known with precision, due to the lack of R1a-M198 in ancient samples, we already know that the Pontic-Caspian steppes were probably not it.

We have many samples from the north Pontic area since the Mesolithic compared to the Volga-Ural territory, and there is a clear prevalence of I2a-M223 lineages in the forest-steppe area, mixed with R1b-V88 (possibly a back-migration from south-eastern Europe).

R1a-M459 (xR1a-M198) lineages appear from the Mesolithic to the Chalcolithic scattered from the Baltic to the Caucasus, from the Dniester to Samara, in a situation similar to haplogroups Q1a-M25 and R1b-L754, which supports the idea that R1a, Q1a, and R1b expanded with ANE ancestry, possibly in different waves since the Epipalaeolithic, and formed the known ANE:EHG:WHG cline.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version.

The first confirmed R1a-M417 sample comes from Alexandria, roughly coinciding with the so-called steppe hiatus. Its emergence in the area of the previous “early Sredni Stog” groups (see the mess of the traditional interpretation of the north Pontic groups as “Sredni Stog”) and its later expansion with Corded Ware supports Kristiansen’s interpretation that Corded Ware emerged from the Dnieper-Dniester corridor, although samples from the area up to ca. 4000 BC, including the few Middle Eneolithic samples available, show continuity of hg. I2a-M223 and typical Ukraine Neolithic ancestry.

NOTE. The further subclade R1a-Z93 (Y26) reported for the sample from Alexandria seems too early, given the confidence interval for its formation (ca. 3500-2500 BC); even R1a-Z645 could be too early. Like the attribution of the R1b-L754 from Khvalynsk to R1b-V1636 (after being previously classifed as of Pre-V88 and M73 subclade), it seems reasonable to take these SNP calls with a pinch of salt: especially because Yleaf (designed to look for the furthest subclade possible) does not confirm for them any subclade beyond R1a-M417 and R1b-L754, respectively.

The sudden appearance of “steppe ancestry” in the region, with the high variability shown by Ukraine_Eneolithic samples, suggests that this is due to recent admixture of incoming foreign peoples (of Ukraine Neolithic / Comb Ware ancestry) with Novodanilovka settlers.

The most likely origin of this population, taking into account the most common population movements in the area since the Neolithic, is the infiltration of (mainly) hunter-gatherers from the forest areas. That would confirm the traditional interpretation of the origin of Uralic speakers in the forest zone, although the nature of Pontic-Caspian settlers as hunter-gatherers rather than herders make this identification today fully unnecessary (see here).

EDIT (3 FEB 2019): As for the most common guesstimates for Proto-Uralic, roughly coinciding with the expansion of this late Sredni Stog community (ca. 4000 BC), you can read the recent post by J. Pystynen in Freelance Reconstruction, Probing the roots of Samoyedic.

eneolithic-ukraine-corded-ware
Late Sredni Stog admixture shows variability proper of recent admixture of forest-steppe peoples with steppe-like population. See full version here.

NOTE. Although my initial simplistic interpretation (of early 2017) of Comb Ware peoples – traditionally identified as Uralic speakers – potentially showing steppe ancestry was probably wrong, it seems that peoples from the forest zone – related to Comb Ware or neighbouring groups like Lublyn-Volhynia – reached forest-steppe areas to the south and eventually expanded steppe ancestry into east-central Europe through the Volhynian Upland to the Polish Upland, during the late Trypillian disintegration (see a full account of the complex interactions of the Final Eneolithic).

The most interesting aspect of ascertaining the origin of R1a-M417, given its prevalence among Uralic speakers, is to precisely locate the origin of contacts between Late Proto-Indo-European and Proto-Uralic. Traditionally considered as the consequence of contacts between Middle and Upper Volga regions, the most recent archaeological research and data from ancient DNA samples has made it clear that it is Corded Ware the most likely vector of expansion of Uralic languages, hence these contacts of Indo-Europeans of the Volga-Ural region with Uralians have to be looked for in neighbours of the north Pontic area.

sredni-stog-repin-contacts
Sredni Stog – Repin contacts representing Uralic – Late Indo-European contacts were probably concentrated around the Don River.

My bet – rather obvious today – is that the Don River area is the source of the earliest borrowings of Late Uralic from Late Indo-European (i.e. post-Indo-Anatolian). The borrowing of the Late PIE word for ‘horse’ is particularly interesting in this regard. Later contacts (after the loss of the initial laryngeal) may be attributed to the traditionally depicted Corded Ware – Yamna contact zone in the Dnieper-Dniester area.

NOTE. While the finding of R1a-M417 populations neighbouring R1b-L23 in the Don-Volga interfluve would be great to confirm these contacts, I don’t know if the current pace of more and more published samples will continue. The information we have right now, in my opinion, suffices to support close contacts of neighbouring Indo-Europeans and Uralians in the Pontic-Caspian area during the Late Eneolithic.

Classical Corded Ware

After some complex movements of TRB, late Trypillia and GAC peoples, Corded Ware apparently emerged in central-east Europe, under the influence of different cultures and from a population that probably (at least partially) stemmed from the north Pontic forest-steppe area.

Single Grave and central Corded Ware groups – showing some of the earliest available dates (emerging likely ca. 3000/2900 BC) – are as varied in their haplogroups as it is expected from a sink (which does not in the least resemble the Volga-Ural population):

Interesting is the presence of R1b-L754 in Obłaczkowo, potentially of R1b-V88 subclade, as previously found in two Central European individuals from Blätterhole MN (ca. 3650 and 3200 BC), and in the Iron Gates and north Pontic areas.

Haplogroups I2a and G have also been reported in early samples, all potentially related to the supposed Corded Ware central-east European homeland, likely in southern Poland, a region naturally connected to the north Pontic forest-steppe area and to the expansion of Neolithic groups.

corded-ware-haplogroups
Y-DNA samples from early Corded Ware groups and neighbouring cultures. See full version.

The true bottlenecks under haplogroup R1a-Z645 seem to have happened only during the migration of Corded Ware to the east: to the north into the Battle Axe culture, mainly under R1a-Z282, and to the south into Middle Dnieper – Fatyanovo-Balanovo – Abashevo, probably eventually under R1a-Z93.

This separation is in line with their reported TMRCA, and supports the split of Finno-Permic from an eastern Uralic group (Ugric and Samoyedic), although still in contact through the Russian forest zone to allow for the spread of Indo-Iranian loans.

This bottleneck also supports in archaeology the expansion of a sort of unifying “Corded Ware A-horizon” spreading with people (disputed by Furholt), the disintegrating Uralians, and thus a source of further loanwords shared by all surviving Uralic languages.

Confirming this ‘concentrated’ Uralic expansion to the east is the presence of R1a-M417 (xR1a-Z645) lineages among early and late Single Grave groups in the west – which essentially disappeared after the Bell Beaker expansion – , as well as the presence of these subclades in modern Central and Western Europeans. Central European groups became thus integrated in post-Bell Beaker European EBA cultures, and their Uralic dialect likely disappeared without a trace.

NOTE. The fate of R1b-L51 lineages – linked to North-West Indo-Europeans undergoing a bottleneck in the Yamna Hungary -> Bell Beaker migration to the west – is thus similar to haplogroup R1a-Z645 – linked to the expansion of Late Uralians to the east – , hence proving the traditional interpretation of the language expansions as male-driven migrations. These are two of the most interesting genetic data we have to date to confirm previous language expansions and dialectal classifications.

It will be also interesting to see if known GAC and Corded Ware I2a-Y6098 subclades formed eventually part of the ancient Uralic groups in the east, apart from lineages which will no doubt appear among asbestos ware groups and probably hunter-gatherers from north-eastern Europe (see the recent study by Tambets et al. 2018).

Corded Ware ancestry marked the expansion of Uralians

Sadly, some brilliant minds decided in 2015 that the so-called “Yamnaya ancestry” (now more appropriately called “steppe ancestry”) should be associated to ‘Indo-Europeans’. This is causing the development of various new pet theories on the go, as more and more data contradicts this interpretation.

There is a clear long-lasting cultural, populational, and natural barrier between Yamna and Corded Ware: they are derived from different ancestral populations, which show clearly different ancestry and ancestry evolution (although they did converge to some extent), as well as different Y-DNA bottlenecks; they show different cultures, including those of preceding and succeeding groups, and evolved in different ecological niches. The only true steppe pastoralists who managed to dominate over grasslands extending from the Upper Danube to the Altai were Yamna peoples and their cultural successors.

corded-ware-yamna-pca
Corded Ware admixture proper of expanding late Sredni Stog-like populations from the forest-steppe. See full version here.

NOTE. You can also read two recent posts by FrankN in the blog aDNA era, with detailed information on the Pontic-Caspian cultures and the formation of “steppe ancestry” during the Palaeolithic, Mesolithic and Neolithic: How did CHG get into Steppe_EMBA? Part 1: LGM to Early Holocene and How did CHG get into Steppe_EMBA? Part 2: The Pottery Neolithic. Unlike your typical amateur blogger on genetics using few statistical comparisons coupled with ‘archaeolinguoracial mumbo jumbo’ to reach unscientific conclusions, these are obviously carefully redacted texts which deserve to be read.

I will not enter into the discussion of “steppe ancestry” and the mythical “Siberian ancestry” for this post, though. I will just repost the opinion of Volker Heyd – an archaeologist specialized in Yamna Hungary and Bell Beakers who is working with actual geneticists – on the early conclusions based on “steppe ancestry”:

[A]rchaeologist Volker Heyd at the University of Bristol, UK, disagreed, not with the conclusion that people moved west from the steppe, but with how their genetic signatures were conflated with complex cultural expressions. Corded Ware and Yamnaya burials are more different than they are similar, and there is evidence of cultural exchange, at least, between the Russian steppe and regions west that predate Yamnaya culture, he says. None of these facts negates the conclusions of the genetics papers, but they underscore the insufficiency of the articles in addressing the questions that archaeologists are interested in, he argued. “While I have no doubt they are basically right, it is the complexity of the past that is not reflected,” Heyd wrote, before issuing a call to arms. “Instead of letting geneticists determine the agenda and set the message, we should teach them about complexity in past human actions.

Related

Resurge of local populations in the final Corded Ware culture period from Poland

poland-kujawy

Open access A genomic Neolithic time transect of hunter-farmer admixture in central Poland, by Fernandes et al. Scientific Reports (2018).

Interesting excerpts (emphasis mine, stylistic changes):

Most mtDNA lineages found are characteristic of the early Neolithic farmers in south-eastern and central Europe of the Starčevo-Kőrös-Criş and LBK cultures. Haplogroups N1a, T2, J, K, and V, which are found in the Neolithic BKG, TRB, GAC and Early Bronze Age samples, are part of the mitochondrial ‘Neolithic package’ (which also includes haplogroups HV, V, and W) that was introduced to Europe with farmers migrating from Anatolia at the onset of the Neolithic17,31.

A noteworthy proportion of Mesolithic haplogroup U5 is also found among the individuals of the current study. The proportion of haplogroup U5 already present in the earliest of the analysed Neolithic groups from the examined area differs from the expected pattern of diversity of mtDNA lineages based on a previous archaeological view and on the aDNA findings from the neighbouring regions which were settled by post-Linear farmers similar to BKG at that time. A large proportion of Mesolithic haplogroups in late-Danubian farmers in Kuyavia was also shown in previous studies concerning BKG samples based on mtDNA only, although these frequencies were derived on the basis of very small sample sizes.

y-dna-poland

A significant genetic influence of HG populations persisted in this region at least until the Eneolithic/Early Bronze Age period, when steppe migrants arrived to central Europe. The presence of two outliers from the middle and late phases of the BKG in Kuyavia associated with typical Neolithic burial contexts provides evidence that hunter-farmer contacts were not restricted to the final period of this culture and were marked by various episodes of interaction between two societies with distinct cultural and subsistence differences.

The identification of both mitochondrial and Y-chromosome haplogroup lineages of Mesolithic provenance (U5 and I, respectively) in the BKG support the theory that both male and female hunter-gatherers became part of these Neolithic agricultural societies, as has been reported for similar cases from the Carpathian Basin, and the Balkans. The identification of an individual with WHG affinity, dated to ca. 4300 BCE, in a Middle Neolithic context within a BKG settlement, provides direct evidence for the regional existence of HG enclaves that persisted and coexisted at least for over 1000 years, from the arrival of the LBK farmers ca. 5400 BCE until ca. 4300 BCE, in proximity with Neolithic settlements, but without admixing with their inhabitants.

poland-pca
Principal component analysis with modern populations greyed out on the background (top), ADMIXTURE results with K = 10 with samples from this study amplified (bottom).

The analysis of two Late Neolithic cultures, the GAC and CWC, shows that steppe ancestry was present only among the CWC individuals analysed, and that the single GAC individual had more WHG ancestry than previous local Neolithic individuals. (…) The CWC’s affinity to WHG, however, contrasts with results from published CWC individuals that identified steppe ancestry related to Yamnaya as the major contributor to the CWC genomes, while here we report also substantial contributions from WHG that could relate to the late persistence of pockets of WHG populations, as supported by the admixture results of N42 and the finding of the 4300-year-old N22 HG individual. These results agree with archaeological theories that suggest that the CWC interaction with incoming steppe cultures was complex and that it varied by region.

Some comments

About the analyzed CWC samples, it is remarkable that, even though they are somehow related to each other, they do not form a tight cluster. Also, their Y-DNA (I2a), and this:

When compared to previously published CWC data, our CWC group (not individuals) is genetically significantly closer to WHG than to steppe individuals (Z = −4.898), a result which is in contrast with those for CWC from Germany (Z = 2.336), Estonia (Z = 0.555), and Latvia (Z = 1.553).

ancestry-proportions-poland
Ancestry proportions based on qpAdm. Visual representation of the main results presented in Supplementary Table S5. Populations from this study marked with an asterisk. Values and populations in brackets show the nested model results marked in green in Supplementary Table S5.

Włodarczak (2017) talks about the CWC period in Poland after ca. 2600 BC as a time of emergence of an allochthnous population, marked by the rare graves of this area, showing infiltrations initially mainly from Lesser Poland, and later (after 2500 BC) from the western Baltic zone.

Since forest sub-Neolithic populations would have probably given more EHG to the typical CWC population, these samples support the resurge of ‘local’ pockets of GAC- or TRB-like groups with more WHG (and also Levant_Neolithic) ancestry.

The known presence of I2a2a1b lineages in GAC groups in Poland also supports this interpretation, and the subsistence of such pockets of pre-steppe-like populations is also seen with the same or similar lineages appearing in comparable ‘resurge’ events in Central Europe, e.g. in samples from the Únětice and Tumulus culture.

About the Bronze Age sample, we have at last official confirmation of haplogroup R1a1a (sadly no subclade*) at the very beginning of the Trzciniec period – in a region between western (Iwno) and eastern (Strzyżów) groups related to Mierzanowice – , which has to be put in relation with the samples from the final Trzciniec period in the Baltic published in Mittnik et al. (2018).

EDIT (8 OCT 2018): More specific subclades have been published, including a R1a-Z280 lineage for the Bronze Age sample (see spreadsheet).

This confirms the early resurge of R1a-Z645 (probably R1a-Z282) lineages at the core of the developing East European Bronze Age, a province of the European Bronze Age that emerged from evolving Bell Beaker groups in Poland.

bell-beakers-poland-kujawy
Arrival of Bell Beakers in Poland after ca. 2400 BC, and their origin in other BBC centres (Czebreszuk and Szmyt 2011).

I don’t have any hope that the Balto-Slavic evolution through BBC Poland → Mierzanowice/Iwno → Trzciniec → Lusatian cultures is going to be confirmed any time soon, until we have a complete trail of samples to follow all the way to historic Slavs of the Prague culture. However, I do think that the current data on central-east Europe – and the recent data we are receiving from north-east Europe and the Iranian steppes, at odds with the Indo-Slavonic alternative – supports this model.

I guess that, in the end, similar to how the Yamna vs. Corded Ware question is being solved, the real route of expansion of Proto-Balto-Slavic (supposedly spoken ca. 1500-1000 BC) is probably going to be decided by the expansion of either R1a-M458 (from the west) or R1a-Z280 lineages (from the east), because the limited precision of genetic data and analyses available today are going to show ‘modern Slavic’-like populations from the whole eastern half of Europe for the past 4,000 years…

Related

Modern Sardinians show elevated Neolithic farmer ancestry shared with Basques

sardinia-europe-relation

New paper (behind paywall), Genomic history of the Sardinian population, by Chiang et al. Nature Genetics (2018), previously published as a preprint at bioRxiv (2016).

#EDIT (18 Sep 2018): Link to read paper for free shared by the main author.

Interesting excerpts (emphasis mine):

Our analysis of divergence times suggests the population lineage ancestral to modern-day Sardinia was effectively isolated from the mainland European populations ~140–250 generations ago, corresponding to ~4,300–7,000 years ago assuming a generation time of 30 years and a mutation rate of 1.25 × 10−8 per basepair per generation. (…) in terms of relative values, the divergence time between Northern and Southern Europeans is much more recent than either is to Sardinia, signaling the relative isolation of Sardinia from mainland Europe.

We documented fine-scale variation in the ancient population ancestry proportions across the island. The most remote and interior areas of Sardinia—the Gennargentu massif covering the central and eastern regions, including the present-day province of Ogliastra— are thought to have been the least exposed to contact with outside populations. We found that pre-Neolithic hunter-gatherer and Neolithic farmer ancestries are enriched in this region of isolation. Under the premise that Ogliastra has been more buffered from recent immigration to the island, one interpretation of the result is that the early populations of Sardinia were an admixture of the two ancestries, rather than the pre-Neolithic ancestry arriving via later migrations from the mainland. Such admixture could have occurred principally on the island or on the mainland before the hypothesized Neolithic era influx to the island. Under the alternative premise that Ogliastra is simply a highly isolated region that has differentiated within Sardinia due to genetic drift, the result would be interpreted as genetic drift leading to a structured pattern of pre-Neolithic ancestry across the island, in an overall background of high Neolithic ancestry.

sardinia-pca
PCA results of merged Sardinian whole-genome sequences and the HGDP Sardinians. See below for a map of the corresponding regions.

We found Sardinians show a signal of shared ancestry with the Basque in terms of the outgroup f3 shared-drift statistics. This is consistent with long-held arguments of a connection between the two populations, including claims of Basque-like, non-Indo-European words among Sardinian placenames. More recently, the Basque have been shown to be enriched for Neolithic farmer ancestry and Indo-European languages have been associated with steppe population expansions in the post-Neolithic Bronze Age. These results support a model in which Sardinians and the Basque may both retain a legacy of pre-Indo-European Neolithic ancestry. To be cautious, while it seems unlikely, we cannot exclude that the genetic similarity between the Basque and Sardinians is due to an unsampled pre-Neolithic population that has affinities with the Neolithic representatives analyzed here.

density-nuraghi-sardinia-genetics
Left: Geographical map of Sardinia. The provincial boundaries are given as black lines. The provinces are abbreviated as Cag (Cagliari), Cmp (Campidano), Car (Carbonia), Ori (Oristano), Sas (Sassari), Olb (Olbia-tempio), Nuo (Nuoro), and Ogl (Ogliastra). For sampled villages within Ogliastra, the names and abbreviations are indicated in the colored boxes. The color corresponds to the color used in the PCA plot (Fig. 2a). The Gennargentu region referred to in the main text is the mountainous area shown in brown that is centered in western Ogliastra and southeastern Nuoro.
Right: Density of Nuraghi in Sardinia, from Wikipedia.

While we can confirm that Sardinians principally have Neolithic ancestry on the autosomes, the high frequency of two Y-chromosome haplogroups (I2a1a1 at ~39% and R1b1a2 at ~18%) that are not typically affiliated with Neolithic ancestry is one challenge to this model. Whether these haplogroups rose in frequency due to extensive genetic drift and/or reflect sex-biased demographic processes has been an open question. Our analysis of X chromosome versus autosome diversity suggests a smaller effective size for males, which can arise due to multiple processes, including polygyny, patrilineal inheritance rules, or transmission of reproductive success. We also find that the genetic ancestry enriched in Sardinia is more prevalent on the X chromosome than the autosome, suggesting that male lineages may more rapidly trace back to the mainland. Considering that the R1b1a2 haplogroup may be associated with post-Neolithic steppe ancestry expansions in Europe, and the recent timeframe when the R1b1a2 lineages expanded in Sardinia, the patterns raise the possibility of recent male-biased steppe ancestry migration to Sardinia, as has been reported among mainland Europeans at large (though see Lazaridis and Reich and Goldberg et al.). Such a recent influx is difficult to square with the overall divergence of Sardinian populations observed here.

sardinian-admixture
Mixture proportions of the three-component ancestries among Sardinian populations. Using a method first presented in Haak et al. (Nature 522, 207–211, 2015), we computed unbiased estimates of mixture proportions without a parameterized model of relationships between the test populations and the outgroup populations based on f4 statistics. The three-component ancestries were represented by early Neolithic individuals from the LBK culture (LBK_EN), pre-Neolithic huntergatherers (Loschbour), and Bronze Age steppe pastoralists (Yamnaya). See Supplementary Table 5 for standard error estimates computed using a block jackknife.

Once again, haplogroup R1b1a2 (M269), and only R1b1a2, related to male-biased, steppe-related Indo-European migrations…just sayin’.

Interestingly, haplogroup I2a1a1 is actually found among northern Iberians during the Neolithic and Chalcolithic, and is therefore associated with Neolithic ancestry in Iberia, too, and consequently – unless there is a big surprise hidden somewhere – with the ancestry found today among Basques.

NOTE. In fact, the increase in Neolithic ancestry found in south-west Ireland with expanding Bell Beakers (likely Proto-Beakers), coupled with the finding of I2a subclades in Megalithic cultures of western Europe, would support this replacement after the Cardial and Epi-Cardial expansions, which were initially associated with G2a lineages.

I am not convinced about a survival of Palaeo-Sardo after the Bell Beaker expansion, though, since there is no clear-cut cultural divide (and posterior continuity) of pre-Beaker archaeological cultures after the arrival of Bell Beakers in the island that could be identified with the survival of Neolithic languages.

We may have to wait for ancient DNA to show a potential expansion of Neolithic ancestry from the west, maybe associated with the emergence of the Nuragic civilization (potentially linked with contemporaneous Megalithic cultures in Corsica and in the Balearic Islands, and thus with an Iberian rather than a Basque stock), although this is quite speculative at this moment in linguistic, archaeological, and genetic terms.

Nevertheless, it seems that the association of a Basque-Iberian language with the Neolithic expansion from Anatolia (see Villar’s latest book on the subject) is somehow strengthened by this paper. However, it is unclear when, how, and where expanding G2a subclades were replaced by native I2 lineages.

Related

Cogotas I Bronze Age pottery emulated and expanded Bell Beaker decoration

bronze_age_iberia

Copying from Sherds. Creativity in Bronze Age Pottery in Central Iberia (1800-1150 BC), by Antonio Blanco-González, In: J. Sofaer (ed.): Considering Creativity Creativity, Knowledge and Practice in Bronze Age Europe. Archaeopress (2018), Oxford: 19-38

Interesting excerpts (emphasis mine):

Several Iberian scholars have referred to stab-and-drag designs in both Bell-Beaker and Bronze Age ceramics (Maluquer de Motes 1956, 180, 196; Fernández-Posse 1982, 137), although these have not always been correctly appraised. In the 1980s it was finally realized that the sherds retrieved at the Boquique Cave should be dated to the Middle-Late Neolithic (4400-3300 BC), and that the same technique was also widely used in the Late Bronze Age (Fernández-Posse 1982, 147-149). Thus, nowadays it is possible to track this technique in inland Iberia at different moments throughout later prehistory (Alday and Moral 2011, 67). The earliest stab-and-drag motifs (Figure 2.2, 1) are, in fact, older than was initially thought (Fernández-Posse 1982); they actually date to the Early Neolithic (5500-4400 BC), contemporary to the Mediterranean Cardial impressed wares (Alday 2009, 135-137). There are also a few sporadic examples of stab-and-drag motifs among Bell-Beaker pottery (2600-2000 BC), such as the Ciempozuelos-style bowl from Las Carolinas (Madrid) (Figure 2.2, 2a) featuring so-called ‘symbolic’ schematic stags drawn by using this technique (Blasco and Baena 1996, 431, Lám. II; Garrido Pena 2000, 108). It is also possible to recognize this technique in a large Beaker from Molino Sanchón II (Zamora) (Abarquero et al. 2012, 206, fig. 190; Guerra-Doce et al. 2011, 812) (Figure 2.2, 2b) and there are other possible cases (e.g. Montero and Rodríguez 2008, 166, Lám. IX). Finally, the widespread use of this technique occurred in the Late Bronze Age (Figure 2.2, 3a & 3b) from c.1450 BC (e.g. Rodríguez Marcos 2007, 362-364; Abarquero 2005).

Analogies between Bell-Beaker and Bronze Age wares

Several Bell-Beaker styles can be discerned in the Iberian Meseta (e.g. Harrison 1977, 55-67; Garrido Pena 2000; 2014). In this subsection attention will be drawn primarily to the most frequent of these variants, the Ciempozuelos style, although more localised similarities can be recognised between the Beaker impressed-comb style and some early Cogotas I pottery. The Ciempozuelos ware (Delibes 1977; Harrison 1977, 19-20; Blasco 1994; Garrido Pena 2000, 116-126; Rodríguez Marcos 2007, 252-256) was widespread throughout the Meseta between 2600-2000 BC, in the same region subsequently occupied by Cogotas I communities (1800-1150 BC) (Fernández-Posse 1998; Abarquero 2005) (Figure 2.1). There is a wide array of resemblances between both pottery assemblages, a point that has been highlighted since the 1920s (e.g. Almagro Basch 1939, 143-144; Maluquer de Motes 1956, 196; Harrison 1977, 20; Jimeno 1984, 117-118).

iberian-peninsula-cogotas-i-culture
The Iberian Peninsula and the area of the Cogotas I culture (1800-1150 cal BC). Sites mentioned in the text: 1. Molino Sanchón II (Villafáfila, Zamora); 2. La Horra (El Cerro, Burgos); 3. El Mirador cave (Atapuerca, Burgos); 4. Cueva Maja (Cabrejas del Pinar, Soria); 5. Cueva del Asno (Los Rábanos, Soria); 6. Castilviejo de Yuba (Medinaceli, Soria); 7. Majaladares (Borja, Zaragoza); 8. Cova dels Encantats (Serinyá, Girona); 9. Boquique cave (Plasencia, Cáceres); 10. Cerro de la Cabeza (Ávila); 11. Las Cogotas (Cardeñosa, Ávila); 12. Madrid; 13. Las Carolinas (Madrid); 14. La Indiana (Pinto, Madrid); 15. Llanete de los Moros (Montoro, Córdoba); 16. Peñalosa (Baños de la Encina, Jaén): 17. Cuesta del Negro (Purullena, Granada); 18. Gatas (Turre, Almería); 19. Cabezo Redondo (Villena, Alicante)

The key ornamental traits that define the Ciempozuelos style are also reproduced among Cogotas I ware and are the following:

a) Widespread deployment among the early Cogotas I pottery of the more ubiquitous incised motifs in the Ciempozuelos style: herringbones, spikes and reticulates (Garrido Pena 2000, 119-120, fig. 48, themes 6 and 9; Rodríguez Marcos 2012, 155). During the Middle Bronze Age other less frequent themes are also similar to Bell-Beaker decorations, such as incised triangles filled with lines. Late Bronze Age wares feature the so-called ‘pseudo-Kerbschnitt’ (Rodríguez Marcos 2007, 369) which has striking precedents among Ciempozuelos ware (Harrison 1977, 20; Garrido Pena 2000, 120, fig. 48, theme 12) (Figure 2.3, 1a & 1b).

b) The extensive use of internal rim decoration, almost always deploying chevron motifs. This is ‘a Ciempozuelos leitmotiv’ (Harrison 1977, 20) in the Northern Meseta, where between 30% – 50% of all rims exhibit such a feature (Delibes 1977; Garrido Pena 2000, 163). The decoration of internal rims is even more widespread among Cogotas I vessels (Jimeno 1984; Rodríguez Marcos 2012, 158) (Figure 2.3, 1a).

c) White paste rubbed into the geometric decorations (Delibes 1977; Harrison 1977, 20; Jimeno 1984). Maluquer de Motes (1956, 186) in fact regarded excised and stab-and-drag techniques not as decorations per se, but as a way of anchoring encrusted inlays. He also reported that the bulk of rims in Cogotas I vessels exhibit white accretions (Maluquer de Motes 1956, 192) (Figure 2.3).

In addition, several authors agree on the likeness between the Bell-Beaker impressed-comb style and certain Cogotas I local pottery variants corresponding to its earliest phase (1800-1450 BC) (Garrido Pena 2000, 113-116). This is particularly striking for one micro-style from the western Meseta region, whose ceramics feature numerous impressed-comb motives (e.g. Fabián 2012; Rodríguez Marcos 2012, 158).

bell-beaker-cienpozuelos-cogotas-i
1a) Encrusted Beaker carinated bowls with pseudo-excised motifs from La Salmedina (Madrid) (photo: Museo Arqueológico Regional de Madrid) and 1b) from Cuesta de la Reina (Ciempozuelos, Madrid) (photo: Real Academia de la Historia); 2) Late Bronze Age jar featuring checkerboard excised motives with white paste from Pórragos (Bolaños, Valladolid) (photo: Museo de Valladolid).

The relevance of emulated pottery decorations

[1] (…) there are grounds for proffering the view that the key creative mechanism responsible for the resemblances between apparently unrelated pottery assemblages was the emulation of standalone and very apparent decorative traits. It may constitute a good case for horizontal cultural transmission predicated upon iconic resemblances between easily imitated formal traits (Knappett 2010). Instead of spontaneous and autonomous innovations, it is far more compelling to regard these decorative features as interlinked and punctuated ‘way stations along the trails of living beings, moving through a world’ (Ingold and Hallam 2007, 8). No creative act can be regarded as really isolated. Instead it ought to be understood as focusing on the nodes in particular fields of associations (Lohnmann 2010, 216).

[2] Pottery ornamentation in the Cogotas I tradition combined and reinterpreted both local atavistic (e.g. Abarquero 2005, 24-26; Rodríguez Marcos 2007, 357-367) and widespread pan-European ornaments (e.g. Blasco 2001, 225, 2003, 67-68; Abarquero 2012, 98-101). From a semiotic perspective such things transcended large spatio-temporal distances; they were closely associated by iconical shared links in a relational or cognitive space, whereby these entities were co-presented and indirectly recalled and perceived despite being distant (Knappett 2010, 85-86). The locally-rooted biases of these creative quotations can be glimpsed from rare sequences of ceramic productions spanning several generations of potters. For instance, at Majaladares (Borja, Zaragoza) strong analogies arise between Ciempozuelos wares featuring unique decorations in this site and Cogotas I wares from the superimposed layers, exhibiting remarkably similar themes (Harrison 2007, 65-82). Likewise, it is noteworthy that the earliest triangular excisions in Cogotas I wares occurred in the eastern Meseta, where imported Duffaits vessels featuring comparable motifs were circulating from several centuries before.(…)

[3] There is scope for advocating that these pottery decorations cannot be envisaged as a form of irrelevant or mundane aesthetic garnish for the sake of art. Bronze Age potters drew upon a highly meaningful array of esoteric sources and, in so doing, the vessels might have echoed designs betokening genealogical, mythical or parallel worlds, in a kind of dialectical negotiation between self and other (Taussig 1993). The very involvement of ancestors and spiritual forces in making and embellishing a pot is supported by ethnographic evidence (e.g. Crown 2007, 679; Lohnmann 2010, 222) and this also seems plausible in the case of Cogotas I ceramics. These real or imagined beings might be regarded as inspiring sources of creations, whose role is often to legitimize and guarantee the accuracy of the involved knowledge (Lohnmann 2010, 222). In the same vein, the smearing of colored inlays on certain pots ought to be properly understood beyond an aesthetic action of embellishment, as our own rationale prompts us to assume. (…)

[4] Furthermore, this pottery tradition needs to be understood as an effective means of socialization and a key resource in the forging of identities. Decorating certain intricate Cogotas I vessels (Figure 2.2, 3b; Figure 2.4, 3) very likely involved an ostentatious difficulty (Robb and Michelaki 2012, 168; Abarquero 2005, 438) and the proficiency displayed in such tasks may have accrued even moral connotations (Hendon 2010, 146-147). Learning to perform some of the pottery decoration discussed here certainly required complex training processes involving both expert potters and mentored apprentices (Crown 2007; Hosfield 2009, 46). Thus, the stab-and-drag technique demanded time-consuming learning as well as careful and thorough execution (Alday 2009, 11-19). Likewise the selection and processing of particular raw materials – mainly bones – to attain the white inlays involved direct observation and hands-on training (Odriozola et al. 2012, 150). (…)

[5] Finally, the role of the Cogotas I pottery decoration was also deeply rooted in the sphere of social interactions through particular communal practices of exhibition and consumption. The celebration of commensality rituals is very often predicated as a key social practice among these communities (e.g. Harrison 1995, 74; Abarquero 2005, 56; Blanco-González 2014, 453). Potters embodied and replicated non-discursive shared tenets on a routine basis, but by means of these social gatherings and the deployment of such festive services ‘their visual materialisation made them part of the habitus of everybody’ (Chapman and Gaydarska 2007, 182). Bronze Age groups in the Meseta have recently been characterized as scarcely integrated, short-lasting and unstable social units, lacking long-term cultural rules and institutions, restricted to one generation lifespan at the most (Blanco-González 2015). (…)

Intruding East Bell Beakers

As we know from Olalde et al. (2018) and Mathieson et al. (2018), East Bell Beakers of R1b-L23 subclades and steppe ancestry brought North-West Indo-European languages to Europe, marked in Iberia by the first intrusive Y-DNA R1b-P312 subclades, as supported also by Martiniano et al. (2017) and Valdiosera et al. (2018). In fact, the Bronze Age Cogotas I culture shows the first R1b-DF27 subclade found to date (R1b-DF27 is prevalent among modern Iberians).

If we take into account that the earliest Iberian Bell Beakers were I2a, R1b-V88, and G2a, just like previous Chalcolithic and Neolithic Iberians, it cannot get clearer how and when the first Indo-European waves reached Iberia, and thus that the Harrison and Heyd (2007) model of East Bell Beaker expansion was right. Not a single reputable geneticist contests the origin of R1b-L23 subclades in Iberia anymore (see e.g. Heyd, or Lazaridis).

While the Spanish archaeological school will be slow to adapt to genetic finds – since there are many scholars who have supported for years other ways of expansion of the different Bell Beaker motifs, and follow mostly the “pots not people” descriptive Archaeology – , many works like these can be just as well reinterpreted in light of what we already know happened in terms of population movements during this period, and this alone gives a whole new interesting perspective to archaeological finds.


On the previous, non-Indo-European stage of the Iberian Paeninsula, there is also a new paper (behind paywall), showing reasons for inter-regional differences, and thus supporting homogeneity before the arrival of Bell Beakers:

Stable isotope ratio analysis of bone collagen as indicator of different dietary habits and environmental conditions in northeastern Iberia during the 4th and 3rd millennium cal B.C., by Villalba-Mouco et al. Archaeol Anthropol Sci (2018).

isotope-collagen-iberia
Scatter plot of human and fauna bone collagen δ13C and δ15N values from Cova de la Guineu and Cueva de Abauntz according to their location inside Iberia

Interesting excerpts:

The Chalcolithic period is traditionally defined by the emergence of copper elements and associated to the beginning of defensive-style architecture (Esquivel and Navas 2007). This last characteristic only seems to appear clearly in the southeast of the Iberian Peninsula, with the denominated Millares Culture (e.g. García Sanjuán 2013; Valera et al. 2014). In the rest of the Iberian Peninsula, the Neolithic-Chalcolithic transition is scarcely defined. In fact, it is possible that this transition does not even strictly exist and rather results from the evolution of villages present in the most advanced phases of the Neolithic (e.g. Blasco et al. 2007). This continuity is also perceptible in most of the sepulchral caves over time, where radiocarbon dates show a continued use from the 4th to the 3rd millennium cal B.C. (Fernández-Crespo 2016; Utrilla et al. 2015; Villalba-Mouco et al. 2017). Moreover, it is possible to find some copper materials normally associated with burial contexts as prestigious grave goods (Blasco and Ríos 2010), but not as evidence of a massive replacement of commonly used tools such as flint blades, bone industry, polished stones or pottery without singular characteristics from a unique period (Pérez-Romero et al. 2017). (…)

cova-guineu-cueva-abauntz
Scatter plot of human and fauna bone collagen δ13C and δ15N values from Cueva de Abauntz (above) and Cova de la Guineu (below).

The human isotope values from both sites portray a quite homogeneous overall diet among humans. This homogeneous pattern of diet based on C3 terrestrial resources seems to be general along the entire Iberian Peninsula during the Late Neolithic and Chalcolithic (e.g. Alt et al. 2016; Díaz-Zorita 2014; Fernández-Crespo et al. 2016; Fontanals-Coll et al. 2015; García-Borja et al. 2013; López-Costas et al. 2015; McClure et al. 2011; Sarasketa-Gartzia et al. 2017; Villalba- Mouco et al. 2017; Salazar-García 2011; Salazar-García et al. 2013b; Salazar-García 2014; Waterman et al. 2016). The reason of this homogeneity could be the consolidated economy based on agriculture and livestock, together with a higher mobility among the different communities and the increase of trade networks, not only in prestigious objects (Schuhmacher and Banerjee 2012) but also in food products. Isotopic analyses in fauna remains could give us more clues about animal trade, as happens in other chronologies (Salazar- García et al. 2017).

In any case, and even if the dietary interpretation does not vary, it is noteworthy to mention that there are significant differences between δ13C human values from Cova de la Guineu and δ13C human values from Cueva de Abauntz (Mann-Whitney test, p = 1.05× 10−12) (Fig. 6). This observed δ13C differences among humans is also present among herbivores (Mann-Whitney test, p = 0.0004), which define the baseline of each ecosystem. This suggests that the observed human difference between sites should not be attributed to diet, but most possibly to the existence of enough environmental differences to be recorded in the collagen δ13C values along the food web. Plants are very sensitive to different environmental factors (altitude, temperature, luminosity or water availability) and their physiological adaptation to its factors can generate a variation in their isotopic values as happens with C3 and C4 adaptations (O’Leary 1981; Ambrose 1991). This spectrum of values has been used to assess several aspects about past environmental conditions when studying the δ13C and δ15N isotopic values of a species with a fixed diet over time (e.g. Stevens et al. 2008; González-Guarda et al. 2017). Moreover, this gradual δ13C and δ15N variation among different environments is very helpful to discriminate altitudinal movements in herbivores with a high precision method based on serial dentine analysis (Tornero et al. 2016b). In our case, results reflect the influence of environment from at least two areas in Iberia (the Western Prepyrenees and the Northeastern coast of Iberia). These differences demand caution when interpreting human diets from different sites that are not contemporary and/or not in a same area, as it is possible that the environmental influence is responsible for changes otherwise attributed to different subsistence patterns and social structures (Fernández-Crespo and Schulting 2017), as has been demonstrated in neighbouring territories (Herrscher and Bras-Goude 2010; Goude and Fontugne 2016).

Related: