The genetic and cultural barrier of the Pontic-Caspian steppe – forest-steppe ecotone

steppe-forest-steppe-biomes

We know that the Caucasus Mountains formed a persistent prehistoric barrier to cultural and population movements. Nevertheless, an even more persistent frontier to population movements in Europe, especially since the Neolithic, is the Pontic-Caspian steppe – forest-steppe ecotone.

Like the Caucasus, this barrier could certainly be crossed, and peoples and cultures could permeate in both directions, but there have been no massive migrations through it. The main connection between both regions (steppe vs. forest-steppe/forest zone) was probably through its eastern part, through the Samara region in the Middle Volga.

The chances of population expansions crossing this natural barrier anywhere else seem quite limited, with a much less porous crossing region in the west, through the Dnieper-Dniester corridor.

A Persistent ecological and cultural frontier

It is very difficult to think about any culture that transgressed this persistent ecological and cultural frontier: many prehistoric and historical steppe pastoralists did appear eventually in the neighbouring forest-steppe areas during their expansions (e.g. Yamna, Scythians, or Turks), as did forest groups who permeated to the south (e.g. Comb Ware, GAC, or Abashevo), but their respective hold in foreign biomes was mostly temporary, because their cultures had to adapt to the new ecological environment. Most if not all groups originally from a different ecological niche eventually disappeared, subjected to renewed demographic pressure from neighbouring steppe or forest populations…

The Samara region in the Middle Volga may be pointed out as the true prehistoric link between forests and steppes (see David Anthony’s remarks), something reflected in its nature as a prehistoric sink in genetics. This strong forest – forest-steppe – steppe connection was seen in the Eurasian technocomplex, during the expansion of hunter-gatherer pottery, in the expansion of Abashevo peoples to the steppes (in one of the most striking cases of population admixture in the area), with Scythians (visible in the intense contacts with Ananyino), and with Turks (Volga Turks).

steppe-forest-steppe-europe
Simplified map of the distribution of steppes and forest-steppes (Pontic and Pannonian) and xeric grasslands in Eastern Central Europe (with adjoining East European ranges) with their regionalisation as used in the review (Northern—Pannonic—Pontic). Modified from Kajtoch et al. (2016).

Before the emergence of pastoralism, the cultural contacts of the Pontic region (i.e. forest-steppes) with the Baltic were intense. In fact, the connection of the north Pontic area with the Baltic through the Dnieper-Dniester corridor and the Podolian-Volhynian region is essential to understand the spread of peoples of post-Maglemosian and post-Swiderian cultures (to the south), hunter-gatherer pottery (to the north), TRB (to the south), Late Trypillian groups (north), GAC (south), or Comb Ware (south) (see here for Eneolithic movements), and finally steppe ancestry and R1a-Z645 with Corded Ware (north). After the complex interaction of TRB, Trypillia, GAC, and CWC during the expansion of late Repin, this traditional long-range connection is lost and only emerges sporadically, such as with the expansion of East Germanic tribes.

A barrier to steppe migrations into northern Europe

One may think that this barrier was more permeable, then, in the past. However, the frontier is between steppe and forest-steppe ecological niches, and this barrier evolved during prehistory due to climate changes. The problem is, before the drought that began ca. 4000 BC and increased until the Yamna expansion, the steppe territory in the north Pontic region was much smaller, merely a strip of coastal land, compared to its greater size ca. 3300 BC and later.

This – apart from the cultural and technological changes associated with nomadic pastoralism – justifies the traditional connection of the north Pontic forest-steppes to the north, broken precisely after the expansion of Khvalynsk, as the north Pontic area became gradually a steppe region. The strips of north Pontic and Azov steppes and Crimea seem to have had stronger connections to the Northern Caucasus and Northern Caspian steppes than with the neighbouring forest-steppe areas during the Upper Palaeolithic, Mesolithic, and Neolithic.

NOTE. We still don’t know the genetic nature of Mikhailovka or Ezero, steppe-related groups possibly derived from Novodanilovka and Suvorovo close to the Black Sea (which possibly include groups from the Pannonian plains), and how they compare to neighbouring typically forest-steppe cultures of the so-called late Sredni Stog groups, like Dereivka or partly Kvityana.

steppe-forest-steppe-migration-routes
Typical migration routes through European steppes and forest-steppes. Red line represents the persistent cultural and genetic barrier, with the latest evolution in steppe region represented by the shift from dashed line to the north. Arrows show the most common population movements. Modified from Kajtoch et al. (2016).

Despite the Pontic-Caspian steppes and forest-steppes neighbouring each other for ca. 2,000 km, peoples from forested and steppe areas had an obvious advantage in their own regions, most likely due to the specialization of their subsistence economy. While this is visible already in Palaeolithic and Mesolithic hunter-gatherers, the arrival of the Neolithic package in the Pontic-Caspian region incremented the difference between groups, by spreading specialized animal domestication. The appearance of nomadic pastoralism adapted to the steppe, eventually including the use of horses and carts, made the cultural barrier based on the economic know-how even stronger.

Even though groups could still adapt and permeate a different territory (from steppe to forest-steppe/forest and vice-versa), this required an important cultural change, to the extent that it is eventually complicated to distinguish these groups from neighbouring ones (like north-west Pontic Mesolithic or Neolithic groups and their interaction with the steppes, Trypillia-Usatovo, Scythians-Thracians, etc.). In fact, this steppe – forest-steppe barrier is also seen to the east of the Urals, with the distinct expansion of Andronovo and Seima-Turbino/Andronovo-like horizons, which seem to represent completely different ethnolinguistic groups.

As a result of this cultural and genetic barrier, like that formed by the Northern Caucasus:

1) No steppe pastoralist culture (which after the emergence of Khvalynsk means almost invariably horse-riding, chariot-using nomadic herders who could easily pasture their cows in the huge grasslands without direct access to water) has ever been successful in spreading to the north or north-west into northern Europe, until the Mongols. No forest culture has ever been successful in expanding to the steppes, either (except for the infiltration of Abashevo into Sintashta-Potapovka).

2) Corded Ware was not an exception: like hunter-gatherer pottery before it (and like previous population movements of TRB, late Trypillia, GAC, Comb Ware or Lublin-Volhynia settlers) their movements between the north Pontic area and central Europe happened through forest-steppe ecological niches due to their adaptation to them. There is no reason to support a direct connection of CWC with true steppe cultures.

3) The so-called “Steppe ancestry” permeated the steppe – forest-steppe ecotone for hundreds of years during the 5th and early 4th millennium BC, due to the complex interaction of different groups, and probably to the aridization trend that expanded steppe (and probably forest-steppe) to the north. Language, culture, and paternal lineages did not cross that frontier, though.

EDIT (4 FEB 2019): Wang et al. is out in Nature Communications. They deleted the Yamna Hungary samples and related analyses, but it’s interesting to see where exactly they think the trajectory of admixture of Yamna with European MN cultures fits best. This path could also be inferred long ago from the steppe connections shown by the Yamna Hungary -> Bell Beaker evolution and by early Balkan samples:

wang-yamna-connection
Prehistoric individuals projected onto a PCA of 84 modern-day West Eurasian populations (open symbols). Dashed arrows indicate trajectories of admixture: EHG—CHG (petrol), Yamnaya—Central European MN (pink), Steppe—Caucasus (green), and Iran Neolithic—Anatolian Neolithic (brown). Modified from the original, a red circle has been added to the Yamna-Central European MN admixture.

Related

Dzudzuana, Sidelkino, and the Caucasus contribution to the Pontic-Caspian steppe

hunter-gatherer-pottery

It has been known for a long time that the Caucasus must have hosted many (at least partially) isolated populations, probably helped by geographical boundaries, setting it apart from open Eurasian areas.

David Reich writes in his book the following about India:

The genetic data told a clear story. Around a third of Indian groups experienced population bottlenecks as strong or stronger than the ones that occurred among Finns or Ashkenazi Jews. We later confirmed this finding in an even larger dataset that we collected working with Thangaraj: genetic data from more than 250 jati groups spread throughout India (…)

Rather than an invention of colonialism as Dirks suggested, long-term endogamy as embodied in India today in the institution of caste has been overwhelmingly important for millennia. (…)

The Han Chinese are truly a large population. They have been mixing freely for thousands of years. In contrast, there are few if any Indian groups that are demographically very large, and the degree of genetic differentiation among Indian jati groups living side by side in the same village is typically two to three times higher than the genetic differentiation between northern and southern Europeans. The truth is that India is composed of a large number of small populations.

There is little doubt now, based on findings spanning thousands of years, that the Mesolithic and Neolithic Caucasus hosted various very small populations, even if the ancestral components may be reduced to the few known to date (such as ANE, EHG, AME*, ENA, CHG, and other “deep” ancestral components).

NOTE. I will call the ancestral component of Dzudzuana/Anatolian hunter-gatherers Ancient Middle Easterner (AME), to give a clear idea of its likely extension during the Late Upper Palaeolithic, and to avoid using the more simplistic Dzudzuana, unless it is useful to mention these specific local samples.

dzudzuana-pca
Image modified from Lazaridis et al. (2018), including Caucasus, Don-Volga-Ural, and North Pontic Mesolithic-Neolithic populations. “Ancient West Eurasian population structure. (a) Geographical distribution of key ancient West Eurasian populations. (b) Temporal distribution of key ancient West Eurasian populations (approximate date in ky BP). (c) PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).”

Genetic labs have a strong fixation with ancestry. I guess the use of complex statistical methods gives professionals and laymen alike the feeling of dealing with “Science”, as opposed to academic fields where you have to interpret data. I think language reveals a lot about the way people think, and the fact that ancestral components are called ‘lineages’ – while not wrong per se – is a clear symptom of the lack of interest in the true lineages: Y-DNA haplogroups.

Y-DNA bottlenecks

It has become quite clear that male-biased migrations are often the ones which can be confidently followed for actual population movements and ethnolinguistic identification, at least until the Iron Age. The frequently used Palaeolithic clusters offer a clear example of why ancestry does not represent what some people believe: They merely give a basic idea of sizeable population replacements by distant peoples.

Both concepts are important: sizeable and distant peoples. For example, during the Upper Palaeolithic in Europe there was a sizeable population replacement of the Aurignacian Goyet cluster by the Gravettian Vestonice cluster (probably from populations of far eastern Russia) coupled with the arrival of haplogroup I, although during the thousands of years that this material culture lasted, the previously expanded C1a2 lineages did not disappear, and there were probably different resurgence and admixture events.

Haplogroup I certainly expanded with the Gravettian culture to Iberia, where the Goyet ancestry did not change much – probably because of male-driven migrations -, to the extent that during the Magdalenian expansions haplogroup I expanded with an ancestry closer to Goyet, in what is called a ‘resurge’ of the Goyet cluster – even though there is a clear replacement of male lines.

The Villabruna (WHG) cluster is another good example. It probably spread with haplogroup R1b-L754, which – based on the extra ‘East Asian’ affinity of some samples and on modern samples from the Middle East – came probably from the east through a southern route, and not too long before the expansion of WHG likely from around the Black Sea, although this is still unclear. The finding of haplogroup I in samples of mostly WHG ancestry could confuse people that do not care about timing, sub-structured populations, and gene flow.

palaeolithic-expansions-reich
Image from David Reich’s Who We Are and How We Got Here. Having migrated out of Africa and the Near East, modern human pioneer populations spread throughout Eurasia (1). By at least thirty-nine thousand years ago, one group founded a lineage of European hunter-gatherers that persisted largely uninterrupted for more than twenty thousand years (2). Eventually, groups derived from an eastern branch of this founding population of European huntergatherers spread west (3), displaced previous groups, and were eventually themselves pushed out of northern Europe by the spread of glacial ice, shown at its maximum extent (top right). As the glaciers receded, western Europe was repeopled from the southwest (4) by a population that had managed to persist for tens of thousands of years and was related to an approximately thirty-five-thousand-year old individual from far western Europe. A later human migration, following the first strong warming period, had an even larger impact, with a spread from the southeast (5) that not only transformed the population of western Europe but also homogenized the populations of Europe and the Near East. At a single site—Goyet Caves in Belgium—ancient DNA from individuals spread over twenty thousand years reflects these transformations, with representatives from the Aurignacian, Gravettian, and Magdalenian periods.

NOTE. If you don’t understand why ‘clusters’ that span thousands of years don’t really matter for the many Palaeolithic population expansions that certainly happened among hunter-gatherers in Europe, just take a look at what happened with Bell Beakers expanding from Yamna into western Europe within 500 years.

If we don’t thread carefully when talking about population migrations, these terms are bound to confuse people. Just as the fixation on “steppe ancestry” – which marks the arrival in Chalcolithic Europe of peoples from the Pontic-Caspian region – has confused a lot of researchers to this day.

When I began to write about the Indo-European demic diffusion model, my concern was to find a single spot where a North-West Indo-European proto-language could have expanded from ca. 2000 BC (our most common guesstimate). Based on the 2015 papers, and in spite of their conclusions, I thought it had become clear that Corded Ware was not it, and it was rather Bell Beakers. I assumed that Uralic was spoken to the north (as was the traditional belief), and thus Corded Ware expanded from the forest zone, hence steppe ancestry would also be found there with other R1a lineages.

With the publication of Mathieson et al. (2017) and Olalde et al. (2017), I changed my mind, seeing how “steppe ancestry” did in fact appear quite late, hence it was likely to be the result of very specific population movements, probably directly from the Caucasus. Later, Mathieson published in a revision the sample from Alexandria of hg R1a-M417 (probably R1a-Z645, possibly Z93+), which further supported the idea that the migration of Corded Ware peoples started near the North Pontic forest-steppe (as I included in a the next revision).

The question remains the same I repeated recently, though: where do the extra Caucasus components (i.e. beyond EHG) of Eneolithic Ukraine/Corded Ware and Khvalynsk/Yamna come from?

Steppe ancestry: “EHG” + “CHG”?

About EHG ancestry

From Lazaridis et al. (2018):

Considering 2-way mixtures, we can model Karelia_HG as deriving 34 ± 2.8% of its ancestry from a Villabruna-related source, with the remainder mainly from ANE represented by the AfontovaGora3 (AG3) sample from Lake Baikal ~17kya.

AG3 was likely of haplogroup Q1a (as reported by YFull, see Genetiker), and probably the ANE ancestry found in Eastern Europe accompanied a Palaeolithic migration of Q1a2-M25 (formed ca. 22600 BC, TMRCA ca. 14300 BC).

NOTE. You can read more about the expansion of Q lineages during the Palaeolithic.

Combined with what we know about the Eneolithic Steppe and Caucasus populations – it is likely that ANE ancestry remained the most important component of some of the small ghost populations of the Caucasus until their emergence with the Lola culture.

pca-caucasus-dzudzuana
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The first sample we have now attributed to the EHG cluster is Sidelkino, from the Samara region (ca. 9300 BC), mtDNA U5a2. In Damgaard et al. (Science 2018), Yamnaya could be modelled as a CHG population related to Kotias Klde (54%) and the remaining from ANE population related to Sidelkino (>46%), with the following split events:

  1. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time).
  2. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
  3. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
  4. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.

Other samples classified as of the EHG cluster:

  • Popovo2 (ca. 6250 BC) of hg J1, mtDNA U4d – Po2 and Po4 from the same site (ca. 6550 BC) show continuity of mtDNA.
  • Karelia_HG, from Juzhnii Oleni Ostrov (ca. 6300 BC): I0211/UzOO40 (ca. 6300 BC) of hg J1(xJ1a), mtDNA U4a; and I0061/UzOO74 of hg R1a1(xR1a1a), mtDNA C1
  • UzOO77 and UzOO76 from Juzhnii Oleni Ostrov (ca. 5250 BC) of mtDNA R1b.
  • Samara_HG from Lebyanzhinka (ca. 5600 BC) of hg R1b1a, mtDNA U5a1d.

From the analysis of Lazaridis et al. (2018), we have some details about their admixture:

dzudzuana-admixture-sidelkino
Image modified from Lazaridis et al. (2018). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

About Anatolia_Neolithic ancestry

About the enigmatic Anatolia_Neolithic-related ancestry found in Pontic-Caspian steppe samples, this is what Wang et al. (2018) had to say:

We focused on model of mixture of proximal sources such as CHG and Anatolian Chalcolithic for all six groups of the Caucasus cluster (Eneolithic Caucasus, Maykop and Late Makyop, Maykop-Novosvobodnaya, Kura-Araxes, and Dolmen LBA), with admixture proportions on a genetic cline of 40-72% Anatolian Chalcolithic related and 28-60% CHG related (Supplementary Table 7). When we explored Romania_EN and Greece_Neolithic individuals as alternative southeast European sources (30-46% and 36-49%), the CHG proportions increased to 54-70% and 51-64%, respectively. We hypothesize that alternative models, replacing the Anatolian Chalcolithic individual with yet unsampled populations from eastern Anatolia, South Caucasus or northern Mesopotamia, would probably also provide a fit to the data from some of the tested Caucasus groups.

Also:

The first appearance of ‘Near Eastern farmer related ancestry’ in the steppe zone is evident in Steppe Maykop outliers. However, PCA results also suggest that Yamnaya and later groups of the West Eurasian steppe carry some farmer related ancestry as they are slightly shifted towards ‘European Neolithic groups’ in PC2 (Fig. 2D) compared to Eneolithic steppe. This is not the case for the preceding Eneolithic steppe individuals. The tilting cline is also confirmed by admixture f3-statistics, which provide statistically negative values for AG3 as one source and any Anatolian Neolithic related group as a second source

yamnaya-caucasus-dzudzuana
Modified image from Wang et al. (2018). In blue, Yamna-related populations. In red, Corded Ware-related populations, and two elevated Anatolia_Neolithic values in Yamna. Notice how only GAC-related admixture increases the Anatolian_N-related ancestry in the Yamna outlier from Ozero, and the late Yamna sample from Hungary, related to the homogeneous Yamna population. “Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

Detailed exploration via D-statistics in the form of D(EHG, steppe group; X, Mbuti) and D(Samara_Eneolithic, steppe group; X, Mbuti) show significantly negative D values for most of the steppe groups when X is a member of the Caucasus cluster or one of the Levant/Anatolia farmer-related groups (Supplementary Figs. 5 and 6). In addition, we used f- and D-statistics to explore the shared ancestry with Anatolian Neolithic as well as the reciprocal relationship between Anatolian- and Iranian farmer-related ancestry for all groups of our two main clusters and relevant adjacent regions (Supplementary Fig. 4). Here, we observe an increase in farmer-related ancestry (both Anatolian and Iranian) in our Steppe cluster, ranging from Eneolithic steppe to later groups. In Middle/Late Bronze Age groups especially to the north and east we observe a further increase of Anatolian farmer related ancestry consistent with previous studies of the Poltavka, Andronovo, Srubnaya and Sintashta groups and reflecting a different process not especially related to events in the Caucasus.

(…) Surprisingly, we found that a minimum of four streams of ancestry is needed to explain all eleven steppe ancestry groups tested, including previously published ones (Fig. 2; Supplementary Table 12). Importantly, our results show a subtle contribution of both Anatolian farmer-related ancestry and WHG-related ancestry (Fig.4; Supplementary Tables 13 and 14), which was likely contributed through Middle and Late Neolithic farming groups from adjacent regions in the West. The discovery of a quite old AME ancestry has rendered this probably unnecessary, because this admixture from an Anatolian-like ghost population could be driven even by small populations from the Caucasus.

yamna-caucasus-cwc-anatolia-neolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

NOTE. For a detailed account of the possibilities regarding this differential admixture in the North Pontic area in contrast to the Don-Volga-Ural region, you can read the posts Sredni Stog, Proto-Corded Ware, and their “steppe admixture”, and Corded Ware culture origins: The Final Frontier.

While it is not yet fully clear, the increased Anatolian_Neolithic-like ancestry in Ukraine_Eneolithic samples (see below) makes it unlikely that all such ancestry in Corded Ware groups comes from a GAC-related contribution. It is likely that at least part of it represents contributions from populations of the Caucasus, based on the mostly westward population movements in the steppe from ca. 4600 BC on, including the Suvorovo-Novodanilovka expansion, and especially the Kuban-Maykop expansion during the final Eneolithic into the North Pontic area.

NOTE. Since CHG-like groups from the Caucasus may have combinations of AME and ANE ancestry similar to Yamna (which may thus appear as ‘steppe ancestry’ in the North Pontic area), it is impossible to interpret with precision the following ADMIXTURE graphic:

ukraine-whg-ehg-steppe
Modified image from Mathieson et al. (2018). Supervised ADMIXTURE analysis, modelling each ancient individual (one per row) as a mixture of population clusters constrained to contain northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green) populations. Dates in parentheses indicate approximate range of individuals in each population.

North-Eastern Technocomplex

The East Asian contribution to samples from the WHG samples (like Loschbour or La Braña), as specified in Fu et al. (2016), does not seem to be related to Baikal_EN, and appears possibly (in the ADMIXTURE analysis) integrated into he Villabruna component. I guess this implies that the shared alleles with East Asians are quite early, and potentially due to the expansion of R1b-L754 from the East.

It would be interesting to know the specific material culture Sidelkino belonged to – i.e. if it was related to the expansion of the North-Eastern Technocomplex – , and its Y-DNA. The Post-Swiderian expansion into eastern Europe, probably associated with the expansion of R1b-P297 lineages (including R1b-M73, found later in Botai and in Baltic HG) is supposed to have begun during the 11th millennium BC, but migrations to the Urals and beyond are probably concentrated in the 9th millennium, so this sample is possibly slightly early for R1b.

NOTE. User Rozenfeld at Anthrogenica posted this, which I think is interesting (in case anyone wants to try a Y-SNP call):

there is something strange with Sidelkino EHG: first, its archaeological context is not described in the supplementary. Second, its sex is not listed in the supplementary tables. Third, after looking for info about this sample, I found that: “Сиделькино-3. Для снятия вопроса о половой принадлежности индивида была проведена генетическая экспертиза, выявившая принадлежность останков мужчине.”(translation: Sidelkino-3. To resolve the question about sex of the remains, the genetic analysis was conducted, which showed that remains belonged to male), source: http://static.iea.ras.ru/books/7487_Traditsii.pdf

So either they haven’t mentioned his Y-DNA in the paper for some reason, or there are more than one Sidelkino sample and the male one has not yet been published. The coverage of the Sidelkino sample from the paper is 2.9, more than enough to tell Y-DNA haplogroup.

zaliznyak-post-swiderian
The map of spreading of Post-Swiderian and Post-Krasnosillian sites in Mesolithic of Eastern Europe in the 8th millennia BC. From Zaliznyak (see here).

My speculative guess right now about specific population movements in far eastern Europe, based on the few data we have:

  • The expansion of the North-Eastern Technocomplex first around the 9th millennium BC, most likely expanded R1b-P279 ca. 11300 BC, judging by its TMRCA, with both R1b-M73 (TMRCA 5300) and R1b-M269 (TMRCA 4400 BC) info (with extra El Mirón ancestry) back, and thus Eurasiatic.
  • The expansion of haplogroup J1 to the north may have happened before or after the R1b-P279 expansion. Judging by the increase in AG3-related ancestry near Karelia compared to Baltic_HG, it is possible that it expanded just after R1b-P279 (hence possibly J1-Y6304? TMRCA 9700 BC). Its long-lasting presence in the Caucasus is supported by the Satsurblia (ca. 11300 BC) and the Dolmen BA (ca. 1300 BC) samples.
  • The expansion of R1a-M17 ca. 6600 BC is still likely to have happened from the east, based on the R1a-M17 samples found in Baikalic cultures slightly later (ca. 5300 BC). The presence of elevated Baikal_EN ancestry in Karelia HG and in Samara HG, and the finding of R1a-M417 samples in the Forest Zone after the Mesolithic suggests a connection with the expansion of Hunter-Gatherer pottery, from the Elshanka culture in the Samara region northward into the Forset Zone and westward into the North Pontic area.
  • The expansion of R1b-M73 ca. 5300 BC is likely to be associated with the emergence of a group east of the Urals (related to the later Botai culture, and potentially Pre-Yukaghir). Its presence in a Narva sample from Donkalnis (ca. 5200 BC) suggest either an early split and spread of both R1b-P297 lineages (M73 and M269) through Eastern Europe, or maybe a back-migration with hunter-gatherer pottery.
  • R1b-M269 spread successfully ca. 4400 BC (and R1b-L23 ca. 4100 BC, both based on TMRCA), and this successful expansion is probably to be associated with the Khvalynsk-Novodanilovka expansion. We already know that Samara_HG ca. 5600 was R1b1a, so it is likely that R1b-M269 appeared (or ‘resurged’) in the Volga-Ural region shortly after the expansion of R1a-M17, whose expansion through the region may be inferred by the additional AG3 and Baikal_EN ancestry. Interesting from Samara_HG compared to the previous Sidelkino sample is the introduction of more El Mirón-related ancestry, typical of WHG populations (and thus proper of Baltic groups).

NOTE. The TMRCA dates are obviously gross approximations, because a) the actual rate of mutation is unknown and b) TMRCA estimates are based on the convergence of lineages that survived. The potential finding of R1a-Z645 (possibly Z93+) in Ukraine Eneolithic (ca. 4000 BC), and the potential finding of R1b-L23 in Khvalynsk ca. 4250 BC complicates things further, in terms of dates and origins of any subclade.

The question thus remains as it was long ago: did R1b-M269 lineages expand (‘return’) from the east, near the Urals, or directly from the north? Were they already near Samara at the same time as the expansion of hunter-gatherer pottery, and were not much affected by it? Or did they ‘resurge’ from populations admixed with Caucasus-related ancestry after the expansion of R1a-M17 with this pottery (since there are different stepped expansions from the Samara region)? We could even ask, did R1a-M17 really expand from the east, i.e. are the dates on Baikalic subclades from Moussa et al. (2016) reliable? Or did R1a-M17 expand from some pockets in the Pontic-Caspian steppe, taking over the expansion of HG pottery at some point?

hunger-gatherer-pottery
Early Neolithic cultures in eastern and central Europe: 1–Yelshanian; 2–North Caspian; 3–Rakushechnyj Yar; 4–Surskian; 5–Dnieper-Donetsian; 6– Bug-Dniesterian; 7–Upper Volga; 8–Narvian; 9–Linear Pottery. White arrows: expansion of early farming; black arrows: spread of pottery-making traditions. From Dolukhanov et al. (2009).

Maglemose-related migrations

The most interesting aspect from the new paper (regarding Indo-Uralic migrations) is that Ancestral Middle Easterner ancestry will probably be a better proxy for the Anatolia_Neolithic component found in Ukraine Mesolithic to Eneolithic, and possibly also for some of the “more CHG-like” component found among Pontic-Caspian steppe populations, all likely derived from different admixture events with groups from the Caucasus.

NOTE. Even the supposed gene flow of Neolithic Iranian ancestry into the Caucasus can be put into question, since that means possibly a Dzudzuana-like population with greater “deep ancestry” proportion than the one found in CHG, which may still be found within the Caucasus.

If it was not clear already that following ‘steppe ancestry’ wherever it appears is a rather lame way of following Indo-European migrations, every single sample from the Caucasus and their admixture with Pontic-Caspian steppe populations will probably show that “steppe ancestry” is in fact formed by a variety of steppe-related ancestral components, impossible to follow coherently with a single population. Exactly what is happening already with the Siberian ancestry.

If the paper on the Dzudzuana samples has shown something, is that the expansion of an ANE-like population shook the entire Caucasus area up to the Zagros Mountains, creating this ANE – AME cline that are CHG and Iran_N, with further contributions of “deep ancestries” (probably from the south) complicating the picture further.

If this happens with few known samples, and we know of an ANE-like ghost population in the Caucasus (appearing later in the Lola culture), we can already guess that the often repeated “CHG component” found in Ukraine_Eneolithic and Khvalynsk will not be the same (except the part mediated by the Novodanilovka expansion).

This ANE-like expansion happened probably in the Late Upper Palaeolithic, and reached Northern Europe probably after the expansion of the Villabruna cluster (ca. 12000 BC), judging by the advance of AG3-like and ENA-like ancestry in later WHG samples.

The population movements during the Mesolithic and Early Neolithic in the North Pontic area are quite complicated: the extra AME ancestry is probably connected to the admixture with populations from the Caucasus, while the close similarity of Ukraine populations with Scandinavian ones (with an increase in Villabruna ancestry from Mesolithic to Neolithic samples), probably reveal population movements related to the expansion of Maglemose-related groups.

maglemose-mesolithic
Etno-cultural situation in Central and Eastern Europe in the Late Mesolithic — Early Neolithic (VI—V Mill. BC) (after Конча 2004: 201, карта 1; made after ideas by L. L. Zaliznyak). Legend: 1 — Maglemose circle in the VII Mill. BC (after Gr. Clark); 2—7 — Mesolithic cultures of the Post-Maglemose tradition, VI Mill. BC (after S. Kozłowsky, L. L. Zaliznyak): 2 — de Leyen-Wartena; 3 — Oldesloe — Godenaa; 4 — Chojnice — Peńki; 5 — Janisłavice; 6 — finds of Janisłavice artefacts outside of the main area; 7 — Donets culture; 8 — directions of the settling of Janisłavice people (after S. Kozłowsky and L. L. Zaliznyak); 9 — the south border of Mesolithic and Early Neolithic cultures of post-Swidrian and post-Arensburgian traditions; 10 — northern border of settlement of the Balkan-Danubian farmers; 11 — Bug- Dniester culture; 12 — Neolithic cultures emerged on the ethno-cultural basis of post-Maglemose: Э — Ertebölle-Ellerbeck, Н — Neman, Д — Dnieper-Donets, М — Mariupol (western variants). From Klein (2017).

These Maglemose-related groups were probably migrants from the north-west, originally from the Northern European Plains, who occupied the previous Swiderian territory, and then expanded into the North Pontic area. The overwhelming presence of I2a (likely all I2a2a1b1b) lineages in Ukraine Neolithic supports this migration.

The likely picture of Mesolithic-Neolithic migrations in the North Pontic area right now is then:

  1. Expansion of R1a-M459 from the east ca. 12000 BC – probably coupled with AG3 and also some Baikal_EN ancestry. First sample is I1819 from Vasilievka (ca. 8700 BC), another is from Dereivka ca. 6900 BC.
  2. Expansion of R1b-V88 from the Balkans in the west ca. 9700 BC, based on its TMRCA and also the Balkan hunter-gatherer population overwhemingly of this haplogroup from the 10th millennium until the Neolithic. First sample is I1734 from Vasilievka (ca. 7252 BC), which suggests that it replaced the male population there, based on their similar EHG-like adxmixture (and lack of sizeable WHG increase), and shared mtDNA U5b2, U5a2.
  3. Expansion of I2a-Y5606 probably ca. 6800 based on its TMRCA with Janislawice culture. Supporting this is the increase in WHG contribution to Neolithic samples, including the spread of U4 subclades compared to the previous period.
  4. Expansion of R1a-M17 starting probably ca. 6600 BC in the east (see above).

NOTE. The first sample of haplogroup I appears in the Mesolithic: I1763 (ca. 8100 BC) of haplogroup I2a1, probably related to an older Upper Palaeolithic expansion.

janislawice
Distribution of archeological cultures in the North Pontic Region during the Mesolithic (7th – 6th millennium BCE). Dotted, dashed and solid lines with corresponding arrows indicate alternative models of the spread of the Grebenyky culture groups. (After Bryuako IV., Samojlova TL., Eds, Drevnie kul’tury Severo-­‐Zapadnogo Prichernomor’ya, Odessa: SMIL, 2013.) Nikitin – Ivanova 2017.

Conclusion

It is becoming more and more clear with each new paper that – unless the number of very ancient samples increases – the use of Y-chromosome haplogroups remains one of the most important tools for academics; this is especially so in the steppes, in light of the diversity found in populations from the Caucasus. A clear example comes from the Yamna – Corded Ware similarities:

After the publication of the 2015 papers, it was likely that Yamna expanded with haplogroup R1b-L23, but it has only become crystal clear that Yamna expanded through the steppes into Bell Beakers, now that we have data about the strict genetic homogeneity of the whole Yamna population from west to east (including Afanasevo), in contrast with contemporary Corded Ware peoples which expanded from a different forest-steppe population.

The presence of haplogroups Q and R1a-M459 (xM17) in Khvalynsk along with a R1b1a sample, which some interpreted as being akin to modern ‘mixed’ populations in the past, is likely to point instead to a period of Khvalynsk-Novodanilovka expansion with R1b-M269, where different small populations from the steppe were being integrated into the common Khvalynsk stock, but where differences are seen in material culture surrounding their burials, as supported by the finding of R1b1 in the Kuban area already in the first half of the 5th millennium. The case would be similar to the early ‘mixed’ Icelandic population.

Only after the emergence of the Samara culture (in the second half of the 6th millennium BC), with a sample of haplogroup R1b1a, starts then the obvious connection with Early Proto-Indo-Europeans; and only after the appearance of late Sredni Stog and haplogroup R1a-M417 (ca. 4000 BC) is its connection with Uralic also clear. In previous population movements, I think more haplogroups were involved in migrations of small groups, and only some communities among them were eventually successful, expanding to be dominant, creating ever growing cultures during their expansions.

Indeed, if you think in terms of Uralic and Indo-European just as converging languages, and forget their potential genetic connection, then the genetic + linguistic picture becomes simplified, and the upper frontier of the 6th millennium BC with a division North Pontic (Mariupol) vs. Volga-Ural (Samara) is enough. However, tracing their movements backwards – with cultural expansions from west to east (with the expansion of farming), and earlier east to west (with hunter-gatherer pottery), and still earlier west to east (with the north-eastern technocomplex), offers an interesting way to prove their potential connection to macrofamilies, at least in terms of population movements.

corded-ware-uralic-qpgraph
Modified image from Tambets et al. (2018) Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. The NeolL (Neolithic Levant) ancestry selected in this qpGraph is likely to correspond (at least in part) to a specific Dzudzuana-like component present in the CHG-like population that admixed in the North Pontic area.

I am quite convinced right now that it would be possible to connect the expansion of R1b-L754 subclades with a speculative Nostratic (given the R1b-V88 connection with Afroasiatic, and the obvious connection of R1b-L297 with Eurasiatic). Paradoxically, the connection of an Indo-Uralic community in the steppes (after the separation of Yukaghir) with any lineage expansion (R1a-M17, R1b-M269, or even Q, I or J1) seems somehow blurrier than one year ago, possibly just because there are too many open possibilities.

David Reich says about the admixture with Neanderthals, which he helped discover:

At the conclusion of the Neanderthal genome project, I am still amazed by the surprises we encountered. Having found the first evidence of interbreeding between Neanderthals and modern humans, I continue to have nightmares that the finding is some kind of mistake. But the data are sternly consistent: the evidence for Neanderthal interbreeding turns out to be everywhere. As we continue to do genetic work, we keep encountering more and more patterns that reflect the extraordinary impact this interbreeding has had on the genomes of people living today.

I think this is a shared feeling among many of us who have made proposals about anything, to fear that we have made a gross, evident mistake, and constantly look for flaws. However, it seems to me that geneticists are more preoccupied with being wrong in their developed statistical methods, in the theoretical models they are creating, and not so much about errors in the true ancient ethnolinguistic picture human population genetics is (at least in theory) concerned about. Their publications are, after all, constantly associating genetic finds with cultures and (whenever possible) languages, so this aspect of their research should not be taken lightly.

Seeing how David Anthony or Razib Khan (among many others) have changed their previously preferred migration models as new data was published, and they continue to be respected in their own fields, I guess we can be confident that professionals with integrity are going to accept whatever new picture appears. While I don’t think that genetic finds can change what we can reconstruct with comparative grammar, I am also ready to revise guesstimates and routes of expansion of certain dialects if R1a-Z645 is shown to have accompanied Late Proto-Indo-Europeans during their expansion with Yamna, and later integrated somehow with Corded Ware.

However, taking into account the obsession of some with an ancestral, uninterrupted R1a—Indo-European association, and the lack of actual political repercussion of Neanderthal admixture, I think the most common nightmare that all genetic researchers should be worried about is to keep inflating this “Yamnaya ancestry”-based hornet’s nest, which has been constantly stirred up for the past two years, by rejecting it – or, rather, specifying it into its true complex nature.

This succession of corrections and redefinitions, coupled with the distinct Y-DNA bottleneck of each steppe population, will eventually lead to a completely different ethnolinguistic picture of the Pontic-Caspian region during the Eneolithic, which is likely to eventually piss off not only reasonable academics stubbornly attached to the CWC-IE idea, but also a part of those interested in daydreaming about their patrilineal ancestors.

Sometimes it’s better to just rip off the band-aid once and for all…

Featured image from The oldest pottery in hunter-gatherer communitiesand models of Neolithisation of Eastern Europe (2015), by Andrey Mazurkevich and Ekaterina Dolbunova.

Related

Interesting is today’s post in Ancient DNA Era: Is Male-driven Genetic Replacement always meaning Language-shift?

Corded Ware—Uralic (I): Differences and similarities with Yamna

indo-european-uralic-migrations-corded-ware

This is the first of four posts on the Corded Ware—Uralic identification:

I was reading The Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (2016), and I was really surprised to find the following excerpt by David W. Anthony:

The Samara Valley links the central steppes with the western steppes and is a north-south ecotone between the pastoral steppes to the south and the forest-steppe zone to the north [see figure below]. The economic contrast between pastoral steppe subsistence, with its associated social organizations, and forest-zone hunting and fishing economies probably explains the shifting but persistent linguistic border between forest-zone Uralic languages to the north (today largely displaced by Russian) and a sequence of steppe languages to the south, recently Turkic, before that Iranian, and before that probably an eastern dialect of Proto-Indo-European (Anthony 2007). The Samara Valley represents several kinds of borders, linguistic, cultural, and ecological, and it is centrally located in the Eurasian steppes, making it a critical place to examine the development of Eurasian steppe pastoralism.

uralic-languages-forest-zone-volga
Language map of the middle Volga-Ural region. After “Geographical Distribution of the Uralic Languages” by Finno-Ugrian Society, Helsinki, 1993.

Khokhlov (translated by Anthony) further insists on the racial and ethnic divide between both populations, Abashevo to the north, and Poltavka to the south, during the formation of the Abashevo – Sintashta-Potapovka community that gave rise to Proto-Indo-Iranians:

Among all cranial series in the Volga-Ural region, the Potapovka population represents the clearest example of race mixing and probably ethnic mixing as well. The cultural advancements seen in this period might perhaps have been the result of the mixing of heterogeneous groups. Such a craniometric observation is to some extent consistent with the view of some archaeologists that the Sintashta monuments represent a combination of various cultures (principally Abashevo and Poltavka, but with other influences) and therefore do not correspond to the basic concept of an archaeological culture (Kuzmina 2003:76). Under this option, the Potapovka-Sintashta burial rite may be considered, first, a combination of traits to guarantee the afterlife of a selected part of a heterogeneous population. Second, it reflected a kind of social “caste” rather than a single population. In our view, the decisive element in shaping the ethnic structure of the Potapovka-Sintashta monuments was their extensive mobility over a fairly large geographic area. They obtained knowledge of various cultures from the populations with whom they interacted.

steppe-lmba-sintashta-potapovka-filatovka
Late Middle Bronze Age cultures with the Proto-Indo-Iranian Sintashta-Potapovka-Filatovka group (shaded). After Anthony (2007 Figure 15.5), from Anthony (2016).

Interesting is also this excerpt about the predominant population in the Abashevo – Sintashta-Potapovka admixture (which supports what Chetan said recently, although this does not seemed backed by Y-DNA haplogroups found in the richest burials), coupled with the sign of incoming “Uraloid” peoples from the east, found in both Sintashta and eastern Abashevo:

The socially dominant anthropological component was Europeoid, possibly the descendants of Yamnaya. The association of craniofacial types with archaeological cultures in this period is difficult, primarily because of the small amount of published anthropological material of the cultures of steppe and forest belt (Balanbash, Vol’sko-Lbishche) and the eastern and southern steppes (Botai-Tersek). The crania associated with late MBA western Abashevo groups in the Don-Volga forest zone were different from eastern Abashevo in the Urals, where the expression of the Old Uraloid craniological complex was increased. Old Uraloid is found also on a single skull of Vol’sko-Lbishche culture (Tamar Utkul VII, Kurgan 4). Potentially related variants, including Mongoloid features, could be found among the Seima-Turbino tribes of the forest-steppe zone, who mixed with Sintashta and Abashevo. In the Sintashta Bulanova cemetery from the western Urals, some individuals were buried with implements of Seima-Turbino type (Khalyapin 2001; Khokhlov 2009; Khokhlov and Kitov 2009). Previously, similarities were noted between some individual skulls from Potapovka I and burials of the much older Botai culture in northern Kazakhstan (Khokhlov 2000a). Botai-Tersek is, in fact, a growing contender for the source of some “eastern” cranial features.

khvalynsk-yamna-srubna-facial-reconstruction
Facial reconstructions based on skulls from (a) Khvalynsk II Grave 24, a young adult male; (b) Poludin Grave 6, Yamnaya culture, a mature male (both by A. I. Nechvaloda); and (c) Luzanovsky cemetery, Srubnaya culture (by L. T. Yablonsky). In Khokhlov (2016).

The wave of peoples associated with “eastern” features can be seen in genetics in the Sintashta outliers from Narasimhan et al. (2018), and it probably will be eventually seen in Abashevo, too. These may be related to the Seima-Turbino international network – but most likely it is directly connected to Sintashta through the starting Andronovo and Seima-Turbino horizons, by admixing of prospective groups and small-scale back-migrations.

Corded Ware – Yamna similarities?

So, if peoples of north-eastern Europe have been assumed for a long time to be Uralic speakers, what is happening with the Corded Ware = IE obsession? Is it Gimbutas’ ghost possessing old archaeologists? Probably not.

It is about certain cultural similarities evident at first sight, which have been traditionally interpreted as a sign of cultural diffusion or migration. Not dissimilar to the many Bell Beaker models available, where each archaeologist is pushing certain differences, mixing what seemed reasonable, what still might seem reasonable, and what certainly isn’t anymore after the latest ancient DNA data.

kurgan-expansion
“European dialect” expansion of Proto-Indo-European according to Gimbutas (1963)

The initial models of Gimbutas, Kristiansen, or Anthony – which are known to many today – were enunciated in the infancy of archaeological studies in the regions, during and just after the fall of the USSR, and before many radiocarbon dates that we have today were published (with radiocarbon dating being still today in need of refinement), so it is only logical that gross mistakes were made.

We have similar gross mistakes related to the origins of Bell Beakers, and studying them was certainly easier than studying eastern data.

  • Gimbutas believed – based mainly on Kurgan-like burials – that Bell Beaker formed from a combination of Yamna settlers with the Vučedol culture, so she was not that far from the truth.
  • The expansion of Corded Ware from peoples of the North Pontic forest-steppe area, proposed by Gimbutas and later supported also by Kristiansen (1989) as the main Indo-European expansion – , is probably also right about the approximate origins of the culture. Only its ‘Indo-European’ nature is in question, given the differences with Khvalynsk and Yamna evolution.
  • Anthony only claimed that Yamna migrants settled in the Balkans and along the Danube into the Hungarian steppes. He never said that Corded Ware was a Yamna offshoot until after the first genetic papers of 2015 (read about his newest proposal). He initially claimed that only certain neighbouring Corded Ware groups “adopted” Indo-European (through cultural diffusion) because of ‘patron-client’ relationships, and was never preoccupied with the fate of Corded Ware and related cultures in the east European forest zone and Finland.

So none of them was really that far from the true picture; we might say a lot people are more way off the real picture today than the picture these three researchers helped create in the 1990s and 2000s. Genetics is just putting the last nail in the coffin of Corded Ware as a Yamna offshoot, instead of – as we believed in the 2000s – to Vučedol and Bell Beaker.

So let’s revise some of these traditional links between Corded Ware and Yamna with today’s data:

Archaeology

Even more than genetics – at least until we have an adequate regional and temporary sampling – , archaeological findings lead what we have to know about both cultures.

It is essential to remember that Corded Ware, starting ca. 3000/2900 BC in east-central Europe, has been proposed to be derived from Early Yamna, which appeared suddenly in the Pontic-Caspian steppes ca. 3300 BC (probably from the late Repin expansion), and expanded to the west ca. 3000.

Early Yamna is in turn identified as the expanding Late Proto-Indo-European community, which has been confirmed with the recent data on Afanasevo, Bell Beaker, and Sintashta-Potapovka and derived cultures.

The question at hand, therefore, is if Corded Ware can be considered an offshoot of the Late PIE community, and thus whether the CWC ethnolinguistic community – proven in genetics to be quite homogeneous – spoke a Late PIE dialect, or if – alternatively – it is derived from other neighbouring cultures of the North Pontic region.

NOTE. The interpretation of an Indo-Slavonic group represented by a previous branching off of the group is untenable with today’s data, since Indo-Slavonic – for those who support it – would itself be a branch of Graeco-Aryan, and Palaeo-Balkan languages expanded most likely with West Yamna (i.e. R1b-L23, mainly R1b-Z2103) to the south.

The convoluted alternative explanation would be that Corded Ware represents an earlier, Middle PIE branch (somehow carrying R1a??) which influences expanding Late PIE dialects; this has been recently supported by Kortlandt, although this simplistic picture also fails to explain the Uralic problem.

Kurgans: The Yamna tradition was inherited from late Repin, in turn inherited from Khvalynsk-Novodanilovka proto-Kurgans. As for the CWC tradition, it is unclear if the tumuli were built as a tradition inherited from North and West Pontic cultures (in turn inherited or copied from Khvalynsk-Novodanilovka), such as late Trypillia, late Kvityana, late Dereivka, late Sredni Stog; or if they were built because of the spread of the ‘Transformation of Europe’, set in motion by the Early Yamna expansion ca. 3300-3000 BC (as found in east-central European cultures like Coţofeni, Lizevile, Șoimuș, or the Adriatic Vučedol). My guess is that it inherits an older tradition than Yamna, with an origin in east-central Europe, because of the mound-building distribution in the North Pontic area before the Yamna expansion, but we may never really know.

pit-graves-central-europe-cwc
Distribution of Pit-Grave burials west of the Black Sea likely dating to the 2nd half of the IVth millennium BC (triangles: side-crouched burials; filled circles: supine extended burials; open circles: suspected). Frînculeasa, Preda, and Heyd (2015)

Burial rite: Yamna features (with regional differences) single burials with body on its back, flexed upright knees, poor grave goods, common orientation east-west (heads to the west) inherited from Repin, in turn inherited from Khvalynsk-Novodanilovka. CWC tradition – partially connected to Złota and surrounding east-central European territories (in turn from the Khvalynsk-Novodanilovka expansion) – features single graves, body in fetal position, strict gender differentiation – men on the right, women on the left -, looking to the south, graves with standardized assemblages (objects representing affirmation of battle, hunting, and feasting). The burial rites clearly represent different ideologies.

pit-grave-burial-schemes
Left: Pit-Grave burial types expanded with Khvalynsk-Novodanilovka. Right: Pit-Grave burial types associated with the Yamna expansion and influence. Frînculeasa, Preda, and Heyd (2015)

Corded decoration: Corded ware decoration appears in the Balkans during the 5th millennium, and represents a simple technique whereby a cord is twisted, or wrapped around a stick, and then pressed directly onto the fresh surface of a vessel leaving a characteristic decoration. It appears in many groups of the 5th and 4th millennium BC, but it was Globular Amphorae the culture which popularized the drinking vessels and their corded ornamentation. It appears thus in some regional groups of Yamna, but it becomes the standard pottery only in Corded Ware (especially with the A-horizon), which shows continuity with GAC pottery.

corded-ware-first-horizon
Origins of the first Corded Ware horizon (5th millennium BC) after the Khvalynsk-Novodanilovka expansion. Corded Ware (circles) and horse-head scepters (rectangles) and other steppe elements (triangles). Image from Bulatović (2014).

Economy: Yamna expands from Repin (and Repin from Khvalynsk-Novodanilovka) as a nomadic or semi-nomadic purely pastoralist society (with occasional gathering of wild seeds), which naturally thrives in the grasslands of the Pontic-Caspian, lower Danube and Hungarian steppes. Corded Ware shows agropastoralism (as late Eneolithic forest-steppe and steppe groups of eastern Europe, such as late Trypillian, TRB, and GAC groups), inhabits territories north of the loess line, with heavy reliance of hunter-gathering depending on the specific region.

Cattle herding: Interestingly, both west Yamna and Corded Ware show more reliance on cattle herding than other pastoralist groups, which – contrasted with the previous Eneolithic herding traditions of the Pontic-Caspian steppe, where sheep-goats predominate – make them look alike. However, the cattle-herding economy of Yamna is essential for its development from late Repin and its expansion through the steppes (over western territories practising more hunter-gathering and sheep-goat herding economy), and it does not reach equally the Volga-Ural region, whose groups keep some of the old subsistence economy (read more about the late Repin expansion). Corded Ware, on the other hand, inherits its economic strategy from east European groups like TRB, GAC, and especially late Trypillian communities, showing a predominance of cattle herding within an agropastoral community in the forest-steppe and forest zones of Volhynia, Podolia, and surrounding forest-steppe and forest regions.

yamna-scheme
Scheme of interlinked socio-economic-ideological innovations forming the Yamnaya. Frînculeasa, Preda, and Heyd (2015)

Horse riding: Horse riding and horse transport is proven in Yamna (and succeeding Bell Beaker and Sintashta), assumed for late Repin (essential for cattle herding in the seas of grasslands that are the steppes, without nearby water sources), quite likely during the Khvalynsk expansion (read more here), and potentially also for Samara, where the predominant horse symbolism of early Khvalynsk starts. Corded Ware – like the north Pontic forest-steppe and forest areas during the Eneolithic – , on the other hand, does not show a strong reliance on horse riding. The high mobility and short-term settlements characteristic of Corded Ware, that are often associated with horse riding by association with Yamna, may or may not be correct, but there is no need for horses to explain their herding economy or their mobility, and the north-eastern European areas – the one which survived after Bell Beaker expansion – did certainly not rely on horses as an essential part of their economy.

NOTE: I cannot think of more supposed similarities right now. If you have more ideas, please share in the comments and I will add them here.

Genetic similarities

EHG: This is the clearest link between both communities. We thought it was related to the expansion of ANE-related ancestry to the west into WHG territory, but now it seems that it will be rather WHG expanding into ANE territory from the Pontic-Caspian region to the east (read more on recent Caucasus Neolithic, on , and on Caucasus HG).

NOTE. Given how much each paper changes what we know about the Palaeolithic, the origin and expansion of the (always developing) known ancestral components and specific subclades (see below) is not clear at all.

CHG: This is the key link between both cultures, which will delimit their interaction in terms of time and space. CHG is intermediate between EHG and Iran N (ca. 8000 BC). The ancestry is thus linked to the Caucasus south of the steppe before the emergence of North Pontic (western) and Don-Volga-Ural (eastern) communities during the Mesolithic. The real question is: when we have more samples from the steppe and the Caucasus during the Neolithic, how many CHG groups are we going to find? Will the new specific ancestral components (say CHG1, CHG2, CHG3, etc.) found in Yamna (from Khvalynsk, in the east) and Corded Ware (probably from the North Pontic forest-steppe) be the same? My guess is, most likely not, unless they are mediated by the Khvalynsk-Novodanilovka expansion (read more on CHG in the Caucasus).

yamnaya-chg-ancestry
Formation of Yamna and CHG contribution, in Damgaard et al. (Science 2018). A 10-leaf model based on combining the models in Fig. S16 and Fig. S19 and re-estimating the model parameters.

WHG/EEF: This is the obvious major difference – known today – in the formation of both communities in the steppe, and shows the different contacts that both groups had at least since the Eneolithic, i.e. since the expansion of Repin with its renewed Y-DNA bottleneck, and probably since before the early Khvalynsk expansion (read more on Yamna-Corded Ware differences contrasting with Yamna-Afanasevo, Yamna-Bell Beaker, and Yamna-Sintashta similarities).

NOTE 1. Some similarities between groups can be seen depending on the sampled region; e.g. Baltic groups show more similarities with southern Pontic-Caspian steppe populations, probably due to exogamy.

yamna-corded-ware-diff-qpgraph
Tested qpGraph model in Tambets et al. (2018). The qpGraph model fitting the data for the tested populations. “Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel.”

NOTE 2. We have this information on the differences in “steppe ancestry” between Yamna and Corded Ware, compared to previous studies, because now we have more samples of neighbouring, roughly contemporaneous Eneolithic groups, to analyse the real admixture processes. This kind of fine scale studies is what is going to show more and more differences between Khvalynsk-Yamna and Sredni Stog-Corded Ware as more data pours in. The evolution of both communities in archaeology and in PCA (see below) is probably witness to those differences yet to be published.

R1: Even though some people try very hard to think in terms of “R1” vs. (Caucasus) J or G or any other upper clade, this is plainly wrong. It is possible, given what we know now, that Q1a2-M242 expanded ANE ancestry to the west ca. 13000 BC, while R1b-P279 expanded WHG ancestry to the east with the expansion of post-Swiderian cultures, creating EHG as a WHG:ANE cline. The role of R1a-M459 is unknown, but it might be related to any of these migrations, or others (plural) along northern Eurasia (read more on the expansion of R1b-P279, on Palaeolithic Q1a2, and on R1a-M417).

NOTE. I am inclined to believe in a speculative Mesolithic-Early Neolithic community involving Eurasiatic movements accross North Eurasia, and Indo-Uralic movements in its western part, with the last intense early Uralic-PIE contacts represented by the forming west (Mariupol culture) and east (Don-Volga-Ural cultures, including Samara) communities developing side by side. Before their known Eneolithic expansions, no large-scale Y-DNA bottleneck is going to be seen in the Pontic-Caspian steppe, with different (especially R1a and R1b subclades) mixed among them, as shown in North Pontic Neolithic, Samara HG, and Khvalynsk samples.

PCA-trypillia-greece-neolithic-outlier-anatolian
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Corded Ware and ‘steppe ancestry’

If we take a look at the evolution of Corded Ware cultures, the expansion of Bell Beakers – dominated over most previous European cultures from west to east Europe – influenced the development of the whole European Bronze Age, up to Mierzanowice and Trzciniec in the east.

The only relevant unscathed CWC-derived groups, after the expansion of Sintashta-Potapovka as the Srubna-Andronovo horizon in the Eurasian steppes, were those of the north-eastern European forest zone: between Belarus to the west, Finland to the north, the Urals to the east, and the forest-steppe region to the south. That is, precisely the region supposed to represent Uralic speakers during the Bronze Age.

This inconsistency of steppe ancestry and its relation with Uralic (and Balto-Slavic) peoples was observed shortly after the publication of the first famous 2015 papers by Paul Heggarty, of the Max-Planck Institute for Evolutionary Anthropology (read more):

Haak et al. (2015) make much of the high Yamnaya ancestry scores for (only some!) Indo-European languages. What they do not mention is that those same results also include speakers of other languages among those with the highest of all scores for Yamnaya ancestry. Only these are languages of the Uralic family, not Indo-European at all; and their Yamnaya-ancestry signals are far higher than in many branches of Indo-European in (southern) Europe. Estonian ranks very high, while speakers of the very closely related Finnish are curiously not shown, and nor are the Saami. Hungarian is relevant less directly since this language arrived only c. 900 AD, but also high.

uralic-steppe-ancestry

These data imply that Uralic-speakers too would have been part of the Yamnaya > Corded Ware movement, which was thus not exclusively Indo-European in any case. And as well as the genetics, the geography, chronology and language contact evidence also all fit with a Yamnaya > Corded Ware movement including Uralic as well as Balto-Slavic.

Both papers fail to address properly the question of the Uralic languages. And this despite — or because? — the only Uralic speakers they report rank so high among modern populations with Yamnaya ancestry. Their linguistic ancestors also have a good claim to have been involved in the Corded Ware and Yamnaya cultures, and of course the other members of the Uralic family are scattered across European Russia up to the Urals.

NOTE. Although the author was trying to support the Anatolian hypothesis – proper of glottochronological studies often published from the Max Planck Institute – , the question remains equally valid: “if Proto-Indo-European expands with Corded Ware and steppe ancestry, what is happening with Uralic peoples?”

For my part, I claimed in my draft that ancestral components were not the only relevant data to take into account, and that Y-DNA haplogroups R1a and R1b (appearing separately in CWC and Yamna-Bell Beaker-Afanasevo), together with their calculated timeframes of formation – and therefore likely expansion – did not fit with the archaeological and linguistic description of the spread of Proto-Indo-European and its dialects.

In fact, it seemed that only one haplogroup (R1b-M269) was constantly and consistenly associated with the proposed routes of Late PIE dialectal expansions – like Anthony’s second (Afanasevo) and third (Lower Danube, Balkan) waves. What genetics shows fits seamlessly with Mallory’s association of the North-West Indo-European expansion with Bell Beakers (read here how archaeologists were right).

balanovksy-yamnaya-ancestry
Map of the much beloved steppe (or “Yamnaya”) ancestry in modern populations, by Balanovsky. Modified from Klejn (2017).

More precise inconsistencies were observed after the publication of Olalde et al. (2017) and Mathieson et al. (2017), by Volker Heyd in Kossinna’s smile (2017). Letting aside the many details enumerated (you can read a summary in my latest draft), this interesting excerpt is from the conclusion:

NOTE. An open access ealier draft version of the paper is offered for download by the author.

Simple solutions to complex problems are never the best choice, even when favoured by politicians and the media. Kossinna also offered a simple solution to a complex prehistoric problem, and failed therein. Prehistoric archaeology has been aware of this for a century, and has responded by becoming more differentiated and nuanced, working anthropologically, scientifically and across disciplines (cf. Müller 2013; Kristiansen 2014), and rejecting monocausal explanations. The two aDNA papers in Nature, powerful and promising as they are for our future understanding, also offer rather straightforward messages, heavily pulled by culture-history and the equation of people with culture. This admittedly is due partly to the restrictions of the medium that conveys them (and despite the often relevant additional detail given as supplementary information, which is unfortunately not always given full consideration).

While I have no doubt that both papers are essentially right, they do not reflect the complexity of the past. It is here that archaeology and archaeologists contributing to aDNA studies find their role; rather than simply handing over samples and advising on chronology, and instead of letting the geneticists determine the agenda and set the messages, we should teach them about complexity in past human actions and interactions. If accepted, this could be the beginning of a marriage made in heaven, with the blessing smile of Gustaf Kossinna, and no doubt Vere Gordon Childe, were they still alive, in a reconciliation of twentieth- and twenty-first-century approaches. For us as archaeologists, it could also be the starting point for the next level of a new archaeology.

heyd-yamnaya-expansion
Main distribution of Yamnaya kurgans in the Pontic-Caspian steppe of modern day Russia, Ukraine, and Kazakhstan, and its western branch in modern south-east European countries of Romania, Bulgaria, Serbia, and Hungary, with numbers of excavated kurgans and graves given. Picture: Volker Heyd (2018).

The question was made painfully clear with the publication of Olalde et al. (2018) & Mathieson et al. (2018), where the real route of Yamna expansion into Europe was now clearly set through the steppes into the Carpathian basin, later expanded as Bell Beakers.

This has been further confirmed in more recent papers, such as Narasimhan et al. (2018), Damgaard et al. (2018), or Wang et al. (2018), among others.

However, the discussion is still dominated by political agendas based on prevalent Y-DNA haplogroups in modern countries and ethnic groups.

Related

Sintashta diet and economy based on domesticated animal products and wild resources

indo-iranian-sintashta-uralic-migrations

New paper (behind paywall) Bronze Age diet and economy: New stable isotope data from the Central Eurasian steppes (2100-1700 BC), by Hanks et al. J. Arch. Sci (2018) 97:14-25.

Interesting excerpts (emphasis mine):

Previous research at KA-5 was carried out by A. V. Epimakhov in 1994–1995 and 2002–2003 and resulted in the excavation of three Sintashta culture barrows (kurgans) that produced 35 burial pits and a reported 100 skeletons (Epimakhov, 2002, 2005; Epimakhov et al., 2005; Razhev and Epimakhov, 2004). Seven AMS radiocarbon dates on human remains from the cemetery yielded a date range of 2040–1730 cal. BC (2 sigma), which placed the cemetery within the Sintashta phase of the regional Bronze Age (Hanks et al., 2007). Twelve recently obtained AMS radiocarbon dates, taken from short-lived wood and charcoal species recovered from the Kamennyi Ambar settlement, have provided a date range of 2050–1760 cal. BC (2 sigma). Importantly, these dates confirm the close chronological relationship between the settlement and cemetery for the Middle Bronze Age phase and discount the possibility of a freshwater reservoir effect influencing the earlier dating of the human remains from the Kamennyi Ambar 5 cemetery (Epimakhov and Krause, 2013).

Sintashta cemeteries frequently yield fewer than six barrow complexes and the number of skeletons recovered represents a fraction of the total population that would have inhabited the settlements (Judd et al., 2018; Johnson and Hanks, 2012). Scholars have suggested that only members of higher status were afforded interment in these cemeteries and that principles of social organization structured placement of individuals within central or peripheral grave pits (Fig. 2) (Koryakova and Epimakhov, 2007: 75–81). In comparison with other Sintashta cemeteries that have been excavated, KA-5 provides one of the largest skeletal inventories currently available for study.

kamenniy-ambar
Upper – plan of Kamennyi Ambar settlement and cemetery; Lower – plan views of Kurgan 2 and Kurgan 4 from KA-5 Cemetery (kurgan plans redrawn from Epimakhov, 2005: 10, 79).

The KA-5 (MBA), Bestamak (MBA) and Lisakovsk (LBA) datasets exhibited a wide range of δ13C and δ15N values for both humans and herbivores (Figs. 5 and 6 & Table 8). This diversity in isotopic signals may be evident for a variety of reasons. For example, the range of values may be associated with a broad spectrum of C3 and C4 plant diversity in the ancient site biome or herbivore grazing patterns that included more diverse environmental niche areas in the microregion around the sampled sites. Herders also may have chosen to graze animals in niche areas due to recognized territorial boundaries between settlements and concomitant patterns of mobility. Importantly, data from Bolshekaragansky represents humans with lower δ15N values that are more closely associated with δ15N values of the sampled domestic herbivores (Fig. 6). When the archaeological evidence from associated settlement sites is considered, Bolshekaragansky, Bestamak, Lisakovsk and KA-5 have been assumed to represent populations that shared similar forms of pastoral subsistence economies with significant dietary reliance upon domesticated herbivore meat and milk. Human diets have δ13C values closely related to those of local herbivores in terms of the slope of the trendline and range of values (Fig. 6). Comparatively, the cemetery of Bolshekaragansky (associated with the Arkaim settlement) reflects individuals with trend lines closer to those of cattle and caprines and may indicate a stronger reliance on subsistence products from these species with less use of wild riverine and terrestrial resources. The site of Čiča is significantly different with elevated human δ15N isotopic values and depleted δ13C values indicative of a subsistence regime more closely associated with the consumption of freshwater resources, such as fish. The stable isotopic data in this instance is strongly supported by zooarchaeological evidence recovered from the Čiča settlement and also is indicative of significant diachronic changes from the LBA phases through the Iron Age (Fig. 6).

kamenniy-ambar-isotopic-chicha-lisakovsk-bestamark
Regional analysis and comparison of stable isotope results from humans (adults) and animals recovered from MBA and LBA cemeteries in the Southern Urals (Kamennyi Ambar 5 & Bolshekaragansky) northwestern Kazakhstan (Liskovsk & Bestamak) and southwestern Siberia (Čiča).

Conclusion

(…) The isotopic results from KA-5, and recent botanical and archaeological studies from the Kamennyi Ambar settlement, have not produced any evidence for the production or use of domesticated cereals. While this does not definitively answer the question as to whether Sintashta populations engaged in agriculture and/or utilized agricultural products, it does call into serious question the ubiquity of such practices across the region and correlates well with recent archaeological, bioarchaeological, and isotopic studies of human and animal remains from the Southwestern Urals region and Samara Basin (Anthony et al., 2016; Schulting and Richards, 2016). The results substantiate a broader spectrum subsistence diet that in addition to the use of domesticated animal products also incorporated wild flora, wild fauna and fish species. These findings further demonstrate the need to draw on multiple methods and datasets for the reconstruction of late prehistoric subsistence economies in the Eurasian steppes. When possible, this should include datasets from both settlements and associated cemeteries.

Variability in subsistence practices in the central steppes region has been highlighted by other scholars and appears to be strongly correlated with local environmental conditions and adaptations. More comprehensive isotopic studies of human, animal and fish remains are of fundamental importance to achieve more robust and empirically substantiated reconstructions of local biomes and to aid the refinement of regional and micro-regional economic subsistence models. This will allow for a fuller understanding of key diachronic shifts within dietary trends and highlight regional variation of such practices. Ultimately, this will more effectively index the diverse social and environmental variables that contributed to late prehistoric lifeways and the economic strategies employed by these early steppe communities.

Social organization of Sintashta-Petrovka

Interesting to remember now the recent article by Chechushkov et al. (2018) about the social stratificaton in Sintashta-Petrovka, and how it must have caused the long-lasting, peaceful admixture process that led to the known almost full replacement of R1b-L23 (mostly R1b-Z2103) by R1a-Z645 (mostly R1a-Z93) subclades in the North Caspian steppe, coinciding with the formation of the Proto-Indo-Iranian community and language (read my thoughts on this after Damgaard et al. 2018).

Here is another relevant excerpt from Chechushkov et al. (2018), translated from Russian:

settlement-kamenniy-ambar
The map of the settlement of Kamennyi Ambar with excavations, soil cores, and test pits. Legend: a — cuts of the sides of ravines; b — test pits of 2015—2017; c — test pits of 2004; d — soil-science samples with a cultural layer; e — soil-science samples without cultural layer; f — borders of archaeological sites (interpretation of the plan of magnetic anomalies); g — boundaries of excavated structures (1, 2, 4, 5, 7 — Sintashta-Petrovka culture; 3, 6 — Srubnaya-Alakul’ culture).

The analysis suggests that the Sintashta-Petrovka societies had a certain degree of social stratification, expressed both in selective funeral rituals and in the significant difference in lifestyle between the elite and the immediate producers of the product. The data obtained during the field study suggest that the elite lived within the fortifications, while a part of the population was outside their borders, on seasonal sites, and also in stationary non-fortified settlements. Probably, traces of winter settlements can be found near the walls, while the search for summer ones is a task of a separate study. From our point of view, the elite of the early complex societies of the Bronze Age of the Eurasian steppe originated as a response to environmental challenges that created risks for cattle farming. The need to adapt the team to the harsh and changing climatic conditions created a precedent in which the settled collectives of pastoralists – hunter-gatherers could afford the content and magnificent posthumous celebration of people and their families who were not engaged in the production or extraction of an immediate product. In turn, representatives of this social group directed their efforts to the adoption of socially significant decisions, the organization of collective labor in the construction of settlement-shelters and risked their lives, acting as military leaders and fighters.

Thus, in Bronze Age steppe societies, the formation, development and decline of social complexity are directly related to the intensity of pastoralism and the development of new territories, where collectives had to survive in part a new ecological niche. At the same time, some members of the collective took upon themselves the organization of the collective’s life, receiving in return a privileged status. As soon as the conditions of the environment and management changed, the need for such functions was virtually eliminated, as a result of which the privileged members of society dissolved into the general mass, having lost their lifetime status and the right to be allocated posthumously.

Also interesting for the MLBA haplogroup bottleneck in the region is the paper by Judd et al. (2017) about fast life history in Early Indo-Iranian territories.

On the arrival of haplogroup N1c1-L392

Regarding the special position of the Chicha-1 samples in the change of diet and economy during the Iron Age, it is by now well known that haplogroup N must have arrived quite late to North-East Europe, and possibly not linked with the expansion of Siberian ancestry – or linked only with some waves of Siberian ancestry in the region, but not all of them. See Lamnidis et al. (2018) for more on this.

Also, the high prevalence of haplogroup N among Fennic and Siberian (Samoyedic) peoples is not related: while the latter reflects probably the native (Palaeo-Siberian) population that acquired their Uralic branch during the MLBA expansions associated with Corded Ware groups, the former points to the expansion of Fennic peoples into Saamic territory (i.e. after the Fenno-Saamic split) as the most likely period of expansion of N1c1-L392 subclades (see known recent bottlenecks among Finns, and on Proto-Finnic dialectalization).

Probably related to these late incomers are the ancient DNA samples from the Sargat culture during the Iron Age, which show the arrival of N subclades in the region, replacing most – but not all – R1a lineages (see Pilipenko et al. (2017)). Regarding the site of Chicha-1, the following are relevant excerpts about the cultural situation that could have allowed for such stepped, diachronic admixture events in Northern Eurasia, from the paper Stages in the settlement history of Chicha-1: The Results of ceramic analysis, by Molodin et al. (2008):

The stratigraphic data allows us to make the following inference: originally, the settlement was inhabited by people bearing the Late Irmen culture. Later, the people of the Baraba trend of the Suzgun culture arrived at the site (Molodin, Chemyakina, 1984: 40–62). The Baraba-Suzgun pottery demonstrates features similar to what has been reported from the sites of the transitional Bronze to Iron Age culture in the pre-taiga and taiga zones in the Irtysh basin (Potemkina, Korochkova, Stefanov, 1995; Polevodov, 2003). The major morphological types are slightly and well-profiled pots with a short throat. (…)

chicha-irmen-tagar-baraba-forest-siberian
Map showing the location of Chicha-1.

During the following stage of development of the site, the Chicha population increased with people who practiced cultures others than those noted in earlier collections. The ceramic materials from layer 5 provide data on possible relationships. In addition to migrants from northwestern regions practicing the Suzgun culture, there were people bearing the Krasnoozerka culture. Available data also suggests that people from the northern taiga region with the Atlym culture visited the site.

However, people from the west and southwest represent the greatest migration to the region under study. In all likelihood they moved from the northern forest-steppe zone of modern Kazakhstan and practiced the Berlik culture. The spatial distribution analysis of the Chicha-1 site suggests that the Berlik population was rather large. The Berlik people formed a single settlement with the indigenous Late Irmen people and apparently waged certain common economic activities, but preserved their own ethnic and cultural specificity (Molodin, Parzinger, 2006: 49–55). Judging by the data on the chronological sequence of deposited artifacts, migration took place roughly synchronously, hence Chicha-1 became a real cultural and economic center.

(…) In sum, the noted distribution of ceramics over the culture-bearing horizons suggests that beginning with layer 5, traditions of ceramic manufacture described above were practiced, hence the relevant population inhabited the site. Apparently, there were two predominant traditions: the local Late Irmen cultural tradition and the Berlik tradition, which was brought by the immigrants. The Late Irmen people mostly populated the citadel, while the Berlik immigrants inhabited the areas to the east and the north of the citadel.

The stratigraphic data also suggest that the Early Sargat ceramics emerged at the site likely as a part of the Late Irmen tradition (…) Early Sargat ceramics is apparently linked with the Late Irmen tradition. Artifacts associated with the Sargat culture proper have been found in several areas of Chicha-1 (e.g., in excavation area 16). However, the Sargat people appeared at the site after it had been abandoned by its previous inhabitants, and had eventually become completely desolated. This happened no earlier than the 6th cent. BC, possibly in the 5th cent. BC (in fact, the radiocarbon dates for that horizon are close to the turn of the Christian era).

Related

Shared ancestry of ancient Eurasian hepatitis B virus diversity linked to Bronze Age steppe

hepatitis-b-world

Ancient hepatitis B viruses from the Bronze Age to the Medieval period, by Mühlemann et al., Science (2018) 557:418–423.

NOTE. You can read the PDF at Dalia Pokutta’s Academia.edu account.

Abstract (emphasis):

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10−6–1.51 × 10−5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.

hbv-genotypes-eurasia
Geographical distribution of analysed samples and modern genotypes. a (featured image), Distribution of modern human HBV genotypes. Genotypes relevant to this Letter are shown in colour. Coloured shapes indicate the locations of the HBV-positive samples included for further analysis. b (above this text), Locations of analysed Bronze Age samples are shown as circles and Iron Age and later samples are shown as triangles. Coloured markers indicate HBV-positive samples. Ancient genotype A samples are found in regions in which genotype D predominates today, and HBV-DA27 is of subgenotype D5 which today is found almost exclusively in India.

Interesting excerpts:

We find genotype A in south-western Russia by 4.3 ka (in samples RISE386 and RISE387) in individuals belonging to the Sintashta culture, and in a Hungarian sample (DA195) from the Scythian culture. The western Scythians are related to the Bronze Age cultures of western steppe populations2 and their shared ancestry suggests that the modern genotype A may descend from this ancient Eurasian diversity and not, as previously hypothesized, from African ancestors29,30. This is also consistent with the phylogeny (Fig. 2), as well as the fact that the three oldest ancient genotype A sequences (HBV-DA195, HBV-RISE386 and HBV-RISE387) lack the six-nucleotide insertion found in the youngest (HBV-DA119) and in all modern genotype A sequences. The ancestors of subgenotypes A1 and A3 could have been carried into Africa subsequently, via migration from western Eurasia31.

The ancient HBV genotype D sequences were all found in Central Asia. HBV-DA27, found in Kazakhstan and dated to 1.6 ka, falls basal to the modern subgenotype D5 sequences that today are found in the Paharia tribe from eastern India32. DA27 and the Paharia people in India are linked by their East Asian ancestry2,33.

hbv-genotype-tree
Dated maximum clade credibility tree of HBV. A log-normal relaxed clock and coalescent exponential population prior were used. Grey horizontal bars indicate the 95% HPD interval of the age of the node. Larger numbers on the nodes indicate the median age and 95% HPD interval of the age (in parentheses) under a strict clock and Bayesian skyline tree prior. Clades of genotypes C (except clade C4), E, F, G and H are collapsed and shown as dots. The figure includes a possible tenth genotype, J, based on a single human isolate. Taxon names for ancient samples indicate era (BA, Bronze Age; IA, Iron Age or later), sample name, sample age in years, ISO 3166 three-letter abbreviation of country of sequence origin, and region of sequence origin. Taxon names for modern samples indicate human genotype or subgenotype or host species if non-human, GenBank accession number, sample age in years, ISO 3166 three-letter abbreviation of country of sequence origin, and region of sequence origin.

(…)Despite the age of the samples and the imperfect diagnostic test, our dataset contained a high proportion of HBV-positive individuals. The actual ancient prevalence during the Bronze Age and thereafter might have been higher, reaching or exceeding the prevalence typically found in contemporary indigenous populations5. This clearly establishes the potential of HBV as powerful proxy tool for research into human spread and interactions. The data from ancient genomes reveal aspects of complexity in HBV evolution that are not apparent when only modern sequences are considered. They show the existence of ancient HBV genotypes in locations incongruent with their present-day distribution, contradicting previously suggested geographical or temporal origins of genotypes or sub-genotypes; evidence for the creation of genotype A via recombination and the emergence of the genotype outside Africa; at least one now-extinct human genotype; ancient genotype-level localized diversity; and demonstrate that the viral substitution rate obtained from modern heterochronously sampled sequences is probably misleading. Together, these findings suggest that the difficulty in formulating a coherent theory for the origin and spread of HBV may be due to genetic evidence of an earlier evolutionary scenario being overwritten by relatively recent alterations, as has previously been suggested in the context of recombination24

See also:

Eurasian steppe dominated by Iranian peoples, Indo-Iranian expanded from East Yamna

yamna-indo-iranian-expansion

The expected study of Eurasian samples is out (behind paywall): 137 ancient human genomes from across the Eurasian steppes, by de Barros Damgaard et al. Nature (2018).

Dicussion (emphasis mine):

Our findings fit well with current insights from the historical linguistics of this region (Supplementary Information section 2). The steppes were probably largely Iranian-speaking in the first and second millennia bc. This is supported by the split of the Indo-Iranian linguistic branch into Iranian and Indian33, the distribution of the Iranian languages, and the preservation of Old Iranian loanwords in Tocharian34. The wide distribution of the Turkic languages from Northwest China, Mongolia and Siberia in the east to Turkey and Bulgaria in the west implies large-scale migrations out of the homeland in Mongolia since about 2,000 years ago35. The diversification within the Turkic languages suggests that several waves of migration occurred36 and, on the basis of the effect of local languages, gradual assimilation to local populations had previously been assumed37. The East Asian migration starting with the Xiongnu accords well with the hypothesis that early Turkic was the major language of Xiongnu groups38. Further migrations of East Asians westwards find a good linguistic correlate in the influence of Mongolian on Turkic and Iranian in the last millennium39. As such, the genomic history of the Eurasian steppes is the story of a gradual transition from Bronze Age pastoralists of West Eurasian ancestry towards mounted warriors of increased East Asian ancestry—a process that continued well into historical times.

This paper will need a careful reading – better in combination with Narasimhan et al. (2018), when their tables are corrected – , to assess the actual ‘Iranian’ nature of the peoples studied. Their wide and long-term dominion over the steppe could also potentially explain some early samples from Hajji Firuz with steppe ancestry.
fku

eurasian-steppe-samples
Principal component analyses. The principal components 1 and 2 were plotted for the ancient data analysed with the present-day data (no projection bias) using 502 individuals at 242,406 autosomal SNP positions. Dimension 1 explains 3% of the variance and represents a gradient stretching from Europe to East Asia. Dimension 2 explains 0.6% of the variance, and is a gradient mainly represented by ancient DNA starting from a ‘basal-rich’ cluster of Natufian hunter-gatherers and ending with EHGs. BA, Bronze Age; EMBA, Early-to-Middle Bronze Age; SHG, Scandinavian hunter-gatherers.

For the moment, at first sight, it seems that, in terms of Y-DNA lineages:

  • R1b-Z93 (especially Z2124 subclades) dominate the steppes in the studied periods.
  • R1b-P312 is found in Hallstatt ca. 810 BC, which is compatible with its role in the Celtic expansion.
  • R1b-U106 is found in a West Germanic chieftain in Poprad (Slovakia) ca. 400 AD, during the Migration Period, hence supporting once again the expansion of Germanic tribes especially with R1b-U106 lineages.
  • A new sample of N1c-L392 (L1025) lineage dated ca. 400 AD, now from Lithuania, points again to a quite late expansion of this lineage to the region, believed to have hosted Uralic speakers for more than 2,000 years before this.
  • A sample of haplogroup R1a-Z282 (Z92) dated ca. 1300 AD in the Golden Horde is probably not quite revealing, not even for the East Slavic expansion.
  • Also, interestingly, some R1b(xM269) lineages seem to be associated with Turkic expansions from the eastern steppe dated around 500 AD, which probably points to a wide Eurasian distribution of early R1b subclades in the Mesolithic.

NOTE. I have referenced not just the reported subclades from the paper, but also (and mainly) further Y-SNP calls studied by Open Genomes. See the spreadsheet here.

Interesting also to read in the supplementary materials the following, by Michaël Peyrot (emphasis mine):

1. Early Indo-Europeans on the steppe: Tocharians and Indo-Iranians

The Indo-European language family is spread over Eurasia and comprises such branches and languages as Greek, Latin, Germanic, Celtic, Sanskrit etc. The branches relevant for the Eurasian steppe are Indo-Aryan (= Indian) and Iranian, which together form the Indo-Iranian branch, and the extinct Tocharian branch. All Indo-European languages derive from a postulated protolanguage termed Proto-Indo-European. This language must have been spoken ca 4500–3500 BCE in the steppe of Eastern Europe21. The Tocharian languages were spoken in the Tarim Basin in present-day Northwest China, as shown by manuscripts from ca 500–1000 CE. The Indo-Aryan branch consists of Sanskrit and several languages of the Indian subcontinent, including Hindi. The Iranian branch is spread today from Kurdish in the west, through a.o. Persian and Pashto, to minority languages in western China, but was in the 2nd and 1st millennia BCE widespread also on the Eurasian steppe. Since despite their location Tocharian and Indo-Iranian show no closer relationship within Indo-European, the early Tocharians may have moved east before the Indo-Iranians. They are probably to be identified with the Afanasievo Culture of South Siberia (ca 2900 – 2500 BCE) and have possibly entered the Tarim Basin ca 2000 BCE103.

The Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) towards the east. The rise of the Indo-Iranian language, of which no direct records exist, must be connected with the Abashevo / Sintashta Culture (ca 2100 – 1800 BCE) in the southern Urals and the subsequent rise and spread of Andronovo-related Culture (1700 – 1500 BCE). The most important linguistic evidence of the Indo-Iranian phase is formed by borrowings into Finno-Ugric languages104–106. Kuz’mina (2001) identifies the Finno-Ugrians with the Andronoid cultures in the pre-taiga zone east of the Urals107. Since some of the oldest words borrowed into Finno-Ugric are only found in Indo-Aryan, Indo-Aryan and Iranian apparently had already begun to diverge by the time of these contacts, and when both groups moved east, the Iranians followed the Indo-Aryans108. Being pushed by the expanding Iranians, the Indo-Aryans then moved south, one group surfacing in equestrian terminology of the Anatolian Mitanni kingdom, and the main group entering the Indian subcontinent from the northwest.

steppe-migrations-pastoralists
Summary map. Depictions of the five main migratory events associated with the genomic history of the steppe pastoralists from 3000 bc to the present. a, Depiction of Early Bronze Age migrations related to the expansion of Yamnaya and Afanasievo culture. b, Depiction of Late Bronze Age migrations related to the Sintashta and Andronovo horizons. c, Depiction of Iron Age migrations and sources of admixture. d, Depiction of Hun-period migrations and sources of admixture. e, Depiction of Medieval migrations across the steppes.

2. Andronovo Culture: Early Steppe Iranian

Initially, the Andronovo Culture may have encompassed speakers of Iranian as well as Indo-Aryan, but its large expansion over the Eurasian steppe is most probably to be interpreted as the spread of Iranians. Unfortunately, there is no direct linguistic evidence to prove to what extent the steppe was indeed Iranian speaking in the 2nd millennium BCE. An important piece of indirect evidence is formed by an archaic stratum of Iranian loanwords in Tocharian34,109. Since Tocharian was spoken beyond the eastern end of the steppe, this suggests that speakers of Iranian spread at least that far. In the west of the Tarim Basin the Iranian languages Khotanese and Tumshuqese were spoken. However, the Tocharian B word etswe ‘mule’, borrowed from Iranian *atswa- ‘horse’, cannot derive from these languages, since Khotanese has aśśa- ‘horse’ with śś instead of tsw. The archaic Iranian stratum in Tocharian is therefore rather to be connected with the presence of Andronovo people to the north and possibly to the east of the Tarim Basin from the middle of the 2nd millennium BCE onwards110.

Since Kristiansen and Allentoft sign the paper (and Peyrot is a colleague of Kroonen), it seems that they needed to expressly respond to the growing criticism about their recent Indo-European – Corded Ware Theory. That’s nice.

They are obviously trying to reject the Corded Ware – Uralic links that are on the rise lately among Uralicists, now that Comb Ware is not a suitable candidate for the expansion of the language family.

IECWT-proponents are apparently not prepared to let it go quietly, and instead of challenging the traditional Neolithic Uralic homeland in Eastern Europe with a recent paper on the subject, they selected an older one which partially fit, from Kuz’mina (2001), now shifting the Uralic homeland to the east of the Urals (when Kuz’mina asserts it was south of the Urals).

Different authors comment later in this same paper about East Uralic languages spreading quite late, so even their text is not consistent among collaborating authors.

Also interesting is the need to resort to the questionable argument of early Indo-Aryan loans – which may have evidently been Indo-Iranian instead, since there is no way to prove a difference between both stages in early Uralic borrowings from ca. 4,500-3,500 years ago…

EDIT (10/5/2018) The linguistic supplement of the Science paper deals with different Proto-Indo-Iranian stages in Uralic loans, so on the linguistic side at least this influence is clear to all involved.

A rejection of such proposals of a late, eastern homeland can be found in many recent writings of Finnic scholars; see e.g. my references to Parpola (2017), Kallio (2017), or Nordqvist (2018).

NOTE. I don’t mind repeating it again: Uralic is one possibility (the most likely one) for the substrate language that Corded Ware migrants spread, but it could have been e.g. another Middle PIE dialect, similar to Proto-Anatolian (after the expansion of Suvorovo-Novodanilovka chiefs). I expressly stated this in the Corded Ware substrate hypothesis, since the first edition. What was clear since 2015, and should be clear to anyone now, is that Corded Ware did not spread Late PIE languages to Europe, and that some east CWC groups only spread languages to Asia after admixing with East Yamna. If they did not spread Uralic, then it was a language or group of languages phonetically similar, which has not survived to this day.

Their description of Yamna migrations is already outdated after Olalde et al. & Mathieson et al. (2018), and Narasimhan et al. (2018), so they will need to update their model (yet again) for future papers. As I said before, Anthony seems to be one step behind the current genetic data, and the IECWT seems to be one step behind Anthony in their interpretations.

At least we won’t have the Yamna -> Corded Ware -> BBC nonsense anymore, and they expressly stated that LPIE is to be associated with Yamna, and in particular the “Indo-Iranian branch is an extension of the Indo-European Yamnaya Culture (ca 3000–2400 BCE) to the East” (which will evidently show an East Yamna / Poltavka society of R1b-L23 subclades), so that earlier Eneolithic cultures have to be excluded, and Balto-Slavic identification with East Europe is also out of the way.

Related:

Consequences of O&M 2018 (II): The unsolved nature of Suvorovo-Novodanilovka chiefs, and the route of Proto-Anatolian expansion

neolithic_steppe-suvorovo

This is part of a series of posts analyzing the findings of the recent Nature papers Olalde et al.(2018) and Mathieson et al.(2018) (abbreviated O&M 2018).

I already expressed my predictions for 2018. One of the most interesting questions among them is the identification of the early Anatolian offshoot, and this is – I believe – where Genomics has the most to say in Indo-European migrations.

Linguistics and Archaeology had already a mainstream account from Late PIE/Yamna onwards, and it has been proven right in Genomic investigation. There is, however, no consensus on Indo-Hittite.

Suvorovo-Novodanilovka

Apart from the Anatolian homeland hypothesis and its westward migration (as referenced e.g. by Lazaridis et al. 2017), the other possibility including the most likely steppe homeland is that Proto-Anatolian spread through the Balkans, and must have separated from Khvalynsk and travelled first westward through the North Pontic region, and then southward to Ezero.

EDIT (10 MAR 2018): The Anatolian westward route within the steppe homeland model refers to the possibility that Proto-Anatolian spread south through the Caucasus, and then westward through Anatolia, as suggested e.g. originally by Marija Gimbutas for Maykop, as a link in the Caucasus.

We all know that this Khvalynsk -> Novodanilovka-Suvorovo -> Cernavoda -> Ezero -> Troy migration model proposed by Anthony shows no conspicuous chain in Archaeology, but obvious contacts (including Genomics) are seen among some of these neighbouring cultures in different times.

We know that remains of Suvorovo-Novodanilovka culture of chiefs emerged around 4400-4200 BC among ordinary local Sredni Stog settlements:

  • the Novodanilovka rich burials in the steppes, near the Dnieper,
  • and the Suvorovo group in the Danube delta, roughly coinciding with the massive abandonment of old tell settlements in the area.

One of the strongest cultural connections between Khvalynsk and Suvorovo Novodanilovka chiefs is the similar polished stone mace-heads shaped like horse heads found in both cultures, a typical steppe prestige object going back to the east Pontic-Caspian steppe beginning ca. 5000-4800 BC.

Its finding in the Danube valley may have signalled the expansion of horse riding, which is compatible with the finding of ancient domesticated horses in the region. Horses were not important in Old European cultures, and it seems that they weren’t in Sredni Stog or Kvitjana either.

sredni-stog-suvorovo-novodanilovka-cernavoda
Steppe and Danubian sites at the time: of the Suvorovo-Novodanilovka intrusion, about 4200-3900 BC. David W. Anthony (2007).

NOTE. Telegin, the main source of knowledge in Ukraine prehistoric cultures for Anthony, was eventually convinced that Surovovo-Novodanilovka was a separate culture. However, for Anthony (using Telegin’s first impressions), it may have been a wealthy elite among Sredni Stog peoples. Anthony considers Sredni Stog to have been also influenced by Khvalynsk, and thus potentially related to the Suvorovo-Novodanilovka chiefs.

Nevertheless, he obviously cannot link North Pontic Eneolithic cultures to Khvalynsk nor to horse riding – whilst he clearly assumes horse riding for Novodanilovka-Suvorovo chiefs – , and he does not link North Pontic cultures to later expansions of Late Proto-Indo-Europeans from late Khvalynsk and Yamna, either.

The question here for Anthony (as with further Proto-Anatolian expansions described in his 2007 book), in my opinion, was to offer a plausible string of connections between Khvalynsk and Anatolia, and the simplest connection one can make among steppe cultures is a general, broad community between North Pontic and North Caspian cultures. That way, the knot tying Khvalynsk to the Danube seems stronger, whatever the origin of Suvorovo-Novodanilovka chiefs.

If, however, a direct genetic connection is made between Suvorovo-Novodanilovka chiefs and Khvalynsk – as in its association with R1b-M269 and R1b-L23 lineages – , there will be little need to include Sredni Stog or any other intermediate culture in the equation.

We have already seen a movement of steppe ancestry into mainland Greece, and I would not be surprised if a parallel movement could be seen from Ezero to Troy (or a neighbouring North-West Anatolian region), so that the final migration of Common Anatolian had in fact been triggered by the massive steppe migrations during the Chalcolithic.

NOTE. Whereas we are certain to find R1b-L23 subclades in the direct Balkan migrations from Yamna, the link of steppe->Anatolia migrations may be a little trickier: even if we find out that the Suvorovo-Novodanilovka expansion was associated with an expansion and reduction of haplogroup variability (to haplogroups R1b-M269 and R1b-L23), we don’t know yet if the ca. 1,500 years passed (and the different cultural and population changes occurred) between Proto-Anatolian and Common Anatolian migrations may have impacted the main haplogroup composition of both communities.

O&M 2018

A probably unsurprising – because of its previously known admixture and PCA – , but nevertheless disappointing finding came from the Y-SNP call of the haplogroup R1 found in Varna (R1b-V88, given first by Genetiker), leaving us with no new haplogroup data standing out for this period.

This sample’s lack of obvious genetic links with the steppe and early date didn’t deter me from believing it could show subclade M269, and thus a sign of incoming Suvorovo chiefs in the region. After all, R1b-P297 subclades seemed to have almost disappeared from the Balkans by that time, and we know that assessments based only on ancestral components and PCA clusters are not infallible – we are seeing that in many, many samples already.

suvorovo-scepters
1—39 — sceptre bearers of the type Giurgiuleşti and Suvorovo; 40—60 — Gumelniţa-Varna-Bolgrad-Aldeni cultural sphere; 61 — Fălciu; 62 — Cainari; 63 — Giurgiuleşti; 64 — Suvorovo; 65 — Casimcea; 66 — Kjulevča; 67 — Reka Devnja; 68 — Drama; 69 — Gonova Mogila; 70 — Reževo. Țerna S., Govedarica B. (2016)

NOTE. In fact, the first time I checked Mathieson et al. (2018) supplementary tables I thought that the ‘Ukraine_Eneolithic’ sample of R1b-L23 subclade was ‘it’: the first clear proof in ancient samples of incoming Suvorovo chiefs from Khvalynsk I was looking for…Until I realized its date, and that it was more likely a Late Yamna (or Catacomb) sample.

Steppe ancestry is found in the Varna and Smyadovo outliers, though, and these samples cluster closely to Ukraine Eneolithic samples (which are among Khvalynsk, Ukraine Neolithic, and Anatolia Neolithic clusters), so some population movement must have happened around or before that time in the region, and it is obvious that it happened from east to west.

It remains to be seen, therefore:

a) If the incoming Suvorovo-Novodanilovka chiefs (most likely originally from Khvalynsk) dominating over North Pontic and Danube regions show – as I bet – R1b-M269, and possibly also early R1b-L23* subclades,

b) Or else they still show mixed lineages, reflecting an older admixed population of the Pontic-Caspian steppe – as the early Khvalynsk and Ukraine Eneolithic samples we have now.

NOTE. Even though my preferred model of migration is through the Balkans – due to the many east-west migrations seen from the steppe into Europe – , there is no general consensus here because of the lack of solid anthropological models, and there are cultural links found also between the steppe and Anatolia through the Caucasus, so the question remains open.

Related:

The Indo-European demic diffusion model, and the “R1b – Indo-European” association

yamna_bell_beaker_cut

Beginning with the new year, I wanted to commit myself to some predictions, as I did last year, even though they constantly change with new data.

I recently read Proto-Indo-European homelands – ancient genetic clues at last?, by Edward Pegler, which is a good summary of the current state of the art in the Indo-European question for many geneticists – and thus a great example of how well Genetics can influence Indo-European studies, and how badly it can be used to interpret actual cultural events – although more time is necessary for some to realize it. Notice for example the distribution of ‘Yamnaya’ in 3000 BC, all the way to Latvia (based on the initial findings of Mathieson et al. 2017), and the map of 2000 BC with ‘Corded Ware’, both suggesting communities linked by admixture and unrelated to actual cultures.

Some people – especially those interested in keeping a simplistic picture of Europe, either divided into admixture groups or simplistic R1b-Vasconic / R1a-Indo-European / N1c-Uralic (or any combination thereof) – want (others) to believe that I am linking ‘Indo-Europeans’ with haplogroup R1b. That is simply not true. In fact, my model dismisses such simplistic identifications of the reconstructible proto-languages with any modern peoples, admixtures, or haplogroups.

vasconic-uralic
Simplistic Vasconic/R1b-Uralic/N1c distribution, and intruding Indo-European/R1a, according to Wiik.

The beauty of the model lies, therefore, precisely in that if you take any modern group speaking Indo-European languages, none can trace back their combination of language, admixture, and/or haplogroup to a common Indo-European-speaking people. All our ancestral lines have no doubt changed language families (and indeed cultures), they have admixed, and our European regions’ paternal lines have changed, so that any dreams of ‘purity’ or linguistic/cultural/regional continuity become absurd.

That conclusion, which should be obvious to all, has been denied for a long time in blogs and forums alike, and is behind the effort of many of those involved in amateur genetics.

Main linguistic aim

The main consequence of the model, as the title of the paper suggests, is that reconstructible Indo-European proto-languages expanded with people, i.e. with actual communities, which is what we can assert with the help of Genomics. From a personal (or ethnic, or political) point of view genomics is useless, but from an anthropological (and thus linguistic) point of view, genomics can be a very useful tool to decide between alternative models of language diffusion, which has given lots of headaches to those of us involved in Indo-European studies.

The demic diffusion theory for the three main stages of the proto-language expansion was originally, therefore, a dismissal of impossible-to-prove cultural diffusion models for the proto-language – e.g. the adoption of Late Proto-Indo-European by Corded Ware groups due to a patron-client relationship (as proposed by Anthony), or a long-lasting connection between cultures (as proposed by Kristiansen, and favoured by “constellation analogy” proponents like Clackson, who negated the existence of common proto-languages). It also means the acceptance of the easiest anthropological model for language change: migration and – consequently – replacement.

By the time of the famous 2015 papers, I had been dealing for some time with the idea that the shared features between Indo-Iranian and Balto-Slavic may have been due to a common substrate, and must have therefore had some reflection in genomic finds. The data on these papers, and the addition of a weak connection between Pre-Germanic and Balto-Slavic communities, together with their clearest genetic link – R1a-M417 subclades (especially European Z283) – made it still easier to propose a Corded Ware substrate, partially common to the three.

Allentoft Corded Ware
Allentoft et al. “Arrows indicate migrations — those from the Corded Ware reflect the evidence that people of this archaeological culture (or their relatives) were responsible for the spreading of Indo-European languages. All coloured boundaries are approximate.”

Before the famous 2015 papers (and even after them, if we followed their interpretation), we were left to wonder why the supposed vector of expansion of Indo-European languages, Corded Ware migrants – represented by R1a-Z645 subclades, and supposedly continued unchanged into modern populations in its ‘original’ ancestral territories, Balto-Slavic and Indo-Iranian – , were precisely the (phonetically) most divergent Indo-European languages – relative to the parent Late Indo-European proto-language.

My paper implied therefore the dismissal of an unlikely Indo-Slavonic group, as proposed by Kortlandt, and of a still less factible Germano-Slavonic, or Germano-Indo-Slavonic (?) group, as loosely implied by some in the past, and maybe supported in certain archaeological models (viz. Kristiansen or partially Anthony), and presently by some geneticists since their simplistic 2015 papers on “massive migrations from the steppe“, and amateur genetic fans with infinite pet theories, indeed.

A common Corded Ware substrate to Balto-Slavic and Indo-Iranian, and common also partially between Balto-Slavic and Germanic (as supported by Kortlandt, too, albeit with different linguistic connotations), would explain their common features. The Corded Ware culture (and Uralic, tentatively proposed by me as the group’s main language family) is a strong potential connection between them, further supported by phylogeography, too.

Other consequences

Interpretations in my paper help thus dismiss the simplistic Yamna -> Corded Ware -> Bell Beaker migration model implied with phylogeography in the 2000s, and revived again by geneticists and Kristiansen’s workgroup based on the famous 2015 papers, whereby – due to the “Yamnaya ancestral component” – the Yamna culture would have been composed of communities of R1a-M417 and R1b-M269 lineages which remained against all odds ‘related but separated’ for more than two thousand years, sharing a common unitary language (why? and how?), and which expanded from Yamna (mainly R1b-L23) into Corded Ware (mainly R1a-M417) and then into Bell Beaker (mainly R1b-L51), in imaginary migration waves whose traces Archaeology has not found, or Anthropology described, before.

While phylogeography (especially the distribution of ancient samples of certain R1b and R1a subclades) was the main genetic aspect I used in combination with Archaeology and Anthropology to challenge the reliability of the “Yamnaya ancestral component” in assessing migrations – and thus Kristiansen’s now-popular-again modified Kurgan model – , my main aim was to prove a recent expansion of Late Proto-Indo-European from the steppe, and a still more recent expansion of a common group of speakers of North-West Indo-European, the language ancestral to Italo-Celtic, Germanic, and probably Balto-Slavic (or ‘Temematic’, the NWIE substrate of Balto-Slavic, according to some linguists).

My arguments serve for this purpose, and modern distributions of haplogroups or admixture are fully irrelevant: I am ready to change my view at any time, regarding the role of any haplogroup, or ancestral component, archaeological data, or anthropological migration model, to the extent that it supports the soundest linguistic model.

proto-indo-european-stages
Stages of Proto-Indo-European evolution. IU: Indo-Uralic; PU: Proto-Uralic; PAn: Pre-Anatolian; PToch: Pre-Tocharian; Fin-Ugr: Finno-Ugric. The period between Balkan IE and Proto-Greek could be divided in two periods: an older one, called Proto-Greek (close to the time when NWIE was spoken), probably including Macedonian, and spoken somewhere in the Balkans; and a more recent one, called Mello-Greek, coinciding with the classically reconstructed Proto-Greek, already spoken in the Greek peninsula (West 2007). Similarly, the period between Northern Indo-European and North-West Indo-European could be divided, after the split of Pre-Tocharian, into a North-West Indo-European proper, during the expansion of Yamna to the west, and an Old European period, coinciding with the formation and expansion of the East Bell Beaker group.

Gimbutas’ old theory of sudden and recent expansion served well to support a real community of Proto-Indo-European speakers, as did later the Yamna -> Corded Ware -> Bell Beaker theory that circulated in the 2000s based on modern phylogeography, and as did later partially Anthony’s updated steppe theory (2007). On the other hand, Kristiansen’s long-lasting connections among north-west Pontic steppe cultures and Globular Amphorae and Trypillian cultures, did not fit well with a close community expanding rapidly – although recent genetic data on Trypillia and Globular Amphorae might be compelling him to improve his migration theory.

So, if data turns out to be not as I expect now, I will reflect that in future versions of the paper. I have no problem saying I am wrong. I have been wrong many times before, and something I am certain is that I am wrong now in many details, and I am going to be in the future.

If, for example, R1b-L23(xZ2105) is demonstrated to come from Hungary and not the steppe (as supported by Balanovsky) or R1a-M417 samples are proved to have expanded with West Yamna settlers (as recently proposed by Anthony, see below the Balto-Slavic question), I would support the same model from a linguistic point of view, but modified to reflect these facts. Or if a direct migration link is found in Archaeology from Yamna to Corded Ware, and from Corded Ware to Bell Beaker (as proposed in the 2015 papers), I will revise that too (again, see the image below). Or, if – as Lazaridis et al. (2017) paper on Minoans and Mycenaeans suggested – the Anatolian hypothesis (that is, one of the multiple ones proposed) turns out to be somehow right, I will support it.

calcolithic-expansion
My map of Late Proto-Indo-European expansion (A Grammar of Modern Indo-European, 2006), following Gimbutas and Mallory.

Haplogroups are the least important aspect of the whole model, they are just another data that has to be taken into account for a throrough explanation of migrations. It has become essential today because of the apparent lack of vision on the part of geneticists, who failed to use them to adjust their findings of admixture with findings of haplogroup expansions, favouring thus a marginal theory of long-lasting steppe expansion instead of the mainstream anthropological models.

Since many of these alternative scenarios seem less and less likely with each new paper, it is probably more efficient to talk about which developments are most likely to challenge my model.

Main points

My main predictions – based mostly on language guesstimates, archaeological cultures, and anthropological models of migration -, even with the scarce genomic data we had, have been proven right until know with new samples from Mathieson et al. (2017) and Olalde et al. (2017), among other papers of this past year. These were my original assumptions:

(1) A Middle Proto-Indo-European expansion defined by the appearance of steppe ancestry + reduction in haplogroup diversity and expansion of (mainly) R1b-M269 and R1b-L23 lineages;

(2) A Late Proto-Indo-European expansion defined by steppe ancestry + reduction in haplogroup diversity and expansion of (mainly) R1b-L23 subclades; and

(3) A North-West Indo-European expansion defined by steppe ancestry + reduction in haplogroup diversity and expansion of (mainly) R1b-L51 subclades.

The expansion of Corded Ware peoples, associated with steppe ancestry + reduction in haplogroup diversity and expansion of (mainly) R1a-Z645 subclades, represents thus a different migration, which is compatible with the different nature of the Corded Ware culture, unrelated to Yamna and without migration waves from one to the other (although there were certainly contacts in neighbouring regions).

As you can see, neither of the 3+1 expansion models imply that no other haplogroup can be found in the culture or regions involved (others have in fact been found, and still the models remain valid): these migrations imply a reduction of haplogroup diversity, and the expansion of certain subclades as is common in population expansions throughout history. While we all accept this general idea, some people have difficulties accepting just those cases not compatible with their dreams of autochthonous continuity.

Nevertheless, there are still voids in genetic investigation.

Controversial aspects

In my humble opinion, these are potential conflict periods and the most likely areas of change for the future of the theory:

1. When and how did R1b-M269 lineages become “chiefs” in the steppe?

Based on scarce data from Khvalynsk, it seems that during the Neolithic there were many haplogroups in the North Pontic and North Caspian steppes. A reduction to R1b-M269 subclades must have happened either just before or (as I support) during (the migrations that caused) the Suvorovo-Novodanilovka expansion among Sredni Stog, probably coinciding also with the expansion (or one of the expansions) of CHG ancestry (and thus the appearance of ‘Steppe component’ in the steppe). My theory was based initially on Anthony’s account and TMRCA of haplogroups of modern populations (both ca. 4200-4000 BC), but recent samples of the Balkans (R1b-M269 and steppe ancestry) seem to trace the population expansion some centuries back.

If my assessment is correct, then modern populations of haplogroup R1b-M269* and R1b-L23* in the Balkans probably reflect that ancient expansion, and samples related to Proto-Anatolian cultures in the Balkans will most likely be of R1b-M269 subclades and R1b-L23*. After admixture in the Balkans, posterior migrations of Anatolian languages into Anatolia might be associated with a different admixture component and haplogroups, we don’t have enough data yet.

If the haplogroup reduction and expansion in Khvalynsk happened later than the Suvorovo-Novodanilovka expansion, then we might find the expansion of Pre- or Proto-Anatolian associated with many different haplogroups, such as R1b (xM269), R1a, I, J, or G2, and more or less associated with steppe ancestry in the Balkans.

Another reason for finding such variety of haplogroups in ancient samples from the Balkans would be that this Khvalynsk group of “chiefs” traversed – and mixed with – the Sredni Stog population. Nevertheless, if we suppose homogeneity in haplogroups in Khvalynsk during the expansion, a high proportion of different haplogroups explained by admixture with the local population of Sredni Stog would challenge the whole “chief domination” explanation by Anthony, and we would have to return to the “different culture” theory by Rassamakin and potentially an older migration from Khvalynsk. In any case, both researchers show clear links of the Suvorovo-Novodanilovka phenomenon to Khvalynsk, and a differentiation with the surrounding Sredni Stog culture.

A less likely model would support the identification of the whole Eneolithic Pontic-Caspian steppe as a loose Indo-Hittite-speaking community, which would be in my opinion too big a territory and too loose a cultural bond to justify such a long-lasting close linguistic connection. This will probably be the refuge of certain people looking desperately for R1a-IE connections. However, the nature of the western steppe will remain distinct from Late Proto-Indo-European, which must have developed in the Yamna culture, so autochthonous continuity is not on the table anymore, in any case…

suvorovo-novodanilovka-region
Coexistence of the Varna-Gumelniţa culture and the Suvorovo phase of the sceptre-bearer communities. 1 — Fălciu; 2 — Fundeni-Lungoţi; 3 — Novoselskaja; 4 — Suvorovo; 5 — Casimcea; 6 — Kjulevča; 7 — Reka Devnja; 8 — Drama; 9 — Gonova mogila; 10 — Reževo; 11 — geographically separate Decea variant of the sceptre bearer group (after Govedarica, Manzura 2011: Abb. 5, adapted).

2. How did R1a-M417 (and especially R1a-Z645) haplogroups came to dominate over the Corded Ware cultures?

If I am right (again, based on TMRCA of modern populations), then it is precisely at the time of the potential expansion of Proto-Corded Ware from the Dnieper-Dniester forest, forest-steppe, and steppe regions, ca 3300-3000. Furholt’s recent radiocarbon analysis and suggestions of a Lesser Poland origin of the third or A-horizon, on which disparate archaeologists such as Anthony or Klejn rely now, seem to suggest also that Corded Ware was a cultural complex rather than a compact culture reflecting a migration of peoples – similar thus to the Bell Beaker complex.

This cultural complex interpretation of Corded Ware contrasts with the quite homogeneous late samples we have, suggesting clear migration waves in northern Europe, at least at some point in time, so Genomics will be a great tool to ascertain when and from where approximately did Corded Ware peoples expand. Right now, it seems that Eneolithic Ukraine populations are the closest to its origin, so the traditional interpretation of its regional origin by Kristiansen or Anthony remains valid.

3. How was Indo-Iranian adopted by Corded Ware invaders?

This is rather an anthropological question. We need reasonable models of founder effect/cultural diffusion necessary for that to happen – similar to the ones necessary to explain the arrival of N1c subclades into north-east Europe, or the arrival of R1b subclades in Basque/Iberian-speaking regions in south-west Europe. My description of potential events in the eastern steppe – based partially on Anthony – is merely a short sketch. Genomic data is unlikely to offer more than it does today (replacement of haplogroups, and gradually of some steppe component, by late Corded Ware groups in the steppe), but let’s see what new samples can contribute.

As for what some Indians – and other people willing to confront them – are looking for, regarding R1a-M417 and/or Indo-European origins in India, I don’t see the point, we already know a) that the origin of the expansion is in the steppe and b) that Hindu nationalist biggots will not accept results from research that oppose their views. I don’t expect huge surprises there, just more fruitless discussions (fomented by those who live from trolling or conspiracies)…

4. Yamna settlers from Hungary

Anthony’s new theory – and the nature of Balto-Slavic – hinges on the presence of R1a-M417 subclades (associated with later Corded Ware samples) in Yamna settlers of Hungary, potentially originally from the North Pontic area, where the oldest sample has been found.

My ‘modified’ version of Anthony’s new model (the only I deem just remotely factible) includes the expansion of a Proto-Corded Ware from Lesser Poland, but (given the overwhelming R1b found in East Bell Beaker), with R1a-M417 being associated with the region. How to explain this language change with objective data? Well, we have Bell Beaker expanding to these areas at a later time, so we would need to find R1b-L23 settlers in Lesser Poland, and then a resurge of R1a-M417 haplogroup. If not, resorting yet again to cultural diffusion Yamna “patrons” to Corded Ware “clients” of Lesser Poland would bring us to square one, now with the ‘steppe ancestry’ controversy included…

Since some Eastern Europeans are (for no obvious reason whatsoever) putting their hopes on that IE-R1a-CWC association, let’s hope some samples of R1a-M417 in Yamna or Hungary give them a break, so that they can begin accepting something closer to mainstream anthropological models. We could then work from there a Yamna-> Bell Beaker / North-West Indo-European association truce, and from there keep accepting that no single haplogroup from Yamna settlers is linked with modern languages, cultures or ethnic groups.

yamna-region
localization of Central-European funerary monuments with elements of the Pit Grave culture (after Bátora 2006);

5. How and when was Balto-Slavic associated with haplogroup R1a?

If we accept the Southern or Graeco-Aryan nature of Balto-Slavic with influence from an absorbed North-West Indo-European dialect, “Temematic” (as Kortlandt does), then Indo-Slavonic adopted in the steppe from Potapovka by Sintashta and Poltavka populations divided ca. 2000 BC into Indo-Iranian (migrating to the east with Andronovo), and Balto-Slavic (migrating westward with the Srubna culture). History from there is not straightforward, and it should follow Srubna, Thraco-Cimmerian, or other late expansions from cultures of the steppe.

On the other hand, if it is a Northern dialect related closely to Germanic and Italo-Celtic (in a North-West Indo-European group), then its origin has to be found in the initial expansion of East Bell Beakers, and its development into either the Únětice culture (of Balkan and thus potentially “Southern IE” influence), or the Mierzanowice-Nitra culture (of Corded Ware and thus potentially Uralic influence), or maybe from both, given the intermediate substrate found in Germanic and Balto-Slavic.

It is my opinion that the association of Balto-Slavic with haplogroup R1a is quite early after the East Bell Beaker expansion, probably initially with the subclade typically associated with West Slavic, R1a-M458. I have not much data to support this (apart from the most common linguistic model), just modern haplogroup distribution maps and common TMRCA, and highly hypothetical archaeological-anthropological models. Genetics will hopefully bring more data.

Let’s see also what information on ancient haplogroups we can obtain from the Tollense valley (already showing a close cluster with modern West Slavic populations) and steppe regions.

6. How did Germanic, Celtic, and Italic expand?

Germanic is probably the most interesting one. Following the expansion of R1b-L51 subclades (especially R1b-U106) and steppe ancestry (a confounding factor, with the previous expansion of R1a-Z284 subclades) in Scandinavia is going to be fascinating. Anthropological models already point to a linguistic and archaeological expansion of Pre-Germanic with Bell Beaker peoples.

The expansion of Celtic seems to be associated with chiefdoms, untraceable today in terms of haplogroups, and it seems thus different from previous expansions. New studies might tell how that happened, if it was actually in successive ways, as proposed, or maybe we don’t have enough data yet to reach conclusions.

We don’t know either how Italic expanded into the Italian Peninsula, or whether Latin expanded with peoples from Italy, if at all, or it was mostly a cultural diffusion event, as it seems.

Regarding Etruscan, while I think it is a controversy initiated based on fantastic accounts, and ignited with few finds of Middle Eastern ancestry (that seem logical from the point of view of regional contacts), it will be important for Italian linguists and archaeologists, also to accept the most likely scenario.

As for Palaeo-Hispanic languages, while steppe ancestry is found quite reduced in R1b-L51 subclades (after so many different expansions and admixture events since the departure from the steppe), their distribution from the Chalcolithic onwards and the resurgence of native haplogroups may serve to ascertain which Pre-Roman tribes were associated with the oldest regions where these subclades dominated. For that aim, a closer look at the developments in Aquitania and other pre-Roman Vasconic- and Iberian-speaking regions may shed some light on how founder effects might develop to leave the native language intact (in a case similar to the adoption of Indo-Iranian by post-Corded Ware Sinthastha and Potapovka in the eastern Pontic-Caspian steppe).

NOTE: Although mostly unrelated, linguistic questions may also be somehow altered with a change of migration models. For example, our current Corded Ware Substrate Hypothesis – strongly contested by Kortlandt and others – implies that Uralic was potentially the language spoken by Eneolithic Ukraine / Proto-Corded Ware peoples, therefore early Uralic languages were spoken by Corded Ware peoples, as a substrate for Germanic and Balto-Slavic, and Balto-Slavic and Indo-Iranian. If an Indo-Hittite branch different from Late PIE is accepted for Eneolithic Ukraine (thus suggesting a millennia-long cultural-historical community in the steppe), then the model still stands (e.g. Ger. and BSl. *-mos/-mus, as stated by Kortlandt, would correspond to the oldest morphological IE layer). As you can read in the different versions of our model, the different possibilities for the common substrate are stated, and the most likely one selected. But the most likely a priori option sometimes turns out to be wrong…

NOTE 2: You can comment whatever you want here, but I opened a specific thread in our forum if you want serious comments on the model to stuck and be further discussed.

Featured images: from the book Interactions, changes and meanings. Essays in honour of Igor Manzura on the occasion of his 60th birthday. Țerna S., Govedarica B. (eds.). 2016. Kishinev: Stratum Plus.

See also: