Iberia: East Bell Beakers spread Indo-European languages; Celts expanded later

iberia-migrations-celts

New paper (behind paywall), The genomic history of the Iberian Peninsula over the past 8000 years, by Olalde et al. Science (2019).

NOTE. Access to article from Reich Lab: main paper and supplementary materials.

Abstract:

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.

Interesting excerpts:

From the Bronze Age (~2200–900 BCE), we increase the available dataset (6, 7, 17) from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period (Fig. 1, C and D), albeit with less impact in the south (table S13). The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry (Fig. 2B). These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups (Fig. 2B and fig. S6).

Y-chromosome turnover was even more pronounced (Fig. 2B), as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269. These patterns point to a higher contribution of incoming males than females, also supported by a lower proportion of nonlocal ancestry on the X-chromosome (table S14 and fig. S7), a paradigm that can be exemplified by a Bronze Age tomb from Castillejo del Bonete containing a male with Steppe ancestry and a female with ancestry similar to Copper Age Iberians.

iberian-adna

For the Iron Age, we document a consistent trend of increased ancestry related to Northern and Central European populations with respect to the preceding Bronze Age (Figs. 1, C and D, and 2B). The increase was 10 to 19% (95% confidence intervals given here and in the percentages that follow) in 15 individuals along the Mediterranean coast where non-Indo-European Iberian languages were spoken; 11 to 31% in two individuals at the Tartessian site of La Angorrilla in the southwest with uncertain language attribution; and 28 to 43% in three individuals at La Hoya in the north where Indo-European Celtiberian languages were likely spoken (fig. S6 and tables S11 and S12).

This trend documents gene flow into Iberia during the Late Bronze Age or Early Iron Age, possibly associated with the introduction of the Urnfield tradition (18). Unlike in Central or Northern Europe, where Steppe ancestry likely marked the introduction of Indo-European languages (12), our results indicate that, in Iberia, increases in Steppe ancestry were not always accompanied by switches to Indo-European languages.

I think it is obvious they are extrapolating the traditional (not that well-known) linguistic picture of Iberia during the Iron Age, believing in continuity of that picture (especially non-Indo-European languages) during the Urnfield period and earlier.

What this data shows is, as expected, the arrival of Celtic languages in Iberia after Bell Beakers and, by extension, in the rest of western Europe. Somewhat surprisingly, this may have happened during the Urnfield period, and not during the La Tène period.

Also important are the precise subclades:

We thus detect three Bronze Age males who belonged to DF27 (154, 155), confirming its presence in Bronze Age Iberia. The other Iberian Bronze Age males could belong to DF27 as well, but the extremely low recovery rate of this SNP in our dataset prevented us to study its true distribution. All the Iberian Bronze Age males with overlapping sequences at R1b-L21 were negative for this mutation. Therefore, we can rule out Britain as a plausible proximate origin since contemporaneous British males are derived for the L21 subtype.


New open access paper Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula, by Villalba-Mouco et al. Cell (2019):

BAL0051 could be assigned to haplogroup I1, while BAL003 carries the C1a1a haplogroup. To the limits of our typing resolution, EN/MN individuals CHA001, CHA003, ELT002 and ELT006 share haplogroup I2a1b, which was also reported for Loschbour [73] and Motala HG [13], and other LN and Chalcolithic individuals from Iberia [7, 9], as well as Neolithic Scotland, France, England [9], and Lithuania [14]. Both C1 and I1/ I2 are considered typical European HG lineages prior to the arrival of farming. Interestingly, CHA002 was assigned to haplogroup R1b-M343, which together with an EN individual from Cova de Els Trocs (R1b1a) confirms the presence of R1b in Western Europe prior to the expansion of steppe pastoralists that established a related male lineage in Bronze Age Europe [3, 6, 9, 13, 19]. The geographical vicinity and contemporaneity of these two sites led us to run genomic kinship analysis in order to rule out any first or second degree of relatedness. Early Neolithic individual FUC003 carries the Y haplogroup G2a2a1, commonly found in other EN males from Neolithic Anatolia [13], Starçevo, LBK Hungary [18], Impressa from Croatia and Serbia Neolithic [19] and Czech Neolithic [9], but also in MN Croatia [19] and Chalcolithic Iberia [9].

See also

Early Medieval Alemannic graveyard shows diverse cultural and genetic makeup

alemannic-niederstotzingen

Open access Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard, by O’Sullivan et al., Science (2018) 4(9):eaao1262

Interesting excerpts:

Introduction

The Alemanni were a confederation of Germanic tribes that inhabited the eastern Upper Rhine basin and surrounding region (Fig. 1) (1). Roman ethnographers mentioned the Alemanni, but historical records from the 3rd to the 6th century CE contain no regular description of these tribes (2). The upheaval that occurred during the European Migration Period (Völkerwanderung) partly explains the interchangeability of nomenclature with the contemporaneous Suebi people of the same region and periods of geographic discontinuity in the historical record (3). This diverse nomenclature reflects centuries of interactions between Romans and other Germanic groups such as the Franks, Burgundians, Thuringians, Saxons, and Bavarians. With the defeat of the Alemanni by Clovis I of the Franks in 497 CE, Alamannia became a subsumed Duchy of the Merovingian Kingdom. This event solidified the naming of the inhabitants of this region as Alemanni (3). From the 5th to the 8th century CE, integration between the Franks and the Alemanni was reflected by changed burial practices, with households (familia) buried in richly furnished graves (Adelsgrablege) (4). The splendor of these Adelsgräber served to demonstrate the kinship structure, wealth, and status of the familia and also the power of the Franks (Personenverbandstaaten, a system of power based on personal relations rather than fixed territory). Because inclusion in familia during the Merovingian period was not necessarily based on inheritance or provenance, debate continues on the symbolism of these burial rites (5).

The 7th century CE Alemannic burial site at Niederstotzingen in southern Germany, used circa 580 to 630 CE, represents the best-preserved example of such an Alemannic Adelsgrablege. (…)

alemannic-haplogroup

Strontium and oxygen isotope data from the enamel showed that most individuals are local rather than migrants (Table 1, table S2, and fig. S2), except for individuals 10 and 3B. (…)

Analysis of uniparental markers

mtDNA haplogroups were successfully assigned to all 13 individuals (Table 1). Notably, there are three groups of individuals that share, among the assigned positions, identical haplotypes: individuals 4, 9, and 12B in haplogroup X2b4; individuals 1 and 3A in haplogroup K1a; and individuals 2 and 5 in haplogroup K1a1b2a1a.

Most individuals belong to the R1b haplogroup (individuals 1, 3A, 3C, 6, 9, 12A, 12B, and 12C), which has the highest frequency (>70%) in modern western European populations (20). Five individuals (1, 3A, 9, 12B, and 12C) share the same marker (Z319) defining haplogroup R1b1a2a1a1c2b2b1a1 [=ISOGG R1b1a1a2a1a1c2b2b1a1a] (…) individuals 1, 3A, and 6 have R1b lineage and marker Z347 (R1b1a2a1a1c2b2b) [=ISOGG R1b1a1a2a1a1c2b2b], which belongs to the same male ancestral lineage as marker Z319 [i.e. all R1b-U106]. Individual 3B instead carries NRY haplogroup G2a2b1, which is rare in modern north, west, and east European populations (<5%), only reaching common abundance in the Caucasus (>70%), southern Europe, and the Near East (10 to 15%)

Genome-wide capture

alemannic-pca
PCA plot of Niederstotzingen individuals, modern west Eurasians, and selected ancient Europeans. Genome-wide ancient data were projected against modern west Eurasian populations. Colors on PCA indicate more general Eurasian geographic boundaries than countries: dark green, Caucasus; bright green, eastern Europe; yellow, Sardinia and Canary Islands; bright blue, Jewish diaspora; bright purple, western and central Europe; red, southern Europe; dark brown, west Asia; light purple, Spain; dark purple, Russia; pale green, Middle East; orange, North Africa. The transparent circles serve to highlight the genetic overlap between regions of interest.

Genomically, the individuals buried at Niederstotzingen can be split into two groups: Niederstotzingen North (1, 3A, 6, 9, 12B, and 12C), who have genomic signals that most resemble modern northern and eastern European populations, and Niederstotzingen South (3B and 3C), who most resemble modern-day Mediterraneans, albeit with recent common ancestry to other Europeans. Niederstotzingen North is composed of those buried with identifiable artifacts: Lombards (individual 6), Franks (individual 9), and Byzantines (individuals 3A and 12B), all of whom have strontium and oxygen isotope signals that support local provenance (fig. S2) (8). Just two individuals, 3B (Niederstotzingen South) and 10 (no sufficient autosomal data, with R1 Y-haplogroup), have nonlocal strontium isotope signals. The δ18O values suggest that individuals 10 and 3B may have originated from a higher-altitude region, possibly the Swiss-German Alpine foothills (8). Combined with the genome affinity of individual 3B to southern Europeans, these data provide direct evidence for incoming mobility at the site and for contact that went beyond exchange of grave goods (4). Familia had holdings across the Merovingian Kingdom and traveled long distances to maintain them; these holdings could have extended from northern Italy to the North Sea. Nobles displayed and accrued power by recruiting outside individuals into the household as part of their traveling retinue. Extravagant burial rites of these familia are symbolic evidence of the Frankish power systems based on people Personenverbandstaaten imposed from the 5th until the 8th century CE (4). The assignment of grave goods and the burial pattern do not follow any apparent pattern with respect to genetic origin or provenance, suggesting that relatedness and fellowship were held in equal regard at this burial.

Kinship

Both kinship estimates show first-degree relatedness for pairs 1/3A, 1/6, 1/9, 3A/9, and 9/12B and second-degree relatedness for 1/12B, 3A/6, 3A/12B, and 6/9. Except for 12C, all of the Niederstotzingen North individuals are detectably and closely related. The Niederstotzingen South individuals are not detectably related to each other or any other members of the cohort. (…)

We demonstrated that five of the individuals (1, 3A, 6, 9, and 12B) were kin to at least second degree (Fig. 3 and tables S15 and S16); four of these were buried with distinguishable grave goods (discussed above and in fig. S1). These data show that at Niederstotzingen, at least in death, diverse cultural affiliations could be appropriated even within the same family across just two generations. This finding is somewhat similar to the burial of the Frankish King Childeric in the 5th century CE with a combination of Frankish and Byzantine grave goods that symbolized both his provenance and military service to the Romans (4). The burial of three unrelated individuals (3B, 3C, and 12C) in multiple graves beside the rest of the cohort would imply that this Alemannic group buried their dead based on a combination of familial ties and fellowship. One explanation could be that they were adopted as children from another region to be trained as warriors, which was a common practice at the time; these children were raised with equal regard in the familia (2, 4).

alemannic-family
Reconstruction of first- and second-degree relatedness among all related individuals. Bold black lines and blue lines indicate first- and second-degree relatedness, respectively. Dark blue squares are identified males with age-at-death estimates years old (y.o.), mtDNA haplotypes, and NRY haplogroups. Red circles represent unidentified females that passed maternal haplotypes to their offspring. The light square represents one male infant that shares its maternal haplotype with individuals 12B and 9. N.D., not determined.

Conclusion

The 7th century CE burial in Niederstotzingen represents the best-preserved example of an Alemannic Adelsgrablege. The observation that burial of the remains was close to a Roman crossroads, orientated in a considered way, and associated with rich grave goods points to a noble gravesite of an Alemannic familia with external cultural influences. The high percentage of males in the burial site suggests that this site was intended for a ranked warrior group, meaning that the individuals are not representative of the population existing in 7th century CE Alemannia. The kinship estimates show that kinship structure was organized around the familia, which is defined by close association of related and unrelated individuals united for a common purpose. The apparent kinship structure is consistent with the hypothesized Personenverbandstaaten, which was a system by which Merovingian nobles enforced rule in the Duchies of Alemannia, Thuringia, Burgundy, and elsewhere. Beyond the origin of the grave goods, we show isotopic and genetic evidence for contact with communities external to the region and evidence for shared ancestry between northern and southern Europeans. This finding invites debate on the Alemannic power system that may have been highly influenced by mobility and personal relations.

Texts and images distributed under the terms of the Creative Commons Attribution-NonCommercial license.

Related

Origins of equine dentistry in Mongolia in the early first millennium BC

New paper (behind paywall) Origins of equine dentistry, by Taylor et al. PNAS (2018).

Interesting excerpts (emphasis mine):

The practice of horse dentistry by contemporary nomadic peoples in Mongolia, coupled with the centrality of horse transport to Mongolian life, both now and in antiquity, raises the possibility that dental care played an important role in the development of nomadic life and domestic horse use in the past. To investigate, we conducted a detailed archaeozoological study of horse remains from tombs and ritual horse inhumations across the Mongolian Steppe, assessing evidence for anthropogenic dental modifications and comparing our findings with broader patterns in horse use and nomadic material culture.

We conducted a detailed study of archaeological horse collections spanning the past 3,200 y, including those from the Late Bronze Age DSK complex (ca. 1200–700 BCE, n = 70), Early Iron Age Slab Burial culture (ca. 700–300 BCE, n = 4), Pazyryk culture (ca. 600–200 BCE, n = 2), Late Iron Age Xiongnu Empire (ca. 200 BCE–200 CE, n = 3), Early Middle Ages post-Xiongnu period (ca. 100–550 CE, n = 3), and Turkic Khaganate (ca. 600–800 CE, n = 3).

horse-riding-mongolia
A (top): Contemporary Mongolian herder engaged in horseback riding, using left-handed rein position causing asymmetric pressures to the horse’s skull. Photo by Orsoo Bayarsaikhan. B(center) contemporary Mongolian horse skulls, showing asymmetric and skewed thinning to the nasal bones caused by bridle pressure. C(bottom) Asymmetric deformation to the cranial bones of a Deer Stone-Khirigsuur horse (left), alongside an early Middle Ages horse with a similar feature (right). Modified from Taylor and Tuvshinjargal (2018).

Discussion

This Late Bronze Age dental modification counts among the earliest documented instances of equine veterinary care, and the oldest known evidence for horse dentistry. At first glance, the detailed historical record of early equine veterinary care in places such as China, Greece, Rome, and Syria, which spans the late second millennium BCE through the early centuries CE (11, 15, 16), might imply that equine dentistry emerged in the sedentary civilizations of the Old World. However, the earliest textual references describe only nonsurgical medicinal treatments and make few mentions of oral health (11). Recent archaeological discoveries suggest that human care of domestic animals was practiced by hunter-gatherers as far back as the Paleolithic (46), and that pastoralists may have occasionally practiced surgical procedures on domestic animals as early as the Neolithic in Europe (47). The evidence presented here indicates that horse dentistry was developed by nomadic pastoralists living on the steppes of Mongolia and northeast Asia during the Late Bronze Age, concurrent with the local adoption of the metal bit and many centuries before the first mention of dental practices in historical accounts from sedentary Old World civilizations.

Our results reveal a fundamental link between equine dentistry and the emergence of horsemanship in the steppes of Eurasia. At the turn of the first millennium BCE, militarized, horse-mounted peoples reshaped the social and economic landscape of many areas of the Eurasian continent. Conflagrations with equestrian peoples, such as those between the Persian Empire and the Pontic “Scythians,” plagued alluvial civilizations from the Near East to India and China, while large-scale movements of people linked East and West in never-before-seen ways (48). The archaeological and historical records indicate that the earliest horseback riding was accomplished without stirrups or saddles, and probably using only bitless or organic-mouthpiece bridles (49, 50). The bronze snaffle bit, and the improved control it provided, was a key technological development that enabled the use of horseback riding for more stressful and difficult activities, such as long-distance transportation and warfare (32). We argue that these technological improvements in horse control were preceded and sustained by innovations in veterinary dentistry by nomadic peoples living in the continental interior. By increasing herd survival and mitigating behavioral and health issues caused by horse equipment, innovations in equine dentistry improved the reliability of horseback riding for ancient nomads, enabling horses to be used for nonpastoral activities like warfare, high-speed riding, and distance travel.

damage-tooth-horse
Damage to the retained wolf tooth in a 4-5 year old mummified horse, dating to the 2-4th centuries CE from the site of Urd Ulaan-Uneet in western Mongolia

Conclusion

Archaeozoological data from Mongolian horses indicate that the nomadic practice of equine dentistry dates back more than 3,000 y to the DSK complex, a Late Bronze Age culture associated with the first mounted horseback riding and mobile pastoralism in eastern Eurasia. Attempted removal of deciduous incisors through sawing of the exterior suggests experimentation with dental extraction, but not the removal of wolf teeth. The appearance of extracted first premolars in the first millennium BCE coincides with the arrival of metal bits in the archaeological record and oral trauma linked with metal bit use, suggesting that innovations in dental practice were an adaptation to the mechanical changes in horse equipment. These bronze and metal bits provided greater control over the horse, facilitating the development of military uses for the horse, but also introduced new dental problems with the first premolar. Our results indicate that, coincident with the earliest evidence for metal bit use, wolf tooth extraction was practiced in Mongolia by ca. 750 BCE and continued through the early Middle Ages. These results push back the earliest dates for equine dentistry by more than a millennium and suggest that nomadic peoples developed key innovations in veterinary care that enabled more sophisticated horse control, ultimately changing the structure of communication, exchange, and military power in ancient Eurasia.

Related

Tracking material cultures with ancient DNA: medieval Norse walrus ivory trade, and leather shields from Zanzibar

norse-walrus-ivory-trade

Two papers have been recently published, offering another interesting use of ancient DNA analysis for Archaeology and, potentially, Linguistics.

Open access Ancient DNA reveals the chronology of walrus ivory trade from Norse Greenland, by Star, Barrett, Gondek, & Boessenkool, bioRxiv (2018).

Abstract (emphasis mine):

The search for walruses as a source of ivory -a popular material for making luxury art objects in medieval Europe- played a key role in the historic Scandinavian expansion throughout the Arctic region. Most notably, the colonization, peak and collapse of the medieval Norse colony of Greenland have all been attributed to the proto-globalization of ivory trade. Nevertheless, no studies have directly traced European ivory back to distinct populations of walrus in the Arctic. This limits our understanding of how ivory trade impacted the sustainability of northern societies and the ecology of the species they relied on. Here, we compare the mitogenomes of 27 archaeological walrus specimens from Europe and Greenland (most dated between 900 and 1400 CE) and 10 specimens from Svalbard (dated to the 18th and 19th centuries CE) to partial mitochondrial (MT) data of over 300 modern walruses. We discover two monophyletic mitochondrial clades, one of which is exclusively found in walrus populations of western Greenland and the Canadian Arctic. Investigating the chronology of these clades in our European archaeological remains, we identify a significant shift in resource use from predominantly eastern sources towards a near exclusive representation of walruses from western Greenland. These results provide empirical evidence for the economic importance of walrus for the Norse Greenland settlements and the integration of this remote, western Arctic resource into a medieval pan-European trade network.

walrus-ivory-trade-norse-greenland
(A) Population distribution, historic trade routes and sample locations of Atlantic walrus in the northern Atlantic region. The range of modern Atlantic walrus (dark grey) and putative dispersal routes (black arrows) follow (58) and (31). Eight breeding populations are recognized (58); 1 – Foxe Basin, 2 – Hudson Bay, 3 – Hudson Strait, 4, – West Greenland, 5 – North Water, 6 – East Greenland, 7 – Svalbard/Franz Josef land, 8 – Novaya Zemlya. Historic trade routes from Greenland –including the location of Norse settlements– and northern Fennoscandia/Russia (yellow) indicate possible sources from which walrus ivory was exported to Europe during the Middle Ages. The Svalbard specimens (orange) were originally from hunting stations of the 1700s and 1800s. The other Atlantic walrus specimens (red, grey) were obtained from museum collections. (B) Bayesian phylogenetic tree obtained using BEAST (84) based on 346 mitochondrial SNPs using Pacific walrus (PAC) as an outgroup. Numbers represent the different specimens as listed in Table S1, and colors match the sampling locations as in Fig. 1A. Branches with a posterior probability of one (grey circles) are indicated. (C) Distribution of RFLP and control region (CR) haplotypes of modern Atlantic walrus populations. The RFLP clade classification follows Born, Andersen et al. (2001). The distribution of a distinct ACC CR haplotype is from 306 modern specimens (see material and methods).

Determination of the geographical origin of leather shields from Zanzibar using ancient DNA tools, by Bastian, Jacot-des-Combes, Hänni, & Perrier, J Arch. Sci (2018) 19:323-333.

Abstract:

Zanzibar shields are documented in several books and preserved in many European, African and Omani museums. They are relatively small and decorated; therefore, we can assume that they served to not only to protect the hand during sword combat but also to attract the attention of the attacker. As with all shields, they are also an object of prestige and armorial bearing to identify the owner’s army corps. Within the incredible cultural and ethnic mosaic of this part of the Indian Ocean, the shield enables alliances, protection systems and allegiance to be specified and clarified.

This study is a step towards understanding the nature of the relationships between Oman and the various communities living on the western coast of the Indian Ocean based on their material culture, especially their shields. Identifying the animal species used to make the shields was crucial in establishing both the manufacturers and the consumers of these objects. DNA analyses indicated that the leather used for the studied Zanzibar shields is rhinoceros (Diceros bicornis michaeli); a subspecies historically only present on the coast of East Africa. Our results also indicate that the shields, used mainly in Oman, Zanzibar and other regions with a strong relationship with Oman power, were made in Zanzibar and the Arabian Peninsula.

zanzibar-shield-rhinoceros
Ancient distribution of Diceros bicornis michaeli (eastern black rhinoceros) from southern Sudan, Ethiopia, and Somalia through Kenya into northern-central Tanzania. Dark grey represents the presence of both species. At the tip of the arrow: Zanzibar Island. Copyright: Fabiola Bastian.

In a time when many geneticists seem to have shifted their full attention to novel statistical methods applied to a few ancient individuals, it feels good to see some of them using their research to complement traditional academic disciplines instead.

This kind of studies may help track with more detail the most obvious harbinger of potential prehistoric language change: the diffusion of material culture.

See also: