Proto-Tocharians: From Afanasievo to the Tarim Basin through the Tian Shan

tocharians-early-eneolithic

A reader commented recently that there is little information about Indo-Europeans from Central and East Asia in this blog. Regardless of the scarce archaeological data compared to European prehistory, I think it is premature to write anything detailed about population movements of Indo-Iranians in Asia, especially now that we are awaiting the updates of Narasimhan et al (2018).

Furthermore, there was little hope that Tocharians would be different than neighbouring Andronovo-like populations (see a recent post on my predicted varied admixture of Common Tocharians), so the history of both unrelated Late PIE languages would have had to be explained by the admixture of Afanasievo-related groups with peoples of Andronovo descent and their acculturation.

However, data reported recently by Ning, Wang et al. Current Biology (2019) confirmed that peoples of mainly Afanasievo ancestry – as opposed to those of Corded Ware-related ancestry expanding with the Srubna-Andronovo horizon – spread the Tocharian branch of Proto-Indo-European from the Altai into the Tian Shan area, surviving essentially unadmixed into the Early Iron Age.

This genetic continuity of Tocharians will no doubt help us disentangle a great part the ethnolinguistic history of speakers of the Tocharian branch of Proto-Indo-European, from Pre-Proto-Tocharians of Afanasievo to Common Tocharians of the Late Bronze Age/Iron Age eastern Tian Shan.

NOTE. Tocharian’s isolation from the rest of Late PIE dialects and its early and intense language contacts have always been the key to support an early migration and physical separation of the group, hence the traditional association with Afanasievo, a late Repin/early Yamna offshoot. Even with the current incomplete archaeological and genetic picture, there is no other option left for the expansion of Tocharian.

It is not possible to use the currently available ancestry data to map the evolution of Afanasievo ancestry, lacking a proper geographical and temporal transect of Central and East Asian groups. In spite of this, Ning, Wang, et al. (2019) is a huge leap forward, discarding some archaeological models, and leaving only a few potential routes by which Tocharians may have spread southward from the Altai.

NOTE. I have updated the maps of prehistoric cultures accordingly, with colours – as always – reflecting the language/ancestry evolution of the different groups, even though the archaeological data of some groups of Xinjiang remains scarce, so their ethnolinguistic attribution – and the colours picked for them – remain tentative.

xinjiang-andronovo-xiaohe-horizon-bronze-iron-age
A rough timeline of related archaeological sites from North Eurasia. Image modified from Yang (2019).

Tocharians

The recent book Ancient China and its Eurasian Neighbors. Artifacts, Identity and Death in the Frontier, 3000–700 BCE, by Linduff, Sun, Cao, and Liu, Cambridge University Press (2017) offers an interesting summary of the introduction of metalworking into western China.

Here are some relevant excerpts (emphasis mine):

Although [the Xinjiang] route is not uniformly agreed upon (Shelach-Lavi 2009: 134–46), this western transmission has been thought to have passed through eastern Kazakhstan, especially as it is manifest in Semireiche, with Yamnaya, Afanasievo (copper) and Andronovo (tin bronze) peoples (Mei 2000: Fig. 3). From Xinjiang this knowledge has been thought to have traveled through the Gansu Corridor via the Qijia peoples (Bagley 1999) and then into territories controlled by dynastic China. The dating of this process is still a problem, as the sites and their contents in Xinjiang are consistently later than those in Gansu, suggesting that the point of contact was in Gansu and that the knowledge then spread from there westward.

1. Eneolithic Altai

tocharians-chalcolithic-eneolithic
Afanasievo expansion ca. 3300-2600 BC. See full culture and ancient DNA maps.

The Afanasievo sites, as they are identified in Mongolia, for instance, make up an Eneolithic culture analogous to that of southern Siberia (3100/2500–2000 BCE) in the Upper Yenissei Valley that is characterized by copper tools and an economy reliant on horse, sheep and cattle breeding as well as hunting. (…) The Afanasievo is best known through study of its burials, which typically include groups of round barrows (kurgans), each up to 12 m in diameter with a stone kerb and covering a central pit grave containing multiple inhumations. In their Siberian context, burial pottery types and styles have suggested contacts with the slightly earlier Kelteminar culture of the Aral and Caspian Sea area.

The Afanasievo culture monuments, located in the northern Altai and in the Minusinsk Basin (the western Sayan), have been seen as analogous evidence for cross-Eurasian exchange. These complexes contain small collections of metal, and many of the items are made of brass, although golden, silver and iron ornaments were also identified. A mere one-fourth of these objects are tools and ornaments, while the rest consist of unshaped remains and semi-manufactured objects. Its metallurgical tradition has recently been dated by Chernykh to as early as 3100 to 2700 BCE (1992),making it more compatible chronologically with the early brass-using sites in Shaanxi mentioned above. Kovalev and Erdenebaatar have excavated barrows in Bayan-Ulgii, Mongolia, that have been carbon-dated to the first half of the third millennium BCE and associated by ceramic types and styles and burial patterns with the Afanasievo (Kovalev and Erdenebaatar 2009: 357–58). These mounded kurgans were covered with stone and housed rectangular, wooden-faced tombs that included Afanasievo-type bronze awls, plates and small “leaf-shaped” knife blades (Kovalev and Erdenebaatar 2009: Figs. 6 and 7).

They also excavated sites belonging to the more recently identified Chemurchek archaeological culture, located in the foothills of the Mongolian Altai (Kovalev 2014, 2015) (Fig. 2.6). These sites are carbon-dated to the same period as the Afanasievo burials or to c. 3100/2500–1800 BCE (six barrows in Khovd aimag and four in Bayan-Ulgo aimag). In the rectangular stone kerbed Chemurchek slab burials (Ulaaanhus sum, Bayan-ul’gi aimag and so forth), bronze items included awls; and at Khovd aimag, Bulgan sum, in addition to stone sculptures, three lead and one bronze ring were excavated (Kovalev and Erdenebaatar 2009: Figs. 2 and 3; Fig. 2.6). Although we will not know if they were produced locally until much further investigation is undertaken, these discoveries do document knowledge of various uses and types of metal objects in western and south central Mongolia. The types of metal items thus far recovered are simple tools (awls) and rings (ornamental?) not unlike those associated with Andronovo archaeological cultures as well.

This is a complex circumstance where archaeological evidence is not complete, but raises very important questions about transmission of metallurgical knowledge to and from areas in present-day China. In the 1970s some Afanasievo mounds were excavated in Central Mongolia by a Soviet–Mongolian expedition led by V. V. Volkov and E. A. Novgorodova (Novgorodova 1989: 81–85). Unfortunately, these mounds did not yield metal objects, only ceramics, but they show that the Afanasievo culture with the Eneolithic metallurgical tradition of manufacturing pure copper items had already moved east at least far as central Mongolia. In 2004, Kovalev and Erdenebaatar investigated a large Afanasievo mound, Kulala ula, in the extreme northwest of Mongolia, near the Russian border (Kovalev and Erdenebaatar 2009). There they found a copper knife and awl (Fig. 2.5). There are five C14 dates on wood, coal and human bones from this mound, which belong to the period 2890–2570 BCE. This shows that the Afanasievo culture were carriers of technology and produced artifacts in the first half of the third millennium BCE and that they also moved south along the foothills of the Mongolian Altai. Afanasievo culture in Altai and the Minusinsk basin is dated by C14 to 3600–2500 BCE (Svyatko et al. 2009; Polyakov 2010). In the north of Xinjiang in the Altai district, several typical egg-shaped vessels and two censers of Afanasievo types were found. Some of these have been obtained from the stone boxes (chambers of megalithic graves of the Chemurchek culture) (Kovalev 2011). Thus, the Afanasievo tradition of pure copper metallurgy must have spread to the northern foothills of the Tienshan Mountains no later than the mid-third millennium BCE. The links with Afanasievo and local cultures adjacent to and south of the mountains into present-day China can now be assumed.

tocharians-chalcolithic-late
Afanasievo – Chemurchek evolution ca. 2600-2200 BC. See full culture and ancient DNA maps.

2. Bronze Age Altai

Kovalev and Erdenebaatar (2014a) and later Tishkin, Grushin, Kovalev and Munkhbayar (2015) in Western Mongolia conducted large-scale excavations of megalithic barrows of the Chemurchek culture (dated about 2600–1800 BCE). This peculiar culture appeared in Dzungaria and the Mongolian Altai in the second quarter of the third millennium BCE and for some time existed together with the late Afanasievo culture, as evidenced by the findings of Afanasievo ceramics in Chemurchek graves, in the stone boxes. Unfortunately, in China we do not yet know of any metal object related,without doubt, to the Chemurchek culture. Kovalev, Erdenebaatar, Tishkin and Grushin found several leaden ear rings and one ring of tin bronze in three excavated Chemurchek stone boxes (Kovalev and Erdenebaatar 2014a; Tishkin et al. 2015). Such lead rings are typical for Elunino culture,which occupied the entire West Altai after 2400–2300 BCE (Tishkin et al. 2015). This culture had developed a tradition of bronze metallurgy with various dopants, primarily tin. Thus, the tradition of bronze metallurgy as early as this time could have penetrated the Mongolian Altai far to the south. In addition, in the Hadat ovoo Chemurchek stone box, Kovalev and Erdenebaatar discovered stone vessels refurbished with the help of copper “patches,” indicating the presence there of metallurgical production (Fig. 2.7) (Kovalev and Erdenebaatar 2014a). In one of the secondary

Chemurchek graves unearthed by Kovalev and Erdenebaatar in Bayan-Ulgi (2400–2220 BCE), a bronze awl was found (Kovalev and Erdenebaatar 2009). Kovalev and Erdenebaatar also discovered a new culture in the territory of Mongolia (Map 2.3), one that begins immediately after Chemurchek – Munkh-Khairkhan culture (Kovalev and Erdenebaatar 2009, 2014b). To date, about 17 mounds of this culture have been excavated in Khovd, Zavkhan, Khovsgol, Bulgan aimag of Mongolia. This culture dates from about 1800 to 1500 BCE, that is, contemporary with the Andronovo culture. Therefore, the Andronovo culture does not extend far into the territory of Mongolia. Three knives without dedicated handles or stems and five awls have been found in the Munkh-Khairkhan culture mounds (Fig. 2.8). All these products are made of tin bronze. (…) Additionally, eight Late Bronze Age burials (c. 1400–1100 BCE) were unearthed in the Bulgan sum of Khovd aimag and belong to another previously unknown culture called Baitag. And in the Gobi Altai, a new group of “Tevsh” sites dating to the Late Bronze Age were defined in Bayankhongor and South Gobi aimags (Miyamoto and Obata 2016: 42–50). From these Tevsh and Baitag sites, we see the expansion of burial goods to include beads of semiprecious stones (carnelian), bronze beads, buttons and rings and even the famous elaborate golden hair ornaments (Tevsh uul;Bogd sum;Uverkhanagia aimag) from the Baitag barrows (Kovalev and Erdenebaatar 2009: Fig. 5; Miyamoto and Obata 2016).

2.1. Chemurchek

About the Chemurchek culture, from A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China, by Jia and Betts JIES (2010) 38(4):

The major characteristics of Qiemu’erqieke Phase I include:

  1. Burials with two orientations of approximately 20° or 345°.
  2. Rectangular enclosures built using large stone slabs. The size of the enclosure varies from a maximum of 28 x 30 m.*to a minimum of 10.5 x 4.4 m. (Figure 8, Table 2).
  3. *The stone enclosure located near Hayinar is the largest one at approximately 30 x 40 m. based on pacing of the site during a visit by the authors in 2008.

  4. Almost life-sized anthropomorphic stone stelae erected along one side of the stone enclosures (Lin Yun 2008).
  5. Single enclosures tend to contain one or more than one burial, all or some with stone cist coffins.
  6. The cist coffin is usually constructed using five large stone slabs, four for the sides and one on top, leaving bare earth at the base (Zhang Yuzhong 2007). Sometimes the insides of the slabs have simple painted designs (Zhang Yuzhong 2005).
  7. Primary and secondary burials occur in the same grave.
  8. Some decapitated bodies (up to 20) may be associated with the main burial in one cist.
  9. Bodies are commonly placed on the back or side with the legs drawn up.
  10. Grave goods include stone and bronze arrowheads, handmade gray or brown round-bottomed ovoid jars, and small numbers of flat-bottomed jars (Fig. 7).
  11. Clay lamps appear to occur together with roundbottomed jars.
  12. Complex incised decoration on ceramics is common but some vessels are undecorated.
  13. The stone vessels are distinctive for the high quality of manufacture.
  14. Stone moulds indicate relatively sophisticated metallurgical expertise.
  15. Artefacts made from pure copper occur.
  16. Sheep knucklebones (astragali) imply a tradition (as in historical and modern times) of keeping knucklebones for ritual or other purposes. They also indicate the herding of domestic sheep as part of the subsistence economy.
tocharians-bronze-age-early
Chemurchek culture ca. 2200-1750 BC. See full culture and ancient DNA maps.

Chemurchek dating

Available evidence suggests that the date range for Qiemu’erqieke Phase I should fall from the later third into the early second millennium BC. There are several reasons to suggest that the time span is around the early second millennium BC. Lin Yun (2008) (…) maintains that the bronze artefacts found in Phase I show a greater sophistication in the level of copper alloy technology than that of the pure copper artefacts common to the Afanasievo tradition. On this basis it might be suggested that the Afanasievo could be considered to be Chalcolithic with a time span across much of the third millennium BC ( Gorsdorf et al. 2004: 86, Fig. 1). Qiemu’erqieke Phase I, however, should more properly be considered as Bronze Age.

Lin Yun also used the bronze arrowhead from burial Ml 7 to narrow down the date of Qiemu’erqieke Phase I. Two arrowheads were found in this burial, one of them leaf shaped with a single barb on the back (Fig. 7:4). A similar arrowhead, together with its casting mould, has been found at the Huoshaogou site of Siba tradition (Li Shuicheng 2005, Sun Shuyun and Han Rufen 1997), in Gansu province, northwest China, dated around 2000-1800 BC (Li Shuicheng and Shui Tao 2000) . This supports a date in the early second millennium BC for the Qiemu’erqieke arrowhead. The painted, round-bottomed jar from the Tianshanbeilu cemetery Qia Weiming, Betts and Wu Xinhua 2008: Fig. 7, bottom left) has been considered as a hybrid between the Upper Yellow River Bronze Age cultures of Siba in northwest China and the steppe tradition of Qiemu’erqieke in west Siberia (Li Shuicheng 1999). If this assumption is correct, the date of Tianshanbeilu, around 2000 BC, can be used as a reference for Qiemu’erqieke Phase I (Jia Weiming, Betts and Wu Xinhua 2008, Lin Yun 2008, Li Shuicheng 1999). Stone arrowheads found in Qiemu’erqieke Phase I also imply that the date is likely to fall within the earlier part of the Bronze Age as no such stone arrowheads have yet been found elsewhere in sites of the Bronze Age in Xinlang dated after the beginning of the second millennium BC.*
*For example Chawuhu and Xiaohe cemeteries (Xinjiang Institute of Archaeology 1999, 2003).

pottery-afanasevo-chemurchek
Pottery of Afanasevo and East European traits from the Chemurchek complex. Image modified from Kovalev (2017).

(…) Pottery “oil burners” (goblet-like ceramic vessels, possibly lamps) have been found in three traditions: Afanasievo (Gryaznov and Krizhevskaya 1986:21), Okunevo and Qiemu’erqieke. It is believed that this oil-burner found in Siberia and the Altai is a heritage from the Yamnaya and Catacomb
cultures (Sulimirski 1970: 225, 425; Shishlina 2008:46) in the Caspian steppe further to the west, but does not seem to exist in known Andronovo cultures.
The oil-burner tends to disappear after around 2300 BC during the mid-Okunevo period. It is, however, possible that the tradition continues longer in the Qiemu’erqieke sites.

The construction of the stone enclosures also reveals a close connection between Qiemu’erqieke Phase I and the mid and late Okunevo tradition (Sokolova 2007). Slab built stone enclosures emerged in both the Okunevo and Afanasievo traditions (Gryaznov and Krizhevskaya 1986:15-23, Kovalev 2008, Sokolova 2007, Anthony 2007:310, Koryakova and Epimakhov 2007). In the early Afanasievo the enclosure is circular with no cist coffin (Anthony 2007:310, Gryaznov and Krizhevskaya 1986:20), but in the early stage of the Okunevo square stone enclosures with a single cist burial are dominant. Square or rectangular stone enclosures are a marked feature of Qiemu’erqieke Phase I, suggesting temporal relationships between Qiemu’erqieke Phase I and the Okunevo. In Okunevo chronological group II, possibly with influence from the Anfanasievo, circular stone enclosures appeared in combination with rectangular enclosures within individual cemeteries, referred to by Sokolova (2007: table 2) as hybrid examples. By Okunevo chronological group III, rectangular stone slab enclosures with multi-burials emerged again. This is the dominant form in Qiemu’erqieke Phase I. Okunevo burial traditions changed again to single cist burials in the late stage around chronological group V ( Sokol ova 2007). A specific mortuary rite of decapitated burials exists in both the Qiemu’erqieke and Okunevo traditions (Sokolova 2007, Chen Kwang-tzuu and Hiebert 1995), as does the occasional occurrence of painted designs on the interior of the slabs forming the cists ( e.g., Khavrin 1997: 70, fig. 4; 77: tab. IV.5). Based on these comparisons, the date of Qiemu’erqieke Phase I may well parallel that of the Okunevo from at least chronological group II around 2400 BC (Gorsdorf et al. 2004: fig. 1).

khuh-udzuur-barrow
Khuh Udzuuriin I-1 elite barrow (ca. 2470-2190 BC). Modified from Image modified from Kovalev (2014).

In addition to the pottery making tradition, the anthropomorphic stone stelae may also have earlier antecedents. In the Okunevo assemblage there are anthropomorphic stelae that are longer, thinner and more abstract than those of Qiemu’erqieke. There is no indication of such stelae in the Afanasievo tradition (Gryaznov and Krizhevskaya 1986:15-23). However, further to the west, anthropomorphic stone stelae are associated with the Kemi-Oba and Yamnya cultures around the third millennium BC (Telegin and Mallory 1994; Figure 13). Some major characteristics of these stelae such as the icons on the front face of the stelae (Telegin and Mallory 1994:8-9) also appear on stelae found in Qiemu’erqieke Phase I. Recalling the oil burners that may have been inherited from the Yamnya culture and which are found in the Afansievo, Okunevo and Qiemu’erqieke Phase I, it migh t be possible to speculate that Qiemu’erqieke Phase I has its origins even earlier than the first half of the third millennium BC. This idea has also been suggested by Kovalev ( 1999).

Despite the affinities with the Okunevo cultural tradition, Qiemu’erqieke Phase I appears to be a discrete regional variant. The ceramic assemblage shows traits unique to this cluster of sites, while the anthropomorphic stelae are also distinctive markers of this tradition.

khuh-udzuur-stela
Khuh Udzuur anthropomorphic stone stela, oriented toward the south – south-east. Image modified from Kovalev (2014).

3. Bronze Age Xinjiang

I recently reported on this blog the description of Xiaohe and Gumugou cemeteries from interesting Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

It also offered a full summary of findings from prehistoric sites of Xinjiang related to the arrival of a cultural package from the Altai region, ultimately connected to Afanasievo. Relevant excerpts include the following (emphasis mine):

In Bronze Age Xinjiang, burials were diverse but also show some common features between different geographic sections. The main three mountains, including Kunlun Mountains, Tian Shan (mountains) and Altai Mountains, enclose the Tarim Basin, and the Dzungaria Basin, but leave the eastern part of the Tarim Basin and the south-eastern part of the Dzungaria Basin open (with easy access to the surroundings). The Hami Basin is located at the transitional area, connecting the two basins. Burials are mainly spread along the edge of the mountain ranges.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

3.1. The Lop Nur region

In the Lop Nur region, the Xiaohe cemetery (2000-1450 BCE) and the Gumugou cemetery (1900-1800 BCE) had many common features shared, and so is the Keliyahe northern cemetery:

  • Cemeteries were located in sandy areas;
  • Rectangular/boat-shaped wooden coffins with monuments of wooden planks or poles;
  • Coffins had no bottoms;
  • The dead were placed lying straight on the back;
  • The dead were commonly buried in single graves.

The Gumugou cemetery contained six special sun-radiating-spokes burial pattern in addition to the normal burials, which were similar to the wooden coffin graves of the Xiaohe cemetery.

NOTE. For more on Xiaohe and Gumugou, see the recent post on Proto-Tocharians. See other papers on the Andronovo horizon for other Early to Middle Bronze Age cultural groups less clearly associated with the Xiaohe horizon, like Hazandu, Xintala, or the Chust culture.

From Shuicheng (2006):

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority. The composition of alloy did not show significant change over time. Some colleagues pointed out that the Nulasai 奴拉赛 site at Nileke 尼勒克 County in the Yili 伊犁 River basin of Xinjiang was the pioneer in the use of “sulphuric ore–ice copper–copper”technology. It is also the only early smelting site in Euro-Asia that arsenic ore was added to deliberately produce an alloy

tocharians-bronze-age-middle
Prehistoric cultures of Xinjiang during the Middle Bronze Age. See full culture and ancient DNA maps.

3.2. The Hami Basin-the Balikun Grassland

From Yang (2019):

The Hami Basin-the Balikun Grassland area is located at the eastern part of Tian Shan. The area is divided in a northern basin and a southern basin by the east-west stretch of the Tian Shan. In the Hami Basin-the Balikun Grassland area, the main type of burials were earth-pit graves in the early Bronze Age, and burials of stone-pit with barrows became more common in the late Bronze Age. The Hami-Tianshan-Beilu cemetery is a representative of the earth-pit graves. The features of the Hami-Tianshan-Beilu cemetery (2000-1500 bce) here were:

  • Rectangular earth pit graves;
  • The dead were often in a hocker position lying on one side;
  • Commonly a single dead in one grave.
balikun-grassland
The Balikun grassland today (source).

The Hami-Wubu cemetery (earlier than 1000 bce) and the Yanbulake cemetery (1200-600 bce) are representatives of another common earth-pit graves. Common features here were:

  • Rectangular earth pits, with two storeys and/or roofed with wooden boards;
  • The dead was placed in a hocker position lying on one side;
  • Mostly a single dead in one grave.

Later there appeared more stone-pit graves in this area, and the features can be summarized as:

  • Round burial mounds, commonly constructed by stones or a mix of stones and earth;
  • Burial mounds with a sunken top or a normal (dome) top;
  • The diameter of the burial mounds varied between 3 and 25.4 m (but not necessarily limited in this scope);
  • Circular or rectangular stone kerbs;
  • Rectangular stone pits, constructed by earth, or stones, or a mix of earth and stones;
  • Rectangular stone pits contained wooden coffins (represented by the Yiwu Baiqi’er cemetery).
hami-basin-balikun-grassland-iron-age-burials
Some representatives of stone burials in the Hami Basin – the Balikun Grassland in the Iron Age (Adapted from: Xinjiang 2011, 29-41). Image modified from Yang (2019).

In the Hami Basin, the Bronze Age cemeteries show common burial features like earth pits and hocker position of the dead. With similar pottery styles in the Hami-Tianshan-Beilu cemetery to those in the Machang and Siba cultures (Xinjiang 2011: 17), it suggests possible cultural influence or people’s migrating from the Hexi Corridor in the east.

In the Balikun Grassland, burials in an earlier time contained mostly earth-pit graves but also a small number of stone-pit graves. The pebbles were imbedded in the floors and the walls of the graves in a rectangular shape, e.g. the Balikun-Nanwan cemetery (1600-1000 bce). In a later time, there appeared huge burial mounds with a sunken top, and with the diameters of the burial mounds varying from 3 to 25.4 m, e.g. the Balikun-Dongheigou cemetery and the Balikun-Heigouliang cemetery. The Yiwu-Bai’erqi and the Yiwu-Kuola cemeteries contained either round stone burial mounds or circular stone kerbs on the ground surface. Considering the three burial elements including burial mounds, stone pits and circular kerbs, the later period cemeteries in the Balikun Grassland were actually similar to cemeteries from the southern edge of the Altai Mountain area.

From Shuicheng (2006):

The Nanwan 南湾 cemetery site at Kuisu 奎苏 Town, Balikun 巴里坤 (1600–1100 BC) also yielded an assemblage of early bronzes. The style of its early phase artifacts is similar to that of the burials distributed in the North Tianshan Route. Some sorts of cultural connection should have existed between the two.

The dates of Yanbulake 焉不拉克 Culture (1300–700 BC) are comparatively late. Its metallurgy was a continuation of the western China tradition. Artifact types include a variety of utilitarian tools, weapons and apparels.

tocharians-bronze-age-late
Prehistoric cultures of Xinjiang during the Late Bronze Age. See full culture and ancient DNA maps.

3.3. The Turpan Basin-the middle part of Tian Shan

From Yang (2019):

Turpan Basin is located at the western part of the Hami Basin, and lies at the southern edge of the eastern Tian Shan. In the Turpan Basin-the middle part of Tian Shan area, the main representative of the Bronze Age cemeteries is the Yanghai Nr.1 cemetery. The features here were:

  • Elliptic earth pit graves, commonly covered by round logs on the top;
  • Some graves contained burial beds made of round logs or reeds;
  • The dead were mainly placed lying straight on the back;
  • Mostly a single dead in one grave.

In Iron Age, the stone burials became dominant, but the stone burials varied in different regions of the Turpan Basin-the middle part of Tian Shan area. Graves containing burial mounds, stone pit, and circular stone kerbs are represented by the Shanshan-Ertanggou cemetery, the Tuokexun-Alagou cemetery, the Urumqi-Chaiwobu cemetery and the Urumqi-Yizihu-Sayi cemetery, etc. The stone funeral construction features here are similar to those contemporary cemeteries in the Hami Basin-the Balikun Grassland area.

3.4. The southern edge of the western and middle part of Tian Shan

In the southern edge of the western and middle part of Tian Shan area, the main representatives of the late Bronze Age cemeteries are the Hejing-Chawuhu Nr.4 cemetery (around 1000-500 bce), the Hejing-Xiaoshankou cemetery, the Baicheng-cemetery, etc. The main burial features of the late Bronze Age and the early Iron Age cemeteries (see Fig.12) here were:

  • Burial mounds, constructed by stones or a mix of stones and earth;
  • Irregular circular or rectangular stone kerbs;
  • Stone pit graves in a bell-shape or a rectangular shape;
  • Stone pit graves constructed by imbedding pebbles or stone slabs in walls and floors;
  • The dead were often placed lying on their back with bent legs;
  • The dead were commonly reburied a second time with multiple burials.

From the late Bronze Age to the early Iron Age in this area, the burial traditions tended to be in a more varied way. In the stone burials with stone kerbs, there is a mixture of stone pit and earth pit graves. The burial features of the Iron Age cemeteries in this section were similar to those contemporary both in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area.

From Shuicheng (2006):

The Chawuhu 察吾呼 Culture (1100–500 BC) distributes on the foothills between the middle section of the Tianshan Mountain Ranges and Tarim River. Its bronze assemblage comprises a variety of weapons, utilitarian tools and small apparels. They show no apparent temporal change in form and type through the four cultural phases. In addition, bronzes bear the Chawuhu characteristics were found in Hejing 和静, Baicheng 拜城 and Luntai 轮台 (Bügür). Yet, sites distributed along the Tarim River, such as Heshuo 和硕, Kuga 库车and Aksu 阿克苏, yielded remains of a bronze culture different from that of Chawuhu. Bronzes recovered include double-eared socketed axe, arrowheads, awls, knives, needles and bracelets. Their absolute dates have been estimated to be earlier than that of Chawuhu.

tocharians-iron-age-early
Prehistoric cultures of Xinjiang during the Early Iron Age. See full culture and ancient DNA maps

3.5. The Pamir Plateau

From Yang (2019):

A typical Bronze Age cemetery from the Pamir Plateau area is the Tashenku’ergan-Xiabandi cemetery (around 1000-500 bce). The burial features here were:

  • Mainly inhumations, but also a few cremations;
  • Burial mounds, constructed of stones;
  • Irregular circular or rectangular stone kerbs;
  • Mostly a single dead in one grave;
  • The dead was placed in a hocker position lying on one side.

The adoption of burial customs from the east supports the migration of Afanasievo-related peoples from the Tian Shan up to the Pamir Plateau, strongly influencing the findings of the Xiabandi cemetery, which has been dated from an early Bronze Age phase (ca. 1500-300 BC) to a late date up to ca. 600 BC.

While it is today unclear how far the Afanasievo admixture reached into the western Xinjiang, it seems that the Pamir Plateau remained culturally connected to neighbouring Andronovo-related cultures in pottery and metallurgical innovations, hence their language probably belonged – during most part of the Bronze and Iron Ages – to the Indo-Iranian branch, even though specific dialects might have changed with each new attested group.

In particular, it is possible that the early Andronovo groups related to the Xiaohe Horizon spoke Indo-Aryan or West Iranian dialects, while Saka-related groups replaced them – or an intermediate Tocharian-speaking group – with East Iranian dialects. A close interaction with West Iranian would justify the known ancient borrowings of Tocharian, although they could also be explained by contacts with Chust-related groups farther west. For more on this, see Ged Carling’s work on the different layers of Iranian loans.

Xinjiang BA/IA Summary

From Yang (2019):

In the early Bronze Age, there are distinct regional differences in the burial customs in and surrounding the Tarim Basin. At the southern edge of the Altai Mountains area, the burial customs included stone burial mounds, stone pit graves, circular or rectangular stone kerbs and stone human sculptures; the dead were placed lying straight on the back. In the Hami Basin-the Balikun Grassland area, the burial customs included earth pit graves; the dead were placed in a hocker position lying on one side. In the Turpan Basin-the middle part of Tian Shan area, the burial customs included earth pit graves; the dead were placed lying straight on the back. In the Lop Nur region, the burial customs included wooden coffins buried in sand; the dead were placed lying straight on the back.

But from the late Bronze Age to the early Iron Age, there was a common shift in burial customs from earth pit graves to stone burials in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area. The main features of the stone burials include stone burial mounds, circular or rectangular stone kerbs, and the stone pit graves in the cemeteries. Similar stone burial customs commonly appeared at the southern edge of the western and middle part of Tian Shan area and the Pamir Plateau area in Iron Age. The burial features in most areas are in a mixture of both the earth pit graves and stone pit graves, especially in the Hami Basin-the Balikun Grassland area and the Turpan Basin-the middle part of Tian Shan area.

xinjiang-bronze-age-iron-age

From Shuicheng (2006):

Historians of metallurgy conducted metallographic analyses on a sample of 234 metal specimens recovered from 16 localities in eastern Xinjiang. They concluded that the metallurgic industry in eastern Xinjiang could be roughly partitioned into three developmental phases. The early phase is represented by the burials distributed in the North Tianshan Route. The majority of the metal assemblage was tin-bronzes; however, copper and arsenic-bronzes maintained considerable proportions. The middle phase is represented by the burials at Yanbulake. During this phase, tin-bronze still maintained the majority; the proportion of arsenic-bronze increased, and some of them were high arsenic-bronzes. The late phase is represented by the burials at Heigouliang 黑沟梁. The composition of lead increased in the bronze alloy in the expense of arsenic. In addition, this phase witnessed the appearance of high tin-bronze that composed up to 16% of tin and the appearance of brass, that is, an alloy of copper and zinc. The bronze alloy consistently contained significant amount of impurities regardless of temporal difference. Casting and forging technologies coexisted throughout the three phases. The early bronzes (2000–500 BC) of eastern Xinjiang, in general, contained arsenic; however, the composition of arsenic was usually under 8%, but a few artifacts contained more than 20% arsenic. In all, arsenic had long been used in the alloy-forming of the early bronzes in eastern Xinjiang. Consequently, arsenic-bronzes were widely found in the prehistoric archaeology of the region. The artifact types, chemical compositions and manufacture techniques of the bronze assemblage of the burials of the North Tianshan Route are similar to those of Siba Culture, indicating that eastern Xinjiang had played a significant role in the East-West interactions.

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic-bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority.

tocharians-iron-age-late
Prehistoric cultures of Xinjiang during the Late Iron Age. See full culture and ancient DNA maps.

Tocharians in population genomics

Prehistoric population movements between the Altai and the Tian Shan are difficult to pinpoint, not the least because of the division of these territories among three different countries and their archaeological teams, only recently (more) open to the international scholarship.

The available schematic archaeological picture, where migrations could only be roughly inferred, has been recently updated to a great extent by Ning, Wang et al. (2019), whose genetic analysis of the samples is as thorough as anyone could have asked for, with a level of detail which matches the complex genetic picture of the region by the Iron Age.

As a summary, here is what they described about the samples from Shirenzigou (ca 400-200 BC), corresponding to the Iron Age populations of the Hami Basin-the Balikun Grassland area, and closely related to the preceding Yanbulake Culture:

As shown in Figure S3, the Steppe_MLBA populations including Srubnaya, Andronovo, and Sintashta were shifted toward farming populations compared with Yamnaya groups and the Shirenzigou samples. This observation is consistent with ADMIXTURE analysis that Steppe_MLBA populations have an Anatolian and European farmer-related component that Yamnaya groups and the Shirenzigou individuals do not seem to have. The analysis consistently suggested Yamnaya-related Steppe populations were the better source in modeling the West Eurasian ancestry in Shirenzigou.

biplot-yamnaya-tocharians-shirenzigou
Biplot of f3-outgroup tests illustrating the Kostenki14 and Anatolia_N like ancestries in Shirenzigou individuals. Most Shirenzigou individuals were on a cline with Yamnaya and European hunter-gatherer groups, lacking the European farmer ancestry as compared to the Steppe_MLBA populations such as Andronovo, Srubnaya and Sintashta [S1-S5]. Horizontal and vertical bars represent ± 3 standard errors, corresponding to form of outgroup f3 tests on the x axis and y axis respectively.

We continued to use qpAdm to estimate the admixture proportions in the Shirenzigou samples by using different pairs of source populations, such as Yamnaya_Samara, Afanasievo, Srubnaya, Andronovo, BMAC culture (Bustan_BA and Sappali_ Tepe_BA) and Tianshan_Hun as the West Eurasian source and Han, Ulchi, Hezhen, Shamanka_EN as the East Eurasian source. In all cases, Yamnaya, Afanasievo, or Tianshan_Hun always provide the best model fit for the Shirenzigou individuals, while Srubnaya, Andronovo, Bustan_BA and Sappali_Tepe_BA only work in some cases.

p-values-shirenzigou-samples-han-chinese
Table S2. P values in modelling a two-way (P=rank 1) admixture in Shirenzigou samples using each of the four populations (Bustan_BA, Sappali_Tepe_BA, Andronovo.SG, Srubnaya) together with Han Chinese as two sources [S6], Related to Figure 2. We used the following set of outgroups populations: Dinka, Ust_Ishim, Kostenki14, Onge, Papuan, Australian, Iran_N, EHG, LBK_EN.

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

In the PCA, ADMIXTURE, outgroup f3 statistics [see Figure S4], as well as f4 statistics (Table S3), we observed the Shirenzigou individuals were closer to the present day Tungusic and Mongolic-speaking populations in northern Asia than to the populations in central and southern China, suggesting the northern populations might contribute more to the Shirenzigou individuals. Based on this, we then modeled Shirenzigou as a three-way admixture of Yamnaya_Samara, Ulchi (or Hezhen) and Han to infer the source from the East Eurasia side that contributed to Shirenzigou. We found the Ulchi or Hezhen and Han-related ancestry had a complicated and unevenly distribution in the Shirenzigou samples. The most Shirenzigou individuals derived the majority of their East Eurasian ancestry from Ulchi or Hezhen-related populations, while the following two individuals M820 and M15-2 have more Han related than Ulchi/ Hezhen-related ancestry

It is unclear whether the Chemurchek population will show a sizeable local contribution from neighbouring groups. The fact that Okunevo shows 20% Yamnaya-related ancestry strongly supports the nature of neighbouring stone-grave-building peoples of the Altai and the northern Tian Shan as mostly Afanasievo-like, and the apparent lack of contributions of Srubna/Andronovo-like ancestry in the early Hami-Balikun stone burial builders also speaks for radical population replacement events reaching the areas south of Tian Shan, at least initially.

While ancestry cannot settle linguistic questions, it seems that nomads of the Gansu and Qinghai grasslands retained an ancestry close to Andronovo, whereas nomads of the Hami Basin-Balikun grasslands and related populations of Xinjiang remained closely related to Afanasievo. This doesn’t preclude that the ancestors of the Yuezhi became acculturated under the influence of peoples from eastern Xinjiang, but all data combined suggest an isolation of both populations – relative to other groups and to each other – and it is therefore more likely that they spoke Indo-Iranian-related languages rather than a language of the Tocharian branch.

Haplogroups

In an interesting twist of events, despite the initially reported hg. R1b and Q, Tocharians from Shirenzigou actually show a haplogroup diversity comparable to that attested in other late Iron Age populations: a similar diversity is seen, for example, among Germanic, Baltic, and Balto-Finnic peoples of the Baltic region; among East Germanic or Scythians of the north Pontic region; or among Mediterranean peoples sampled to date. Iron Age peoples show thus a complex sociopolitical setting that overcame the previous patrilineal homogeneity of Bronze Age expansions.

tocharians-pca
PCA and ADMIXTURE for Shirenzigou Samples. Modified from the original to include in black squares samples related to Yamnaya. Modified from the paper to include labels of modern populations and a dotted lines with the cline formed by Shirenzigou, from (Yamnaya-like) Afanasievo to Central and East Asian-like populations. In red circles, samples with best fit for Andronovo-like ancestry. In green circles, samples with Han-related admixture.

M15-2 (with Han-related ancestry) is of the rare haplogroup Q1a-M120, while the samples with highest Steppe_MLBA-related ancestry are of hg. R1b-PH155, which points to their recent origin among Yuezhi, or to Hun-related populations showing an admixture related to the proto-historic nomads of the Gansu and Qinghai grasslands.

The expansion of Chemurchek-related peoples was probably associated more with hg. Q1a (dubious if it’s a Pre-ISOGG 2017 nomenclature, hence possibly Q1b), a haplogroup that might be found in Khvalynsk as a “significant minority” according to Anthony (2019), and it might also be attested in sampled individuals from Afanasievo in its late phase. This might be, therefore, a case similar to the early expansion of Indo-Europeans with R1b-V1636 lineages through the Volga – North Caucasus region, and of the later expansion with I2a-L699 lineages into the Balkans.

Haplogroup Q1a2-M25 is found in individual X3, whose Steppe ancestry is likely a combination of Afanasievo plus Andronovo-like ancestry heavily admixed with Hezhen/Ulchi-like populations, in line with the expected recent contacts with the neighbouring Xiongnu, Yuezhi, and other population movements affecting eastern Xinjiang.

Sample M4, which packs the most Afanasievo-like ancestry, is of hg. R1a-Z645, which – like sample M8R1 of hg. O – is most likely related to haplogroup resurgence events of local populations, which left the predominant Afanasievo-like admixture brought by builders of stone burials essentially intact, evidenced by the almost 100% of R1a found in the Xiaohe cemetery – and in most of the early Andronovo horizon – and among expanding Kangju and Wusun, as well as by the prevalence of hg. O among sampled East Asian populations.

A question that will only be answered with more samples is how and when the prevalent R1b-L23 and Q1b lineages among Afanasievo-related peoples began to be replaced to reach the high variability seen in Shirenzigou. Given the pastoralist nature of peoples around Tian Shan, the succeeding expansions of Proto-Tocharians, and the late isolation of different Common Tocharian groups, it is more than likely that this variability represents a late and local phenomenon within Xinjiang itself.

tocharians-antiquity
Peoples of Xinjiang during Antiquity. See full culture and ancient DNA maps.

Conclusion

Tocharians are one of the main pillars that confirm the Late Proto-Indo-European homeland of the R1b-rich populations of the Don-Volga region. There is already:

Just like the East Bell Beaker expansion from Yamnaya Hungary has confirmed that Corded Ware peoples did not partake in spreading Indo-European languages (spreading Uralic languages instead), data on the expansion of Tocharian speakers from Afanasievo to the Tian Shan was always there; population genomics is merely helping to connect the dots.

In summary, genetic research is supporting the expected linguistic expansions of the Neolithic and Bronze Age step by step, slowly but surely.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents (see here) continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

Mixed haplogroups R1a, R1b, I, in collective burials of early Medieval Bavarians

antiquity-europe

New paper (behind paywall) Family graves? The genetics of collective burials in early medieval southern Germany on trial, by Rott. Päffgen, Haas-Gebhard, Peters, & Harbecka, J Arch Sci (2018) 92: 103–115.

Abstract:

Simultaneous collective burials appear quite regularly in early medieval linear cemeteries. Despite their relatively regular occurrence, they are seen as extraordinary as the interred individuals’ right to be buried in a single grave was ignored for certain reasons. Here, we present a study examining the possible familial relationship of early medieval individuals buried in this way by using aDNA analysis of mitochondrial HVR-I, Y-STRs, and autosomal miniSTRs. We can show that biological relatedness may have been an additional reason for breaking the usual burial custom besides a common cause of death, such as the Plague, which is a precondition for a simultaneous burial. Finally, with our sample set, we also see that signs of interaction between individuals such as holding hands which are often interpreted by archeologists as signs of biological or social relatedness, do not always reflect true genetic kin relationships.

Most of the burials studied are from the mid-6th and early 7th century, and all are from collective burials:

Of the simultaneous burials nine graves are proven or potential (due to contemporaneity) Plague burials (Feldman et al., 2016; Harbeck et al., 2013) and one grave is attributed to interpersonal violence against the background of the early medieval feud system (Schneider, 2008). The remaining simultaneous and the two successive burials did not reveal hints on their individuals’ cause of death.

The distribution of lineages includes R1b, R1a, and I (one family each) in Altenerding-Klettham, and T, R1b, and R1a (two families) in Aschheim-Bajuwarenring.

bavaria
Map of Upper Bavaria showing the location of the sites investigated. Both Aschheim and Altenerding are located north-east of the Bavarian capital Munich (black star). The two sites are approximately 20 km apart from each other. The map is based on maps taken from here and here (Wikimedia Commons).

There were, for example:

A father and son R1a in a “warrior grave”:

Showing traces of perimortal sharp traumata (AE 888), both men seem to have died in succession of a physical conflict (Sage, 1984). It must remain open, whether this conflict was executed as a blood vengeance in connection with the medieval feud system (Schneider, 2008; Steuer, 2008) or any other kind of interpersonal violence. Attacks and interpersonal violence are also often believed to be a precondition for individuals being buried together.

It has been assumed that burials of several men with weaponry, so-called “warrior graves”, are burials which reflect the early medieval feud system (Schneider, 2008; Steuer, 2008) in the very sophisticated but implausible assumption, that women and children might have been spared in those conflicts. While feuds were actually struggles between familiae, friends and servants of a particular family could be also involved, which would explain the deposition of nonrelated individuals in such burials.

Two children, half-siblings, one of haplogroup R1b, in a shared coffin.

A non-genetic family of an elderly man of haplogroup I and a child being protected:

The early medieval concept of familia not only comprised the (biological) nuclear family and individuals certainly entered a family clan by marriage. This leaves room for any possible social (i.e. non-genetic) relation that may have allowed these two individuals to be buried in a common grave.

It is tempting for me to hail the mixed genetic pool among late Germanic tribes found in recent genetic studies, as I have done for Proto-Balto-Slavic territory and Iberia.

It is indeed possible that the mostly R1b-L11 and I1 subclades seen in late medieval West Germanic-speaking populations (and in modern West Germanic speakers) are in fact the result of later internal migratory flows and founder effects.

However, Bavarians – like the recently studied Lombards (with a predominance of R1b and I lineages), and especially Goths (apparently showing ‘eastern’ ancestry) – occupied territories of mixed ‘Barbarian’ populations after the invasion of the Huns and their allies, and settled near Slavs and Avars.

EDIT (18 MAR 2018). We should add here for this southern Germanic territory the Merovingian burials (ca. 7th c.) from Ergolding, with 3 samples of haplogroup R1b, and 2 samples of G2a, published by Vanek, Saskova, & Koch (2009).

Earlier, expanding Proto-Germanic tribes may not show this variable admixture and haplogroups we are seeing right now, though.

Related:

Genomic analysis of Germanic tribes from Bavaria show North-Central European ancestry

antiquity-europe

New open access paper Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria, by Veeramah, Rott, Groß, et al. PNAS (2018), published ahead of print.

First, a bit of context on the Bavarii:

Europe experienced a profound cultural transformation between Late Antiquity and the Middle Ages that laid the foundations of the modern political, social, and religious landscape. During this period, colloquially known as the “Migration Period,” the Roman Empire gradually dissolved, with 5th and 6th century historiographers and contemporary witnesses describing the formation and migration of numerous Germanic peoples, such as the Goths, Alamanni, Gepids, and Longobards. However, the genetic and social composition of groups involved and the exact nature of these “migrations” are unclear and have been a subject of substantial historical and archaeological debate

In the mid 6th century AD, the historiographer Jordanes and the poet and hagiographer Venantius Fortunatus provide the first mention of a group known as the Baiuvarii that resided in modern day Bavaria. It is likely that this group had already started to form in the 5th century AD, and that it emanated from a combination of the romanized local population of the border province of the former Roman Empire and immigrants from north of the Danube (2). While the Baiuvarii are less well known than some other contemporary groups, an interesting archaeological feature in Bavaria from this period is the presence of skeletons with artificially deformed or elongated skulls.

bavarii-pca
Procrustes-transformed PCA of ancient samples using pseudohaploid calls based on off-target reads using an imputed POPRES modern reference dataset. Blue, green, and red male or female symbols are ancient Bavarian individuals with normal, intermediate, and elongated skulls, respectively. Orange circles are Anglo-Saxon era individuals. Large circles are medians for regions, dots are individuals. CE, central Europe; EE, eastern Europe; NE, northern Europe; NEE, northeastern Europe; NEW, northwestern Europe; SE, southern Europe; SEE, southeast Europe; WE, western Europe. Percentage of variation explained by PCs 1 and 2 for modern populations only is 0.25% and 0.15%.

Abstract (emphasis mine):

Modern European genetic structure demonstrates strong correlations with geography, while genetic analysis of prehistoric humans has indicated at least two major waves of immigration from outside the continent during periods of cultural change. However, population-level genome data that could shed light on the demographic processes occurring during the intervening periods have been absent. Therefore, we generated genomic data from 41 individuals dating mostly to the late 5th/early 6th century AD from present-day Bavaria in southern Germany, including 11 whole genomes (mean depth 5.56×). In addition we developed a capture array to sequence neutral regions spanning a total of 5 Mb and 486 functional polymorphic sites to high depth (mean 72×) in all individuals. Our data indicate that while men generally had ancestry that closely resembles modern northern and central Europeans, women exhibit a very high genetic heterogeneity; this includes signals of genetic ancestry ranging from western Europe to East Asia. Particularly striking are women with artificial skull deformations; the analysis of their collective genetic ancestry suggests an origin in southeastern Europe. In addition, functional variants indicate that they also differed in visible characteristics. This example of female-biased migration indicates that complex demographic processes during the Early Medieval period may have contributed in an unexpected way to shape the modern European genetic landscape. Examination of the panel of functional loci also revealed that many alleles associated with recent positive selection were already at modern-like frequencies in European populations ∼1,500 years ago.

bavarii-admixture
Supervised model-based clustering ADMIXTURE analysis for ancient samples based on phased haplotypes for individual 1,000 bp loci from the 5-Mb neutralome. Analysis is based on the best of 100 runs for K = 8, but NC_EUR is the ancestry summed across 1000 Genomes CEU, 1000 Genomes GBR, and GoNL populations (i.e., it represents a northern/central European ancestry). Blue, green, and red male or female symbols are ancient Bavarian individuals with normal, intermediate, and elongated skulls, respectively.

There is no Y-DNA data to keep confirming the North-Central origin of certain modern European subclades in Central and South-Central Europe.

The potential Ostrogothic sample from Crimea was probably Hunnic, as the paper itself suggests, and both Ostrogoths and Gepids are known to have been allies of the Huns for a long time. It is also a well-known fact that East Germanic tribes migrated south- and eastward through eastern Europe, and then from the steppe westward.

Obviously, the PCA of a late Gepid sample – after a certain number of generations and admixture events with ‘local’ populations during the migrations – , and of a Crimean sample without a clear cultural identification, are of limited value today, until more samples are available.

Hence sadly no valid data yet to add to the debate of East Germanic nature, which mainly concerns its traditionally described origin in Scandinavia – i.e. close to North Germanic dialects – against a different origin (and dialectal branch) within Proto-Germanic territory.

NOTE. Just to be clear for future papers on Germanic tribes, I would expect East Germanic males to show either:
a) mainly R1b-U106, I1, and R1a-Z645 subclades, and to cluster closely to samples of Scandinavia during Antiquity, which would support a Scandinavian origin – a predominance of typically Scandinavian R1a-Z284 subclades would be more indicative of this origin, of course;
b) or mainly R1b-U106, R1b-P312, and I1 subclades and a PCA cluster close to West Germanic tribes, which would challenge its traditional dialectal identification.

I agree with the authors in that a few samples are able to describe certain migratory events, though, such as the emphasized female-biased long-distance migration in Bavaria, as well as the diverse ancestry of women versus men.

Related:

Admixture of Srubna and Huns in Hungarian conquerors

hungarian-conqueror-migrations

New preprint at BioRxiv, Mitogenomic data indicate admixture components of Asian Hun and Srubnaya origin in the Hungarian Conquerors, by Neparáczki et al. (2018), at BioRxiv.

Abstract (emphasis mine):

It has been widely accepted that the Finno-Ugric Hungarian language, originated from proto Uralic people, was brought into the Carpathian Basin by the Hungarian Conquerors. From the middle of the 19th century this view prevailed against the deep-rooted Hungarian Hun tradition, maintained in folk memory as well as in Hungarian and foreign written medieval sources, which claimed that Hungarians were kinsfolk of the Huns. In order to shed light on the genetic origin of the Conquerors we sequenced 102 mitogenomes from early Conqueror cemeteries and compared them to sequences of all available databases. We applied novel population genetic algorithms, named Shared Haplogroup Distance and MITOMIX, to reveal past admixture of maternal lineages. Phylogenetic and population genetic analysis indicated that more than one third of the Conqueror maternal lineages were derived from Central-Inner Asia and their most probable ultimate sources were the Asian Huns. The rest of the lineages most likely originated from the Bronze Age Potapovka-Poltavka-Srubnaya cultures of the Pontic-Caspian steppe, which area was part of the later European Hun empire. Our data give support to the Hungarian Hun tradition and provides indirect evidence for the genetic connection between Asian and European Huns. Available data imply that the Conquerors did not have a major contribution to the gene pool of the Carpathian Basin, raising doubts about the Conqueror origin of Hungarian language.

hungarian-conqueror-mtdna
“Comparison of major Hg distributions from modern and ancient populations. Asian main Hg-s are designated with brackets. Major Hg distribution of Conqueror samples from this study are very similar to that of other 91 Conquerors taken from previous studies [11,12]. Scythians and ancient Xiongnus show similar Hg composition to the bracketed Asian fraction of the Conqueror samples, but Hg B is present just in Xiongnus. Modern Hungarians have very small Asian components pointing at small contribution from the Conquerors. Of the 289 modern Hungarian mitogenomes 272 are published in [29]. Scythian Hg-s are from [48,49,55,59,71–74]. Xiongnu Hg-s are from [66–69].”

Just recently another article contributed to a similar idea. I already talked about the Bronze Age R1a-z93 sample with high steppe ancestry found in the Balkans, and its likely origin in an expansion of the Srubna or a related culture. No truce, therefore, for those looking for autochthonous continuity anywhere in Europe.

We are seeing how multiple migrations shaped the history of the Carpathian basin (and its complex genetic structure) – and of Europe in general -, often from the Pontic-Caspian steppe. That is clear from many different prehistorical and historical times, such as the expansions of Suvorovo-Novodanilovka, Yamna, Srubna, Thraco-Cimmerians, Sarmatians, Scythians, Huns,…

About the linguistic interpretations based on genetics contained in the paper (Hungarian language as a legacy of Huns), well, you know my stance regarding the Yamnaya ancestral concept (and the wrong linguistic interpretations derived from it, which many sadly keep to this day), and genetics in general to solve language questions

This is yet another example of how (what some people would call) “scientific data” is useless without sound anthropological models.

Featured image, from the article: “Hypothetic origin and migration route of different components of the Hungarian Conquerors. Bluish line frames the Eurasian steppe zone, within which all presumptive ancestors of the Conquerors were found. Yellow area designates the Xiongnu Empire at its zenith from which area the East Eurasian lineages originated. Phylogeographical distribution of modern East Eurasian sequence matches (Fig. 1) well correspond to this territory, especially considering that Yakuts, Evenks and Evens lived more south in the past [108], and European Tatars also originated from this area. Regions where Asian and European Scythian remains were found are labeled green, pink is the presumptive range of the Srubnaya culture. Migrants of Xiongnu origin most likely incorporated descendants of these groups. The map was created using QGIS 2.18.4[109]”.

Article available under a CC-BY-NC-ND 4.0 International license.

Discovered via Razib Khan.

See also: