Waves of Palaeolithic ANE ancestry driven by P subclades; new CWC-like Finnish Iron Age

New preprint The population history of northeastern Siberia since the Pleistocene, by Sikora et al. bioRxiv (2018).

Interesting excerpts (emphasis mine; most internal references removed):

ANE ancestry

The earliest, most secure archaeological evidence of human occupation of the region comes from the artefact-rich, high-latitude (~70° N) Yana RHS site dated to ~31.6 kya (…)

The Yana RHS human remains represent the earliest direct evidence of human presence in northeastern Siberia, a population we refer to as “Ancient North Siberians” (ANS). Both Yana RHS individuals were unrelated males, and belong to mitochondrial haplogroup U, predominant among ancient West Eurasian hunter-gatherers, and to Y chromosome haplogroup P1, ancestral to haplogroups Q and R, which are widespread among present-day Eurasians and Native Americans.

Symmetry tests using f4 statistics reject tree-like clade relationships with both Early West Eurasians (EWE; Sunghir) and Early East Asians (EEA; Tianyuan); however, Yana is genetically closer to EWE, despite its geographic location in northeastern Siberia

Using admixture graphs (qpGraph) and outgroup-based estimation of mixture proportions (qpAdm), we find that Yana can be modelled as EWE with ~25% contribution from EEA

Among all ancient individuals, Yana shares the most genetic drift with Mal’ta, and f4 statistics show that Mal’ta shares more alleles with Yana than with EWE (e.g. f4(Mbuti,Mal’ta;Sunghir,Yana) = 0.0019, Z = 3.99). Mal’ta and Yana also exhibit a similar pattern of genetic affinities to both EWE and EEA, consistent with previous studies.The ANE lineage can thus be considered a descendant of the ANS lineage, demonstrating that by 31.6 kya early representatives of this lineage were widespread across northern Eurasia, including far northeastern Siberia.

siberian-samples-haplogroup

Ancient Palaeosiberian

(…) the 9.8 kya Kolyma1 individual, representing a group we term “Ancient Paleosiberians” (AP). Our results indicate that AP are derived from a first major genetic shift observed in the region. Principal component analysis (PCA), outgroup f3-statistics and mtDNA and Y chromosome haplogroups (G1b and Q1a1a, respectively) demonstrate a close affinity between AP and present-day Koryaks, Itelmen and Chukchis, as well as with Native Americans.

For both AP and Native Americans, ANS ancestry appears more closely related to Mal’ta than Yana, therefore rejecting a direct contribution of Yana to later AP or Native American groups.

Lake Baikal Neolithic – Bronze Age

(…) the newly reported genomes from Ust’Belaya and recently published neighbouring Neolithic and Bronze Age sites show a succession of three distinct genetic ancestries over a ~6 ky time span. The earliest individuals show predominantly East Asian ancestry, closely related to the ancient individuals from DGC. In the early Bronze Age (BA), we observe a resurgence of AP ancestry (up to ~50% ancestry fraction), as well as influence of West Eurasian Steppe ANE ancestry represented by the early BA individuals from Afanasievo in the Altai region (~10%) This is consistent with previous reports of gene flow from an unknown ANE-related source into Lake Baikal hunter-gatherers.

Our results suggest a southward expansion of AP as a possible source, which is also consistent with the replacement of Y chromosome lineages observed at Lake Baikal, from predominantly haplogroup N in the Neolithic to haplogroup Q in the BA. Finally, the most recent individual from Ust’Belaya, dated to ~600 years ago, falls along the Neosiberian cline, similar to the ~760 year-old ‘Young Yana’ individual from northeastern Siberia, demonstrating the widespread distribution of Neosiberian ancestry in the most recent epoch.

finnish_ia_palaeosiberian
Genetic structure of ancient northeast Siberians. PCA of ancient individuals projected onto a set of modern Eurasian and American individuals. Abbreviations in group labels: UP – Upper Palaeolithic; LP – Late Palaeolithic; M – Mesolithic; EN – Early Neolithic; MN – Middle Neolithic; LN – Late Neolithic; EBA – Early Bronze Age; LBA – Late Bronze Age; IA – Iron Age; PE – Paleoeskimo; MED – Medieval

Finland Saami

At the western edge of northern Eurasia, genetic and strontium isotope data from ancient individuals at the Levänluhta site documents the presence of Saami ancestry in Southern Finland in the Late Holocene 1.5 kya. This ancestry component is currently limited to the northern fringes of the region, mirroring the pattern observed for AP ancestry in northeastern Siberia. However, while the ancient Saami individuals harbour East Asian ancestry, we find that this is better modelled by DGC rather than AP, suggesting that AP influence was likely restricted to the eastern side of the Urals. Comparison of ancient Finns and Saami with their present-day counterparts reveals additional gene flow over the past 1.6 kya, with evidence for West Eurasian admixture into modern Saami. The ancient Finn from Levänluhta shows lower Siberian ancestry than modern Finns .

EDIT (27 OCT 2018): By comparing the three, I see these are samples published already (at least two) in Lamnidis et al. (2018), but here with added (1) specific radiocarbon dates, (2) comparison with Neosiberian populations and (3) strontium isotope analyses.

Finnish_IA (ca. 350 AD) is probably a Saami-speaking individual, just like the Saami_IA with newly reported radiocarbon dates from Levänluhta ca. 400-600 AD (since Fennic peoples were then likely around the Gulf of Finland).

The conflicting strontium isotope data on marine dietary resources on certain samples from the supplementary material hint at possible external origin of the diet of some of the previously reported (and possibly one newly reported) Saami Iron Age individuals, from some 25-30 km. to the northwest through the river up to hundreds of km. to the southwest of Levänluhta (i.e. the whole coast of the Bothnian Sea). It is unclear why they would prefer an origin of the dietary source in southern Baltic regions instead of some km. to the west, though, unless that’s what they want to propose based on the sample’s admixture…

The coast of the Bothnian Sea (=the northern part of the Baltic Sea, between Sweden and Finland) lay only 25-30 km to the northwest, and accessible to the Iron Age people of the Levänluhta region via the Kyrönjoki river. (…) For individual JA2065/DA236, the low 87Sr/86Sr value (0.71078) would imply an exceptionally heavy reliance on Baltic Sea resources. The δ13C and δ15N values of the individual are near comparable (especially considering within-Baltic latitudinal gradients in δ13C; Torniainen et al. 2017) to the δ13C and δ15N values of a Middle Neolithic population on the Baltic island of Gotland (Eriksson, 2004) interpreted to have subsisted primarily on seals.

These new data on the samples give us some more information than what we already had, because the early date of Finnish_IA implies that there was few East Asian admixture (if any at all) in west Finland during the Roman Iron Age, which pushes still farther forward in time the expected appearance of Siberian ancestry among Saamic (first) and Fennic populations (later). It is unclear whether this East Asian ancestry found in Finnish_IA is actually related to DGC, or it is rather related to the ENA-like ancestry found already in Baltic hunter-gatherers (i.e. in some EHG samples from Karelia), for which Baikal_EN is a good proxy in Lazaridis et al. (2018).

Since Bronze Age and Iron Age samples from Estonia show more Baltic_HG drift compared to Corded Ware samples, it is likely that this supposedly DGC-related ancestry (here considered part of the ‘Siberian ancestry’) is actually an EHG-related ENA component of north-east European hunter-gatherers, with whom Finno-Saamic peoples admixed during the expansion of the Corded Ware culture into Finland.

The paper finds thus increased (probably the actual) Siberian ancestry in modern Finns compared to this Iron Age Saami individual. Coupled with the later Saami Iron Age samples, from between one to three centuries later – showing the start of Siberian ancestry influx – , we can begin to establish when the expansion of Siberian ancestry happened in central Finland, and thus quite likely when the Saami began to expand to the north and east and admix with Palaeo-Laplandic peoples.

siberian-population-expansions
Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups.

One sample of haplogroup N1a1a1a1a4a1-M1982, Yana_MED, is found in the Arctic region (north-eastern Yakutia) ca. 1100 AD. Since it is derived from N1a1a1a1a-L392, it might be a surprise for some to find it in a clearly non-Uralic speaking environment at the same time other subclades of this haplogroup were admixing in the west with well-established Finno-Saamic, Volga-Finnic, Ugric, and Samoyedic populations…

On the growing doubts that these data – contradicting the CWC=IE theory – are creating among geneticists (from the supplementary materials):

NOTE. This paper comes from the Copenhagen group, also signed by Kristiansen, one of today’s strongest supporters of this connection

The Proto-Saami language evolved in southern Finland and Karelia in the Early Iron Age, an area now host to Finnish and the closely related Karelian, but with Saami toponyms showing that the latter two languages are intrusive here (Saarikivi 2004). Saami-speaking populations are thought to have retreated to Lapland during the Middle Iron Age (300–800 AD), where it diverged into the modern Saami dialects. Genetically, the northward retreat of the Saami language correlates with the documented decrease of Saami ancestry in Southern Finland between the Iron Age and the modern period (cf. Lamnidis et al. 2018).

On the way to Lapland, the Saami replaced at least two linguistically obscure groups. This can be inferred from 1) an influx of non-Uralic loanwords into Proto-Saami in the Finnish Lakeland area, and 2) an influx of non-Uralic, non-Germanic words into Saami dialects in Lapland (Aikio 2012). Both of these borrowing events imply contact with non-Saami-speaking groups, e.g. non-Uralic-speaking hunter-gatherers that may have left a genetic and linguistic footprint on modern Saami populations.

The linguistic prehistory of Finland thus does not allow for a straightforward interpretation of the genetic data. The detection of East Asian ancestry in the genetically Saami individual is indicative of a population movement from the east (cf. Lamnidis et al. 2018, Rootsi et al. 2007), one that given the affinities with the ~7.6 ky old individuals from the Devil’s Gate Cave may have been a western extension of the Neosiberian turnover. However, it remains unclear whether this gene flow should be associated with the arrival of Uralic speakers, thus providing further support for a Uralic homeland in Eastern Eurasia, or with an earlier immigration of pre-Uralic, so-called “Paleo-Lakelandic” groups.

I think the genetic interpretation is already straightforward, though. We had a sneak peek at how this late admixture with non-Uralians (mainly Palaeo-Lakelandic and Palaeo-Laplandic peoples from Lovozero and related asbestos ware cultures) is going to unfold among expanding Saami-speaking populations thanks to Lamnidis et al. (2018):

saamic-lovozero-pca
PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

Also, still no trace of R1a in far East Asia (reported as M17 ca. 5300 BC near Lake Baikal by Moussa et al. 2016), so I still have doubts about my previous assessment that R1a split into M17 (and thus also M417) in Siberia, with those expanding hunter-gatherer pottery.

Related

Corded Ware—Uralic (II): Finno-Permic and the expansion of N-L392/Siberian ancestry

finno-ugric-samoyedic

This is the second of four posts on the Corded Ware—Uralic identification:

I read from time to time that “we have not sampled Uralic speakers yet”, and “we are waiting to see when Uralic-speaking peoples are sampled”. Are we, though?

Proto-language homelands are based on linguistic data, such as guesstimates for dialectal evolution, loanwords and phonetic changes for language contacts, toponymy for ancient territories, etc. depending on the available information. The trace is then followed back, using available archaeological data, from the known historic speakers and territory to the appropriate potential prehistoric cultures. Only then can genetic analyses help us clarify the precise prehistoric population movements that better fit the models.

uralic-language-family
The traditional family tree of the Uralic branches. Kallio (2014)

The linguistic homeland

We thought – using linguistic guesstimates and fitting prehistoric cultures and their expansion – that Yamna was the Late Proto-Indo-European culture, so when Yamna was sampled, we had Late Proto-Indo-Europeans sampled. Simple deduction.

We thought that north-eastern Europe was a Uralic-speaking area during the Neolithic:

  • For those supporting a western continuity (and assuming CWC was Indo-European), the language was present at least since the Comb Ware culture, potentially since the Mesolithic.
  • For those supporting a late introduction into Finland, Uralic expanded the latest with Abashevo-related movements after its incorporation of Volosovo and related hunter-gatherers.

The expansion to the east must have happened through progressive infiltrations with Seima-Turbino / Andronovo-related expansions.

uralic-time-space
Some datings for the traditional proto-stages from Uralic to Finnic. Kallio (2014).

Finding the linguistic homeland going backwards can be described today as follows:

I. Proto-Fennic homeland

Based on the number of Baltic loanwords, not attested in the more eastern Uralic branches (and reaching only partially Mordvinic), the following can be said about western Finno-Permic languages (Junttila 2014):

The Volga-Kama Basin lies still too far east to be included in a list of possible contact locations. Instead, we could look for the contact area somewhere between Estonia in the west and the surroundings of Moscow in the east, a zone with evidence of Uralic settlement in the north and Baltic on the south side.

The only linguistically well-grounded version of the Stone Age continuation theory was presented by Mikko Korhonen in 1976. Its validity, however, became heavily threatened when Koivulehto 1983a-b proved the existence of a Late Proto-Indo-European or Pre-Baltic loanword layer in Saami, Finnic, and Mordvinic. Since this layer must precede the Baltic one and it was presumably acquired in the Baltic Sea region, Koivulehto posited it on the horizon of the Battle Axe period. This forces a later dating for the Baltic–Finnic contacts.

Today the Battle Axe culture is dated at 3200 to 3000 BC, a period far too remote to correspond linguistically with Proto-Baltic (Kallio 1998a).

Since the Baltic contacts began at a very initial phase of Proto-Finnic, the language must have been relatively uniform at that time. Hence, if we consider that the layer of Baltic loanwords may have spread over the Gulf of Finland at that time, we could also insist that the whole of the Proto-Finnic language did so.

migration-theory
Prehistoric Balts as the southern neighbours of Proto-Finnic speakers. 1 = The approximated area of Proto-Uralic. 2 = The approximated area of Finnic during the Iron Age. 3 = The area of ancient Baltic hydronyms. 4 = The area of Baltic languages in about 1200 AD. 5 = The problem: When did Uralic expand westwards and when did it meet Baltic? Junntila (2012).

II. Proto-Finno-Saamic homeland

The evidence of continued Palaeo-Germanic loanwords (from Pre- to Proto-Germanic stages) is certainly the most important data to locate the Finno-Saamic homeland, and from there backwards into the true Uralic homeland. Following Kallio (2017):

(…) the loanword evidence furthermore suggests that the ancestors of Finnic and Saamic had at least phonologically remained very close to Proto-Uralic as late as the Bronze Age (ca. 1700–500 BC). In particular, certain loanwords, whose Baltic and Germanic sources point to the first millennium BC, after all go back to the Finno-Saamic proto-stage, which is phonologically almost identical to the Uralic proto-stage (see especially the table in Sammallahti 1998: 198–202). This being the case, Dahl’s wave model could perhaps have some use in Uralic linguistics, too.

The presence of Pre-Germanic loanwords points rather to the centuries around the turn of the 2nd – 1st millennium BC or earlier. Proto-Germanic words must have been borrowed before the end of Germanic influence in the eastern Baltic at the beginning of the Iron Age, which sets a clear terminus ante quem ca. 800 BC.

The arrival of Bell Beaker peoples in Scandinavia ca. 2350 BC, heralding the formation of the Dagger Period, as well as the development of Pre-Germanic in common with Finnic-like populations point to the late 3rd / early 2nd millennium BC as the first time of close interaction through the Baltic region.

III. Proto-Uralic homeland

(…) the earliest Indo-European loanwords in the Uralic languages (…) show that Proto-Uralic cannot have been spoken much earlier than Proto-Indo-European dated about 3500 BC (Koivulehto 2001: 235, 257). As the same loanword evidence naturally also shows that the Uralic and Indo-European homelands were not located far from one another, the Uralic homeland can most likely be located in the Middle and Upper Volga region, right north of the Indo-European homeland*. From the beginning of the Subneolithic period about 5900 BC onwards, this region was an important innovation centre, from where several cultural waves spread to the Finnish Gulf area, such as the Sperrings Ware wave about 4900 BC, the Combed Ware wave about 3900 BC, and the Netted Ware wave about 1900 BC (Carpelan & Parpola 2001: 78–90).

The mainstream position is nowadays trying to hold together the traditional views of Corded Ware as Indo-European, and a Uralic Fennoscandia during the Bronze Age.

The following is an example of how this “Volosovo/Forest Zone hunter-gatherer theory” of Uralic origins looks like, as a ‘mixture’ of cultures and languages that benefits from the lack of genetic data for certain regions and periods (taken from Parpola 2018):

asbestos-ware
The extent of Typical Comb Ware (TCW), Asbestos- and Organic-tempered Wares (AOW) and Volosovo and Garino-Bor cultures; areas with deposits of native copper in Karelia and copperbearing sandstone in Volga-Kama-area are marked dark gray (after Zhuravlev 1977; Krajnov 1987; Nagovitsyn 1987; Chernykh 1992; Carpelan 1999; Zhul´nikov 1999). From Nordqvist et al. (2012).

The Corded Ware (or Battle Axe) culture intruded into the Eastern Baltic and coastal Finland already around 3100 BCE. The continuity hypothesis maintains that the early Proto-Finnic speakers of the coastal regions, who had come to Finland in the 4th millennium BCE with the Comb-Pitted Ware, coexisted with the Corded Ware newcomers, gradually adopting their pastoral culture and with it a number of NW-IE loanwords, but assimilating the immigrants linguistically.

The fusion of the Corded Ware and the local Comb-Pitted Ware culture resulted into the formation of the Kiukais culture (c. 2300–1500) of southwestern Finland, which around 2300 received some cultural impulses from Estonia, manifested in the appearance of the Western Textile Ceramic (which is different from the more easterly Textile Ceramic or Netted Ware, and which is first attested in Estonia c. 2700 BCE, cf. Kriiska & Tvauri 2007: 88), and supposed to have been accompanied by an influx of loanwords coming from Proto-Baltic. At the same time, the Kiukais culture is supposed to have spread the custom of burying chiefs in stone cairns to Estonia.

The coming of the Corded Ware people and their assimilation created a cultural and supposedly also a linguistic split in Finland, which the continuity hypothesis has interpreted to mean dividing Proto-Saami-Finnic unity into its two branches. Baltic Finnic, or simply Finnic, would have emerged in the coastal regions of Finland and in the northern East Baltic, while preforms of Saami would have been spoken in the inland parts of Finland.

The Nordic Bronze Age culture, correlated above with early Proto-Germanic, exerted a strong influence upon coastal Finland and Estonia 1600–700 BCE. Due to this, the Kiukais culture was transformed into the culture of Paimio ceramics (c. 1600–700 BCE), later continued by Morby ceramics (c. 700 BCE – 200 CE). The assumption is that clear cultural continuity was accompanied by linguistic continuity. Having assimilated the language of the Germanic traders and relatively few settlers of the Bronze Age, the language of coastal Finland is assumed to have reached the stage of Proto-Finnish at the beginning of the Christian era. In Estonia, the Paimio ceramics have a close counterpart in the contemporaneous Asva ceramics.

Eastern homelands?

I will not comment on Siberian or Central Asian homeland proposals, because they are obviously not mainstream, still less today when we know that Uralic was certainly in contact with Proto-Indo-European, and then with Pre- and Proto-Indo-Iranian, as supported even by the Copenhagen group in Damgaard et al. (2018).

This is what Kallio (2017) has to say about the agendas behind such proposals:

Interestingly, the only Uralicists who generally reject the Central Russian homeland are the Russian ones who prefer the Siberian homeland instead. Some Russians even advocate that the Central Russian homeland is only due to Finnish nationalism or, as one of them put it a bit more tactfully, “the political and ideological situation in Finland in the first decades of the 20th century” (Napolskikh 1995: 4).

Still, some Finns (and especially those who also belong to the “school who wants it large and wants it early”) simultaneously advocate that exactly the same Central Russian homeland is due to Finnlandisierung (Wiik 2001: 466).

Hence, for those of you willing to learn about fringe theories not related to North-Eastern Europe, you also have then the large and early version of the Uralic homeland, with Wiik’s Palaeolithic continuity of Uralic peoples spread over all of eastern and central Europe (hence EHG and R1a included):

atlantic-finnic-theory
Palaeolithic boat peoples and Finno-Ugric. Source

These fringe Finnish theories look a lot like the Corded Ware expansion… Better not go the Russian or Finnish nationalist ways? Agreed then, let’s discuss only rational proposals based on current data.

The archaeological homeland

For a detailed account of the Corded Ware expansion with Battle Axe, Fatyanovo-Balanovo, and Abashevo groups into the area, you can read my recent post on the origin of R1a-Z645.

1. Textile ceramics

During the 2nd millennium BC, textile impressions appear in pottery as a feature across a wide region, from the Baltic area through the Volga to the Urals, in communities that evolve from late Corded Ware groups without much external influence.

While it has been held that this style represents a north-west expansion from the Volga region (with the “Netted Ware” expansion), there are actually at least two original textile styles, one (earlier) in the Gulf of Finland, common in the Kiukainen pottery, which evolves into the Textile ware culture proper, and another which seems to have an origin in the Middle Volga region to the south-east.

The Netted ware culture is the one that apparently expands into inner Finland – a region not densely occupied by Corded Ware groups until then. There are, however, no clear boundaries between groups of both styles; textile impressions can be easily copied without much interaction or population movement; and the oldest textile ornamentation appeared on the Gulf of Finland. Hence the tradition of naming all as groups of Textile ceramics.

textile-ware-cultures
Maximum distribution of Textile ceramics during the Bronze Age (ca. 2000-800 BC). Asbestos-tempered ware lies to the north (and is also continued in western Fennoscandia).

The fact that different adjacent groups from the Gulf of Finland and Forest Zone share similar patterns making it very difficult to differentiate between ‘Netted Ware’ or ‘Textile Ware’ groups points to:

  • close cultural connections that are maintained through the Gulf of Finland and the Forest Zone after the evolution of late Corded Ware groups; and
  • no gross population movements in the original Battle Axe / Fatyanovo regions, except for the expansion of Netted Ware to inner Finland, Karelia, and the east, where the scattered Battle Axe finds and worsening climatic conditions suggest most CWC settlements disappeared at the end of the 3rd millennium BC and recovered only later.

NOTE. This lack of population movement – or at least significant replacement by external, non-CWC groups – is confirmed in genetic investigation by continuity of CWC-related lineages (see below).

The technology present in Textile ceramics is in clear contrast to local traditions of sub-Neolithic Lovozero and Pasvik cultures of asbestos-tempered pottery to the north and east, which point to a different tradition of knowledge and learning network – showing partial continuity with previous asbestos ware, since these territories host the main sources of asbestos. We have to assume that these cultures of northern and eastern Fennoscandia represent Palaeo-European (eventually also Palaeo-Siberian) groups clearly differentiated from the south.

The Chirkovo culture (ca. 1800-700 BC) forms on the middle Volga – at roughly the same time as Netted Ware formed to the west – from the fusion of Abashevo and Balanovo elites on Volosovo territory, and is also related (like Abashevo) to materials of the Seima-Turbino phenomenon.

Bronze Age ethnolinguistic groups

In the Gulf of Finland, Kiukainen evolves into the Paimio ceramics (in Finland) — Asva Ware (in Estonia) culture, which lasts from ca. 1600 to ca. 700 BC, probably representing an evolving Finno-Saamic community, while the Netted Ware from inner Finland (the Sarsa and Tomitsa groups) and the groups from the Forest Zone possibly represent a Volga-Finnic community.

NOTE. Nevertheless, the boundaries between Textile ceramic groups are far from clear, and inner Finland Netted Ware groups seem to follow a history different from Netted Ware groups from the Middle and Upper Volga, hence they could possibly be identified as an evolving Pre-Saamic community.

Based on language contacts, with Early Baltic – Early Finnic contacts starting during the Iron Age (ca. 500 BC onwards), this is a potential picture of the situation at the end of this period, when Germanic influence on the coast starts to fade, and Lusatian culture influence is stronger:

aikio-finnic-saamic
The linguistic situation in Lapland and the northern Baltic Sea Area in the Early Iron Age prior to the expansion of Saami languages; the locations of the language groups are schematic. The black line indicates the distribution of Saami languages in the 19th century, and the gray line their approximate maximal distribution before the expansion of Finnic. Aikio (2012)

The whole Finno-Permic community remains thus in close contact, allowing for the complicated picture that Kallio mentions as potentially showing Dahl’s wave model for Uralic languages.

Genetic data shows a uniform picture of these communities, with exclusively CWC-derived ancestry and haplogroups. So in Mittnik et al. (2018) all Baltic samples show R1a-Z645 subclades, while the recent session on Estonian populations in ISBA 8 (see programme in PDF) clearly states that:

[Of the 24 Bronze Age samples from stone-cist graves] all 18 Bronze Age males belong to R1a.

Regarding non-Uralic substrates found in Saami, supposedly absorbed during the expansion to the north (and thus representing languages spoken in northern Fennoscandia during the Bronze Age) this is what Aikio (2012) has to say:

The Saami substrate in the Finnish dialects thus reveals that also Lakeland Saami languages had a large number of vocabulary items of obscure origin. Most likely many of these words were substrate in Lakeland Saami, too, and ultimately derive from languages spoken in the region before Saami. In some cases the loan origin of these words is obvious due to their secondary Proto-Saami vowel combinations such as *ā–ë in *kāvë ‘bend; small bay’ and *šāpšë ‘whitefish’. This substrate can be called ‘Palaeo-Lakelandic’, in contrast to the ‘Palaeo-Laplandic’ substrate that is prominent in the lexicon of Lapland Saami. As the Lakeland Saami languages became extinct and only fragments of their lexicon can be reconstructed via elements preserved in Finnish place-names and dialectal vocabulary, we are not in a position to actually study the features of this Palaeo-Lakelandic substrate. Its existence, however, appears evident from the material above.

If we wanted to speculate further, based on the data we have now, it is very likely that two opposing groups will be found in the region:

A) The central Finnish group, in this hypothesis the Palaeo-Lakelandic group, made up of the descendants of the Mesolithic pioneers of the Komsa and Suomusjärvi cultures, and thus mainly Baltic HG / Scandinavian HG ancestry and haplogroups I / R1b(xM269) (see more on Scandinavian HG).

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018).

B) Lapland and Kola were probably also inhabited by similar Mesolithic populations, until it was eventually assimilated by expanding Siberian groups (of Siberian ancestry and N1c-L392 lineages) from the east – entering the region likely through the Kola peninsula – , forming the Palaeo-Laplandic group, which was in turn later replaced by expanding Proto-Saamic groups.

Siberian ancestry appears first in Fennoscandia at Bolshoy Oleni Ostrov ca. 1520 BC, with haplogroup N1c-L392 (2 samples, BOO002 and BOO004), and with Siberian ancestry. This is their likely movement in north-eastern Europe, from Lamnidis et al (2018):

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period.

saamic-lovozero-pca
PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

Obviously, these groups of asbestos-tempered ware are not connected to the Uralic expansion. From the same paper:

The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

2. The Early Iron Age

The Ananino culture appears in the Vyatka-Kama area, famed for its metallurgy, with traditions similar to the North Pontic area, by this time developing Pre-Sauromatian traditions. It expanded to the north in the first half of the first millennium BC, remaining in contact with the steppes, as shown by the ‘Scythian’ nature of its material culture.

NOTE. The Ananino culture can be later followed through its zoomorphic styles into Iron Age Pjanoborskoi and Gljadenovskoi cultures, later to Ural-Siberian Middle Age cultures – Itkuska, Ust’-Poluiska, Kulaiska cultures –, which in turn can be related as prototypes of medieval Permian styles.

ananino-culture-homeland
Territory of (early and maximum) Ananino material culture. Vasilyev (2002).

At the same time as the Ananino culture begins to expand ca. 1000 BC, the Netted Ware tradition from the middle Oka expanded eastwards into the Oka-Vyatka interfluve of the middle Volga region, until then occupied by the Chirkovo culture. Eventually the Akozino or Akhmylovo group (ca. 800-300 BC) emerged from the area, showing a strong cultural influence from the Ananino culture, by that time already expanding into the Cis-Urals region.

The Akozino culture remains nevertheless linked to the western Forest Zone traditions, with long-ranging influences from as far as the Lusatian culture in Poland (in metallurgical techniques), which at this point is also closely related with cultures from Scandinavia (read more on genetics of the Tollense Valley).

malar-celts-ananino
Mälar celts and molds for casting (a) and the main distribution area (в) of Mälar-type celts of the Mälar type in the Volga-Kama region (according to Kuzminykh 1983: figure 92) and Scandinavia (according to Baudou 1960: Karte 10); Ananino celts and molds for casting (б) and the main distribution area (г) of the distribution of the celts of the Ananino type in the Volga-Kama area (according to Kuzminykh 1983: figure 9); dagger of Ananino type (д).Map from (Yushkova 2010)

Different materials from Akozino reach Fennoscandia late, at the end of the Bronze Age and beginning of the Early Iron Age, precisely when the influence of the Nordic Bronze Age culture on the Gulf of Finland was declining.

This is a period when Textile ceramic cultures in north-eastern Europe evolve into well-armed chiefdom-based groups, with each chiefdom including thousands or tens of thousands, with the main settlements being hill forts, and those in Fennoscandia starting ca. 1000-400 BC.

Mälar-type celts and Ananino-type celts appear simultaneously in Fennoscandia and the Forest Zone, with higher concentrations in south-eastern Sweden (Mälaren) and the Volga-Kama region, supporting the existence of a revived international trade network.

akozino-malar-axes-fennoscandia
Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Paimio—Asva Ware culture evolves (ca. 700-200 BC) into the Morby (in Finland) — Ilmandu syle (in Estonia, Latvia, and Mälaren) culture. The old Paimio—Asva tradition continues side by side with the new one, showing a clear technical continuity with it, but with ornamentation compared to the Early Iron Age cultures of the Upper Volga area. This new south-eastern influence is seen especially in:

  • Akozino-Mälar axes (ca. 800-500 BC): introduced into the Baltic area in so great numbers – especially south-western Finland, the Åland islands, and the Mälaren area of eastern Sweden – that it is believed to be accompanied by a movement of warrior-traders of the Akozino-Akhmylovo culture, following the waterways that Vikings used more than a thousand years later. Rather than imports, they represent a copy made with local iron sources.
  • Tarand graves (ca. 500 BC – AD 400): these ‘mortuary houses’ appear in the coastal areas of northern and western Estonia and the islands, at the same time as similar graves in south-western Finland, eastern Sweden, northern Latvia and Courland. Similar burials are found in Akozino-Akhmylovo, with grave goods also from the upper and middle Volga region, while grave goods show continuity with Textile ware.

The use of asbestos increases in mainland Finnish wares with Kjelmøy Ware (ca. 700 BC – AD 300), which replaced the Lovozero Ware; and in the east in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (ca. 700-500 BC – AD 200), where they replaced the previous Sarsa-Tomitsa ceramics.

The Gorodets culture appears during the Scythian period in the forest-steppe zone north and west of the Volga, shows fortified settlements, and there are documented incursions of Gorodets iron makers into the Samara valley, evidenced by deposits of their typical pottery and a bloom or iron in the region.

Iron Age ethnolinguistic groups

According to (Koryakova and Epimakhov 2007):

It is commonly accepted by archaeology, ethnography, and linguistics that the ancestors of the Permian peoples (the Udmurts, Komi-Permians, and Komi-Zyryans) left the sites of Ananyino cultural intercommunity.

NOTE. For more information on the Late Metal Ages and Early Medieval situation of Finno-Ugric languages, see e.g. South-eastern contact area of Finnic languages in the light of onomastics (Rahkonen 2013).

finno-saamic-mordvin
Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2011)

Certain innovations shared between Proto-Fennic (identified with the Gulf of Finland) and Proto-Mordvinic (from the Gorodets culture) point to their close contact before the Proto-Fennic expansion, and thus to the identification of Gorodets as Proto-Mordvinic, hence Akozino as Volgaic (Parpola 2018):

  • the noun paradigms and the form and function of individual cases,
  • the geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • the change of numeral *luka ‘ten’ with *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature (hence possibly from Siberian influence in north-eastern Europe).
ananino-textile-ware-cultures
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Purple area show likely zones of predominant Siberian ancestry and N1c-L392 lineages. Blue areas likely zones of predominant CWC ancestry and R1a-Z645 lineages. Fading purple arrows represent likely stepped movements of haplogroup N1c-L392 for centuries (Siberian → Ananino → Akozino → Fennoscandia), found eventually in tarand graves. Blue arrows represent eventual expansions of Fennic and (partially displaced) Saamic. Modified image from Vasilyev (2002).

The introduction of a strongly hierarchical chiefdom system can quickly change the pre-existing social order and lead to a major genetic shift within generations, without a radical change in languages, as shown in Sintashta-Potapovka compared to the preceding Poltavka society (read more about Sintashta).

Fortified settlements in the region represented in part visiting warrior-traders settled through matrimonial relationships with local chiefs, eager to get access to coveted goods and become members of a distribution network that could guarantee them even military assistance. Such a system is also seen synchronously in other cultures of the region, like the Nordic Bronze Age and Lusatian cultures (Parpola 2013).

The most likely situation is that N1c subclades were incorporated from the Circum-Artic region during the Anonino (Permic) expansion to the north, later emerged during the formation of the Akozino group (Volgaic, under Anonino influence), and these subclades in turn infiltrated among the warrior traders that spread all over Fennoscandia and the eastern Baltic (mainly among Fennic, Saamic, Germanic, and Balto-Slavic peoples), during the age of hill forts, creating alliances partially based on exogamy strategies (Parpola 2013).

Over the course of these events, no language change is necessary in any of the cultures involved, since the centre of gravity is on the expanding culture incorporating new lineages:

  • first on the Middle Volga, when Ananino expands to the north, incorporatinig N1c lineages from the Circum-Artic region.
  • then with the expansion of the Akozino-Akhmylovo culture into Ananino territory, admixing with part of its population;
  • then on the Baltic region, when materials are imported from Akozino into Fennoscandia and the eastern Baltic (and vice versa), with local cultures being infiltrated by foreign (Akozino) warrior-traders and their materials;
  • and later with the different population movements that led eventually to a greater or lesser relevance of N1c in modern Finno-Permic populations.

To argue that this infiltration and later expansion of lineages changed the language in one culture in one of these events seems unlikely. To use this argument of “opposite movement of ethnic and language change” for different successive events, and only on selected regions and cultures (and not those where the greatest genetic and cultural impact is seen, like e.g. Sweden for Akozino materials) is illogical.

NOTE. Notice how I write here about “infiltration” and “lineages”, not “migration” or “populations”. To understand that, see below the next section on autosomal studies to compare Bronze Age, Iron Age, Medieval and Modern Estonians, and see how little the population of Estonia (homeland of Proto-Fennic and partially of Proto-Finno-Saamic) has changed since the Corded Ware migrations, suggesting genetic continuity and thus mostly close inter-regional and intra-regional contacts in the Forest Zone, hence a very limited impact of the absorbed N1c lineages (originally at some point incorporated from the Circum-Artic region). You can also check on the most recent assessment of R1a vs. N1c in modern Uralic populations.

Iron Age and later populations

From the session on Estonian samples on ISBA 8, by Tambets et al.:

[Of the 13 samples from the Iron Age tarand-graves] We found that the Iron Age individuals do in fact carry chrY hg N3 (…) Furthermore, based on their autosomal data, all of the studied individuals appear closer to hunter-gatherers and modern Estonians than Estonian CWC individuals do.

EDIT (16 OCT) A recent abstract with Saag as main author (Tambets second) cites 3 out of 5 sampled Iron Age individuals as having haplogroup N3.

EDIT (28 OCT): Notice also the appearance of N1a1a1a1a1a1a1-L1025 in Lithuania (ca. 300 AD), from Damgaard (Nature 2018); the N1c sample of the Krivichi Pskov Long Barrows culture (ca. 8th-10th c. AD), and N1a1a1a1a1a1a7-Y4341 among late Vikings from Sigtuna (ca. 10th-12th c. AD) in Krzewinska (2018).

estonian-pca
PCA of Estonian samples from the Bronze Age, Iron Age and Medieval times. Tambets et al. (2018, upcoming).

Looking at the plot, the genetic inflow marking the change from the Bronze Age to the Iron Age looks like an obvious expansion of nearby peoples with CWC-related ancestry, i.e. likely from the south-east, near the Middle Volga, where influence of steppe peoples is greater (hence likely Akozino) into a Proto-Fennic population already admixed (since the arrival of Corded Ware groups) with Comb Ware-like populations.

All of these groups were probably R1a-Z645 (likely R1a-Z283) since the expansion of Corded Ware peoples, with an introduction of some N1c lineages precisely during this Iron Age period. This infiltration of N1c-L392 with Akozino is obviously not directly related to Siberian cultures, given what we know about the autosomal description of Estonian samples.

Rather, N1c-L392 lineages were likely part of the incoming (Volgaic) Akozino warrior-traders, who settled among developing chiefdoms based on hill fort settlements of cultures all over the Baltic area, and began to appear thus in some of the new tarand graves associated with the Iron Age in north-eastern Europe.f

A good way to look at this is to realize that no new cluster appears compared to the data we already have from Baltic LN and BA samples from Mittnik et al. (2018), so the Estonian BA and IA clusters must be located (in a proper PCA) in the cline from Pit-Comb Ware culture through Baltic BA to Corded Ware groups:

baltic-samples
PCA and ADMIXTURE analysis reflecting three time periods in Northern European prehistory. a Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). Population labels of modern West Eurasians are given in Supplementary Fig. 7 and a zoomed-in version of the European Late Neolithic and Bronze Age samples is provided in Supplementary Fig. 8. b Ancestral components in ancient individuals estimated by ADMIXTURE (k = 11)

This genetic continuity from Corded Ware (the most likely Proto-Uralic homeland) to the Proto-Fennic and Proto-Saamic communities in the Gulf of Finland correlates very well with the known conservatism of Finno-Saamic phonology, quite similar to Finno-Ugric, and both to Proto-Uralic (Kallio 2017): The most isolated region after the expansion of Corded Ware peoples, the Gulf of Finland, shielded against migrations for almost 1,500 years, is then the most conservative – until the arrival of Akozino influence.

NOTE. This has its parallel in the phonetic conservatism of Celtic or Italic compared to Finno-Ugric-influenced Germanic, Balto-Slavic, or Indo-Iranian.

Only later would certain regions (like Finland or Lappland) suffer Y-DNA bottlenecks and further admixture events associated with population displacements and expansions, such as the spread of Fennic peoples from their Estonian homeland (evidenced by the earlier separation of South Estonian) to the north and east:

diversification-finnic
The Finnic family tree. Kallio (2014).

The initial Proto-Fennic expansion was probably coupled with the expansion of Proto-Saami to the north, with the Kjelmøy Ware absorbing the Siberian population of Lovozero Ware, and potentially in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (Carpelan and Parpola 2017).

This Proto-Saami population expansion from the mainland to the north, admixing with Lovozero-related peoples, is clearly reflected in the late Iron Age Saamic samples from Levänluhta (ca. 400-800 AD), as a shift (of 2 out of 3 samples) to Siberian-like ancestry from their original CWC_Baltic-like situation (see PCA from Lamnidis et al. 2018 above).

Also, Volgaic and Permic populations from inner Finland and the Forest Zone to the Cis-Urals and Circum-Artic regions probably incorporate Siberian ancestry and N1c-L392 lineages during these and later population movements, while the westernmost populations – Estonian, Mordvinic – remain less admixed (see PCA from Tambets et al. 2018 below).

We also have data of N1c-L392 in Nordic territory in the Middle Ages, proving its likely strong presence in the Mälaren area since the Iron Age, with the arrival of Akozino warrior traders. Similarly, it is found among Balto-Slavic groups along the eastern Baltic area. Obviously, no language change is seen in Nordic Bronze Age and Lusatian territory, and none is expected in Estonian or Finnish territory, either.

Therefore, no “N1c-L392 + Siberian ancestry” can be seen expanding Finno-Ugric dialects, but rather different infiltrations and population movements with limited effects on ancestry and Y-DNA composition, depending on the specific period and region.

estonians-hungarians-mordvinian
Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected. See Tambets et al. (2018) for more information.

An issue never resolved

Because N1c-L392 subclades & Siberian ancestry, which appear in different proportions and with different origins among some modern Uralic peoples, do not appear in cultures supposed to host Uralic-speaking populations until the Iron Age, people keep looking into any direction to find the ‘true’ homeland of those ‘Uralic N1c peoples’? Kind of a full circular reasoning, anyone? The same is valid for R1a & steppe ancestry being followed for ‘Indo-Europeans’, or R1b-P312 & Neolithic farmer ancestry being traced for ‘Basques’, because of their distribution in modern populations.

I understand the caution of many pointing to the need to wait and see how samples after 2000 BC are like, in every single period, from the middle and upper Volga, Kama, southern Finland, and the Forest Zone between Fennoscandia and the steppe. It’s like waiting to see how people from Western Yamna and the Carpathian Basin after 3000 BC look like, to fill in what is lacking between East Yamna and Bell Beakers, and then between them and every single Late PIE dialect.

But the answer for Yamna-Bell Beaker-Poltavka peoples during the Late PIE expansion is always going to be “R1b-L23, but with R1a-Z645 nearby” (we already have a pretty good idea about that); and the answer for the Forest Zone and northern Cis- and Trans-Urals area – during the time when Uralic languages are known to have already been spoken there – is always going to be “R1a-Z645, but with haplogroup N nearby”, as is already clear from the data on the eastern Baltic region.

So, without a previously proposed model as to where those amateurs expressing concern about ‘not having enough data’ expect to find those ‘Uralic peoples’, all this waiting for the right data looks more like a waiting for N1c and Siberian ancestry to pop up somewhere in the historic Uralic-speaking area, to be able to say “There! A Uralic-speaking male!”. Not a very reasonable framework to deal with prehistoric peoples and their languages, I should think.

But, for those who want to do that, let me break the news to you already:

ananino-culture-balto-slavic
First N1c – Finno-Ugric person arrives in Estonia to teach Finno-Saamic to Balto-Slavic peoples.

And here it is, an appropriate fantasy description of the ethnolinguistic groups from the region. You are welcome:

  • During the Bronze Age, late Corded Ware groups evolve as the western Textile ware Fennic Balto-Slavic group in the Gulf of Finland; the Netted Ware Saamic Balto-Slavic group of inner Finland; the south Netted Ware / Akozino Volgaic Balto-Slavic groups of the Middle Volga; and the Anonino Permic Balto-Slavic group in the north-eastern Forest Zone; all developing still in close contact with each other, allowing for common traits to permeate dialects.
  • These Balto-Slavic groups would then incorporate west of the Urals during and after the Iron Age (ca. 800-500 BC first, and also later during their expansion to the north) limited ancestry and lineages from eastern European hunter-gatherer groups of Palaeo-European Fennic and Palaeo-Siberian Volgaic and Permic languages from the Circum-Artic region, but they adopted nevertheless the language of the newcomers in every single infiltration of N1c lineages and/or admixture with Siberian ancestry. Oh and don’t forget the Saamic peoples from central Sweden, of course, the famous N1c-L392 ‘Rurikid’ lineages expanding Saamic to the north and replacing Proto-Germanic…

The current model for those obsessed with modern Y-DNA is, therefore, that expanding Neolithic, Bronze Age and Iron Age cultures from north-eastern Europe adopted the languages of certain lineages originally from sub-Neolithic (Scandinavian and Siberian) hunter-gatherer populations of the Circum-Artic region; lineages that these cultures incorporated unevenly during their expansions. Hmmmm… Sounds like an inverse Western movie, where expanding Americans end up speaking Apache, and the eastern coast speaks Spanish until Italian migrants arrive and make everyone speak English… or something. A logic, no-nonsense approach to ethnolinguistic identification.

I kid you not, this is the kind of models we are going to see very soon. In 2018 and 2019, with ancient DNA able to confirm or reject archaeological hypotheses based on linguistic data, people will keep instead creating new pet theories to support preconceived ideas based on the Y-DNA prevalent among modern populations. That is, information available in the 2000s.

So what’s (so much published) ancient DNA useful for, exactly?

[Next post on the subject: Corded Ware—Uralic (III): Seima-Turbino and the Ugric and Samoyedic expansion]

Related

Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups

uralic-languages

Open access Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations, by Tambets et al. Genome Biology (2018).

Interesting excerpts (emphasis mine):

Methods

A total of 286 samples of Uralic-speaking individuals, of those 121 genotyped in this study, were analysed in the context of 1514 Eurasian samples (including 14 samples published for the first time) based on whole genome single nucleotide polymorphisms (SNPs) (Additional file 1: Table S1). All these samples, together with the larger sample set of Uralic speakers, were characterized for mtDNA and chrY markers.

The question as which material cultures may have co-spread together with proto-Uralic and Uralic languages depends on the time estimates of the splits in the Uralic language tree. Deeper age estimates (6,000 BP) of the Uralic language tree suggest a connection between the spread of FU languages from the Volga River basin towards the Baltic Sea either with the expansion of the Neolithic culture of Combed Ware, e.g. [6, 7, 17, 26] or with the Neolithic Volosovo culture [7]. Younger age estimates support a link between the westward dispersion of Proto-Finno-Saamic and eastward dispersion of Proto-Samoyedic with a BA Sejma-Turbino (ST) cultural complex [14, 18, 27, 28] that mediated the diffusion of specific metal tools and weapons from the Altai Mountains over the Urals to Northern Europe or with the Netted Ware culture [23], which succeeded Volosovo culture in the west. It has been suggested that Proto-Uralic may have even served as the lingua franca of the merchants involved in the ST phenomenon [18]. All these scenarios imply that material culture of the Baltic Sea area in Europe was influenced by cultures spreading westward from the periphery of Europe and/or Siberia. Whether these dispersals involved the spread of both languages and people remains so far largely unknown.

The population structure of Uralic speakers

To contextualize the autosomal genetic diversity of Uralic speakers among other Eurasian populations (Additional file 1: Table S1), we first ran the principal component (PC) analysis (Fig. 2a, Additional file 3: Figure S1). The first two PCs (Fig. 2a, Additional file 3: Figure S1A) sketch the geography of the Eurasian populations along the East-West and North-South axes, respectively. The Uralic speakers, along with other populations speaking Slavic and Turkic languages, are scattered along the first PC axis in agreement with their geographic distribution (Figs. 1 and 2a) suggesting that geography is the main predictor of genetic affinity among the groups in the given area. Secondly, in support of this, we find that FST-distances between populations (Additional file 3: Figure S2) decay in correlation with geographical distance (Pearson’s r = 0.77, p < 0.0001). On the UPGMA tree based on these FST-distances (Fig. 2b), the Uralic speakers cluster into several different groups close to their geographic neighbours.

uralic-pca
Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations.

We next used ADMIXTURE [48], which presents the individuals as composed of inferred genetic components in proportions that maximize Hardy-Weinberg and linkage equilibrium in the overall sample (see the ‘Methods’ section for choice of presented K). Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a). The proportion of this component among the Saami in Northern Scandinavia is again similar to that of the VUR FU speakers, which is exceptional in the geographic context. It is also notable that North Russians, sampled from near the White Sea, differ from other Russians by sporting higher proportions of k9 (10–15%), which is similar to the values we observe in their Finnic-speaking neighbours. Notably, Estonians and Hungarians, who are geographically the westernmost Uralic speakers, virtually lack the k9 cluster membership.

siberian-ancestry
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. a Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). The full bar plot is presented in Additional file 3: Figure S3. b Frequency map of component k9

We also tested the different demographic histories of female and male lineages by comparing outgroup f3 results for autosomal and X chromosome (chrX) data for pairs of populations (Estonians, Udmurts or Khanty vs others) with high versus low probability to share their patrilineal ancestry in chrY hg N (see the ‘Methods’ section, Additional file 3: Figure S13). We found a minor but significant excess of autosomal affinity relative to chrX for pairs of populations that showed a higher than 10% chance of two randomly sampled males across the two groups sharing their chrY ancestry in hg N3-M178, compared to pairs of populations where such probability is lower than 5% (Additional file 3: Figure S13).

In sum, these results suggest that most of the Uralic speakers may indeed share some level of genetic continuity via k9, which, however, also extends to the geographically close Turkic speakers.

uralic-modern-europe

Identity-by-descent

We found that it is the admixture with the Siberians that makes the Western Uralic speakers different from the tested European populations (Additional file 3: Figure S4A-F, H, J, L). Differentiating between Estonians and Finns, the Siberians share more derived alleles with Finns, while the geographic neighbours of Estonians (and Finns) share more alleles with Estonians (Additional file 3: Figure S4M). Importantly, Estonians do not share more derived alleles with other Finnic, Saami, VUR FU or Ob-Ugric-speaking populations than Latvians (Additional file 3: Figure S4O). The difference between Estonians and Latvians is instead manifested through significantly higher levels of shared drift between Estonians and Siberians on the one hand and Latvians and their immediate geographic neighbours on the other hand. None of the Uralic speakers, including linguistically close Khanty and Mansi, show significantly closer affinities to the Hungarians than any non-FU population from NE Europe (Additional file 3: Figure S4R).

ibd-uralic-genetics
Share of ~ 1–2 cM identity-by-descent (IBD) segments within and between regional groups of Uralic speakers. For each Uralic-speaking population representing lines in this matrix, we performed permutation test to estimate if it shows higher IBD segment sharing with other population (listed in columns) as compared to their geographic control group. Empty rectangles indicate no excess IBD sharing, rectangles filled in blue indicate comparisons when statistically significant excess IBD sharing was detected between one Uralic-speaking population with another Uralic-speaking population (listed in columns), rectangles filled in green mark the comparisons when a Uralic-speaking population shows excess IBD sharing with a non-Uralic-speaking population. For each tested Uralic speaker (matrix rows) populations in the control group that were used to generate permuted samples are indicated using small circles. For example, the rectangle filled in blue for Vepsians and Komis (A) implies that the Uralic-speaking Vepsians share more IBD segments with the Uralic-speaking Komis than the geographic control group for Vepsians, i.e. populations indicated with small circles (Central and North Russians, Swedes, Latvians and Lithuanians). The rectangle filled in green for Vepsians and Dolgans shows that the Uralic-speaking Vepsians share more IBD segments with the non-Uralic-speaking Dolgans than the geographic control group

Time of Siberian admixture

The time depth of the Globetrotter (Fig. 5b) inferred admixture events is relatively recent—500–1900 AD (see also complementary ALDER results, in Additional file 13: Table S12 and Additional file 3: Figure S7)—and agrees broadly with the results reported in Busby et al. [55]. A more detailed examination of the ALDER dates, however, reveals an interesting pattern. The admixture events detected in the Baltic Sea region and VUR Uralic speakers are the oldest (800–900 AD or older) followed by those in VUR Turkic speakers (∼1200–1300 AD), while the admixture dates for most of the Siberian populations (>1500 AD) are the most recent (Additional file 3: Figure S7). The West Eurasian influx into West Siberia seen in modern genomes was thus very recent, while the East Eurasian influx into NE Europe seems to have taken place within the first millennium AD (Fig. 5b, Additional file 3: Figure S7).

Affinities of the Uralic speakers with ancient Eurasians

We next calculated outgroup f3-statistics [48] to estimate the extent of shared genetic drift between modern and ancient Eurasians (Additional file 14: Table S13, Additional file 3: Figures S8-S9). Consistent with previous reports [45, 50], we find that the NE European populations including the Uralic speakers share more drift with any European Mesolithic hunter-gatherer group than Central or Western Europeans (Additional file 3: Figure S9A-C). Contrasting the genetic contribution of western hunter-gatherers (WHG) and eastern hunter-gatherers (EHG), we find that VUR Uralic speakers and the Saami share more drift with EHG. Conversely, WHG shares more drift with the Finnic and West European populations (Additional file 3: Figure S9A). Interestingly, we see a similar pattern of excess of shared drift between VUR and EHG if we substitute WHG with the aDNA sample from the Yamnaya culture (Additional file 3: Figure S9D). As reported before [2, 45], the genetic contribution of European early farmers decreases along an axis from Southern Europe towards the Ural Mountains (Fig. 6, Additional file 3: Figure S9E-F).

yamna-cwc-qpgraph-admixture-uralic
Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. b Admixture proportions (%) of ancestral components. We calculated the admixture proportions summing up the relative shares of a set of intermediate populations to explain the full spectrum of admixture components in the test population. We further did the same for the intermediate node CWC’ and present the proportions of the mixing three components in the stacked column bar of CWC’. Colour codes for ancestral components are as follows: dark green—Western hunter gatherer (WHG’); light green—Eastern hunter gatherer (EHG’); grey—European early farmer (LBK’); dark blue—carriers of Corded Ware culture (CWC’); and dark grey—Siberian. CWC’ consists of three sub-components: blue—Caucasian hunter-gatherer in Yamnaya (CHGinY’); light blue—Eastern hunter-gatherer in Yamnaya (EHGinY’); and light grey—Neolithic Levant (NeolL’)

We then used the qpGraph software [48] to test alternative demographic scenarios by trying to fit the genetic diversity observed in a range of the extant Finno-Ugric populations through a model involving the four basic European ancestral components: WHG, EHG, early farmers (LBK), steppe people of Yamnaya/Corded Ware culture (CWC) and a Siberian component (Fig. 6, Additional file 3: Figure S10). We chose the modern Nganasans to serve as a proxy for the latter component because we see least evidence for Western Eurasian admixture (Additional file 3: Figure S3) among them. We also tested the Khantys for that proxy but the model did not fit (yielding f2-statistics, Z-score > 3). The only Uralic-speaking population that did not fit into the tested model with five ancestral components were Hungarians. The qpGraph estimates of the contributions from the Siberian component show that it is the main ancestry component in the West Siberian Uralic speakers and constitutes up to one third of the genomes of modern VUR and the Saami (Fig. 6). It drops, however, to less than 10% in most of NE Europe, to 5% in Estonians and close to zero in Latvians and Lithuanians.

Discussion

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a lineages.

One of the notable observations that stands out in the fineSTRUCTURE analysis is that neither Hungarians nor Estonians or Mordovians form genetic clusters with other Uralic speakers but instead do so with a broad spectrum of geographically adjacent samples. Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

Perhaps even more surprisingly, we found that Estonians, who show close affinities in IBD analysis to neighbouring Finnic speakers and Saami, do not share an excess of IBD segments with the VUR or Siberian Uralic speakers. This is eIn this context, it is important to remind that the limited (5%, Fig. 6) East Eurasian impact in the autosomal gene pool of modern Estonians contrasts with the fact that more than 30% of Estonian (but not Hungarian) men carry chrY N3 that has an East Eurasian origin and is very frequent among NE European Uralic speakers [36]. However, the spread of chrY hg N3 is not language group specific as it shows similar frequencies in Baltic-speaking Latvians and Lithuanians, and in North Russians, who in all our analyses are very similar to Finnic-speakers. The latter, however, are believed to have either significantly admixed with their Uralic-speaking neighbours or have undergone a language shift from Uralic to Indo-European [38].ven more striking considering that the immediate neighbours—Finns, Vepsians and Karelians—do.

With some exceptions such as Estonians, Hungarians and Mordovians, both IBD sharing and Globetrotter results suggest that there are detectable inter-regional haplotype sharing ties between Uralic speakers from West Siberia and VUR, and between NE European Uralic speakers and VUR. In other words, there is a fragmented pattern of haplotype sharing between populations but no unifying signal of sharing that unite all the studied Uralic speakers.

Comments

The paper is obviously trying to find a “N1c/Siberian ancestry = Uralic” link, but it shows (as previous papers using ancient DNA) that this identification is impossible, because it is not possible to identify “N1c=Siberian ancestry”, “N1c=Uralic”, or “Siberian ancestry = Uralic”. In fact, the arrival of N subclades and Siberian ancestry are late, both events (probably multiple stepped events) are unrelated to each other, and represent east-west demic diffusion waves (as well as founder effects) that probably coincide in part with the Scythian and Turkic (or associated) expansions, i.e. too late for any model of Proto-Uralic or Proto-Finno-Ugric expansion.

On the other hand, it shows interesting data regarding ancestry of populations that show increased Siberian influence, such as those easternmost groups admixed with Yeniseian-like populations (Samoyedic), those showing strong founder effects (Finnic), or those isolated in the Circum-Artic region with neighbouring Siberian peoples in Kola (Saami). All in all, Hungarians, Estonians and Mordovians seem to show the original situation better than the other groups, which is also reflected in part in Y-DNA, conserved as a majority of R1a lineages precisely in these groups. Just another reminder that CWC-related ancestry is found in every single Uralic group, and that it represents the main ancestral component in all non-Samoyedic groups.

estonians-hungarians-mordvinian
Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected.

The qpGraph shows the ancestor of Yamna (likely Khvalynsk) and Corded Ware stemming as different populations from a common (likely Neolithic) node – whose difference is based on the proportion of Anatolian-related ancestry – , that is, probably before the Indo-Hittite expansion; and ends with CWC groups forming the base for all Uralic peoples. Below is a detail of the qpGraph on the left, and my old guess (2017) on the right, for comparison:

yamna-corded-ware-qpgraph

#EDIT (22 sep 2018): I enjoyed re-reading it, and found this particular paragraph funny:

Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

They are so obsessed with finding a link to Siberian ancestry and N1c, and so convinced of Kristiansen’s idea of CWC=Indo-European, that they forgot to examine their own data from a critical point of view, and see the clear link between all Uralic peoples with Corded Ware ancestry and R1a-Z645 subclades… Here is a reminder about Hungarians and R1a-Z282, and about the expansion of R1a-Z645 with Uralic peoples.

Related

Pre-Germanic born out of a Proto-Finnic substrate in Scandinavia

indo-european-yamnaya-corded-ware

A commenter, Old Europe, drew my attention to the Uralic (Finnic-Saamic) substrate in Germanic proposed by Schrijver in Chapter V. Origins of Language Contact and the Origins of the Germanic Languages, Routledge (2014).

I wanted to share here some interesting excerpts (emphasis mine):

NOTE. I have avoided many detailed linguistic discussions. You should read the whole chapter to check them out.

The origins of the Germanic subfamily of Indo-European cannot be understood without acknowledging its interactions with a language group that has been its long-time neighbour: the Finnic subgroup of the Uralic language family. Indo-European and Uralic are linked to one another in two ways: they are probably related to one another in deep time — how deep is impossible to say3 — and Indo-European has been a constant source from which words were borrowed into Uralic languages, from the fourth millennium BC up to the present day.4 The section of the Uralic family that has always remained in close proximity to the Indo-European dialects which eventually turned into Germanic is Finnic. I use the term Finnic with a slightly idiosyncratic meaning : it covers the Finno-Saamic protolanguage and both of its children, Saami and Balto-Finnic.(…)

finnic-family-tree-schrijver
Schrijver (2014). The Finnic family tree (simplified)

Linguistically, the relationship between Indo-European and Uralic has always been asymmetrical. While hundreds of loanwords flowed into Uralic languages from Indo-European languages such as Germanic, Balto-Slavic, Iranian, and Proto-Indo-European itself, hardly any Uralic loanwords have entered the Indo-European languages (apart from a few relatively late dialectal loans into e.g. Russian and the Scandinavian languages). This strongly suggests that Uralic speakers have always been more receptive to ideas coming from Indo-European–speaking areas than the other way around. This inequality probably began when farming and the entire way of life that accompanies it reached Uralic-speaking territory via Indo-European–speaking territory, so that Uralic speakers, who traditionally were hunter-gatherers of the mixed and evergreen forest zone of northeastern Europe and gradually switched to an existence as sedentary farmers, were more likely to pick up ideas and the words that go with them from Indo-European than from anywhere else.

Farming requires a different mind-set from a hunter-gatherer existence. Farmers are generally sedentary, model the landscape, and have an agricultural calendar to determine their actions. Hunter-gatherers of the northern forest zone are generally nomadic, and rather than themselves modelling the natural environment they are modelled by it: their calendar depends on when and where a particular natural resource is available.(…)

All of this is no doubt a simplification of the thousands of years of associations between speakers of Uralic and speakers of Indo-European, but the loanword evidence strongly suggests that by and large relations between the two groups were highly unequal. The single direction in which loanwords flowed, and the mass of loanwords involved, can be compared with the relation between Latin and the vernacular languages in the Roman Empire, almost all of which disappeared in favour of Latin. It is therefore certain that groups of Uralic speakers switched to Indo-European. The question is whether we can trace those groups and, more particularly, whether Finnic speakers switching to Indo-European were involved in creating the Indo-European dialect we now know as Germanic.

Convergence of Finnic and Germanic

What both have in common is that the sound structures of Finnic and Germanic, which started from very different beginnings, apparently came to resemble one another significantly. If that is what we observe, we must conclude that both languages converged as a result of contact.

During the approximately five to six millennia that separate Proto-Uralic from Modern Finnish, there was only one episode during which the consonantal system underwent a dramatic overhaul. This episode separates the Finno-Saamic protolanguage, which is phonologically extremely conservative, from the Balto-Finnic protolanguage, which is very innovative.

finno-samic-consonants

By the time Finno-Saamic developed into Balto-Finnic, the consonant system was very different:

balto-finnic-consonants

In Balto-Finnic, the entire palatal series has been lost, apart from j, and the contrast between dentals and alveolars has disappeared: out of three different s-sounds only one remains. The fricatives ð and γ have been lost, and so has the velar nasal ŋ. The only increase has been in the number of long (geminate) consonants by the appearance of ss, mm, nn, and ll. The loss of separate alveolar and palatal series and the disappearance of ŋ could be conceived as convergences towards Proto-Germanic, which lacked such consonants. This is not obvious for the loss of the voiced fricatives γ, ð, which Proto-Germanic did possess. However, this way of comparing Balto-Finnic and Germanic is flawed in an important respect: what we are doing is assessing convergence by comparing the dynamic development from Finno-Saamic to Balto-Finnic to the static system of Proto-Germanic, as if Proto-Germanic is not itself the result of a set of changes to the ancestral Pre-Germanic consonantal system. If we wish to find out whether there was convergence and which language converged on which, what we should do, therefore, is to compare the dynamic development of Finno-Saamic to Balto-Finnic to the dynamic development of Pre-Germanic to Proto-Germanic, because only that procedure will allow us to state whether Balto-Finnic moved towards Proto-Germanic, or Proto-Germanic moved towards Balto-Finnic, or both moved towards a third language. The Pre-Germanic consonantal system can be reconstructed as follows: 7

pre-germanic-proto-germanic-verner-s-law

The slashes in the second and third rows indicate the uncertainty about the Proto-Indo-European nature of the sounds involved. (…)

What resulted was the following Proto-Germanic consonant system:

proto-germanic-consonant-system

We are now in a better position to answer the question whether Proto-Germanic and Balto-Finnic have converged. Three striking developments affected both languages:

  • Both languages lost the palatalized series of consonants (apart from j), which in both languages became non-palatalized.
  • Both languages developed an extensive set of long (geminate) consonants; Pre-Germanic had none, while Finno-Saamic already had a few.
  • Both languages developed an h.

These similarities between the languages are considerable.

The idea that perhaps both languages moved towards a lost third language, whose speakers may have been assimilated to both Balto-Finnic and Germanic, provides a fuller explanation but suffers from the drawback that it shifts the full burden of the explanation to a mysterious ‘language X’ that is called upon only in order to explain the developments in Proto-Germanic and Balto-Finnic. That comes dangerously close to circular reasoning.

Verner’s Law in Pre-Germanic

As we have seen in the preceding section, Verner’s law is a sound change that affected originally voiceless consonants, so *p , t , k , kj , kw, s of the Pre-Germanic system. These normally became the Proto-Germanic voiceless fricatives *f, θ, h, h, hw, s, respectively. But if *p, t, k etc. were preceded by an originally unstressed syllable, Verner’s law intervened and they were turned into voiced consonants. Those voiced consonants merged with the series *bh, dh, gh of the Pre-Germanic system and therefore subsequently underwent all changes that the latter did, turning out as *b/v , *d/ð , g/γ in the Proto-Germanic system (that is, v, ð, γ after a vowel and b, d, g in all other environments in the word). When *s was affected by Verner’s Law, a new phoneme *z arose. In a diagram:

pre-germanic-verner-s-law

While it is very common in the history of European languages for stress to influence the development of vowels, it only very rarely affected consonants in this part of the world. Verner’s law is a striking exception. It resembles a development which, on a much larger scale, affected Finno-Saamic: consonant gradation.(…)

In all Finno-Saamic languages, rhythmic gradation has become phonemic and fossilized. The connection between rhythmic gradation and Verner’s law is relatively straightforward: both processes involve changing a voiceless consonant after an unstressed syllable. (…)

We can therefore repeat for Proto-Uralic the argument that persuaded us earlier that gradation in Saami and Balto-Finnic must go back to the common Finno-Saamic protolanguage: the similarity of the gradation rules in Nganasan to those in Finno-Saamic is so specific and so detailed, and the phenomenon of gradation so rare in the languages of the world, that gradation must be reconstructed for the Uralic protolanguage.

Verner’s law turns all voiceless obstruents (Pre-Germanic *p, t, k, kj, kw, s) into voiced obstruents (ultimately Proto-Germanic *b/v , d/ð, g/γ, g/γ, gw, z) after a Pre-Germanic unstressed syllable. Rhythmic gradation turns all voiceless obstruents after an unstressed syllable into weak-grade consonants, which means that *p, t, k, s become Finnic *b/v , d/ð , g/γ, z. This is striking. Given the geographical proximity of Balto-Finnic and Germanic and given the rare occurrence of stress-related consonant changes in European languages, it would be unreasonable to think that Verner’s law and rhythmic gradation have nothing to do with one another.

It is very hard to accept, however, that gradation is the result of copying Verner’s law into Finnic. First of all, Verner’s law, which might account for rhythmic gradation, in no way accounts for syllabic gradation in Finnic. And, second, gradation can be shown to be an inherited feature of Finnic which goes all the way back to Proto-Uralic. Once one acknowledges that Verner’s law and gradation are causally linked and that gradation cannot be explained as a result of copying Verner’s law into Finnic, there remains only one possibility: Verner’s law is a copy of Finnic rhythmic gradation into Germanic. That means that we have finally managed to find what we were looking for all along: a Finnic sound feature in Germanic that betrays that Finnic speakers shifted to Germanic and spoke Germanic with a Finnic accent. The consequence of this idea is dramatic: since Verner’s law affected all of Germanic, all of Germanic has a Finnic accent.

indo-european-uralic-bell-beaker-corded-ware-migrations
Late Chalcolithic migrations ca. 2600-2250 BC.

On the basis of this evidence for Finnic speakers shifting to Germanic, it is possible to ascribe other, less specifically Finnic traits in Germanic to the same source. The most obvious trait is the fixation of the main stress on the initial syllable of the word. Initial stress is inherited in Finno-Saamic but was adopted in Germanic only after the operation of Verner’s law, quite probably under Finnic influence. The consonantal changes described in section V.3.1 can be attributed to Finnic with less confidence. The best case can be made for the development of geminate (double) consonants in Germanic, which did not inherit any of them, while Finno-Saamic inherited *pp, tt, kk, cc and took their presence as a cue to develop other geminates such as *nn and *ll . Possibly geminates developed so easily in Proto-Germanic because Finnic speakers (who switched to Germanic) were familiar with them. Other consonantal changes, such as the loss of the palatalized series in both Germanic and Balto-Finnic and the elimination of the different s- and c-phonemes, might have occurred for the same reason: if Balto-Finnic had undergone them earlier than Germanic, which we do not know, they could have constituted part of the Balto-Finnic accent in Germanic. An alternative take on those changes starts from the observation that they all constitute simplifications of an older, richer system of consonants. While simplifications can be and often are caused by language shift if the new speakers lacked certain phonemes in their original language, simplifications do not require an explanation by shift: languages are capable of simplifying a complex system all by themselves. Yet the similarities between the simplifications in Germanic and in Balto-Finnic are so obvious that one would not want to ascribe their co-occurrence to accidental circumstances.

Grimm’s Law in Proto-Germanic (speculative)

Voiceless lenis pronunciation of b, d, g is typical of the majority of German and Scandinavian dialects, so may well have been inherited from Proto-Germanic. Voiceless lenis is also the pronunciation that has been assumed to underlie the weak grades of Finno-Saamic single *p, t, k. If Proto-Germanic *b, d, g were indeed voiceless lenis, the single most striking result of the Germanic consonant shift is that it eliminated the phonological difference between voiced and voiceless consonants that Germanic had inherited from Proto-Indo-European (…) Since neither Finno-Saamic nor Balto-Finnic possessed a phonological difference between voiced and voiceless obstruents, its loss in Proto-Germanic can be regarded as yet another example of a Finnic feature in Germanic.

grimms-law

It is clear that this account of the first Germanic consonant shift as yet another example of Finnic influence is to some degree speculative. The point I am making is not that the Germanic consonant shift must be explained on the basis of Finnic influence, like Verner’s law and word-initial stress, only that it can be explained in this way, just like other features of the Germanic sound system discussed earlier, such as the loss of palatalized consonants and the rise of geminates.

A consequence of this account of the origins of the Proto-Germanic consonantal system is that the transition from Pre-Germanic to Proto-Germanic was entirely directed by Finnic. Or, to put it in less subtle words: Indo-European consonants became Germanic consonants when they were pronounced by Finnic speakers.

post-bell-beaker-europe
Post-Bell-Beaker Europe, after ca. 2200 BC.

The vocalic system, on the other hand, presented less difficulties for both, Indo-European and Uralic speakers, since it was quite similar.

Schrijver goes on to postulate certain asymmetric differences in loans, especially with regard to Proto-Germanic, Balto-Finnic, Proto-Saamic, Proto-Baltic, and later contacts, including a potential non-Uralic, non-IE substrate language to justify some of these, which may in turn be connected with Kroonen’s agricultural substrate hypothesis of Proto-Germanic, and thus also with the other surviving Scandinavian Neolithic cultures before the eventual simplification of the cultural landscape during the Bronze Age.

Conclusion on the origin of Germanic

The Finnic-Germanic contact situation has turned out to be of a canonical type. To Finnic speakers, people who spoke prehistoric Germanic and its ancestor, Pre-Germanic, must have been role models. Why they were remains unclear. In the best traditions of Uralic–Indo-European contacts, Finnic speakers adopted masses of loanwords from (Pre-)Germanic. Some Finnic speakers even went a crucial step further and became bilingual: they spoke Pre-Germanic according to the possibilities offered by the Finnic sound system, which meant they spoke with a strong accent. The accent expressed itself as radical changes in the Pre-Germanic consonantal system and no changes in the Pre-Germanic vowel system. This speech variety became very successful and turned an Indo-European dialect into what we now know as Germanic. Bilingual speakers became monolingual speakers of Germanic.

What we do not know is for how long Finnic-Germanic bilingualism persisted. It is possible that it lasted for some time because both partners grew more alike even with respect to features whose origin we cannot assign to either of them (loss of palatalized consonants): this suggests, perhaps, that both languages became more similar because generally they were housed in the same brain. What we can say with more confidence is that the bilingual situation ultimately favoured Germanic over Finnic: loanwords continued to flow in one direction only, from Germanic to Finnic, hence it is clear that Germanic speakers remained role models.

This is as far as the linguistic evidence can take us for the moment.

Based on archaeology and genetics, I think we can say that the close North-West Indo-European – Proto-Finnic interaction in Scandinavia lasted for hundreds of years, during the time when a unifying Nordic culture and language developed from Bell Beaker maritime elites dominating over Corded Ware groups.

As we know, Uralic languages were in close contact with Middle PIE, and also later with Proto-Indo-Iranian. This Pre-Germanic development in Scandinavia is therefore another hint at the identification of a rather early Proto-Finnic spoken in the Baltic area – potentially then by Battle Axe groups – , and thus the general identification of Uralic expansion with the different Corded Ware groups.

NOTE. The ‘common’ loss of certain palatals, which Schrijver interprets as a change of Pre-Germanic from the inherited Proto-Indo-European, may in fact not be such – in the opinion of bitectalists, including us, and especially taking the North-West Indo-European reconstruction and the Corded Ware substrate hypothesis into account – , so this effect would be a rather unidirectional shift from Finnic to Germanic. On the other hand, certain palatalization trends which some have described for Germanic could in fact be explained precisely by this bidirectional influence.

Related:

On Proto-Finnic language guesstimates, and its western homeland

bronze_age_early-sejma-turbino

Recent chapter The Indo-Europeans and the Non-Indo-Europeans in Prehistoric Northern Europe, by Petri Kallio, In: Language and Prehistory of the Indo- European Peoples: A Cross-Disciplinary Perspective, Copenhagen (2017).

Interesting excerpts (emphasis mine), especially when read in combination with the most recent papers on Early Indo-Iranian, Corded Ware, and Fennoscandian genomes:

Like the Indo-Europeanists, also the Uralicists suffer from their “school who wants it large and wants it early”. This time, however, the desired homeland is even larger and earlier, covering the whole northern half of Europe already at the end of the Ice Age (Wiik 2002). As a Finn, admittedly, I find such an idea very flattering indeed. As a historical linguist, however, I also find it absurd for the same reasons which I already gave above in the case of the Indo-Europeans.

True, linguistic palaeontology is less helpful in the case of the Uralians, even though especially Common Uralic *pata ‘clay pot’ and *wäśkä ‘copper’ indicate that Proto-Uralic was not spoken before the Subneolithic period, which in the East-Baltic area is dated about 5300–3200 BC. However, the most valuable evidence comes from the earliest Indo-European loanwords in the Uralic languages, which show that Proto-Uralic cannot have been spoken much earlier than Proto-Indo-European dated about 3500 BC (Koivulehto 2001: 235, 257).

As the same loanword evidence naturally also shows that the Uralic and Indo-European homelands were not located far from one another, the Uralic homeland can most likely be located in the Middle and Upper Volga region, right north of the Indo-European homeland*. From the beginning of the Subneolithic period about 5900 BC onwards, this region was an important innovation centre, from where several cultural waves spread to the Finnish Gulf area, such as the Sperrings Ware wave about 4900 BC, the Combed Ware wave about 3900 BC, and the Netted Ware wave about 1900 BC (Carpelan & Parpola 2001: 78–90).

* Interestingly, the only Uralicists who generally reject the Central Russian homeland are the Russian ones who prefer the Siberian homeland instead. Some Russians even advocate that the Central Russian homeland is only due to Finnish nationalism or, as one of them put it a bit more tactfully, “the political and ideological situation in Finland in the first decades of the 20th century” (Napolskikh 1995: 4). Still, some Finns (and especially those who also belong to the “school who wants it large and wants it early”) simultaneously advocate that exactly the same Central Russian homeland is due to Finnlandisierung (Wiik 2001: 466). Fortunately, I do not even need to resort to playing the politics card myself, because there is enough convincing evidence for the Central Russian homeland anyway.

Remarkably, the loanword evidence furthermore suggests that the ancestors of Finnic and Saamic had at least phonologically remained very close to Proto-Uralic as late as the Bronze Age (ca. 1700–500 BC). In particular, certain loanwords, whose Baltic and Germanic sources point to the first millennium BC, after all go back to the Finno-Saamic proto-stage, which is phonologically almost identical to the Uralic proto-stage (see especially the table in Sammallahti 1998: 198–202). This being the case, Dahl’s wave model could perhaps have some use in Uralic linguistics, too.

Even though Bronze-Age Finnic and Saamic were still two dialects rather than two languages, it does not mean that they would still have been spoken in a geographically limited area. On the contrary, their Indo-European loanwords dating to this period indicate that their speech areas were already geographically separate. The fact that at that time both Baltic and Germanic influenced Finnic much more strongly than Saamic must be considered a crucial piece of information when we are trying to locate the Finnic and Saamic homelands.

Iron Age migrations in Europe.

(…)the fact that Palaeo-Germanic loanwords are much more numerous in Finnic than in Saamic must lead to the same conclusion. As I noted above, the most likely Palaeo-Germanic speaking carriers of the Nordic Bronze culture (ca. 1700–500 BC) spread from Scandinavia to the Finnish and Estonian coastal areas. As they never spread any further to the east than as far as the bottom of the Finnish Gulf, the idea that the Finnic homeland included neither Finland nor Estonia completely fails to explain the very existence of Palaeo-Germanic loanwords, whose quantity and quality in Finnic presuppose a superstrate rather than an adstrate.

(…) as the Nordic Bronze culture influenced coastal Finland much more strongly than it did coastal Estonia, the idea that the Finnic homeland did not include Finland but Estonia alone similarly fails to explain the very strength of the Bronze-Age Palaeo-Germanic superstrate in Finnic, which can indeed be compared with the Medieval French superstrate in English, for instance (Kallio 2000: 96–97). From a Germanicist point of view, therefore, Itkonen’s theory concerning the Finnic homeland does not only seem to be the best but also the only alternative (Koivulehto 1984: 198–200).

As the same can now also be said about the Indo-Europeanization of the Baltic speech area, the fact that Baltic and Finnic are the most conservative branches of their language families and that they have relatively few substrate words may really be due to exactly the same reason, namely that before their arrival the East-Baltic region was still very sparsely populated by Subneolithic hunter-fisher-gatherers, whose linguistic influence on the newcomers was therefore rather limited. On the other hand, as these language shifts already took place millennia ago, there has been a lot of time for the Baltic and Finnic speakers to replace most of their old substrate words by all kinds of new lexical innovations.

Speaking of loanword evidence, the Aikios and especially Saarikivi (2004b) have furthermore argued that the Indo-Iranian loanwords occurring in Finnic and/or Saamic alone force us to locate the Finnic and Saamic homelands further to the east (e.g. near the White Lake). Still, I fail to see why the Indo-Iranian loanwords counted in dozens should be more relevant in locating these two homelands than the Germanic loanwords counted in hundreds. Besides, the Indo-Iranian loanwords mainly consist of cultural borrowings which do not necessarily presuppose a superstrate but only an adstrate. Moreover, they must be dated so much earlier than Vedic Sanskrit (ca. 1500–1000 BC) and Gathic Avestan (ca. 1000–800 BC) anyway that their spread can very well be connected with the abovementioned Netted Ware wave about 1900 BC.

An interesting read, where the author expressly refers to the many political (nationalist) and xenophobic overtones (including his own) that arise in ethnolinguistic identifications of prehistoric cultures.

We are seeing how the newest dialectalisation trends want it ‘late and small’, and ‘late’ corresponds smoothly with the most recent genomic findings involving Chalcolithic and Bronze Age expansions.

In the Uralic case, in North-Eastern Europe only Corded Ware migrants are known to have expanded within a suitable time frame into the region, and their patrilineal descendants show a widespread distribution in the region during the Bronze Age.

Also, if Proto-Finnic is coeval with Pre-Proto-Germanic, and expanded from the western part of North-East Europe (necessarily including the Gulf of Finland), well… You know the drill.

Of course, regarding Proto-Indo-European and Uralic, there are also a lot of people who still want itlarge and early‘ – and the most recent research won’t deter them from such proposals.

Related:

Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia

Open access preprint at bioRxiv, Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe, by Lamnidis et al. (2018).

Abstract (emphasis mine):

European history has been shaped by migrations of people, and their subsequent admixture. Recently, evidence from ancient DNA has brought new insights into migration events that could be linked to the advent of agriculture, and possibly to the spread of Indo-European languages. However, little is known so far about the ancient population history of north-eastern Europe, in particular about populations speaking Uralic languages, such as Finns and Saami. Here we analyse ancient genomic data from 11 individuals from Finland and Northwest Russia. We show that the specific genetic makeup of northern Europe traces back to migrations from Siberia that began at least 3,500 years ago. This ancestry was subsequently admixed into many modern populations in the region, in particular populations speaking Uralic languages today. In addition, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age than today, which adds to historical and linguistic evidence for the population history of Finland.

Interesting excerpts (edited):

While the Siberian genetic component described here was previously described in modern-day populations from the region, we gain further insights into its temporal depth. Our data suggest that this fourth genetic component found in modern-day north-eastern Europeans arrived in the area around 4,000 years ago at the latest, as illustrated by ALDER dating using the ancient genome-wide data from Bolshoy Oleni Ostrov. The upper bound for the introduction of this component is harder to estimate. The component is absent in the Karelian hunter-gatherers (EHG) 3 dated to 8,300-7,200 yBP as well as Mesolithic and Neolithic populations from the Baltics from 8,300 yBP and 7,100-5,000 yBP respectively. While this suggests an upper bound of 5,000 yBP for the arrival of Siberian ancestry, we cannot exclude the possibility of its presence even earlier, yet restricted to more northern regions, as suggested by its absence in populations in the Baltic during the Bronze Age. Our study also presents the earliest occurrence of the Y-chromosomal haplogroup N1c in Fennoscandia. N1c is common among modern Uralic speakers, and has also been detected in Hungarian individuals dating to the 10th century, yet it is absent in all published Mesolithic genomes from Karelia and the Baltics.

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period. Contacts between Siberia and Europe are also recognised in linguistics. The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

admixture-uralic
Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.

The novel genome-wide data here presented from ancient individuals from Finland opens new insights into Finnish population history. Two of the three higher coverage individuals and all six low coverage individuals from Levänluhta showed low genetic affinity to modern-day Finnish speakers of the area. Instead, an increased affinity was observed to modern-day Saami speakers, now mostly residing in the north of the Scandinavian Peninsula. These results suggest that the geographic range of the Saami extended further south in the past, and hints at a genetic shift at least in the western Finnish region during the Iron Age. The findings are in concordance with the noted linguistic shift from Saami languages to early Finnish. Further ancient DNA from Finland is needed to conclude to what extent these signals of migration and admixture are representative of Finland as a whole.

fennoscandia-pca
PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple.

The two samples of haplogroup N1c1a1a-L392/L1026, dated ca. 1500 BC, come from the site Bolshoy Oleniy Ostrov, in the Kola Peninsula.

Bolshoy Oleniy Ostrov (Great Reindeer Island), situated in the Kola Bay of the Barents Sea and separated from the mainland by Yekarerininsky Island and two straits, harbors the ancient cemetery of an unknown Early Metal Age culture. The preservation of artifacts made from bone and antler, wooden structures, as well as human remains is remarkable for the location and age this site represents. Altogether 19 skeletons of adults and children have been recognized from both single and collective burials of the site, together with more than 250 artifacts. (…) Apart from these excavations, approximately 25 burials were revealed in 1934 during the construction of fortifications. (…) Radiocarbon dates are provided by Moiseyev and Khartanovich in their 2012 study, placing the site in middle to the late 2nd millennium BC (…)

After seing how Late Indo-European languages spread with Yamna and (mainly) R1b-L23 lineages, we are now obtaining proof of how Siberian ancestry – likely accompanying N1c-L392 lineages – was probably related to an early archaeological Siberian influence in the easternmost region of North-East Europe, seen also probably in linguistics.

NOTE. Whereas I proposed – based mainly on common guesstimates – that R1a-M417 and EHG ancestry might have signaled the arrival of an early Yukaghir substratum to NE Europe, later acquired by Uralic spreading over this territory, while N1c1a1a lineages with the Seima-Turbino phenomenon might have given Uralic its later Altaic traits, it is indeed possible – and more likely with the findings in this paper – that N1c1a1a lineages may have in fact spread Yukaghir languages, especially if (like the Leiden school) one supports an Indo-Uralic community.

The linguistic effect of this migration may depend on one’s preferred model for Proto-Uralic and its strata, and especially on one’s position in the Proto-Uralic vs. Proto-Uralo-Yukaghir controversy. Although I really didn’t have a strong opinion on this matter, it is clear from my texts that (unlike Kortlandt) I didn’t consider Yukaghir to share a common ancestor with Uralic languages. What genomics is showing right now seems to me directly translatable to a linguistic model, and we should therefore reject an original Proto-Uralo-Yukaghir community.

Also, it seems that the Finnish population peak which expanded today’s prevalent N1c-L392 lineages – after the Iron Age bottleneck which likely reduced its haplogroup diversity – may have been associated with the event that displaced the Saami population from Finland after ca. 1000 AD.

I think it is becoming still clearer where Uralic languages came from.

Related:

New preprint papers on Finland’s population history and disease, skin pigmentation in Africa, and genetic variation in Thailand hunter-gatherers

finland-genetics

New and interesting research these days in BioRxiv:

Haplotype sharing provides insights into fine-scale population history and disease in Finland, by Martín et al. (2017):

Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assemble a comprehensive view of recent population history (≤100 generations), the timespan during which most rare disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to geographically and linguistically adjacent countries with different population histories, including 16,060 Swedes, Estonians, Russians, and Hungarians. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from over 25,000 individuals, we find that while haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland share several-fold more of their genome in identity-by-descent (IBD) segments than individuals from southwest regions containing the major cities of Helsinki and Turku. We estimate recent effective population size changes over time across regions of Finland and find significant differences between the Early and Late Settlement Regions as expected; however, our results indicate more continuous gene flow than previously indicated as Finns migrated towards the northernmost Lapland region. Lastly, we show that haplotype sharing is locally enriched among pairs of individuals sharing rare alleles by an order of magnitude, especially among pairs sharing rare disease causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.

finland-migration-haplotype
Migration rates and haplotype sharing within Finland and between neighboring countries. A) Map of regional Finnish, Swedish, and Estonian birthplaces Purple triangle indicates St. Petersburg, Russia. Hungary not shown. 1 Finnish, Swedish, and Estonian region labels are shown in Table S3. B) Principal components analysis (PCA) of unrelated individuals, colored by birth region as shown in A) if available or country otherwise. C-D) Migration rates inferred with EEMS. Values and colors indicate inferred rates, for example with +1 (shades of blue) indicating an order of magnitude more migration at a given point on average, and shades of orange indicating migration barriers. C) Migration rates among municipalities in Finland. D) Migration rates within and between Finland, Sweden, Estonia, and St. Petersburg, Russia. Available under a CC-BY 4.0 International license.

Interesting to understand this paper is the whole research published by the Institute for Molecular Medicine Finland (FIMM): their website contains detailed research on Finland’s recent genetic history.

NOTE: The featured image of this article contains three figures from the FIMM (License CC-BY 4.0). Left: Position of the points represents the locations of 1042 Finnish individuals. By clustering the individuals into two groups based on genome data we see a split between eastern (blue) and western (red) parts. Individuals who show considerable relatedness to both groups have been colored with cyan. Both parents of each individual were born close to each other and based on the parents’ birth years we can infer that we are looking at the genetic structure present in Finland before 1950s. Center: An estimated borderline of the Treaty of Nöteborg on top of the map from the left. The border line is drawn between Jääski (28.92 N, 61.04 E) and Pyhäjoki (24.26 N, 64.46 E). Right: The settlement border divides Finland into the early settlement region (to west and south of the border) and the late settlement region (to east and north of the border) (Jutikkala 1933, s. 91). We see that Southern Savo (in south-eastern part of the early settlement) is among the only parts of the early settlement region that is dominated by the eastern genetic group. Information from Matti Pirinen and Sini Kerminen, 24.5.2017.

An Unexpectedly Complex Architecture for Skin Pigmentation in Africans, by Martin et al (2017):

Fewer than 15 genes have been directly associated with skin pigmentation variation in humans, leading to its characterization as a relatively simple trait. However, by assembling a global survey of quantitative skin pigmentation phenotypes, we demonstrate that pigmentation is more complex than previously assumed with genetic architecture varying by latitude. We investigate polygenicity in the Khoe and the San, populations indigenous to southern Africa, who have considerably lighter skin than equatorial Africans. We demonstrate that skin pigmentation is highly heritable, but that known pigmentation loci explain only a small fraction of the variance. Rather, baseline skin pigmentation is a complex, polygenic trait in the KhoeSan. Despite this, we identify canonical and non-canonical skin pigmentation loci, including near SLC24A5, TYRP1, SMARCA2/VLDLR, and SNX13 using a genome-wide association approach complemented by targeted resequencing. By considering diverse, under-studied African populations, we show how the architecture of skin pigmentation can vary across humans subject to different local evolutionary pressures.

Contrasting maternal and paternal genetic variation of hunter-gatherer groups in Thailand, by Kutanan et al. (2017):

The Maniq and Mlabri are the only recorded nomadic hunter-gatherer groups in Thailand. Here, we sequenced complete mitochondrial (mt) DNA genomes and ~2.364 Mbp of non-recombining Y chromosome (NRY) to learn more about the origins of these two enigmatic populations. Both groups exhibited low genetic diversity compared to other Thai populations, and contrasting patterns of mtDNA and NRY diversity: there was greater mtDNA diversity in the Maniq than in the Mlabri, while the converse was true for the NRY. We found basal uniparental lineages in the Maniq, namely mtDNA haplogroups M21a, R21 and M17a, and NRY haplogroup K. Overall, the Maniq are genetically similar to other negrito groups in Southeast Asia. By contrast, the Mlabri haplogroups (B5a1b1 for mtDNA and O1b1a1a1b and O1b1a1a1b1a1 for the NRY) are common lineages in Southeast Asian non-negrito groups, and overall the Mlabri are genetically similar to their linguistic relatives (Htin and Khmu) and other groups from northeastern Thailand. In agreement with previous studies of the Mlabri, our results indicate that the Malbri do not directly descend from the indigenous negritos. Instead, they likely have a recent origin (within the past 1,000 years) by an extreme founder event (involving just one maternal and two paternal lineages) from an agricultural group, most likely the Htin or a closely-related group.

Related:

Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population

corded-ware-migration-yamna

Open article at Scientific Reports (Nature): Identification and analysis of mtDNA genomes attributed to Finns reveal long-stagnant demographic trends obscured in the total diversity, by Översti et al. (2017).

Of special interest is its depiction of Finland’s past as including the expansion of Corded Ware population of mtDNA U5b1b2 (and probably Y-DNA R1a-M417 subclades), most likely Uralic speakers of the Forest Zone, to the north of the Yamna culture (where Late Proto-Indo-European was spoken).

A later expansion of other subclades – particularly Y-DNA N1c -, was probably associated with the later western expansion of the Eurasian Seima-Turbino phenomenon, and its current prevalence in Finnish Y-DNA haplogroups might have been the consequence of the population decline ca. 1500 BC, and later Iron Age population bottleneck (with the population peak ca. 500 AD) described in the article.

That would more naturally explain the ‘cultural diffusion’ of Finnic languages into invading eastern N1c lineages, a diffusion which would have been in fact a long-term, quite gradual replacement of previously prevalent Y-DNA R1a subclades in the region, as supported by the prevalent “steppe” component in genome-wide ancestry of Finns.

Therefore, there were probably no sudden, strong population (and thus cultural) changes associated with the arrival of N1c lineages, like the ones seen with R1a (Corded Ware / Uralic) and R1b (Yamna / Proto-Indo-European) expansions in Europe.

How the Saami fit into this scheme is not yet obvious, though.

Abstract:

In Europe, modern mitochondrial diversity is relatively homogeneous and suggests an ubiquitous rapid population growth since the Neolithic revolution. Similar patterns also have been observed in mitochondrial control region data in Finland, which contrasts with the distinctive autosomal and Y-chromosomal diversity among Finns. A different picture emerges from the 843 whole mitochondrial genomes from modern Finns analyzed here. Up to one third of the subhaplogroups can be considered as Finn-characteristic, i.e. rather common in Finland but virtually absent or rare elsewhere in Europe. Bayesian phylogenetic analyses suggest that most of these attributed Finnish lineages date back to around 3,000–5,000 years, coinciding with the arrival of Corded Ware culture and agriculture into Finland. Bayesian estimation of past effective population sizes reveals two differing demographic histories: 1) the ‘local’ Finnish mtDNA haplotypes yielding small and dwindling size estimates for most of the past; and 2) the ‘immigrant’ haplotypes showing growth typical of most European populations. The results based on the local diversity are more in line with that known about Finns from other studies, e.g., Y-chromosome analyses and archaeology findings. The mitochondrial gene pool thus may contain signals of local population history that cannot be readily deduced from the total diversity.

From its results:

In general, there appears to be two loose and largely overlapping clusters among the Finn-characteristic haplogroups: the first between 1,000–2,000 ybp and the second around 3,300–5,500 ybp. The age of the older cluster coincides temporally with the arrival of the Corded-Ware culture and, notably, the spread of agriculture in Finland. The arrival and spread of agriculture, temporally corresponding with the age estimates for most of the haplogroups characteristic of Finns, might be a sign of population size increase enabled by the new mode of subsistence, resulting in reduced drift and accumulation of genetic diversity in the population.

(…)

Another insight in the past population sizes in Finland is based on radiocarbon-dated archaeological findings in different time periods. These analyses suggest two prehistoric population peaks in Finland, the Stone Age peak (c. 5,500 ybp) and the Metal Age peak (~1,500 ybp). Both of these peaks were followed by a population decline, which appears to have reached its ebb around 3,500 ybp. These developments are not distinguishable in the BSPs. However, these ages correspond well to the two haplogroup age clusters described above. The presumably less severe Iron Age population bottleneck seen in the archaeological data, 1,500–1,300 ybp, temporally coincides with the population size reduction visible for the Finn-characteristic subhaplogroups.

Related:

Discovered via Eurogenes.