North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312


The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.


Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.


Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.


The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.


European hydrotoponymy (V): Etruscans and Rhaetians after Italic peoples


There is overwhelming evidence that the oldest hydrotoponymic layer in Italy (and especially Etruria) is of Old European nature, which means that non-Indo-European-speaking (or, at least, non-Old-European-speaking) Etruscans came later to the Apennine Peninsula.

Furthermore, there is direct and indirect linguistic, archaeological, and palaeogenomic data supporting that the intrusive Tursānoi came from the Aegean during the Late Bronze Age, possibly through the Adriatic, and that their languages spread to Etruria and probably also to the eastern Alps.

Hydrotoponymic layer

The following are translated excerpts (emphasis mine) from Lenguas, genes y culturas en la Prehistoria de Europa y Asia suroccidental, by Villar et al. Universidad de Salamanca (2007):

Lenguas, genes y culturas en la Prehistoria de Europa y Asia suroccidental (2007). Buy the ebook online (or the printed version, if available).

‘(Indo-)Mediterranean’ substrate?

The name Indo-Mediterranean substrate was spread in Italy by the work of V. Pisani. Other Italian scholars continued this idea, such as W. Belardi, L. Heilmann, D. Silvestri, etc. In their hands, the nuclear area of ​​the Indo-Mediterranean substratum was established as follows: “il mondo culturale indomediterráneo trova i suoi più importanti centri di gravitazione (e, soltanto secondariamente, di espansione) nel Mediterràneo Orientale (Creta, Cipro, Asia Minore), nella ‘regione dei due fiumi’ (area di espansione subarea) e nella valle dell’Indo (civiltà de Harappa e Mohenjo Daro)”. From there they could have spread to other areas, such as the western Mediterranean. Even at one point there was talk of “a Mediterranean oasis in the Baltic”, whose main basis was the existence of numerous lexical elements, real or supposedly pre-Indo-European in the Baltic languages.

One of the paradoxes of the theory of the Mediterranean substrate is that the lexical or toponymic components that are attributed to it can rarely be explained etymologically from the surviving languages ​​of said supposed substrate; sometimes they are not even very compatible with what we know of the non-Indo-European languages ​​of the corresponding area. For example, neither Basque nor Iberian have an ancestral and autochthonous phoneme /p/, while that phoneme is frequent in substrate words (cf. among the few mentioned above *pal- and *lap-). In fact, for these three languages ​​other alternative origins have been imagined, so that they would not be representatives of the local substrate: Basque (North Africa, the Caucasus), Iberian (North Africa), Etruscan (Asia Minor). Thus, under such hypotheses the non-Indo-European languages ​​attested in Italy and the Iberian Peninsula would not be autochthonous, but as immigrant as the Indo-European languages.

Akʷa hydronyms. The majority of old serial elements are found in Italy, with 9, where they don’t appear as second element. Different to the southern areas, they are found in especially frequent compounds in the acha-Namen in Germany, and hyper-represented (as usual) in Lithuania, which shows strictly 8 ancient names.

Italy and Iberia

Let’s review data on Italy:

I. Serial tponyms and hydronyms of Italy:

  1. ub-: Caecubus, Egubium, Litubium, Marrubium, Olobia, Rutuba, Tardoba, Tardubius, Verubius, etc.
  2. uc-: Aluca, Arucia, Arugus, Ausucum, Ausugum, Motuca, Uccia.
  3. ur-: Orinos, Stura, Stura, Astura, Tibur, Caburrum, Calorem.
  4. urc-: Coturga, Orgus, Urcia, Urcinia, Urgo.
  5. bai-: Baebiani.
  6. tuc-: Tucianus (pagus).
  7. murc-: Murcia, Murgantia, Murgantia.
  8. *war: Varduli, Barduli.


II. Non-serial toponyms and hydronyms of Italy: Aesis, Aisis, Ana, Ania, Anios, Arsia, Astura, Ausa, Ausonia, Ausculum, Bardinisca vallis, Barduli, Basentius, Basta, Boron, Cabienses (Cabia), Caburrum, Cales, Cales, Casta Ballenis, Ceresium, Cerili, Corsica, Cortona, Curicum, Ispelum, Ispila, Isporos, Istonium, Istria, lacus, Latis, Latium, Laurentum, Laurentes, Luca, Lucania, Lucera, Maleventum, mare, Marrucini, Minio, Minius, Oscela, Osci, Ossa, Ostia, Paestum, Pisaurum, Pisaurus, Sabini, Sagis, Savo, Sila, Silarus, Silis, Soletum, etc.


Not few of the coincident place names between the southern Iberian and Italic material are rigorous cognates. We understand by such the names that not only coincide in the root or in the serial element, but in the whole root set plus suffixes, or – if it is a compound – in the two sets of roots plus suffixes. In addition to the ones that we are going to present below, there are others that we did not mention because the Iberian correlate was not found within the southern group, but in other geographical areas, as is the case, for example, with the Italian Mantua and the Spanish Mantua (Carpetania).

As can be seen, the parallels between the southern Iberian toponymic area and the Italic one are so wide and strict that the mere calculation of probabilities makes any attempt to attribute them to the mere chance of random homophony irrational. And the improbability of chance increases as coincidences are added in new places in Europe. What will not prevent, for sure, that some would resort to it as an explanation, in particular those who are reluctant to abandon the conception of the prehistory of the European continent that underlies their usual approaches, which suffer an irreparable strike when they are confronted with these data.

The second aspect, the compatibility of this material with Indo-European etymology, offers another significant correlation: the “southern” series that are also found in the Ibero-Pyrenean region and in Italy (and the rest of western Europe) are compatible with Indo-European etymologies; (…)

I will spare the reader of all proposed Indo-European etymologies, most of which are fairly evident. Those interested should buy one of the books, or both.



(…) in the whole of Italy there is a considerable collection of toponyms and hydronyms of “Southern Iberian” type, whose joint inventory we have contributed to above. From them we find in Etruria Ause, Veturris / Bituriza, Castola, Hasta, Cortona, Luca, Minio, Osa / Ossa, Pissai, Pistoria. The Hispanic and Italian correlates of those names are:


However, the inventory of ancient names and hydronyms of Etruria compatible without discussion with well-known Indo-European etymologies is much wider: Albina, Alma, Alsium, Arnine, Arnos, Arnus, Aventia, Marta, Pallia, Umbro, Vetulonium, Volsinii. Furthermore, the majority of Etrurian hydronyms have non-Latin Indo-European etymology: Albina, Alma, Arnine, Arnos, Arnus, Auser, Aventia, Marta, Minio, Osa, Ossa, Pallia, Umbro. And very few of the others (Clusinus, Cremera, Lingeus, Trasumenus, Vesidia) could claim an Etruscan etymology, if only one could do so.

In summary, the territory occupied by Etruscans presents a hydro-toponymic situation very similar to that of the rest of Italy and Western Europe: it exhibits a very deep toponymic stratum of Indo-European character to which most hydronyms attested in antiquity belong. As we know the history of Etruria from the end of the 1st millennium BC, and we know that no other Indo-European peoples mediated between the Etruscans and the Romanization of the territory, we must conclude that this ancient toponymy was there before the Etruscans arrived or emerged in that place. And, when the Etruscans settled there, they did not have the opportunity to put names of their language to the rivers in general, because they had already received them from a previous people and the Etruscans limited themselves to learning them, adapting them to their language, and transmitting them in turn to the Romans. When the latter Romanized Etruria, they limited themselves to incorporating those names and adapting them to Latin.



The ‘foreign’ Tyrsenians

Here is a recapitulation of the main reasons why Etruscans were recently intrusive to Italy, as they appeared in The Origin of the Etruscans, by Beekes (2003):

NOTE. You can read another version of the text in PDF, as the main paper from Biblioteca Orientalis LIX(3-4) 2002.

  1. The tradition as given by Herodotus and Dionysius of Halikarnassos.
  2. The story that the Etruscans were Pelasgians.
  3. The use of the term ‘Tyrsēnoi’ for both Etruscans and a people in north-western Asia Minor. Above we argued that the eastern Tyrsēnoi are the remnant of a population. This means that the Tyrsēnoi/Etruscans came from this area.
  4. The Lemnos inscription.
  5. To the testimony of Lemnos must now be added that Herodotus says that the people of Plakiê and Skylakê spoke the same language as the Etruscans.
  6. etruscan-homeland

  7. The kumdanlı inscription. (…) lake Egridir (of which the old name is unknown, unless it was just Limnai). This is just over the border of classical Lydia. The inscription dates from the second century ad and is given by Ramsay (i883); the same inscription is cited by Sundwall (i9i3, 22i). It mentions three people as Tyrsēnoi(67, 68, i02). Though very late, the inscription is of great interest, as it is the only time that we have inscriptional evidence for Tyrsēnoi in Asia Minor. (And nobody will argue that these were Etruscans from Italy.) (…)
  8. The suffix -ānos. The suffix -ānos in the name Tyrsēnoi (with ē from ā) points to the north-west of Asia Minor. It has long since been recognized that this suffix for ethnic names is at home in north-west Asia Minor; some think that it is of non-Greek origin; cf. Αβυδηνός , Ολυμπιηνός, Περγαμηνός, Σαρδηνός; (see Chantraine i933, 206; Schwyzer 490 (6); De Simone i993, 88ff.). This proves that the name Tyrsēnoi originated in the north-west of Asia Minor. (…)
  9. Loanwords. As to the language, Steinbauer (i999, 367) observes that Etruscan shows most connections (loanwords) with Lydian (…)
  10. Tarchon. The definite proof of the oriental origin of the Etruscans is that a ‘hero’ of great significance is Tarchon (Briquel i99i). He is clearly the Stormgod Tarhun(t)-, the highest god of the Luwians and Hittites.
  11. Nanas. This identification is strongly confirmed by the story that the Etruscans were Pelasgians who came from Greece under Nanas (Nanos), mentioned by Hellanikos. This name was long ago recognized as an Anatolian ‘Lallname’.
  12. The triumphus complex. In his study of the Roman triumphus Versnel has shown that (i970, 293): ‘the Etruscans brought the New Year festival with them from Asia Minor, together with the god who formed the centre of it, a god whom the Greeks called Dionysos, the Etruscans Tinia (or by an Italic name Voltumna), a figure of the ‘dying and rising’ type, who was invoked by the cry *thriambe and who on New Year’s Day was represented by the king.’ And on p. 300: ‘The Etruscans brought the New Year festival with them from Asia Minor and gave Rome two ceremonies: the ludi Romani as the festival of the New Year, the triumph as the festival of the victory. … Only along this way is it possible to explain the data: i. the Dionysiac call to epiphany triumpe, introduced via Etruria; 2. the identification of the Roman victorious general and of the magistrate leading the games with the god Iuppiter; 3. the typological and historic relation between the ludi Romani and the triumph.’
  13. The double axe. On a smaller issue Versnel concludes (p. 299): ‘When this bipennis [‘double axe’], property of ‘Zeus Bakchos’, carried as symbol of sacred power by Lydian kings, is encountered again as the symbol of the royal authority of the Etruscan kings, particularly of the supreme king of the federation of cities, this may be considered an important indication of the Asia Minor origin of the entire underlying ideology, and of the ceremony of investiture in which the bipennis played a part.’ These conclusions are of primary importance, as they concern a deeprooted complex of religious views that cannot have been taken over from elsewhere.
  14. The Kabeiroi. One might also recall the Latin word camillus, which means a young boy of noble birth who assists with ritual actions. (…) Probably more evidence can be found in the field of religion, such as the much discussed hepatoscopy. It seems quite probable to me that the lituus, the crosier used by the Roman priests, is Anatolian (see e.g. Wainwright i959, 2i0; cf. Haas i99i, Abb. 75, the Stormgod standing on an animal with his lituus over his shoulder).
  15. The Etruscan way of life. There was in antiquity much criticism on Etruscan customs, concerning cruelty, sexual behaviour, and the behaviour of women. (…) Dionysius concluded from the fact that they were so strange that they had always lived in Italy, whereas it is of course much more natural to explain it by assuming that they were strangers.
  16. No withdrawal area. We have seen above that Tuscany is not a ‘withdrawal area’, where an ancient people may hold out when the country is invaded. On the contrary, it is a desirable area which the Indo-European peoples, had they come later, would certainly have occupied. (But it went the other way: the Etruscans came long after the Indo-Europeans and settled there/conquered the country.)
  17. sea-peoples-expansion-tyrsenians
    The Sea Peoples in the Eastern Mediterranean c. 1200 BC. Map by Ian Mladjov.
  18. Archaeology. Many scholars would like to see archaeological evidence, but I think that it is quite possible that we shall never find any.
  19. The 1200 crisis. In 1200 the whole Mediterranean was in commotion; the Mycenaean and Hittite worlds, between which the TyrseOEnoi lived, disappeared. So the movement of the Etruscans fits very well in the general picture. That this was the setting of the migration of the Etruscans has been assumed by many earlier scholars.
  20. The ten saecula. As to the time, it has been argued that the Etruscans thought that their world would last ten saecula (Briquel i999, 58; Pfiffig i975, i59ff.). The way of counting provides several problems, however (…) If we accept it, we arrive at 968 bc. Now we do not know from when one started counting. This might have been a decisive victory over the Umbrians, or a kind of unification of the Etruscans, or the founding of an important city. It could well be that this was some 200 years after the arrival of the Etruscans, which would take us to 1168 bc. (…)
  21. The famine. Herodotus states that the reason for the departure of the Tyrsēnoi was a long famine. This has been identified as the famine about i200. (…)
  22. The sea-peoples. (…) The phenomenon as a whole stands, it seems; the problem is the details: which peoples took part in which movements? In our case, as the Lukka are mentioned (which were very probably the Lycians), the Tyrsēnoi may have been involved as well. So the question is whether the T(w)r(w)š, mentioned by Merneptah, were the Tyrsēnoi. We have no confirmation, but it seems quite possible.
  23. The journey. We know from the abundant finds of ceramics in the i3th century that the Mycenaeans knew the sea-route to Italy. (…)
  24. The Umbrians. Pliny (3, ii2) states that the Etruscans conquered 300 cities from the Umbrians (Trecenta eorum oppida Tusci debellasse reperiuntur.). This clearly refers to the ‘Landnahme’. This statement is confirmed by the river Umbro (mod. Ombrone), which flows in its full length in Etruscan territory. The river will have given its name to the people, or vice versa. Anyhow, the river will have flowed in Umbrian territory; so the Etruscans must have pushed the Umbrians out.
  25. The name Sergestus, of a prominent friend of Aeneas, seems identical with Lydian Srkastu- and Phrygian Surkastos (…) it is excluded that (Virgil) got it from Lydia or Phrygia, or Asa Minor in general. So he must have got it at home, from a source that was acqainted with Etruscan traditions. This means that the name was known to the Etruscans (or those who studied their traditions). Above I proposed that it lives on in Etr. Sekst-alu-.

You can read the full text (and its appendices) for further evidences adduced by Beekes, who considers the matter mostly settled.

Local Italic peoples

Another main reason for the intrusion of Tyrsenians among local groups is the ancient connection between Italic languages, which most likely formed an ancient Apennine dialect continuum:

  • the core Italic group with Latino-Faliscan and Palaeo-Sabellic – probably also including an Ausonian-Siculian branch – separated ca. 1500-1000 BC;
  • NOTE. Sicel is believed to have arrived in Sicily with Ausonian-Siculian speakers either around the 13th c. or in the middle of the 11th c. BC (or in both waves), from their ancient settlements in the mainland, driving prior inhabitants (Elymians) to the east of the island, which sets another clear terminus ante quem for the expansion of Italic languages in southern Italy.

  • and the possibly more distantly related North Picene and Venetic, connecting all roughly to an early to mid-2nd millennium BC language.

This continuum was probably broken (with language replacement and displacement events) with the 12th c. BC turmoil and the emergence of new social hierarchies. The adoption of older place and river names, as well as the lack of long-lasting influence on neighbouring languages, suggests that the predominance of the Etruscan language in its proto-historic territory was probably gradual and quite recent.

NOTE. For more on guesstimates, relative chronological expansions and potential archaeological identifications, see e.g. “Ausgliederung und Aufgliederung der italischen Sprachen”, by Helmut Rix In: Languages in Prehistoric Europe (2003). Or, basically, any recent (linguistic) text on the distribution and attribution of ancient Apennine languages to the Ital(o-Venet)ic group.

Languages of pre-Roman Italy and nearby islands. Italo-Venetic languages surrounded with shadowed red border. I1, South Picene; I2, Umbrian; I3, Sabine; I4, Faliscan; I5, Latin; I6, Volscian and Hernican; I7, Central Italic (Marsian, Aequian, Paeligni, Marrucinian, Vestinian); I8, Oscan, Sidicini, Pre-Samnite; I9, Sicel; IE1, Venetic; IE2, North Picene; IE3, Ligurian; IE4, Elymian; IE5, Messapian; C1, Lepontic; C2, Gaulish; G1-G2-G3, Greek dialects (G1: Ionic, G2: Aeolic, G3: Doric); P1, Punic; N1, Rhaetian; N2, Etruscan; N3, Nuragic. Image modified from Davius Sanctex.


The main criticism against this ethnolinguistic model of foreign Tyrsenians comes, surprisingly, from the lack of archaeological data to support this arrival. Or, rather, fitting anthropological interpretations of a culture of Asia Minor with similar hierarchical societies (?). From Review of R. S. P. Beekes, The Origin of the Etruscans, by Mahoney, Etruscan Studies (2008):

A crucial part of Beekes’ argument, however, is that there is a significant cultural break in Etruria around 1200, at the beginning of the Early Bronze Age or Proto-Villanovan period (p. 34, citing Briquel and Torelli). The introduction of cremation can be dated to around this period, and there is also evidence for a new hierarchical social organization (convenient summary in Barker and Rasmussen, p. 53-60). Beekes simply says that there is a change, and changes of this sort can come about when new people move in to an existing society, so therefore this change is consistent with his theory. That is correct as far as it goes, but what is missing is any consideration of how and why people coming in from Asia Minor would cause the particular changes that take place in Etruria. Can we argue that the society of the pre-migration Tyrsenians was hierarchical in the same way as those of the various Indo-European-speaking peoples in the region? Beekes simply says “what we still would like to have is material objects, or art traditions etc., from Etruria agreeing with their homeland” (p. 34). What we would really like to have is evidence for the organization of society in this alleged homeland.

Weird as this criticism is, here it is yet another example of the social change brought about under Eastern Mediterranean influences during the Final Bronze Age, from a recent paper (behind paywall) Mobile elites at Frattesina: flows of people in a Late Bronze Age ‘port of trade’ in northern Italy, by Cavazzuti et al. Antiquity (2019):


The collapse of the Terramare system c. 1150 BC was followed by a sudden and substantial depopulation of the central part of the Po Plain (Cardarelli 2009). At the beginning of the Final Bronze Age, the southern part of the Po Valley was almost abandoned. In contrast, in the northern part of the Po Valley, some villages survived (…) Concurrently, a new territorial system arose, pivoting around the socio-economic pole of Frattesina (Calzavara Capuis et al. 1984; Bietti Sestieri et al. 2015; Cupitò et al. 2015). Therefore, within the area of the wider Terramare ‘culture’, local responses to the crisis led to different outcomes, some of which were relatively successful and others catastrophic. Economic factors—both in terms of internal carrying capacity and degree of openness to external relations—probably played a key role in determining different responses to the tensions.

The communities of the Terramare, especially in the southern area, were probably not flexible enough to adapt their political structure and modes of production to the needs of a rapidly changing world. Moreover, the domino effect from the overall geo-political instability of the twelfth century BC, in a highly interconnected system such as the Mediterranean, was undoubtedly another factor (Cardarelli 2009). The lack of evidence in the southern Terramare area for connections with the Aegean and the Levant suggests a more ‘closed’ system located on the edge of the ‘globalised’ world of the Late Bronze Age. In contrast, there is well-documented evidence from the largest terramare on the northern side of the Po River for possible incipient institutionalised, well-connected elites—particularly at Fondo Paviani, which has yielded locally produced pottery in Levantine and Late Helladic IIIC Aegean-Mycenaean styles (Bettelli et al. 2015).

The display of austere equality that dominated the Middle and Late Bronze Age ‘urnfields’ (Salzani 2005; Cardarelli 2014) strongly limited funerary expressions of social differentiation. Internal inequalities nonetheless existed between different co-resident extended families and lineages comprising tens of individuals at most (e.g. at Casinalbo; Cardarelli et al. 2014: 722–28), and, above all, between large centres, such as the terramara at Fondo Paviani and dependent satellite settlements (Balista et al. 2005; Cupitò et al. 2015). It seems reasonable therefore to hypothesise that groups based at nodal sites in the system attracted more prestige goods from exotic places, along with individuals from distant areas, while small villages attracted people mainly from within a local radius (Cavazzuti et al. 2019a). Within this dynamic cultural context, the Final Bronze Age funerary evidence from Frattesina documents a more elaborate display of power and wealth concentrated in the hands of elites. At Le Narde (Frattesina’s cemetery), this privileged segment of society, probably with its own entourage, is clearly represented by a small number of burials with several indicators of prestige.

Distribution of the violin-bow fibulae with two temple knots in the different source categories. Map by Sabine Pabst (2018).


(…) the individual in burial Narde1-168 may have achieved the status of a ‘warrior-chief’, as symbolised by the presence of an Allerona-type sword (Bianco Peroni 1970). This was ritually broken and deposited in pieces inside the grave, along with a bronze pin, a pair of tweezers and other ornaments (Figure 8). (…) yielded a strontium isotope ratio (0.70983) that is incompatible with the local 0–20km baseline (Table 3), but fits within the 20–50km range. By contrast, the value obtained from the femoral cortical bone (0.70924) is consistent with the local range of Frattesina. This means that this individual moved to the site after early childhood—possibly during youth or early adulthood—and he probably spent the last years of his life there, at the apex of the community.

Marshall Sahlins (1981), in his famous article ‘The stranger-king: or Dumézil among the Fijians’, compares the dynamics of power in the Fiji Islands to the Indo-European tradition, arguing that human societies tend to locate power as originating from the outside (Sahlins 1981, 2008; see also Ling & Rowlands 2015). Sahlins focuses on origin myths across ancient polities in the Indo-European language area, which systematically feature a dichotomy between what the Romans called gravitas and celeritas. The former refers to the conservative, peaceful and productive character of an established native community, while celeritas represents the disruptive, transformative violence personified in the stranger king, who “erupts upon a pastoral scene of peaceful husbandry and political equality (or at least limited authority)” (Sahlins 1981: 112).

The grave goods and cremated bones of burial Narde1-168 (after Salzani 1989). Urn height is 0.26m, sword length is 0.46m.

The individual buried in grave Narde1-168 at Frattesina was probably neither a true ‘king’, nor a true ‘stranger’. Despite its uniqueness, his grave resembles those of the rest of the community and is included within a large collective—or at least not evidently exclusive—burial mound. ‘Warrior-chief’ perhaps would be a more appropriate definition for this individual. Moreover, his place of origin was not so distant as to define him as a ‘stranger’. Nonetheless, Sahlins’s archetype of the ‘stranger-king’ evokes the power of alterity; burial Narde1-168 perfectly embodies celeritas, which breaks with the gravitas of the former Terramare tradition and guided whatever survived the collapse towards a new social model. Since the discovery of Frattesina and its cemeteries, Italian scholars have debated the mechanisms underlying the origin and economic success of the settlement, and the degree of foreign (i.e. Cypriot and Levantine) involvement in this process as suggested by archaeological finds (Cupitò et al. 2015). The new isotopic data presented here demonstrate that even though some individuals may have come from the Levant—where the available 87Sr/86Sr baseline ranges from 0.7079–0.7086 (Sheridan & Gregoricka 2015; Gregoricka & Guise Sheridan 2016)—or were from other exotic places, they nonetheless represent a minority of the population and, in any case, not the upper elite. The latter appear quite mobile, although probably from within the broader hinterland radius.

Adriatic or western route?

One of the interesting questions, and probably non-trivial for the correct interpretation of ancestry in future ancient DNA samples, is from where exactly did Tyrsenians come from, and more importantly where exactly did the arrive, and when. I have the impression that a Tyrrhenian Sea route is more commonly depicted (as in my maps) due to the historical predominance of Etruscans in the west, but that archaeologists usually consider the Adriatic – and thus a spread from the Po River Valley and/or Pannonia – a more likely route for Tyrsenian speakers, and probably rightly so.

NOTE. The tentative (and highly speculative) classification of fragmentary Rhaetian as more archaic than Etruscan relative to Lemnian may give further support to this route.

Failing a precise time transect from a population geographically close to the origin of their expansion in central or northern Italy, we are bound to see the same misinterpretations of the data we have seen in the case of Sea Peoples of hg. R1b behind Philistines. Nevertheless, here are some interesting predictions of population movements by Pabst (2013) based particularly on the Stätzling-/Allerona-sword from Narde in Veneto, which have been confirmed for the moment with isotope analyses, showing that some peoples of Frattesina had previously lived in the eastern Mediterranean, and that local elites had a much closer origin:

Distribution of the various blade profiles of the Stätzling (l) and Casale (H) type of leaf blade sword: 1 White symbols: blade with rapier-like ribs. – 2 black symbols: flat rhombic blade profile.- 3 Large gray symbols: a blade with a narrow midrib and longitudinal grooves.- Small gray symbols: lenticular or indefinite blade profile. (Map S. Pabst).

An Ingot fragment from the hoard of Hočko Pohorje in Styria, Slovenia indicates that possibly also Pannonia was involved in the 12th century BC (or during stage Ha A1) in the East and Central Mediterranean copper trade. According to the chemical composition or the high iron content, it is particularly close to individual finds from Sardinia, Italy and Anatolia.

The people behind the Stätzling swords could have been the potentates of this supraregional trade in the Adriatic and Ionian seas. This is also to be expected from the presence of late Mycenaean populations on the upper Adriatic. This is indicated – in addition to individual Mycenaean ceramics imports – especially in the Aegean Stätzling sword from the fly cave of Škocjan in the hinterland of Trieste, in this exchange network of the 12th century BC. However, not only people from the late Mycenaean cultural area were involved in the process. For native elites are suspected behind the mostly locally manufactured Stätzling swords in Pannonia and Italy, according to the analysis of the grave find 227 of Narde; perhaps local organizers of the trade, as allies of the Mycenaean chiefs.


Palaeogenomics might help shed light upon the complex matter of the Tyrsenian emergence in Europe. Even though Rhaetian is a fragmentary language, it seems that it is related to Etruscan, and neither are remnant languages from the Bronze Age, but rather intrusive languages to Italy and Central Europe.

It is more than likely, then, that ancient DNA will show an increase in Aegean ancestry during the Late/Final Bronze Age in central and/or northern Italy, even if this change is found rapidly diluted within generations, as happened with the Aegean ancestry among Philistines, who – in spite of this dilution – also left their prolonged linguistic mark in the Levant.

This is the summary I made of an online report from oral communication A 12,000-year Genetic History of Rome and the Italian Peninsula, by Hannah Moots, the 6th February 2019, with 134 samples from Lazio and surrounding areas:

Bronze Age – Iron Age evolution of Italy Top Left: Early Bronze Age cultures. Bottom left: PCA of groups from the Bronze Age; marked in red are previous Italy Bell Beakers. Top Right: Early Iron Age cultures. Bottom right: PCA of groups from the Iron Age – Middle Ages; marked in red are the approximate location of described ancient Italian clusters, one including Etruscans, Osco-Umbrians, Picentes, etc., and the wider cluster of Romans (dates unknown). See full maps and PCAs.

While Bronze Age samples of west-central Italy show a clear homogenisation of the genetic pool, with a shift in the PCA towards central Europe (away from the previous CHG/Iran Neolithic influence), and thus close to the modern Sardinian cluster, the few investigated Iron Age samples from the Republican period (ca. 700–20 BC) show a widespread genetic cluster encompassing the modern Italian ones, overlapping North Italian (ca. 60%) or South Italian/Sicilian (ca. 40%) clusters. The arrival or increase of EHG-, Levant Neolithic-, or CHG/IN-related ancestry in samples from this period suggest influence from previous population movements during the LBA from the north or through the Mediterranean, respectively. The Imperial Period shows influence from CHG/IN-related ancestry, but only sporadically Levant Neolithic.

NOTE. For more on the referred northern and southern Italian clusters, see Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe, by Raveane et al. bioRxiv (2018).

Principal component analysis projecting 63 ancient individuals onto the components inferred from modern individuals. A) Principal component analysis projecting 63 ancient individuals onto the components inferred from 3,282 modern individuals assigned, through a CP/fS analysis, to European West Asian and Caucasian clusters.

The alternative view

Kristiansen is among those who offer an alternative view in the archaeological question, supporting the opposite direction of population movements: of Terramare migrants in Greece, a theory which is not to be lightly dismissed, in the complex setting of population movements across the Mediterranean during the Final Bronze Age.

As a weak linguistic support for such a movement, one can find the hypothesis of Eteo-Cretans as Osco-Umbrian speakers, based on de Ligt’s speculative interpretation of the Praisos inscription (Talanta 2008-2009).

It seems that, even if these views are also correct, the overwhelming evidence is for a foreign origin of Tyrsenians:

  • lack of Tyrsenian hydrotoponymic layers in Italy or central Europe;
  • guesstimates and “split” distribution of Italo-Venetic languages;
  • foreign culture and influences of Etruscans;
  • recent predominance and influence of Etruscan language and culture;
  • East Mediterranean peoples in the LBA Po Valley (isotope analyses);
  • genetics of Sea Peoples from the Aegean.


A Song of Sheep and Horses, revised edition, now available as printed books


As I said 6 months ago, 2019 is a tough year to write a blog, because this was going to be a complex regional election year and therefore a time of political promises, hence tenure offers too. Now the preliminary offers have been made, elections have passed, but the timing has slightly shifted toward 2020. So I may have the time, but not really any benefit of dedicating too much effort to the blog, and a lot of potential benefit of dedicating any time to evaluable scientific work.

On the other hand, I saw some potential benefit for publishing texts with ISBNs, hence the updates to the text and the preparation of these printed copies of the books, just in case. While Spain’s accreditation agency has some hard rules for becoming a tenured professor, especially for medical associates (whose years of professional experience are almost worthless compared to published peer-reviewed papers), it is quite flexible in assessing one’s merits.

However, regional and/or autonomous entities are not, and need an official identifier and preferably printed versions to evaluate publications, such as an ISBN for books. I took thus some time about a month ago to update the texts and supplementary materials, to publish a printed copy of the books with Amazon. The first copies have arrived, and they look good.


Corrections and Additions

I have changed the names and order of the books, as I intended for the first publication – as some of you may have noticed when the linguistic book was referred to as the third volume in some parts. In the first concept I just wanted to emphasize that the linguistic work had priority over the rest. Now the whole series and the linguistic volume don’t share the same name, and I hope this added clarity is for the better, despite the linguistic volume being the third one.

Uralic dialects
I have changed the nomenclature for Uralic dialects, as I said recently. I haven’t really modified anything deeper than that, because – unlike adding new information from population genomics – this would require for me to do a thorough research of the most recent publications of Uralic comparative grammar, and I just can’t begin with that right now.

Anyway, the use of terms like Finno-Ugric or Finno-Samic is as correct now for the reconstructed forms as it was before the change in nomenclature.


The most interesting recent genetic data has come from Iberia and the Mediterranean. Lacking direct data from the Italian Peninsula (and thus from the emergence of the Etruscan and Rhaetian ethnolinguistic community), it is becoming clearer how some quite early waves of Indo-Europeans and non-Indo-Europeans expanded and shrank – at least in West Iberia, West Mediterranean, and France.

Some of the main updates to the text have been made to the sections on Finno-Ugric populations, because some interesting new genetic data (especially Y-DNA) have been published in the past months. This is especially true for Baltic Finns and for Ugric populations.


Consequently, and somehow unsurprisingly, the Balto-Slavic section has been affected by this; e.g. by the identification of Early Slavs likely with central-eastern populations dominated by (at least some subclades of) hg. I2a-L621 and E1b-V13.

I have updated some cultural borders in the prehistoric maps, and the maps with Y-DNA and mtDNA. I have also added one new version of the Early Bronze age map, to better reflect the most likely location of Indo-European languages in the Early European Bronze Age.

As those in software programming will understand, major changes in the files that are used for maps and graphics come with an increasing risk of additional errors, so I would not be surprised if some major ones would be found (I already spotted three of them). Feel free to communicate these errors in any way you see fit.

European Early Bronze Age: tentative langage map based on linguistics, archaeology, and genetics.

I have selected more conservative SNPs in certain controversial cases.

I have also deleted most SNP-related footnotes and replaced them with the marking of each individual tentative SNP, leaving only those footnotes that give important specific information, because:

  • My way of referencing tentative SNP authors did not make it clear which samples were tentative, if there were more than one.
  • It was probably not necessary to see four names repeated 100 times over.
  • Often I don’t really know if the person I have listed as author of the SNP call is the true author – unless I saw the full SNP data posted directly – or just someone who reposted the results.
  • Sometimes there are more than one author of SNPs for a certain sample, but I might have added just one for all.
More than 6000 ancient DNA samples compiled to date.

For a centralized file to host the names of those responsible for the unofficial/tentative SNPs used in the text – and to correct them if necessary -, readers will be eventually able to use Phylogeographer‘s tool for ancient Y-DNA, for which they use (partly) the same data I compiled, adding Y-Full‘s nomenclature and references. You can see another map tool in ArcGIS.

NOTE. As I say in the text, if the final working map tool does not deliver the names, I will publish another supplementary table to the text, listing all tentative SNPs with their respective author(s).

If you are interested in ancient Y-DNA and you want to help develop comprehensive and precise maps of ancient Y-DNA and mtDNA haplogroups, you can contact Hunter Provyn at You can also find more about phylogeography projects at Iain McDonald’s website.

I have also added more samples to both the “Asian” and the “European” PCAs, and to the ADMIXTURE analyses, too.

I previously used certain samples prepared by amateurs from BAM files (like Botai, Okunevo, or Hittites), and the results were obviously less than satisfactory – hence my criticism of the lack of publication of prepared files by the most famous labs, especially the Copenhagen group.

Fortunately for all of us, most published datasets are free, so we don’t have to reinvent the wheel. I criticized genetic labs for not releasing all data, so now it is time for praise, at least for one of them: thank you to all responsible at the Reich Lab for this great merged dataset, which includes samples from other labs.

NOTE. I would like to make my tiny contribution here, for beginners interested in working with these files, so I will update – whenever I have time – the “How To” sections of this blog for PCAs, PCA3d, and ADMIXTURE.

Detail of the PCA of European Iron Age populations. See full versions.

For unsupervised ADMIXTURE in the maps, a K=5 is selected based on the CV, giving a kind of visual WHG : NWAN : CHG/IN : EHG : ENA, but with Steppe ancestry “in between”. Higher K gave worse CV, which I guess depends on the many ancient and modern samples selected (and on the fact that many samples are repeated from different sources in my files, because I did not have time to filter them all individually).

I found some interesting component shared by Central European populations in K=7 to K=9 (from CEU Bell Beakers to Denmark LN to Hungarian EBA to Iberia BA, in a sort of “CEU BBC ancestry” potentially related to North-West Indo-Europeans), but still, I prefer to go for a theoretically more correct visualization instead of cherry-picking the ‘best-looking’ results.

Since I made fun of the search for “Siberian ancestry” in coloured components in Tambets et al. 2018, I have to be consistent and preferred to avoid doing the same here…

In the first publication (in January) and subsequent minor revisions until March, I trusted analyses and ancestry estimates reported by amateurs in 2018, which I used for the text adding my own interpretations. Most of them have been refuted in papers from 2019, as you probably know if you have followed this blog (see very recent examples here, here, or here), compelling me to delete or change them again, and again, and again. I don’t have experience from previous years, although the current pattern must have been evidently repeated many times over, or else we would be still talking about such previous analyses as being confirmed today…

I wanted to be one step ahead of peer-reviewed publications in the books, but I prefer now to go for something safe in the book series, rather than having one potentially interesting prediction – which may or may not be right – and ten huge mistakes that I would have helped to endlessly redistribute among my readers (online and now in print) based on some cherry-picked pairwise comparisons. This is especially true when predictions of “Steppe“- and/or “Siberian“-related ancestry have been published, which, for some reason, seem to go horribly wrong most of the time.

I am sure whole books can be written about why and how this happened (and how this is going to keep happening), based on psychology and sociology, but the reasons are irrelevant, and that would be a futile effort; like writing books about glottochronology and its intermittent popularity due to misunderstood scientist trends. The most efficient way to deal with this problem is to avoid such information altogether, because – as you can see in the current revised text – they wouldn’t really add anything essential to the content of these books, anyway.

Continue reading

Official site of the book series:
A Song of Sheep and Horses: eurafrasia nostratica, eurasia indouralica

Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia


New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

Interesting excerpts (emphasis in bold; modified for clarity):

Balearic Islands: The expansion of Iberian speakers

Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

Steppe in Sardinia IA: Phocaeans from Italy?

Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

Sicily EBA: The Lusitanian/Ligurian connection?

(…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

Sad to read this:

This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.


Haplogroup R1b-M167/SRY2627 linked to Celts expanding with the Urnfield culture


As you can see from my interest in the recently published Olalde et al. (2019) Iberia paper, once you accept that East Bell Beakers expanded North-West Indo-European, the most important question becomes how did its known dialects spread to their known historic areas.

We already had a good idea about the expansion of Celts, based on proto-historical accounts, fragmentary languages, and linguistic guesstimates, but the connection of Celtic with either Urnfield or slightly later Hallstatt/La Tène was always blurred, due to the lack of precise data on population movements.

The latest paper on Iberia is interesting for many details, such as:

  • The express dismissal of the newest pet theory based on the simplistic “steppe ancestry = IE”: the obsessive comparisons of Dutch Bell Beakers as the origin of basically anything that moves in Europe.
  • A discrete influx of North African ancestry in certain samples before the Moorish invasion (which was probably mediated by peoples of North African rather than Levantine admixture).
  • The finding of very Mycenaean-like Greek colonies of the 5th century (interestingly, under R1b lineages).
Modified from section of PCA of ancient samples by Olalde et al. (2019). “IE Iberia” refers to Pre-Celtic Indo-European languages of Iberia, such as Galaico-Lusitanian in the west (see more on Lusitanian), and a potentially Ligurian-related language in the North-East and southern France.

The paper is, however, of particular importance from the perspective of historical linguistics. It confirms that:

  • Celtic-speaking peoples expanded in Iberia likely during the Late Bronze Age – Early Iron Age (probably with the Urnfield culture, before 1000 BC) with North/Central European ancestry.

NOTE. The paper marks what are believed to be the boundaries of non-Indo-European languages during the Iron Age in later times, extrapolating that situation to the past. Mediterranean sites with Iberian traits (ca. 6th century on) were probably non-Indo-European-speaking tribes, but it is unclear what happened in the centuries before their sampling, and there are no clear boundaries. These incoming Celts from central Europe with the Urnfield culture makes it very likely that the Iberian expansion to the north happened later, incorporating thus this central European ancestry in the process. The southern (orientalizing, Tartessian) site of La Angorrilla shows incineration and influence from Phoenician settlers, and their actual language is also far from clear. The other investigated samples, with higher central European contribution, are from Celtiberian sites.

  • The slightly later arrival of (Phoenician, Greek and) Latin-speaking peoples into Iberia is marked by Central/Eastern Mediterranean and North African ancestry.
Expansion of different ancestry components in Iberia during Prehistory. Modified from Olalde et al. (2019) to include labels with populations expanding with each component.

While both confirm what was more or less already known about the oldest attested NWIE dialects, and further support the role of East Bell Beakers in expanding North-West Indo-European, the first part is interesting for two main reasons:

  1. Koch’s Celtic from the West hypothesis, which made a recent comeback with a renewed model based on “steppe ancestry”, is once again rejected in population genomics, as expected. At this point I doubt this will mean anything to the supporters of the theory (because you can propose as many “Celtic-over-Celtic” layers as you want), but if you are not obsessed with autochthonous continuity of Celtic languages in the Atlantic area we might begin to judge the most correct dialectal split (and thus classification) among those proposed to date, based on ancestry and haplogroup expansions.
  2. We believed in the 2000s that the expansion of haplogroup R1b-M167 (TMRCA ca. 1100 BC for YTree or 1700 BC for YFull) was coupled with the expansion of Iberians from the Pyrenees, in turn (thus) closely related to Basques. This non-IE presence has been contested with toponymic data in linguistics, and with the testing of many modern samples and the subsequent discovery of the widespread distribution of the subclade in western and northern Europe. Now it has become even more likely (lacking confirmation with aDNA) that this haplogroup expanded with Celts.

NOTE. Regarding R1b SNPs, YTree has more samples (and thus more SNPs) to work with estimates, due to its connection with FTDNA groups, so it is in principle more reliable (although estimates were calculated in 2017). Nevertheless, the methods to estimate the age of the MRCA are different between YTree and YFull.

YTree estimations of TMRCA for R1b-Z262 (left) and R1b-M167 (right).

Why this is important has to do with the realization that Celts must have expanded explosively in all directions during the estimated range for Common Celtic (ca. 1500-1000 BC), and as such R1b-M167 is probably going to be one of the clear Y-DNA markers of the Celtic expansion, when it appears in the ancient DNA record, maybe in new SNP calls from samples of the Olalde et al. (2019) paper, or in future Urnfield/Hallstatt/La Tène papers.

Sister clades derived from R1b-Z262 (TMRCA ca. 1650 BC for YTree, or 2700 for YFull), although sharing a quite old origin, may have taken part in the same communities that expanded R1b-M167, likely from some point in central Europe, possibly as remnants of a previous (Tumulus culture?) central European expansion, as the sample SZ5 from Szólád (R1b-CTS1595) and the distribution of modern samples suggest.

Left: Modern distribution of upstream clade L176.2 (YFull R1b-CTS4188); Right: Modern distribution of M167. Both include later expansions within Iberia (probably with the Crown of Aragon during the Reconquista). Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

EDIT (23 APRIL): In Hernández et al. (2018), the TMRCA of R1b-M167 is reported as 3372-3718 ybp:

The youngest sub-branch, R1b-M167, dates to approximately 3.5 kya (95% CI= 2.5-5.3 kya), i.e. even after the Bronze Age.

Contour (surface) maps displaying the frequencies of Y-chromosome haplogroup and its sub-lineages across Europe and the Mediterranean basin. Modified from Hernández et al. (2018).

NOTE. Admittedly, the maps are mainly based on Iberian samples and certain limited sampling elsewhere, so most of the frequencies displayed in other territories are extrapolated. Since the percentage of R1b-M167 in France is estimated to be ca. 3%, and in Bavaria ca. 5%, the distribution in Central Europe is probably much higher, and around the Mediterranean much lower than represented in them.

The Celtic expansion might not have been a mass migration of peoples replacing all male lines of their controlled territories (as was common in the Neolithic and Chalcolithic), because of the Bronze Age dominant chiefdom-based system that relied on alliances, but it is becoming clear that Early Celts are also going to show the expansion of certain successful male lineages.

Oh, and you can say goodbye to the autochthonous “Vasconic = R1b-DF27” (latest heir of the “Vasconic = R1b-P312”) theory, too, if – for some strange reason – you hadn’t already.

EDIT (16 MAR) Just in case the wording is not clear: the fact that this haplogroup most likely expanded with Celts does not mean that its lineages didn’t become eventually incorporated into Iberian cultures and adopted non-IE languages: some of them probably did at some point, in some regions of northern Iberia, and most were certainly later incorporated to the Roman civilization and spoke Latin, then to the medieval kingdoms with their languages, and so on until the present day… Only those eventually associated with Iron Age Aquitanians may have retained their non-IE language, unless those lineages today associated with Basques were incorporated later to the Basque-speaking regions by expanding medieval kingdoms. A complex picture repeated everywhere in Europe: no haplogroup+language continuity in sight, anywhere.

NOTE: This here is currently the most likely interpretation of data based on estimations of mutations; it is not confirmed with ancient samples.


Long-term matrilineal continuity in a nonisolated region of Tuscany


New paper (behind paywall) The female ancestor’s tale: Long‐term matrilineal continuity in a nonisolated region of Tuscany, by Leonardi et al. Am J Phys Anthr (2018).

EDIT (10 SEP 2018): The main author has shared an open access link to read the PDF.

Interesting excerpts:

Here we analyze North-western Tuscany, a region that was a corridor of exchanges between Central Italy and the Western Mediterranean coast.

We newly obtained mitochondrial HVRI sequences from 28 individuals, and after gathering published data, we collected genetic information for 119 individuals from the region. Those span five periods during the last 5,000 years: Prehistory, Etruscan age, Roman age, Renaissance, and Present-day. We used serial coalescent simulations in an approximate Bayesian computation framework to test for continuity between the mentioned groups.

In all cases, a simple model of a long-term genealogical continuity proved to fit the data better, and sometimes much better, than the alternative hypothesis of discontinuity.

The low number of samples analyzed requires some caution in the interpretation. Because we did not test for gene flow, it is at this stage impossible to reject it, but our results suggest at least significant levels of genealogical continuity. Moreover, as it has not been possible to obtain more precise information on the age of the Eneolithic samples, they were grouped together considering the average archaeological period of interest, which may cause a bias in the analyses. (…)

Geographic location of the samples considered in this work

(…) clearly, our samples show high levels of continuity when considering the whole Tuscan region as a genetic reservoir during the Iron Age.

The posterior distributions of the parameters confirm a high degree of genetic isolation in the sampled population, with very small values for the female effective population sizes across time. Such values, in particular the Neolithic ones, are in accord with the estimates obtained in similar studies, both in Tuscany (Ghirotto et al., 2013) and in France (Rivollat et al., 2017).


Taken at their face value, our results do not show any major shift in the composition of the maternal ancestry of the population, across 50 centuries. This does not mean that no demographic process of relevance has affected the population, and indeed the higher diversity accumulating in time is the likely consequence of immigrating people, enriching the mitochondrial gene pool.

(…) the population of the current Lucca province appears to have retained very ancient mitochondrial features, despite occupying a geographical corridor between the Ligurian and the Tyrrhenian coast, and despite not showing the persistence of unique cultural traits through the centuries.


Another possibility is that that the different populations passing through the area (Etruscans, Romans, and Lombards) had a consistent social and/or sex bias. An example of similar patterns has been observed several times. Between the Late Neolithic and the Early Bronze Age, female exogamy in patrilocal society has been observed in Southern Germany (Knipper et al., 2017); during the Bronze Age the migrations toward Europe from the steppes appears to have consisted prevalently of males (Goldberg, Günther, Rosenberg, & Jakobsson, 2017); and in more recent periods in the Canary Islands, the female ancestry maintains a significant amount of autochthonous lineages, while the male ancestry was strongly influenced by the European colonization (Fregel et al., 2009, b).

It is well known that military invasions may not have a significant genetic impact upon the invaded population (Schiffels et al., 2016; Sokal, Oden, Walker, Di Giovanni, & Thomson, 1996;Weale,Weiss, Jager, Bradman, & Thomas, 2002), especially at the mitochondrial level, because of the limited size of a sustainable army, and of the fact that armies are generally composed mostly or only of males. Even if a substantial share of invaders decided to remain and settle the region, this form of gene flow would affect mostly or only the paternal lineages, rather than the maternal ones. We can also hypothesize the immigration of a number of people (e.g., Romans, Lombards) that may have acted as ruler of the region, remaining socially (and so genetically) separated by the local population, and leaving few (if any) traces in the gene pools of the local population.

Supporting Information, Table S1 New ancient samples genotyped

We expect to see that certain migrations since the Iron Age – like the Celtic and Roman ones – were somehow different from previous ones, where, at least since the Neolithic, male-dominated expansions were the rule.

If, however, male-biased expansions are also seen during the Iron Age – probably driven by particular subclades then – , this would certainly justify the continuity of admixture in certain regions in spite of these population expansions, and thus the importance of Y-DNA to track more recent language changes.

One of the most interesting details of the upcoming paper of Italic peoples will be the Y-DNA (and admixture) of Etruscans compared to other neighbouring peoples, given the known conflicting theories regarding their recent vs. older origin in the East before the historical record.


Early Medieval Alemannic graveyard shows diverse cultural and genetic makeup


Open access Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard, by O’Sullivan et al., Science (2018) 4(9):eaao1262

Interesting excerpts:


The Alemanni were a confederation of Germanic tribes that inhabited the eastern Upper Rhine basin and surrounding region (Fig. 1) (1). Roman ethnographers mentioned the Alemanni, but historical records from the 3rd to the 6th century CE contain no regular description of these tribes (2). The upheaval that occurred during the European Migration Period (Völkerwanderung) partly explains the interchangeability of nomenclature with the contemporaneous Suebi people of the same region and periods of geographic discontinuity in the historical record (3). This diverse nomenclature reflects centuries of interactions between Romans and other Germanic groups such as the Franks, Burgundians, Thuringians, Saxons, and Bavarians. With the defeat of the Alemanni by Clovis I of the Franks in 497 CE, Alamannia became a subsumed Duchy of the Merovingian Kingdom. This event solidified the naming of the inhabitants of this region as Alemanni (3). From the 5th to the 8th century CE, integration between the Franks and the Alemanni was reflected by changed burial practices, with households (familia) buried in richly furnished graves (Adelsgrablege) (4). The splendor of these Adelsgräber served to demonstrate the kinship structure, wealth, and status of the familia and also the power of the Franks (Personenverbandstaaten, a system of power based on personal relations rather than fixed territory). Because inclusion in familia during the Merovingian period was not necessarily based on inheritance or provenance, debate continues on the symbolism of these burial rites (5).

The 7th century CE Alemannic burial site at Niederstotzingen in southern Germany, used circa 580 to 630 CE, represents the best-preserved example of such an Alemannic Adelsgrablege. (…)


Strontium and oxygen isotope data from the enamel showed that most individuals are local rather than migrants (Table 1, table S2, and fig. S2), except for individuals 10 and 3B. (…)

Analysis of uniparental markers

mtDNA haplogroups were successfully assigned to all 13 individuals (Table 1). Notably, there are three groups of individuals that share, among the assigned positions, identical haplotypes: individuals 4, 9, and 12B in haplogroup X2b4; individuals 1 and 3A in haplogroup K1a; and individuals 2 and 5 in haplogroup K1a1b2a1a.

Most individuals belong to the R1b haplogroup (individuals 1, 3A, 3C, 6, 9, 12A, 12B, and 12C), which has the highest frequency (>70%) in modern western European populations (20). Five individuals (1, 3A, 9, 12B, and 12C) share the same marker (Z319) defining haplogroup R1b1a2a1a1c2b2b1a1 [=ISOGG R1b1a1a2a1a1c2b2b1a1a] (…) individuals 1, 3A, and 6 have R1b lineage and marker Z347 (R1b1a2a1a1c2b2b) [=ISOGG R1b1a1a2a1a1c2b2b], which belongs to the same male ancestral lineage as marker Z319 [i.e. all R1b-U106]. Individual 3B instead carries NRY haplogroup G2a2b1, which is rare in modern north, west, and east European populations (<5%), only reaching common abundance in the Caucasus (>70%), southern Europe, and the Near East (10 to 15%)

Genome-wide capture

PCA plot of Niederstotzingen individuals, modern west Eurasians, and selected ancient Europeans. Genome-wide ancient data were projected against modern west Eurasian populations. Colors on PCA indicate more general Eurasian geographic boundaries than countries: dark green, Caucasus; bright green, eastern Europe; yellow, Sardinia and Canary Islands; bright blue, Jewish diaspora; bright purple, western and central Europe; red, southern Europe; dark brown, west Asia; light purple, Spain; dark purple, Russia; pale green, Middle East; orange, North Africa. The transparent circles serve to highlight the genetic overlap between regions of interest.

Genomically, the individuals buried at Niederstotzingen can be split into two groups: Niederstotzingen North (1, 3A, 6, 9, 12B, and 12C), who have genomic signals that most resemble modern northern and eastern European populations, and Niederstotzingen South (3B and 3C), who most resemble modern-day Mediterraneans, albeit with recent common ancestry to other Europeans. Niederstotzingen North is composed of those buried with identifiable artifacts: Lombards (individual 6), Franks (individual 9), and Byzantines (individuals 3A and 12B), all of whom have strontium and oxygen isotope signals that support local provenance (fig. S2) (8). Just two individuals, 3B (Niederstotzingen South) and 10 (no sufficient autosomal data, with R1 Y-haplogroup), have nonlocal strontium isotope signals. The δ18O values suggest that individuals 10 and 3B may have originated from a higher-altitude region, possibly the Swiss-German Alpine foothills (8). Combined with the genome affinity of individual 3B to southern Europeans, these data provide direct evidence for incoming mobility at the site and for contact that went beyond exchange of grave goods (4). Familia had holdings across the Merovingian Kingdom and traveled long distances to maintain them; these holdings could have extended from northern Italy to the North Sea. Nobles displayed and accrued power by recruiting outside individuals into the household as part of their traveling retinue. Extravagant burial rites of these familia are symbolic evidence of the Frankish power systems based on people Personenverbandstaaten imposed from the 5th until the 8th century CE (4). The assignment of grave goods and the burial pattern do not follow any apparent pattern with respect to genetic origin or provenance, suggesting that relatedness and fellowship were held in equal regard at this burial.


Both kinship estimates show first-degree relatedness for pairs 1/3A, 1/6, 1/9, 3A/9, and 9/12B and second-degree relatedness for 1/12B, 3A/6, 3A/12B, and 6/9. Except for 12C, all of the Niederstotzingen North individuals are detectably and closely related. The Niederstotzingen South individuals are not detectably related to each other or any other members of the cohort. (…)

We demonstrated that five of the individuals (1, 3A, 6, 9, and 12B) were kin to at least second degree (Fig. 3 and tables S15 and S16); four of these were buried with distinguishable grave goods (discussed above and in fig. S1). These data show that at Niederstotzingen, at least in death, diverse cultural affiliations could be appropriated even within the same family across just two generations. This finding is somewhat similar to the burial of the Frankish King Childeric in the 5th century CE with a combination of Frankish and Byzantine grave goods that symbolized both his provenance and military service to the Romans (4). The burial of three unrelated individuals (3B, 3C, and 12C) in multiple graves beside the rest of the cohort would imply that this Alemannic group buried their dead based on a combination of familial ties and fellowship. One explanation could be that they were adopted as children from another region to be trained as warriors, which was a common practice at the time; these children were raised with equal regard in the familia (2, 4).

Reconstruction of first- and second-degree relatedness among all related individuals. Bold black lines and blue lines indicate first- and second-degree relatedness, respectively. Dark blue squares are identified males with age-at-death estimates years old (y.o.), mtDNA haplotypes, and NRY haplogroups. Red circles represent unidentified females that passed maternal haplotypes to their offspring. The light square represents one male infant that shares its maternal haplotype with individuals 12B and 9. N.D., not determined.


The 7th century CE burial in Niederstotzingen represents the best-preserved example of an Alemannic Adelsgrablege. The observation that burial of the remains was close to a Roman crossroads, orientated in a considered way, and associated with rich grave goods points to a noble gravesite of an Alemannic familia with external cultural influences. The high percentage of males in the burial site suggests that this site was intended for a ranked warrior group, meaning that the individuals are not representative of the population existing in 7th century CE Alemannia. The kinship estimates show that kinship structure was organized around the familia, which is defined by close association of related and unrelated individuals united for a common purpose. The apparent kinship structure is consistent with the hypothesized Personenverbandstaaten, which was a system by which Merovingian nobles enforced rule in the Duchies of Alemannia, Thuringia, Burgundy, and elsewhere. Beyond the origin of the grave goods, we show isotopic and genetic evidence for contact with communities external to the region and evidence for shared ancestry between northern and southern Europeans. This finding invites debate on the Alemannic power system that may have been highly influenced by mobility and personal relations.

Texts and images distributed under the terms of the Creative Commons Attribution-NonCommercial license.


Viking Age town shows higher genetic diversity than Neolithic and Bronze Age


Open access Genomic and Strontium Isotope Variation Reveal Immigration Patterns in a Viking Age Town, by Krzewińska et al., Current Biology (2018).

Interesting excerpts (emphasis mine, some references deleted for clarity):

The town of Sigtuna in eastern central Sweden was one of the pioneer urban hubs in the vast and complex communicative network of the Viking world. The town that is thought to have been royally founded was planned and organized as a formal administrative center and was an important focal point for the establishment of Christianity [19]. The material culture in Sigtuna indicates that the town had intense international contacts and hosted several cemeteries with a Christian character. Some of them may have been used by kin-based groups or by people sharing the same sociocultural background. In order to explore the character and magnitude of mobility and migration in a late Viking Age town, we generated and analyzed genomic (n = 23) and strontium isotope (n = 31) data from individuals excavated in Sigtuna.


The mitochondrial genomes were sequenced at 1.5× to 367× coverage. Most of the individuals were assigned to haplogroups commonly found in current-day Europeans, such as H, J, and U [14, 26, 27]. All of these haplotypes are present in Scandinavia today.

The Y chromosome haplogroups were assigned in seven males. The Y haplogroups include I1a, I2a, N1a, G2a, and R1b. Two identified lineages (I2a and N1a) have not been found in modern-day Sweden or Norway [28, 29]. Haplogroups I and N are associated with eastern and central Europe, as well as Finno-Ugric groups [30]. Interestingly, I2a was previously identified in a middle Neolithic Swedish hunter-gatherer dating to ca. 3,000 years BCE [31].

In Sigtuna, the genetic diversity in the late Viking Age was greater than the genetic diversity in late Neolithic and Bronze Age cultures (Unetice and Yamnaya as examples) and modern East Asians; it was on par with Roman soldiers in England but lower than in modern-day European groups (GBR and FIN; Figure 2B). Within the town, the group excavated at church 1 has somewhat greater diversity than that at cemetery 1. Interestingly, the diversity at church 1 is nearly as high as that observed in Roman soldiers in England, which is remarkable, since the latter was considered to be an exceptionally heterogeneous group in contemporary Europe [39].

A PCA plot visualising all 23 individuals from Sigtuna used in ancient DNA analyses (m – males, f – females).

Different sex-related mobility patterns for Sigtuna inhabitants have been suggested based on material culture, especially ceramics. Building on design and clay analyses, some female potters in Sigtuna are thought to have grown up in Novgorod in Rus’ [40]. Moreover, historical sources mention female mobility in connection to marriage, especially among the elite from Rus’ and West Slavonic regions [41, 42]. Male mobility is also known from historical sources, often in connection to clergymen moving to the town [43].

Interestingly, we found a number of individuals from Sigtuna to be genetically similar to the modern-day human variation of eastern Europeans, and most harbor close genetic affinities to Lithuanians (Figure 2A). The strontium isotope ratios in 28 adult individuals with assigned biological sex and strontium values obtained from teeth (23 M1 and five M2) show that 70% of the females and 44% of the males from Sigtuna were non-locals (STAR Methods). The difference in migrant ratios between females and male mobility patterns was not statistically significant (Fisher’s exact test, p = 0.254 for 28 individuals and p = 0.376 for 16 individuals). Hence, no evidence of a sex-specific mobility pattern was found.

(…) As these social groups are not mirrored by our genetic or strontium data, this suggests that the inclusion in them was not based on kinship. Therefore, it appears as if socio-cultural factors, not biological bonds, governed where people were interred (i.e., the choice of cemetery).

Average pairwise genetic diversity measured in complete Sigtuna, St. Gertrud (church 1) and cemetery 1 (the Nunnan block) compared to both ancient and modern populations ranked by time period (Yamnaya, Unetice, and GBR-Roman, Roman Age individuals from Great Britain; GBR-AS, Anglo-Saxon individuals from Great Britain; GBR-IA, Iron Age individuals from Great Britain; JPT-Modern, presentday Japanese from Tokyo; FIN-Modern, present-day Finnish; GBR-Modern, present-day British; GIHModern, present-day Gujarati Indian from Houston, Texas). Error bars show ±2 SEs.

Interesting from this paper is the higher genetic (especially Y-DNA) diversity found in more recent periods (see e.g. here) compared to Neolithic and Bronze Age cultures, which is probably the reason behind some obviously wrong interpretations, e.g. regarding links between Yamna and Corded Ware populations.

The sample 84001, a “first-generation short-distance migrant” of haplogroup N1c-L392 (N1a in the new nomenclature) brings yet more proof of how:

  • Admixture changes completely within a certain number of generations. In this case, the N1c-L392 sample clusters within the genetic variation of modern Norwegians, near to the Skane Iron Age sample, and not with its eastern origin (likely many generations before).
  • This haplogroup appeared quite late in Fennoscandia but still managed to integrate and expand into different ethnolinguistic groups; in this case, this individual was probably a Viking of Nordic language, given its genetic admixture and its non-local (but neighbouring Scandinavian) strontium values.