David Reich on social inequality and Yamna expansion with few Y-DNA subclades

Interesting article from David Reich that I had missed, at Nautilus, Social Inequality Leaves a Genetic Mark.

It explores one of the main issues we are observing with ancient DNA, the greater reduction in Y-DNA lineages relative to mtDNA lineages, and its most likely explanation (which I discussed recently).

Excerpts interesting for the Indo-European question (emphasis mine):

Gimbutas’s reconstruction has been criticized as fantastical by her critics, and any attempt to paint a vivid picture of what a human culture was like before the period of written texts needs to be viewed with caution. Nevertheless, ancient DNA data has provided evidence that the Yamnaya were indeed a society in which power was concentrated among a small number of elite males. The Y chromosomes that the Yamnaya carried were nearly all of a few types, which shows that a limited number of males must have been extraordinarily successful in spreading their genes. In contrast, in their mitochondrial DNA, the Yamnaya had more diverse sequences.9 The descendants of the Yamnaya or their close relatives spread their Y chromosomes into Europe and India, and the demographic impact of this expansion was profound, as the Y-chromosome types they carried were absent in Europe and India before the Bronze Age but are predominant in both places today.13

This Yamnaya expansion also cannot have been entirely friendly, as is clear from the fact that the proportion of Y chromosomes of steppe origin in both western Europe14 and in India15 today is much larger than the proportion of the rest of the genome. This preponderance of male ancestry coming from the steppe implies that male descendants of the Yamnaya with political or social power were more successful at competing for local mates than men from the local groups. The most striking example I know is from Iberia in far southwestern Europe, where Yamnaya-derived ancestry arrived suddenly at the onset of the Bronze Age between 4,500 and 4,000 years ago. Daniel Bradley’s laboratory and my laboratory independently produced ancient DNA from individuals of this period.14 We find that in the first Iberians with Yamnaya-derived ancestry, the proportion of Yamnaya ancestry across the whole genome is almost never more than around 15 percent. However, around 90 percent of males who carry Yamnaya ancestry have a Y-chromosome type of steppe origin that was absent in Iberia prior to that time. It is clear that there were extraordinary hierarchies and imbalances in power at work in the Yamnaya expansions.

David Reich clearly doesn’t give a damn about how other people might react to his commentaries. That’s nice.

In any case, if anyone was still in denial, R1b-M269 expanded with Yamna (through the Bell Beaker expansion) into Iberia, hence yes, 90% of modern Basque male lineages have an origin in the steppe, like the R1b-DF27 sample recently found, and their common ancestor spoke Late Proto-Indo-European.

Findings like these, which should be taken as normal developments of research, are apparently still a trauma for many – like R1a-fans from India realizing most of their paternal ancestors came from the steppe, or its fans from Northern Europe understanding that their paternal ancestors probably spoke Uralic or a related language; or N1c-fans seeing how their paternal ancestors probably didn’t speak Uralic. It seems life isn’t fair to stupid simplistic ethnolinguistic ideas

Let’s see which Y-DNA haplogroups we find in West Yamna, to verify the latest migration model of Late PIE speakers of the Reich Lab (featured image).

Check out also the BBC News coverage of David Reich and Nick Patterson, the two most influential researchers of the moment in Human Ancestry: How ancient DNA is transforming our view of the past.


Distribution of Southern Iberian haplogroup H indicates exchanges in the western Mediterranean

Recent open access paper The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean, by Hernández, Dugoujon, Novelletto, Rodríguez, Cuesta and Calderón, BMC Genetics (2017).

Abstract (emphasis mine):

The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature.

Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean.

Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.

a, b, c. Interpolated frequency surfaces of clade H and its main sub-clades (H1 and H3). Frequencies (%) are showed in a colour scale. See information about the populations used in Additional files 4 and 5. Map templates were taken from Natural Earth free map repository (http://www.naturalearthdata.com/)

I usually find mtDNA data, especially studies like this one based on modern populations, very difficult to interpret for anthropological purposes. It is well-known that there are important differences in the pattern of Y-DNA and mtDNA expansion and distribution.

A paragraph in this respect caught my attention:

The patterns of variation in the Y-chromosome between western and eastern Andalusians, based on 416 males, have also been investigated for a set of Y-Short Tandem Repeats (Y-STRs) and Y-SNPs [53, 54, 55], Calderón et al., unpublished data] in combination to mtDNA analyses ([18, 19] and present study). In general, for both uniparental makers, Andalusians exhibit a typical western European genetic background, with peak frequencies of mtDNA Hg H and Y-chromosome Hg R1b1b2-M269 (45% and 60%, respectively). Interestingly, our results have further revealed that the influence of African female input is far more significant when compared to male influence in contemporary Andalusians. The lack of correspondence between the maternal and paternal genetic profiles of human populations reflects intrinsic differences in migratory behavior related to sex-biased processes and admixture, as well as differences in male and female effective population sizes related to the variance in reproductive success affected, for example, by polygyny [56, 57].

I think that the greater reduction in patrilineal lineages compared to maternal lineages we usually see during and after prehistoric or historic migrations have more to do with the renown Uí Néill family case and with war-related casualties (since combatants were usually men) than with other more popular explanations, such as enslavement of women or polygyny.

The most successful paternal lines (anywhere in the world) were probably those who remained in power for a long time (be it a patriarchal society based on families, clans, or more complex organizational units), who were richer and thus more capable of having healthy offspring, who in turn were able to survive longer and have more children who inherited power, etc.

In case of recent migrations or population movements that disrupt the previously established organization, after a certain number of generations, successful patrilocal families (usually from incoming lineages) might slowly dominate over a whole region, with poorer families (usually of ‘indigenous’ lineages) suffering a greater – especially perinatal and child – mortality, without any obvious (pre)historic event associated to these gradual changes.

This gradual replacement of paternal lineages is compatible with the adoption of the native language by newcomers. If the number of migrants is greater that the native population, and especially if their technology is more advanced, then a more radical change including ethnolinguistic identification is more likely.

I don’t deny the (pre)historic existence of radical replacement of male populations with continuity of female lineages due to massacres of men, female slavery, or polygyny, but they are probably not the main explanation for most regional differences seen in paternal lineages, and should thus be used with caution.

Gradual replacement and founder effects are also the most logical explanation for why autochthonous continuity myths (that the modern regional prevalence of few successful lineages tended to create in the 2000s) haven’t been corroborated by ancient DNA; e.g. R1b-DF27 in Basques, N1c-M178 in Finnic populations, R1a-Z283 in Slavs, etc. There is nothing different in those areas from other recent founder effects and internal migratory flows seen everywhere in Europe in the past millennia.

Paper discovered via a link by Alberto Gonzalez on Facebook group Iberia ADN


Paternal lineages mainly from migrants, maternal lineages mainly from local populations in Argentina

New paper (behind paywall) Genetic variation in populations from central Argentina based on mitochondrial and Y chromosome DNA evidence, by García, Pauro, Bailliet, Bravi & Demarchi, J. Hum. Genet (2018) 63: 493–507.

Abstract (emphasis mine):

We present new data and analysis on the genetic variation of contemporary inhabitants of central Argentina, including a total of 812 unrelated individuals from 20 populations. Our goal was to bring new elements for understanding micro-evolutionary and historical processes that generated the genetic diversity of the region, using molecular markers of uniparental inheritance (mitochondrial DNA and Y chromosome). Almost 76% of the individuals show mitochondrial lineages of American origin. The Native American haplogroups predominate in all surveyed localities, except in one. The larger presence of Eurasian maternal lineages were observed in the plains (Pampas) of the southeast, whereas the African lineages are more frequent in northern Córdoba. On the other hand, the analysis of 258 male samples reveals that 92% of them present Eurasian paternal lineages, 7% carry Native American haplogroups, and only 1% of the males show African lineages. The maternal lineages have high genetic diversity homogeneously distributed throughout central Argentina, probably as result of a recent common origin and sustained gene flow. Migratory events that occurred in colonial and recent times should have contributed to hiding any traces of differentiation that might have existed in the past. The analysis of paternal lineages showed also homogeneous distribution of the variation together with a drastic reduction of the native male population.

Maps showing continental mtDNA haplogroups frequencies in 20 population samples from central Argentina. References for populations abbreviated names are from the tables.

Interesting excerpts:

The immigration waves had less impact in the north–central and northwestern regions, the most populated areas of the country in pre-Hispanic times. The spatial structure of genetic diversity has its origins in historical factors. It is possible to distinguish different stages in migratory processes from abroad, with a heterogeneous regional impact. The genetic composition of central Argentina gives account of these processes. On one hand, the political boundaries between provinces influenced the configuration of the genetic structure of the populations that were formed. In this sense, Córdoba—an important economic and commercial center since colonial times—has a greater component of foreign lineages than the populations of San Luis and Santiago del Estero. On the other hand, the genetic structure of central Argentina also accounts for other processes related to different migration phases and occupations of space over the last 500 years.

Maternal continental contribution (in percentages), and Native American haplogroup frequencies, by population

Similarly, negative values observed in the neutrality tests (Tajima’s D and Fu’s FS), indicate relatively recent population growth, probably associated with technological and organizational changes leading to new lifestyles and important demographic and territorial expansion [75]. In conclusion, the molecular markers of maternal inheritance shows large genetic diversity homogeneously distributed throughout central Argentina, probably as result of a recent common origin and sustained gene flow between sub-populations. In addition, migratory events that occurred in colonial and recent times should have contributed to hiding any traces of differentiation that might have existed in the past. The analysis of paternal lineages showed also homogeneous distribution of the variation across the region but also a drastic reduction of the native male population, with a large prevalence of haplogroups of European origin.

Y chromosome haplogroups frequencies in three provinces from central Argentina and other 19 samples from Argentina, Chile, and Paraguay


Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia

Open access preprint at bioRxiv, Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe, by Lamnidis et al. (2018).

Abstract (emphasis mine):

European history has been shaped by migrations of people, and their subsequent admixture. Recently, evidence from ancient DNA has brought new insights into migration events that could be linked to the advent of agriculture, and possibly to the spread of Indo-European languages. However, little is known so far about the ancient population history of north-eastern Europe, in particular about populations speaking Uralic languages, such as Finns and Saami. Here we analyse ancient genomic data from 11 individuals from Finland and Northwest Russia. We show that the specific genetic makeup of northern Europe traces back to migrations from Siberia that began at least 3,500 years ago. This ancestry was subsequently admixed into many modern populations in the region, in particular populations speaking Uralic languages today. In addition, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age than today, which adds to historical and linguistic evidence for the population history of Finland.

Interesting excerpts (edited):

While the Siberian genetic component described here was previously described in modern-day populations from the region, we gain further insights into its temporal depth. Our data suggest that this fourth genetic component found in modern-day north-eastern Europeans arrived in the area around 4,000 years ago at the latest, as illustrated by ALDER dating using the ancient genome-wide data from Bolshoy Oleni Ostrov. The upper bound for the introduction of this component is harder to estimate. The component is absent in the Karelian hunter-gatherers (EHG) 3 dated to 8,300-7,200 yBP as well as Mesolithic and Neolithic populations from the Baltics from 8,300 yBP and 7,100-5,000 yBP respectively. While this suggests an upper bound of 5,000 yBP for the arrival of Siberian ancestry, we cannot exclude the possibility of its presence even earlier, yet restricted to more northern regions, as suggested by its absence in populations in the Baltic during the Bronze Age. Our study also presents the earliest occurrence of the Y-chromosomal haplogroup N1c in Fennoscandia. N1c is common among modern Uralic speakers, and has also been detected in Hungarian individuals dating to the 10th century, yet it is absent in all published Mesolithic genomes from Karelia and the Baltics.

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period. Contacts between Siberia and Europe are also recognised in linguistics. The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.

The novel genome-wide data here presented from ancient individuals from Finland opens new insights into Finnish population history. Two of the three higher coverage individuals and all six low coverage individuals from Levänluhta showed low genetic affinity to modern-day Finnish speakers of the area. Instead, an increased affinity was observed to modern-day Saami speakers, now mostly residing in the north of the Scandinavian Peninsula. These results suggest that the geographic range of the Saami extended further south in the past, and hints at a genetic shift at least in the western Finnish region during the Iron Age. The findings are in concordance with the noted linguistic shift from Saami languages to early Finnish. Further ancient DNA from Finland is needed to conclude to what extent these signals of migration and admixture are representative of Finland as a whole.

PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple.

The two samples of haplogroup N1c1a1a-L392/L1026, dated ca. 1500 BC, come from the site Bolshoy Oleniy Ostrov, in the Kola Peninsula.

Bolshoy Oleniy Ostrov (Great Reindeer Island), situated in the Kola Bay of the Barents Sea and separated from the mainland by Yekarerininsky Island and two straits, harbors the ancient cemetery of an unknown Early Metal Age culture. The preservation of artifacts made from bone and antler, wooden structures, as well as human remains is remarkable for the location and age this site represents. Altogether 19 skeletons of adults and children have been recognized from both single and collective burials of the site, together with more than 250 artifacts. (…) Apart from these excavations, approximately 25 burials were revealed in 1934 during the construction of fortifications. (…) Radiocarbon dates are provided by Moiseyev and Khartanovich in their 2012 study, placing the site in middle to the late 2nd millennium BC (…)

After seing how Late Indo-European languages spread with Yamna and (mainly) R1b-L23 lineages, we are now obtaining proof of how Siberian ancestry – likely accompanying N1c-L392 lineages – was probably related to an early archaeological Siberian influence in the easternmost region of North-East Europe, seen also probably in linguistics.

NOTE. Whereas I proposed – based mainly on common guesstimates – that R1a-M417 and EHG ancestry might have signaled the arrival of an early Yukaghir substratum to NE Europe, later acquired by Uralic spreading over this territory, while N1c1a1a lineages with the Seima-Turbino phenomenon might have given Uralic its later Altaic traits, it is indeed possible – and more likely with the findings in this paper – that N1c1a1a lineages may have in fact spread Yukaghir languages, especially if (like the Leiden school) one supports an Indo-Uralic community.

The linguistic effect of this migration may depend on one’s preferred model for Proto-Uralic and its strata, and especially on one’s position in the Proto-Uralic vs. Proto-Uralo-Yukaghir controversy. Although I really didn’t have a strong opinion on this matter, it is clear from my texts that (unlike Kortlandt) I didn’t consider Yukaghir to share a common ancestor with Uralic languages. What genomics is showing right now seems to me directly translatable to a linguistic model, and we should therefore reject an original Proto-Uralo-Yukaghir community.

Also, it seems that the Finnish population peak which expanded today’s prevalent N1c-L392 lineages – after the Iron Age bottleneck which likely reduced its haplogroup diversity – may have been associated with the event that displaced the Saami population from Finland after ca. 1000 AD.

I think it is becoming still clearer where Uralic languages came from.


A history of male migration in and out of the Green Sahara

Open access research highlight A history of male migration in and out of the Green Sahara, by Yali Xue, Genome Biology (2018) 19:30, on the recent paper by D’Atanasio et al.

Insights from the Green Saharan Y-chromosomal findings (emphasis mine):

It is widely accepted that sub-Saharan Y chromosomes are dominated by E-M2 lineages carried by Bantu-speaking farmers as they expanded from West Africa starting < 5 kya, reaching South Africa within recent centuries [4]. The E-M2-Bantu lineages lie phylogenetically within the E-M2-Green Sahara lineage and show at least three explosive lineage expansions beginning 4.9–5.3 kya [5] (Fig. 1a). These events of E-M2-Bantu expansion are slightly later than the R-V88 expansion, and highlight the range of male demographic changes in the mid-Holocene. North of the Sahara, in addition to the four trans-Saharan haplogroups, haplogroup E-M81 (which diverged from E-M78 ~ 13 kya) became very common in present-day populations as a result of another massive expansion ~ 2 kya [6] (Fig. 1a).

Simplified Y-chromosomal phylogeny and inferred past or observed present-day distribution of relevant Y-chromosomal lineages. a Calibrated phylogenetic tree of Y-chromosomal lineages discussed in the text. Green shading represents the period when the present-day Sahara Desert was green and fertile. Lineages represented by filled pentagons have undergone very rapid expansions. b [featured image] The Green Sahara period 5–12 kya. Green shading indicates that the present-day Sahara Desert was green and fertile. The colors within the large oval represent the four Y-chromosomal haplogroups deduced to be present in the region at this time; specific locations are not implied. The arrows indicate the inferred origins of these haplogroups to the north or south, but specific origins and routes are not implied. c The present-day distributions of the four Green Saharan Y-chromosomal haplogroups. Yellow shading indicates the Sahara Desert. Each circle represents a sampled population, with the presence or absence of the four Green Saharan haplogroups shown by the colored sectors; other haplogroups may also be present in these populations, but are not shown. The small arrows indicate the inferred northwards and southwards movements of these haplogroups when the Sahara became uninhabitable.

Although Y chromosomes exist within populations and so share and reflect the general history of those populations, they can sometimes show some departures from other parts of the genome that result from differences in male and female behaviors. D’Atanasio et al. [1] highlight one such contrast in their study. Present-day North African populations show substantial sub-Saharan autosomal and mtDNA genetic components ascribed to the Roman and Arab slave trades 1–2 kya [7], but carry few sub-Saharan Y lineages from this source, probably reflecting the smaller numbers of male slaves and their reduced reproductive opportunities when compared to those of female slaves. The sub-Saharan Y chromosomes in these North African populations thus originate predominantly from the earlier Green Sahara period.

In this part of Africa, the indigenous languages that are spoken belong to three of the four African linguistic families (Afro-Asiatic, Nilo-Saharan and Niger-Congo). Interestingly, these languages show non-random associations with Y lineages. For example, Chadic languages within the Afro-Asiatic family are associated with haplogroup R-V88, whereas Nilo-Saharan languages are associated with specific sublineages within A3-M13 and E-M78, further illustrating the complex human history of the region.

The main question after D’Atanasio et al. (2018) is thus:

(…) what are the reasons for the very rapid R-V88 expansion 5–6 kya [1] and E-M81 expansion ~ 2 kya [6], and how do these expansions fit within general worldwide patterns of male-specific expansions, which in other cases have been linked to cultural and technological changes [5]?

I think that the only known haplogroup expansion that might fit today the spread and dialectalization of Afroasiatic, a proto-language probably contemporaneous or slighly older than Middle Proto-Indo-European, is that of R1b-V88 lineages. However, without ancient DNA samples to corroborate this, we cannot be sure.

See also:

First Hungarian ruling dynasty, the Árpáds, of Y-DNA haplogroup R1a


Open access article DNA profiling of Hungarian King Béla III and other skeletal remains originating from the Royal Basilica of Székesfehérvár, Olasz, J., Seidenberg, V., Hummel, S. et al. Archaeol Anthropol Sci (2018).


A few decades after the collapse of the Avar Khaganate (c. 822 AD), Hungarian invaders conquered the Carpathian Basin (c. 862–895 AD). The first Hungarian ruling dynasty, the Árpáds played an important role in European history during the Middle Ages. King Béla III (1172–1196) was one of the most significant rulers of the dynasty. He also consolidated Hungarian dominance over the Northern Balkans. The provostry church of the Virgin Mary (commonly known as the Royal Basilica of Székesfehérvár) played a prominent role as a coronation church and burial place of medieval Hungarian kings. The basilica’s building and graves had been destroyed over the centuries. The only royal graves that remained intact were those of King Béla III and his first spouse, Anna of Antioch. These graves were discovered in 1848. We defined the autosomal STR (short tandem repeat) fingerprints of the royal couple and eight additional individuals (two females and six males) found in the Royal Basilica. These results revealed no evidence of first-degree relationship between any of the investigated individuals. Y-chromosomal STR profiles were also established for all the male skeletons. Based upon the Y-chromosomal data, one male skeleton showed an obvious patrilineal relationship to King Béla III. A database search uncovered an existing Y-chromosomal haplotype, which had a single-repeat difference compared to that of King Béla. It was discovered in a person living in an area close to Hungary. This current male line is probably related paternally to the Árpád Dynasty. The control region of the mitochondrial DNA was determined in the royal couple and in the remains of the inferred relative. The mitochondrial results excluded sibling relationship between the King and the patrilineal relative. In summary, we successfully defined a Y-chromosomal profile of King Béla III, which can serve as a reference for the identification of further remains and disputed living descendants of the Árpád Dynasty. Among the examined skeletons, we discovered an Árpád member, whose exact affiliation, however, has not yet been established.

The Árpad Dynasty

The Árpád Dynasty (c. 850–1301 AD) played an important role in European history during the Middle Ages (Hóman 1940-1943). The first Great Prince Álmos organised the monarchic state in the northern region of the Black Sea c. 850. A few decades after the collapse of the Avar Khaganate (c. 822 AD), Álmos and his son Árpád conquered the Carpathian Basin (c. 862–895 AD) (Szőke 2014). During the conquest, Hungarian invaders, together with Turkic-speaking Kabars assimilated the Avars and Slavonic groups (Szádeczky-Kardoss 1990). Thus, most of the population in the Carpathian Basin originated from the Hun-Turkic cultural community of the Eurasian Steppe and was accompanied by Slavonic and German-speaking groups (László 1996). The origin of Hungarians is still controversial, and this paper cannot cover this complex subject. The Hungarian Great Principality represented the Eurasian steppe empires in Central Europe from c. 862 until 1000. Saint Stephen I, the last Great Prince (997–1000) and first King (1000–1038) of Hungary re-organised this early Hungarian state as a Christian kingdom. Saint Stephen received the royal crown from the Pope and joined the post-Roman Christian political system and cultural commonwealth of Latin Europe (Pohl 2003; Szabados 2011). Hungary remained an independent state between the German and Byzantine empires (Makk 1989). King Béla III (1172–1196) was one of the most significant rulers of the dynasty. He was the second son of King Géza II (1141–1162) and Queen Euphrosyne, the daughter of Mstislav I (1125–1132), the Great Prince of Kiev. Through the mediation of Byzantine Emperor Manuel I Komnenos, Béla married Anna of Châtillon from Antioch (1150–1184), the half-sister of the Emperor’s wife in 1170. After Manuel’s death, King Béla consolidated Hungarian dominance over the Northern Balkans.

The provostry church of the Virgin Mary (commonly known as the Royal Basilica of Székesfehérvár) was built by Saint Stephen I at the beginning of the eleventh century. The basilica played a prominent role as a church of coronation and as the main burial place of Hungarian kings in the Middle Ages. Fifteen kings, several queens, princes and princesses and clerical and secular dignitaries were buried there over five centuries (Engel 1987)

The five graves excavated by János Érdy. Drawn by János Varsányi (1848). Originally published by Érdy (1853). I: remains of Béla III; II: remains of Anna of Antioch; III: a male skeleton whose identity with II/52 is questioned; IV: the skeleton of an expectant female, only foetal bones remained; V: a crushed skeleton, it has not been preserved.


There were three R1a and two R1b statistically predicted Y haplogroups among the male skeletons (Table 3). These are the most frequent and second most frequent haplogroups (25.6 and 18.1% respectively) in the present Hungarian population (Völgyi et al. 2009). King Béla III was inferred to belong to haplogroup R1a. The R1a Y haplogroup relates paternally to more than 10% of men in a wide geographic area from South Asia to Central Eastern Europe and South Siberia (Underhill et al. 2010). It is the most frequent haplogroup in various populations speaking Slavic, Indo-Iranian, Dravidian, Turkic and Finno-Ugric languages (Underhill et al. 2010).

Kinship analysis

The autosomal STR results contradicted the paternity between King Béla III and II/52. The mitochondrial sequence results excluded siblingship, too. Apart from that, we also tested the hypothesis for siblingship versus non-relationship based on the autosomal STR results using “Familias 3”. The LR (likelihood ratio) for the alternative hypothesis was found to be 7.67, which was inconclusive. Testing the hypothesis for a grandfather-grandson (or uncle-nephew) relationship versus non-relationship resulted in an LR of 5.44, which corresponds to a probability of 84.46% (assuming a prior probability of 50%). This result is indecisive for the hypothesis.

The Hungarian conquest of the Carpathian Basin, by Fz22 at Wikipedia.

So, the first Hungarian dynasty, which one can safely say were one of the ruling clans among Hungarian conquerors, a group of Ugric speakers that invaded the Carpathian basin from the steppe in the 9th c. (stemming originally from North-Eastern Europe) were of R1a lineages.

Who could have thought, right?


mtDNA suggest original East Germanic population linked to Jutland Iron Age and Bell Beaker


Open Access article A mosaic genetic structure of the human population living in the South Baltic region during the Iron Age, by Stolarek et al., at Scientific Reports 8:2455 (2018).

About the site:

Kowalewko is a village in Wielkopolskie vojevodship, close to Poznan, in the middle reaches of the Samica Kierska river. Biritual Roman Age cemetery (site 12), dated from the mid-1st to the beginning of 3rd century AD, is located in the featureless arable fields at the South and West of the village

About the Wielbark culture:

Chronology spans almost all the Roman Iron Age, since ca. 20 AD to ca. 450 AD. The Wielbark culture is associated with the Goths and Gepids, who migrated from Scandinavia towards the Black Sea, and their successors, who, after several centuries, returned to the lands formerly occupied by their ancestors. Typical features of the culture include inhumation graves rich in goods of numerous ornaments frequently of noble metals, while no implements and weapons have been observed and iron objects very rarely. Less frequent cremations. Barrows recorded within cemeteries reflect emergence of elites. The Wielbark communities built stone constructions, including pebbled floors and circles. This culture is mainly known from cemeteries, as settlements, not fortified, are less recognized.

Location of Kowalewko and a scheme of the Kowalewko cemetery site 12, based on the Fig. 3 from the monograph by Tomasz Skorupka, Kowalewko 12. Biritual cemetery of a population of the Wielbark Culture (mid 1st to beginning of 3rd century AD), published in: Marek Chlodnicki [ed.], Archaeological rescue investigations along the gas transit pipeline, vol. II – Wielkopolska, part 3, Poznan 2001, generated using Corel Draw ver. 12.0, with the author permission. Sampled graves are marked with a red color. Europe and Poland maps were downloaded from Wikimedia Commons (https://commons.wikimedia.org), under the free licence, and modified with Corel Draw ver. 12.0.

Interesting excerpts with emphasis added (and some stylistic changes for abbreviations):

Analysis of genetic distances (see Fig. 2b) showed that both Jutland Iron Age (JIA) and Kowalewko (Kow-OVIA), are the closest to the Central Europe Metapopulation (CEM). However, it should be mentioned that many of the resulting genetic proximities did not reach statistical significance at the alpha level 0.05 (mainly due to the multiple comparisons), thus they should be interpreted with caution. Higher prevalence of the mtDNA haplogroup H in Kowalewko and Jutland Iron Age(its high level is also characteristic for the Bell Beaker Culture) than in the preceding Corded Ware Culture (CWC) and Unetic Culture (UC) supports the hypothesis assuming significant demographic changes in Central Europe after the LN/EBA period. This hypothesis is additionally strengthened by the results of AMOVA analysis indicating that there is some inconsistency between genetic distances and the chronology of the appearance of the studied populations in Central Europe, i.e., the older populations (BBC, CWC) contributed more to the genetic structure of CEM than the younger ones (UC).

Changes in the occurrence of mtDNA haplogroups U5a/U5b in Central Europe are also worth noting. At LN and EBA, the prevailing haplogroup was U5a for BBC/CWC/UC. Next, there was a dominance of U5b for the Kow-OVIA/JIA during IA and now U5a is again more popular (CEM). The first alteration in the U5a/U5b prevalence between the LN/EBA and the IA supports the hypothesis of demographic changes right after the LN, proposed by Brandt et al (2013). The second conversion indicated by our results suggests another crucial demographic event that should occur between the IA and present.

On the basis of the above observations, one may assume that in the IA, specific genetic substructures were formed in Central Europe. Because the demographic history of fossil populations often has a local character33,34, it is worth considering the range of the observed changes. These considerations should also take into account the hypothesis on the migrations that most likely occurred between the 3rd and 6th century AD. In this context, it seems necessary to compare Kow-OVIA and JIA with other populations from the IA, in particular those located east of Vistula, and with the populations that inhabited this region during the Middle Ages.

PCA2 vs. PCA3 on the haplogroup frequencies of ‘European Population Transect’ populations

Finally, we found that the genetic structures of female and male subpopulations of Kow-OVIA were significantly different. This fact cannot be explicitly determined based on the results of individual analyses; however, it is quite evident if one considers the whole set of data presented here including the Fisher test on haplogroup frequencies. The analyses of both mtDNA haplogroups and genetic distances indicated that women from Kowalewko were related closer to the EN/MN populations, and the men were closer to the CWC and UC. This observation may explain why the genetic relationships of Kow-OVIA with other ancient European populations were more complex and more difficult to define as it was in the case of JIA. In analyzing Kow-OVIA, we observed multiple overlapping effects of two subpopulations with different genetic affinities. One would speculate that the genetic profile of Kow-OVIA-F resulted from exogamy that was described for the CWC population. This is, however, not the case. We found that the genetic differences between women and men were maintained for the entire observation period, i.e., for 200 years (approximately 8 generations). Such a composition of the genetic structure of Kow-OVIA could exist only if at least one subgroup (Kow-OVIA-F or -M) was periodically exchanged. It would further mean that Kowalewko played some specific roles in that region. According to the recent archaeological studies, the colonization pattern in IA Greater Poland could be linked with the existence of a centralized organization system32. Kowalewko could have been one of the important elements of this system. For example, it could have functioned as a garrison for the population closely associated with the JIA, such that warriors stayed in the garrison for only a few years and were then replaced by others. Other scenarios are also possible; however, verification of any hypothesis requires more detailed studies.

All in all, we know that Wielbark probably represented the initial migration period of East Germanic tribes, traditionally believed to be from Northern Scandinavia, into territory later inhabited by Slavic tribes (and potentially earlier by a Balto-Slavic community).

Other than that, the results show some potential for a stable genomic situation in the Germanic homeland in terms of mtDNA, common after the Bell Beaker expansion, which probably brought Pre-Germanic to Scandinavia.

Nevertheless, only a comprehensive study of all Germanic regions from that period (whole genomic and Y-DNA) might shed light onto the real origin of East Germanic peoples, and thus their contended dialectal position, since we already know that certain modern Slavic and Germanic populations cluster closely to some Bronze Age communities of the same region, so differences during the Iron Age may be already quite subtle.

In my humble opinion, too many hypotheses in the paper for few interesting data – as is more and more usual in genetic papers. I guess journals expect that to get more attention, although serious reviewers should actually encourage the opposite, and only informal blogs like this one should come up with far-fetched theories, instead of rebutting them…


Admixture of Srubna and Huns in Hungarian conquerors


New preprint at BioRxiv, Mitogenomic data indicate admixture components of Asian Hun and Srubnaya origin in the Hungarian Conquerors, by Neparáczki et al. (2018), at BioRxiv.

Abstract (emphasis mine):

It has been widely accepted that the Finno-Ugric Hungarian language, originated from proto Uralic people, was brought into the Carpathian Basin by the Hungarian Conquerors. From the middle of the 19th century this view prevailed against the deep-rooted Hungarian Hun tradition, maintained in folk memory as well as in Hungarian and foreign written medieval sources, which claimed that Hungarians were kinsfolk of the Huns. In order to shed light on the genetic origin of the Conquerors we sequenced 102 mitogenomes from early Conqueror cemeteries and compared them to sequences of all available databases. We applied novel population genetic algorithms, named Shared Haplogroup Distance and MITOMIX, to reveal past admixture of maternal lineages. Phylogenetic and population genetic analysis indicated that more than one third of the Conqueror maternal lineages were derived from Central-Inner Asia and their most probable ultimate sources were the Asian Huns. The rest of the lineages most likely originated from the Bronze Age Potapovka-Poltavka-Srubnaya cultures of the Pontic-Caspian steppe, which area was part of the later European Hun empire. Our data give support to the Hungarian Hun tradition and provides indirect evidence for the genetic connection between Asian and European Huns. Available data imply that the Conquerors did not have a major contribution to the gene pool of the Carpathian Basin, raising doubts about the Conqueror origin of Hungarian language.

“Comparison of major Hg distributions from modern and ancient populations. Asian main Hg-s are designated with brackets. Major Hg distribution of Conqueror samples from this study are very similar to that of other 91 Conquerors taken from previous studies [11,12]. Scythians and ancient Xiongnus show similar Hg composition to the bracketed Asian fraction of the Conqueror samples, but Hg B is present just in Xiongnus. Modern Hungarians have very small Asian components pointing at small contribution from the Conquerors. Of the 289 modern Hungarian mitogenomes 272 are published in [29]. Scythian Hg-s are from [48,49,55,59,71–74]. Xiongnu Hg-s are from [66–69].”

Just recently another article contributed to a similar idea. I already talked about the Bronze Age R1a-z93 sample with high steppe ancestry found in the Balkans, and its likely origin in an expansion of the Srubna or a related culture. No truce, therefore, for those looking for autochthonous continuity anywhere in Europe.

We are seeing how multiple migrations shaped the history of the Carpathian basin (and its complex genetic structure) – and of Europe in general -, often from the Pontic-Caspian steppe. That is clear from many different prehistorical and historical times, such as the expansions of Suvorovo-Novodanilovka, Yamna, Srubna, Thraco-Cimmerians, Sarmatians, Scythians, Huns,…

About the linguistic interpretations based on genetics contained in the paper (Hungarian language as a legacy of Huns), well, you know my stance regarding the Yamnaya ancestral concept (and the wrong linguistic interpretations derived from it, which many sadly keep to this day), and genetics in general to solve language questions

This is yet another example of how (what some people would call) “scientific data” is useless without sound anthropological models.

Featured image, from the article: “Hypothetic origin and migration route of different components of the Hungarian Conquerors. Bluish line frames the Eurasian steppe zone, within which all presumptive ancestors of the Conquerors were found. Yellow area designates the Xiongnu Empire at its zenith from which area the East Eurasian lineages originated. Phylogeographical distribution of modern East Eurasian sequence matches (Fig. 1) well correspond to this territory, especially considering that Yakuts, Evenks and Evens lived more south in the past [108], and European Tatars also originated from this area. Regions where Asian and European Scythian remains were found are labeled green, pink is the presumptive range of the Srubnaya culture. Migrants of Xiongnu origin most likely incorporated descendants of these groups. The map was created using QGIS 2.18.4[109]”.

Article available under a CC-BY-NC-ND 4.0 International license.

Discovered via Razib Khan.

See also:

Mitogenomes show ancient human migrations to and through North-East India not of males exclusively


New open article Ancient Human Migrations to and through Jammu Kashmir- India were not of Males Exclusively, by Sharma et al., Scientific Reports 8, N. 851 (2018)


Jammu and Kashmir (J&K), the Northern most State of India, has been under-represented or altogether absent in most of the phylogenetic studies carried out in literature, despite its strategic location in the Himalayan region. Nonetheless, this region may have acted as a corridor to various migrations to and from mainland India, Eurasia or northeast Asia. The belief goes that most of the migrations post-late-Pleistocene were mainly male dominated, primarily associated with population invasions, where female migration may thus have been limited. To evaluate female-centered migration patterns in the region, we sequenced 83 complete mitochondrial genomes of unrelated individuals belonging to different ethnic groups from the state. We observed a high diversity in the studied maternal lineages, identifying 19 new maternal sub-haplogroups (HGs). High maternal diversity and our phylogenetic analyses suggest that the migrations post-Pleistocene were not strictly paternal, as described in the literature. These preliminary observations highlight the need to carry out an extensive study of the endogamous populations of the region to unravel many facts and find links in the peopling of India.


To conclude, the extent of presence of variants defining novel HGs or personal variants indicate high diversity in maternal genetic component of the population of J&K. Statistical analyses indicate that maternal population in J&K have undergone expansion, along with other regions of Indian sub-continent9. However, signatures of maternal gene pool expansion in the region past LGM and early Holocene era are also seen, and this is a unique observation for the present study. These distinct signatures and maternal lineages, never reported before in India, apparently suggest that this region might have served as a corridor, yet also as a reservoir for many unreported lineages.

The overall diversity seen in the maternal gene pool of J&K suggests that the migrations to and through this region were not exclusively of males. This data has refined the existing phylogenetic tree and added to the information further diversity of mtDNA in Indian populations. Further, this preliminary study highlights the importance of the region and emphasizes that the populations of this region should be studied extensively to understand the gene pool of Indian populations. Along with the Y chromosomal and mtDNA markers, a study of autosomal markers is also warranted in these population groups. It is anticipated to help in finding some of the missing links in the evolution of modern humans and their migratory history to and from the mainland India and the Indian subcontinent, a future perspective of our study. Further, we would like to emphasize that the endogamous populations should be studied with respect to their individual evolutionary and migration histories, rather than pooling these together as one group, an underlying drawback that has plagued many of the Indian population based studies in the past, diluting individual signatures and masking stories their DNA has to tell.

See also:

Modern Hungarian mtDNA more similar to ancient Europeans than to Hungarian conquerors


New preprint at BioRxiv, MITOMIX, an Algorithm to Reconstruct Population Admixture Histories Indicates Ancient European Ancestry of Modern Hungarians, by Maroti et al. (2018).

The estimated age distribution of the shared mt Hgs between Hungarians (Hun), the best hypothetical admix (mixFreq) and the populations contributing to this admix: Belgian/Dutch (BeN), Danish (Dan), Basque (Bsq), Croatian/Serbian (CrS), Baltic Late Bronze Age culture (BalBA), Bell Beaker culture (BellB), Slovakian (Slo). The numbers in parentheses indicate the contributions to the best hypothetical admix.

Abstract (emphasis mine)

By making use of the increasing number of available mitogenomes we propose a novel population genetic distance metric, named Shared Haplogroup Distance (SHD). Unlike FST, SHD is a true mathematical distance that complies with all metric axioms, which enables our new algorithm (MITOMIX) to detect population-level admixture based on SHD minimum optimization. In order to demonstrate the effectiveness of our methodology we analyzed the relation of 62 modern and 25 ancient Eurasian human populations, and compared our results with the most widely used FST calculation. We also sequenced and performed an in-depth analysis of 272 modern Hungarian mtDNA genomes to shed light on the genetic composition of modern Hungarians. MITOMIX analysis showed that in general admixture occurred between neighboring populations, but in some cases it also indicated admixture with migrating populations. SHD and MITOMIX analysis comply with known genetic data and shows that in case of closely related and/or admixing populations, SHD gives more realistic results and provides better resolution than FST. Our results suggest that the majority of modern Hungarian maternal lineages have Late Neolith/Bronze Age European origins (partially shared also with modern Danish, Belgian/Dutch and Basque populations), and a smaller fraction originates from surrounding (Serbian, Croatian, Slovakian, Romanian) populations. However only a minor genetic contribution (<3%) was identified from the IXth Hungarian Conquerors whom are deemed to have brought Hungarians to the Carpathian Basin. Our analysis shows that SHD and MITOMIX can augment previous methods by providing novel insights into past population processes.

Unrooted hierarchic cluster of modern and archaic populations based on the SHD matrix.

It is interesting to keep receiving data as to how language does not correlate well with Genomics, whether admixture or haplogroups, even though it is already known to happen in regions such as Anatolia, the Baltic, South-Eastern or Northern Europe.

Thorough anthropological models of migration or cultural diffusion are necessary for a proper interpretation of genetic data. There is no shortcut to that.

Co-occurrence of Hungarian Bronze Age mt Hgs Distribution of mt Hgs found in Hungarian Bronze Age archaic samples in the analyzed populations. The fixation dates are based on Behar et al [6].

Images made available under a CC-BY-NC-ND 4.0 International license.
See also: