N1c-L392 associated with expanding Turkic lineages in Siberia


Second in popularity for the expansion of haplogroup N1a-L392 (ca. 4400 BC) is, apparently, the association with Turkic, and by extension with Micro-Altaic, after the Uralic link preferred in Europe; at least among certain eastern researchers.

New paper in a recently created journal, by the same main author of the group proposing that Scythians of hg. N1c were Turkic speakers: On the origins of the Sakhas’ paternal lineages: Reconciliation of population genetic / ancient DNA data, archaeological findings and historical narratives, by Tikhonov, Gurkan, Demirdov, and Beyoglu, Siberian Research (2019).

Interesting excerpts:

According to the views of a number of authoritative researchers, the Yakut ethnos was formed in the territory of Yakutia as a result of the mixing of people from the south and the autochthonous population [34].

These three major Sakha paternal lineages may have also arrived in Yakutia at different times and/ or from different places and/or with a difference in several generations instead, or perhaps Y-chromosomal STR mutations may have taken place in situ in Yakutia. Nevertheless, the immediate common ancestor(s) from the Asian Steppe of these three most prevalent Sakha Y-chromosomal STR haplotypes possibly lived during the prominence of the Turkic Khaganates, hence the near-perfect matches observed across a wide range of Eurasian geography, including as far as from Cyprus in the West to Liaoning, China in the East, then Middle Lena in the North and Afghanistan in the South (Table 3 and Figure 5). There may also be haplotypes closely-related to ‘the dominant Elley line’ among Karakalpaks, Uzbeks and Tajiks, however, limitations in the loci coverage for the available dataset (only eight Y-chromosomal STR loci) precludes further conclusions on this matter [25].

17-loci median-joining network analysis of the original/dominant Elley, Unknown and Omogoy Y-chromosomal STR haplotypes with the YHRD matches from outside Yakutia populations.

According to the results presented here, very similar Y-STR haplotypes to that of the original Elley line were found in the west: Afghanistan and northern Cyprus, and in the east: Liaoning Province, China and Ulaanbaator, Northern Mongolia. In the case of the dominant Omogoy line, very closely matching haplotypes differing by a single mutational step were found in the city of Chifen of the Jirin Province, China. The widest range of similar haplotypes was found for the Yakut haplotype Unknown: In Mongolia, China and South Korea. For instance, haplotypes differing by a single step mutation were found in Northern Mongolia (Khalk, Darhad, Uryankhai populations), Ulaanbaator (Khalk) and in the province of Jirin, China (Han population).

14-loci median-joining network analysis for the original/dominant Elley (Ell), Unknown Clan
(Vil), Omogoy (Omo), Eurasian (Eur) and Xiongnu (Xuo) Y-chromosomal STR haplotypes and that for a representative ancient DNA sample (Ch0 or DSQ04) from the Upper Xiajiadian Culture
recovered from the Inner Mongolia Autonomous Region, China.

Notably, Tat-C-bearing Y-chromosomes were also observed in ancient DNA samples from the 2700-3000 years-old Upper Xiajiadian culture in Inner Mongolia, as well as those from the Serteya II site at the Upper Dvina region in Russia and the ‘Devichyi gory’ culture of long barrow burials at the Nevel’sky district of Pskovsky region in Russia. A 14-loci Y-chromosomal STR median-joining network of the most prevalent Sakha haplotypes and a Tat-C-bearing haplotype from one of the ancient DNA samples recovered from the Upper Xiajiadian culture in Inner Mongolia (DSQ04) revealed that the contemporary Sakha haplotype ‘Xuo’ (Table 2, Haplotype ID “Xuo”) classified as that of ‘the Xiongnu clan’ in our current study, was the closest to the ancient Xiongnu haplotype (Figure 6). TMRCA estimate for this 14-loci Y-chromosomal STR network was 4357 ± 1038 years or 2341 ± 1038 BCE, which correlated well with the Upper Xiajiadian culture that was dated to the Late Bronze Age (700-1000 BCE).

Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

NOTE. Also interesting from the paper seems to be the proportion of E1b1b among admixed Russian populations, in a proportion similar to R1a or I2a(xI2a1).

It is tempting to associate the prevalent presence of N1c-L392 in ancient Siberian populations with the expansion of Altaic, by simplistically linking the findings (in chronological order) near Lake Baikal (Damgaard et al. 2018), Upper Xiajiadian (Cui et al. 2013), among Khövsgöl (Jeong et al. 2018), in Huns (Damgaard et al. 2018), and in Mongolic-speaking Avars (Csáky et al. 2019).

However, its finding among Palaeo-Laplandic peoples in the Kola peninsula ca. 1500 BC (Lamnidis et al. 2018) and among Palaeo-Siberian populations near the Yana River (Sikora et al. 2018) ca. AD 1200 should be enough to accept the hypothesis of ancestral waves of expansion of the haplogroup over northern Eurasia, with acculturation and further expansions in the different regions since the Iron Age (see more on its potential expansion waves).

Also, a simple look at the TMRCA and modern distribution was enough to hypothesize long ago the lack of connection of N1c-L392 with Altaic or Uralic peoples. From Ilumäe et al. (2016):

Previous research has shown that Y chromosomes of the Turkic-speaking Yakuts (Sakha) belong overwhelmingly to hg N3 (formerly N1c1). We found that nearly all of the more than 150 genotyped Yakut N3 Y chromosomes belong to the N3a2-M2118 clade, just as in the Turkic-speaking Dolgans and the linguistically distant Tungusic-speaking Evenks and Evens living in Yakutia (Table S2). Hence, the N3a2 patrilineage is a prime example of a male population of broad central Siberian ancestry that is not intrinsic to any linguistically defined group of people. Moreover, the deepest branch of hg N3a2 is represented by a Lebanese and a Chinese sample. This finding agrees with the sequence data from Hallast et al., where one Turkish Y chromosome was also assigned to the same sub-clade. Interestingly, N3a2 was also found in one Bhutan individual who represents a separate sub-lineage in the clade. These findings show that although N3a2 reflects a recent strong founder effect primarily in central Siberia (Yakutia, Sakha), the sub-clade has a much wider distribution area with incidental occurrences in the Near East and South Asia.

Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

The most striking aspect of the phylogeography of hg N is the spread of the N3a3’6-CTS6967 lineages. Considering the three geographically most distant populations in our study—Chukchi, Buryats, and Lithuanians—it is remarkable to find that about half of the Y chromosome pool of each consists of hg N3 and that they share the same sub-clade N3a3’6. The fractionation of N3a3’6 into the four sub-clades that cover such an extraordinarily wide area occurred in the mid-Holocene, about 5.0 kya (95% CI = 4.4–5.7 kya). It is hard to pinpoint the precise region where the split of these lineages occurred. It could have happened somewhere in the middle of their geographic spread around the Urals or further east in West Siberia, where current regional diversity of hg N sub-lineages is the highest (Figure 1B). Yet, it is evident that the spread of the newly arisen sub-clades of N3a3’6 in opposing directions happened very quickly. Today, it unites the East Baltic, East Fennoscandia, Buryatia, Mongolia, and Chukotka-Kamchatka (Beringian) Eurasian regions, which are separated from each other by approximately 5,000–6,700 km by air. N3a3’6 has high frequencies in the patrilineal pools of populations belonging to the Altaic, Uralic, several Indo-European, and Chukotko-Kamchatkan language families. There is no generally agreed, time-resolved linguistic tree that unites these linguistic phyla. Yet, their split is almost certainly at least several millennia older than the rather recent expansion signal of the N3a3’6 sub-clade, suggesting that its spread had little to do with linguistic affinities of men carrying the N3a3’6 lineages.

Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29.

It was thus clear long ago that N1c-L392 lineages must have expanded explosively in the 5th millennium through Northern Eurasia, probably from a region to the north of Lake Baikal, and that this expansion – and succeeding ones through Northern Eurasia – may not be associated to any known language group until well into the common era.


Origins of equine dentistry in Mongolia in the early first millennium BC

New paper (behind paywall) Origins of equine dentistry, by Taylor et al. PNAS (2018).

Interesting excerpts (emphasis mine):

The practice of horse dentistry by contemporary nomadic peoples in Mongolia, coupled with the centrality of horse transport to Mongolian life, both now and in antiquity, raises the possibility that dental care played an important role in the development of nomadic life and domestic horse use in the past. To investigate, we conducted a detailed archaeozoological study of horse remains from tombs and ritual horse inhumations across the Mongolian Steppe, assessing evidence for anthropogenic dental modifications and comparing our findings with broader patterns in horse use and nomadic material culture.

We conducted a detailed study of archaeological horse collections spanning the past 3,200 y, including those from the Late Bronze Age DSK complex (ca. 1200–700 BCE, n = 70), Early Iron Age Slab Burial culture (ca. 700–300 BCE, n = 4), Pazyryk culture (ca. 600–200 BCE, n = 2), Late Iron Age Xiongnu Empire (ca. 200 BCE–200 CE, n = 3), Early Middle Ages post-Xiongnu period (ca. 100–550 CE, n = 3), and Turkic Khaganate (ca. 600–800 CE, n = 3).

A (top): Contemporary Mongolian herder engaged in horseback riding, using left-handed rein position causing asymmetric pressures to the horse’s skull. Photo by Orsoo Bayarsaikhan. B(center) contemporary Mongolian horse skulls, showing asymmetric and skewed thinning to the nasal bones caused by bridle pressure. C(bottom) Asymmetric deformation to the cranial bones of a Deer Stone-Khirigsuur horse (left), alongside an early Middle Ages horse with a similar feature (right). Modified from Taylor and Tuvshinjargal (2018).


This Late Bronze Age dental modification counts among the earliest documented instances of equine veterinary care, and the oldest known evidence for horse dentistry. At first glance, the detailed historical record of early equine veterinary care in places such as China, Greece, Rome, and Syria, which spans the late second millennium BCE through the early centuries CE (11, 15, 16), might imply that equine dentistry emerged in the sedentary civilizations of the Old World. However, the earliest textual references describe only nonsurgical medicinal treatments and make few mentions of oral health (11). Recent archaeological discoveries suggest that human care of domestic animals was practiced by hunter-gatherers as far back as the Paleolithic (46), and that pastoralists may have occasionally practiced surgical procedures on domestic animals as early as the Neolithic in Europe (47). The evidence presented here indicates that horse dentistry was developed by nomadic pastoralists living on the steppes of Mongolia and northeast Asia during the Late Bronze Age, concurrent with the local adoption of the metal bit and many centuries before the first mention of dental practices in historical accounts from sedentary Old World civilizations.

Our results reveal a fundamental link between equine dentistry and the emergence of horsemanship in the steppes of Eurasia. At the turn of the first millennium BCE, militarized, horse-mounted peoples reshaped the social and economic landscape of many areas of the Eurasian continent. Conflagrations with equestrian peoples, such as those between the Persian Empire and the Pontic “Scythians,” plagued alluvial civilizations from the Near East to India and China, while large-scale movements of people linked East and West in never-before-seen ways (48). The archaeological and historical records indicate that the earliest horseback riding was accomplished without stirrups or saddles, and probably using only bitless or organic-mouthpiece bridles (49, 50). The bronze snaffle bit, and the improved control it provided, was a key technological development that enabled the use of horseback riding for more stressful and difficult activities, such as long-distance transportation and warfare (32). We argue that these technological improvements in horse control were preceded and sustained by innovations in veterinary dentistry by nomadic peoples living in the continental interior. By increasing herd survival and mitigating behavioral and health issues caused by horse equipment, innovations in equine dentistry improved the reliability of horseback riding for ancient nomads, enabling horses to be used for nonpastoral activities like warfare, high-speed riding, and distance travel.

Damage to the retained wolf tooth in a 4-5 year old mummified horse, dating to the 2-4th centuries CE from the site of Urd Ulaan-Uneet in western Mongolia


Archaeozoological data from Mongolian horses indicate that the nomadic practice of equine dentistry dates back more than 3,000 y to the DSK complex, a Late Bronze Age culture associated with the first mounted horseback riding and mobile pastoralism in eastern Eurasia. Attempted removal of deciduous incisors through sawing of the exterior suggests experimentation with dental extraction, but not the removal of wolf teeth. The appearance of extracted first premolars in the first millennium BCE coincides with the arrival of metal bits in the archaeological record and oral trauma linked with metal bit use, suggesting that innovations in dental practice were an adaptation to the mechanical changes in horse equipment. These bronze and metal bits provided greater control over the horse, facilitating the development of military uses for the horse, but also introduced new dental problems with the first premolar. Our results indicate that, coincident with the earliest evidence for metal bit use, wolf tooth extraction was practiced in Mongolia by ca. 750 BCE and continued through the early Middle Ages. These results push back the earliest dates for equine dentistry by more than a millennium and suggest that nomadic peoples developed key innovations in veterinary care that enabled more sophisticated horse control, ultimately changing the structure of communication, exchange, and military power in ancient Eurasia.


Oldest bubonic plague genome decoded in Srubna ca. 3800 YBP

New open access paper from the Max Planck Institute: Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague, by Spyrou et al., Nature Communications (2018) 9:2234.

Interesting excerpts from the paper and supplementary materials (emphasis mine):

Here, we analyse material from the Mikhailovsky II burial site, which was excavated in 2015 and is one of numerous kurgan cemeteries identified in the Samara Oblast. It consists of seven kurgan burials, and is chronologically associated to the ‘Pokrovka’ phase (3,900-3,750 BP) of the ‘Srubnaya’ culture (3,850-3,150 BP) (radiocarbon dates produced in this study provided in Supplementary Table 6), also referred to as the ‘proto-Srubnaya’ that is considered the earliest phase of the LBA in the Samara Oblast. All sex and age groups were represented in this cemetery. We analysed nine individuals buried in three kurgans and identified two individuals buried in the same kurgan (see Supplementary Figure 1) to be positive for Y. pestis. According to anthropological analysis these were a 30-40 year-old male (RT5) and 35- 45 year-old female (RT6).

After its divergence from Y. pseudotuberculosis, Y. pestis acquired its high pathogenicity and distinct niche mainly by chromosomal gene loss16 as well as the acquisition of two virulence-associated plasmids, pMT1 and pPCP11,17,18. Throughout this process, one of the most crucial evolutionary adaptations related to its pathogenicity was its ability to colonise arthropods, a phenotypic/functional gain mediated by a combination of chromosomal and plasmid loci19,20. These genetic changes are central to the most common “bubonic” form of the disease, where bacteria enter the body via the bite of an infected flea, travel via the lymph to the closest lymph node and replicate while evading host defences. Recent ancient genomic investigations of Y. pestis have identified its earliest known variants in Eurasia during the Late Neolithic/Bronze Age period (LNBA) that show genetic characteristics incompatible with arthropod adaptation. These strains, therefore, have been considered incapable of an efficient flea-based transmission2; however, the alternative early-phase transmission could have provided an independent means of arthropod dissemination2,3,21. To date, the earliest evidence of a Y. pestis strain with signatures associated with flea adaptation has been reported during the Iron Age through shotgun sequencing of an ~2900-year-old genome from Armenia (strain RISE397), though at a coverage too low (0.25-fold) to permit confident phylogenetic positioning2. Although the mechanism by which the LNBA lineage caused human disease is unclear, its frequency in Eurasia during the Bronze Age2,3 and its phylogeographic pattern that mimics contemporaneous human migrations are noteworthy3.

Population genetic analysis to infer the ancestry of RT5. b Principal component analysis (PCA) of modern-day western Eurasian populations (not shown) and projected ancient populations (n = 82, see population labels), including the newly sequenced RT5 individual from Samara and c estimation of ancestral admixture components using ADMIXTURE analysis (K= 12) (see Supplementary Methods)

The central steppe region seems to have played a significant role as a migration corridor during the entire Bronze Age, and as such, it likely facilitated the spread of human-associated pathogens, such as Y. pestis, across Eurasia. Here, we explore additional Y. pestis diversity in that region by isolating strains from LBA Samara, in Russia. We identify a Y. pestis lineage contemporaneous to the LNBA strains with genomic variants consistent with flea adaptation. This reveals the co-circulation of two Y. pestis lineages during the Bronze Age with different properties in terms of their transmission and disease potentials.

A recent study has suggested that flea-adapted Y. pestis, along with its potential to cause bubonic plague in humans, likely originated around 3000y BP2. Contrary to such conclusions, the lineage giving rise to our Y. pestis isolates (RT5 and RT6) likely arose ~4000 years ago (Supplementary Tables 6 and 9), and possessed all vital genetic characteristics required for flea-borne transmission of plague in rodents, humans and other mammals. (…)

Moreover, our analysis of the previously published Iron Age RISE397 strain from modern-day Armenia2 revealed its close relationship to RT5 and RT6 (Supplementary Fig. 4). Note that the modern 0.PE2 and 0.PE7 lineages, which are known to possess all genomic characteristics that confer adaptation to fleas19, fall ancestral to RT5 (Fig. 2b) and RISE397 (Supplementary Fig. 4), but are more derived than the LNBA lineage. Our phylogenetic and dating results thus suggest that 0.PE2 and 0.PE7 also originated during the Bronze Age, with their mean divergence here estimated to 4474 (HPD 95%: 3936–5158) and 5237 (HPD 95%: 4248–6346) years BP, respectively, based on the Bayesian skyline model (Supplementary Table 9). While these lineages may have been confined to sylvatic rodent reservoirs during the EBA, the possibility that they co circulated among human populations contemporaneously with the LNBA lineage should be considered. Although the places of origin of 0.PE2 and 0.PE7 are not known, today, their strains are isolated from modern-day China and the Caucasus region. In terms of their disease potential, both 0.PE2 and 0.PE7 possess pMT1 plasmids with fully functional ymt genes, but 0.PE2 strains lack pPCP144, and though frequently recovered from sylvatic rodent reservoirs, their virulence in humans is not known. On the other hand, the more basal 0.PE7 contains pPCP12 and has previously been associated with human bubonic plague12. It is, therefore, tempting to hypothesise that efficient flea adaptation in Y. pestis, as well as the potential for bubonic disease, might have evolved earlier than 5000 years ago.

Maximum Clade Credibility tree. The MCC tree was produced using TreeAnnotator of BEAST v1.88 and is a product of demographic analysis based on the Coalescent Skyline model, summarizing 27,001 trees. The tree was visualized in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). It is presented in a temporal scale between 6,000 and 0 yBP, and the mean divergence dates of major Y. pestis lineages are indicated on each corresponding node.

It seems possible that already in the Bronze Age, with the establishment of transport and trade networks, the interconnectivity between Europe and Asia that is also reflected in the ancient human genomes, likely contributed to the spread of infectious disease. Similarly, the abundant trade routes of the medieval period are considered the main conduit for plague’s movement between Asia and Europe8,12. Our current data suggest a more complex model, where at least two human-associated lineages (LNBA and RT5) with different transmission potentials were established in Eurasia during the Bronze Age (Fig. 2b, c).

The haplogroup of RT5 is R1a1a1b-Z645 (most likely Z93, only with coverage of 1-fold), mtDNA U2e2a.

See also materials from the Max Plank Institute.


The arrival of haplogroup R1a-M417 in Eastern Europe, and the east-west diffusion of pottery through North Eurasia


Henny Piezonka recently uploaded an old chapter, Die frühe Keramik Eurasiens: Aktuelle Forschungsfragen und methodische Ansätze, in Multidisciplinary approach to archaeology: Recent achievements and prospects. Proceedings of the International Symposium “Multidisciplinary approach to archaeology: Recent achievements and prospects”, June 22-26, 2015, Novosibirsk, Eds. V. I. Molodin, S. Hansen.

Abstract (in German):

Die älteste bisher bekannte Gefäßkeramik der Welt wurde in Südostchina von spätglazialen Jäger-Sammlern wahrscheinlich schon um 18.000 cal BC hergestellt. In den folgenden Jahrtausenden verbreitete sich die neue Technik bei Wildbeutergemeinschaften in der russischen Amur-Region, in Japan, Korea und Transbaikalien bekannt, bevor sie im frühen und mittleren Holozän das Uralgebiet und Ost- und Nordeuropa erreichte. Entgegen verbreiteter Forschungsmeinungen zur Keramikgeschichte, die frühe Gefaßkeramik als Bestandteil des „neolithischen Bündes” der frühen Bauernkulturen sehen, stellt die eurasische Jäger-Sammler-Keramiktradition eine Innovation dar, die sich offenbar völlig unabhängig von anderen neolithischen Kulturerscheinungen wie Ackerbau, Viehzucht und sesshafre Lebensweise entwickelt hat Im vorliegenden Beitrag wird die chronologische Abfolge des ersten Auftretens von Tongefäßen in nordeurasischen Jäger-Sammler-Gemeinschaften anahnd von 14C-Datierungen Pazifik bis ins Baltikum nachvollzogen. Gleichzeitig werden vielversprechende methodische Ansätze vorgestellet, die derzeit ein Rolle bei der Erforschung dieses viel diskutierten Themas spielen.

Sites named in the text with earlier ceramic pottery in Eurasia up to the Urals.

If you have followed the updates to the Indo-European demic diffusion model, my proposal of a potential late arrival of haplogroup R1a-M417 during the Mesolithic did not change by the potential earlier arrival of EHG ancestry and haplogroup R1a in the North Pontic steppe, after the findings in Mathieson et al. (2017).

That is so because of the anthropological models of migration – or, lacking them, archaeological models of cultural expansion – that we have to date.

If I had followed a simplistic autochthonous continuity view, I would have thought that R1a-M417 was autochthonous to Eastern Europe, because an older subclade is found in the North Pontic steppe during the Mesolithic, akin to how some people want to believe that R1b-M269 shows autochthonous continuity in or around Central Europe, because of the Villabruna sample and later R1b-L23 subclades found there.

However, it is difficult to assert today that the population movement involving a community of mostly haplogroup R1a-M417 happened from west to east:

  1. If you follow Piezonka’s work, who did her Ph.D. dissertation in Eastern European Mesolithic (you can buy a more readable version), and has dedicated a great amount of time and effort to the research of cultural connections between Eastern Europe and Eurasia during the Mesolithic;
  2. taking into account the potential migration waves behind the increase in EHG ancestry in Eastern Europe in these periods, and this ancestral component’s speculative connection with ANE ancestry;
  3. and if we accept the TMRCA of R1a-M417 based on modern samples, dated ca. 6500 BC, and the appearance of the first samples at a similar time in Eastern Europe and in Baikalic cultures.

NOTE. More and more findings of Eastern Europe are showing how the sample of haplogroup N1c found in Eastern Europe and dated ca. 2500 BC is probably wrong, either in its haplogroup or in the radiocarbon date: after all, the lab has published just one study. The study of Baikalic samples, on the other hand, seems to have been corroborated by a more recent study.

Another interesting sample is that of Afontova Gora, whose community may have actually been mostly of haplogroup R1a (based on its position in PCA and relation to ANE ancestry), and thus the regional distribution of this haplogroup could have been quite large in North Eurasia during the Palaeolithic-Mesolithic transition, although this is highly speculative, like the connection WHG:ANE for EHG.

Early radiocarbon-dated complexes with pottery in different regions of North Eurasia

It is obvious that we cannot know what happened during these millennia without more samples, and indeed I don’t see anything a priori wrong with having an origin of R1a-M417 (and thus some sort of continuity) in Eastern Europe during the Mesolithic and Neolithic; just as I don’t see any problem with the continuity of other European haplogroups. Or with their discontinuity, mind you. That would not change the Proto-Indo-European homeland, or the complexity of language and ethnicity in Eastern Europe in the millennia following the expansion of Late Indo-European.

It just amazes me again and again how otherwise serious and capable people are often blinded by the desire to have their direct paternal line (some ancestors among an infinite number of them, probably representing for them genetically much less than other ancestral lines) stem from the own region and have the same ethnolinguistic affiliation since time immemorial, instead of betting for sounder migration models supported by anthropological data…


Reconstructing the demographic history of the Himalayan and adjoining populations

Reconstructing the demographic history of the Himalayan and adjoining populations, by Tamang, R., Chaubey, G., Nandan, A. et al. Hum Genet (2018).

Abstract (emphasis mine):

The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.

See also: