More Celts of hg. R1b, more Afanasievo ancestry, more maps

iron-age-early-celtic-expansion

Interesting recent developments:

Celts and hg. R1b

Gauls

Recent paper (behind paywall) Multi-scale archaeogenetic study of two French Iron Age communities: From internal social- to broad-scale population dynamics, by Fischer et al. J Archaeol Sci (2019).

In it, Fischer and colleagues update their previous data for the Y-DNA of Gauls from the Urville-Nacqueville necropolis, Normandy (ca. 300-100 BC), with 8 samples of hg. R, at least 5 of them R1b. They also report new data from the Gallic cemetery at Gurgy ‘Les Noisats’, Southern Paris Basin (ca. 120-80 BC), with 19 samples of hg. R, at least 13 of them R1b.

In both cases, it is likely that both communities belonged (each) to the same paternal lineages, hence the patrilocal residence rules and patrilineality described for Gallic groups, also supported by the different maternal gene pools.

The interesting data would be whether these individuals were of hg. R1b-L21, hence mainly local lineages later replaced or displaced to the west, or – a priori much more likely – of some R1b-U152 and/or R1b-DF27 subclades from Central Europe that became less and less prevalent as Celts expanded into more isolated regions south of the Pyrenees and into the British Isles. Such information is lacking in the paper, probably due to the poor coverage of the samples.

early-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Early Iron Age. See full map.

Other Celts

As for early Celts, we already have:

Celtiberians from the Basque Country (one of hg. I2a) and likely Celtic genetic influence in north-east Iberia (all R1b), where Iberian languages spread later, showing that Celts expanded from some place in Central Europe, probably already with the Urnfield culture (ca. 1300 BC on).

Two Hallstatt samples from Bylany, Bohemia (ca. 836-780 BC), by Damgaard et al. Nature (2018), one of them of hg. R1b-U152.

mitterkirchen-grab-hu-i-8-hallstatt
Photo and diagram of burial HÜ-I/8, Mitterkirchen, Oberösterreich, Leskovar 1998.

Another Hallstatt HaC/D1 sample from Mittelkirchen, Austria (ca. 850-650/600), by Kiesslich et al. (2012), with predicted hg. G2a (see Athey’s haplogroup prediction).

One sample of early La Tène culture A from Putzenfeld am Dürrnberg, Hallein, Austria (ca 450–380 BC), by Kiesslich et al. (2012), with predicted hg. R1b (see Athey’s haplogroup prediction).

NOTE. For potential unreliability of haplogroup prediction with Whit Atheys’ haplogroup predictor, see e.g. Zhang et al. (2017).

kelten-dna-putzenfeld-duerrnberg-grab-376
Photo and diagram of Burial 376, Putzenfeld, Dürrnberg bei Hallein, Moser 2007.

Three Britons from Hinxton, South Cambridgeshire (ca. 170 BC – AD 80) from Schiffels et al. (2016), two of them of local hg. R1b-S461.

Indirectly, data of Vikings by Margaryan et al. (2019) from the British Isles and beyond show hg. R1b associated with modern British-like ancestry, also linked to early “Picts”, hence likely associated with Britons even after the Anglo-Saxon settlement. Supporting both (1) my recent prediction of hg. R1b-M167 expanding with Celts and (2) the reason for its presence among modern Scandinavians, is the finding of the first ancient sample of this subclade (VK166) among the Vikings of St John’s College Oxford, associated with the ‘St Brice’s Day Massacre’ (see Margaryan et al. 2019 supplementary materials).

The R1b-M167 sample shows 23.5% British-like ancestry, hence autosomally closer to other local samples (and related to the likely Picts from Orkney) than to some of his deceased partners at the site. Other samples with sizeable British-like ancestry include VK177 (32.6%, hg. R1b-U152), VK173 (33.3%, hg. I2a1b1a), or VK150 (25.6%, hg. I2a1b1a), while typical Germanic subclades like I1 or R1b-U106 – which may be associated with Anglo-Saxons, too – tend to show less.

late-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Late Iron Age. See full map.

I remember some commenter asking recently what would happen to the theory of Proto-Indo-European-speaking R1b-rich Yamnaya culture if Celts expanded with hg. R1a, because there were only one hg. R1b and one (possibly) G2a from Hallstatt. As it turns out, they were mostly R1b. However, the increasingly frequent obsession of searching for specific haplogroups and ancestry during the Iron Age and the Middle Ages is weird, even as a desperate attempt, because:

  1. it is evident that the more recent the ancient DNA samples are, the more they are going to resemble modern populations of the same area, so ancient DNA would become essentially useless;
  2. cultures from the early Iron Age onward (and even earlier) were based on increasingly complex sociopolitical systems everywhere, which is reflected in haplogroup and ancestry variability, e.g. among Balts, East Germanic peoples, Slavs (of hg. E1b-V13, I2a-L621), or Tocharians.

In fact, even the finding of hg. R1b among Celts of central and western Europe during the Iron Age is rather unenlightening, because more specific subclades and information on ancestry changes are needed to reach any meaningful conclusion as to migration vs. acculturation waves of expanding Celtic languages, which spread into areas that were mostly Indo-European-speaking since the Bell Beaker expansion.

Afanasevo ancestry in Asia

Wang and colleagues continue to publish interesting analyses, now in the preprint Inland-coastal bifurcation of southern East Asians revealed by Hmong-Mien genomic history, by Xia et al. bioRxiv (2019).

Interesting excerpt (emphasis mine):

Although the Devil’s Cave ancestry is generally the predominant East Asian lineage in North Asia and adjacent areas, there is an intriguing discrepancy between the eastern [Korean, Japanese, Tungusic (except northernmost Oroqen), and Mongolic (except westernmost Kalmyk) speakers] and the western part [West Xiōngnú (~2,150 BP), Tiānshān Hun (~1,500 BP), Turkic-speaking Karakhanid (~1,000 BP) and Tuva, and Kalmyk]. Whereas the East Asian ancestry of populations in the western part has entirely belonged to the Devil’s Cave lineage till now, populations in the eastern part have received the genomic influence from an Amis-related lineage (17.4–52.1%) posterior to the presence of the Devil’s Cave population roughly in the same region (~7,600 BP)12. Analogically, archaeological record has documented the transmission of wet-rice cultivation from coastal China (Shāndōng and/or Liáoníng Peninsula) to Northeast Asia, notably the Korean Peninsula (Mumun pottery period, since ~3,500 BP) and the Japanese archipelago (Yayoi period, since ~2,900 BP)2. Especially for Japanese, the Austronesian-related linguistic influence in Japanese may indicate a potential contact between the Proto-Japonic speakers and population(s) affiliating to the coastal lineage. Thus, our results imply that a southern-East-Asian-related lineage could be arguably associated with the dispersal of wet-rice agriculture in Northeast Asia at least to some extent.

afanasevo-namazga-devils-gate-xiongnu-huns-tianshan-admixture
Spatial and temporal distribution of ancestries in East Asians. Reference populations and corresponding hypothesized ancestral populations: (1) Devil’s Cave (~7,600 BP), the northern East Asian lineage; (2) Amis, the southern East Asian lineage (= AHM + AAA + AAN); (3) Hòabìnhian (~7,900 BP), a lineage related to Andamanese and indigenous hunter-gatherer of MSEA; (4) Kolyma (~9,800 BP), “Ancient Palaeo-Siberians”; (5) Afanasievo (~4,800 BP), steppe ancestry; (6) Namazga (~5,200 BP), the lineage of Chalcolithic Central Asian. Here, we report the best-fitting results of qpAdm based on following criteria: (1) a feasible p-value (&mt; 0.05), (2) feasible proportions of all the ancestral components (mean &mt; 0 and standard error < mean), and (3) with the highest p-value if meeting previous conditions.

In this case, the study doesn’t compare Steppe_MLBA, though, so the findings of Afanasievo ancestry have to be taken with a pinch of salt. They are, however, compared to Namazga, so “Steppe ancestry” is there. Taking into account the limited amount of Yamnaya-like ancestry that could have reached the Tian Shan area with the Srubna-Andronovo horizon in the Iron Age (see here), and the amount of Yamnaya-like ancestry that appears in some of these populations, it seems unlikely that this amount of “Steppe ancestry” would emerge as based only on Steppe_MLBA, hence the most likely contacts of Turkic peoples with populations of both Afanasievo (first) and Corded Ware-derived ancestry (later) to the west of Lake Baikal.

(1) The simplification of ancestral components into A vs. B vs. C… (when many were already mixed), and (2) the simplistic selection of one OR the other in the preferred models (such as those published for Yamnaya or Corded Ware), both common strategies in population genomics pose evident problems when assessing the actual gene flow from some populations into others.

Also, it seems that when the “Steppe”-like contribution is small, both Yamnaya and Corded Ware ancestry will be good fits in admixed populations of Central Asia, due to the presence of peoples of EHG-like (viz. West Siberia HG) and/or CHG-like (viz. Namazga) ancestry in the area. Unless and until these problems are addressed, there is little that can be confidently said about the history of Yamnaya vs. Corded Ware admixture among Asian peoples.

Maps, maps, and more maps

As you have probably noticed if you follow this blog regularly, I have been experimenting with GIS software in the past month or so, trying to map haplogroups and ancestry components (see examples for Vikings, Corded Ware, and Yamnaya). My idea was to show the (pre)historical evolution of ancestry and haplogroups coupled with the atlas of prehistoric migrations, but I have to understand first what I can do with GIS statistical tools.

My latest exercise has been to map modern haplogroup distribution (now added to the main menu above) using data from the latest available reports. While there have been no great surprises – beyond the sometimes awful display of data by some papers – I think it is becoming clearer with each new publication how wrong it was for geneticists to target initially those populations considered “isolated” – hence subject to strong founder effects – to extrapolate language relationships. For example:

  • The mapping of R1b-M269, in particular basal subclades, corresponds nicely with the Indo-European expansions.
  • There is no clear relationship of R1b, not even R1b-DF27 (especially basal subclades), with Basques. There is no apparent relationship between the distribution of R1b-M269 and some mythical non-Indo-European “Old Europeans”, like Etruscans or Caucasian speakers, either.
  • Basal R1a-M417 shows an interesting distribution, as do maps of basal Z282 and Z93 subclades, despite the evident late bottlenecks and acculturation among Slavs.
  • The distribution of hg. N1a-VL29 (and other N1a-L392 subclades) is clearly dissociated from Uralic peoples, and their expansion in the whole Baltic Sea during the Iron Age doesn’t seem to be related to any specific linguistic expansion.
  • haplogroup-n1a-vl29
    Modern distribution of haplogroup N1a-VL29. See full map.
  • Even the most recent association in Post et al. (2019) with hg. N1a-Z1639 – due to the lack of relationship of Uralic with N1a-VL29 – seems like a stretch, seeing how it probably expanded from the Kola Peninsula and the East Urals, and neither the Lovozero Ware nor forest hunter-fishers of the Cis- and Trans-Urals regions were Uralic-speaking cultures.
  • The current prevalence of hg. R1b-M73 supports its likely expansion with Turkic-speaking peoples.
  • The distribution of haplogroup R1b-V88 in Africa doesn’t look like it was a mere founder effect in Chadic peoples – although they certainly underwent a bottleneck under it.
  • The distribution of R1a-M420 (xM198) and hg. R1b-M343 (possibly not fully depicted in the east) seem to be related to expansions close to the Caucasus, supporting once more their location in Eastern Europe / West Siberia during the Mesolithic.
  • The mapping of E1b-V13 and I-M170 (I haven’t yet divided it into subclades) are particularly relevant for the recent eastward expansion of early Slavic peoples.

All in all, modern haplogroup distribution might have been used to ascertain prehistoric language movements even in the 2000s. It was the obsession with (and the wrong assumptions about) the “purity” of certain populations – say, Basques or Finns – what caused many of the interpretation problems and circular reasoning we are still seeing today.

I have also updated maps of Y-chromosome haplogroups reported for ancient samples in Europe and/or West Eurasia for the Early Eneolithic, Early Chalcolithic, Late Chalcolithic, Early Bronze Age, Middle Bronze Age, Late Bronze Age, Early Iron Age, Late Iron Age, Antiquity, and Middle Ages.

Haplogroup inference

I have also tried Yleaf v.2 – which seems like an improvement over the infamous v.1 – to test some samples that hobbyists and/or geneticists have reported differently in the past. I have posted the results in this ancient DNA haplogroup page. It doesn’t mean that the inferences I obtain are the correct ones, but now you have yet another source to compare.

Not many surprises here, either:

  • M15-1 and M012, two Proto-Tocharians from Shirenzigou, are of hg. R1b-PH155, not R1b-M269.
  • I0124, the Samara HG, is of hg. R1b-P297, but uncertain for both R1b-M73 and R1b-M269.
  • I0122, the Khvalynsk chieftain, is of hg. R1b-V1636.
  • I2181, the Smyadovo outlier of poor coverage, is possibly of hg. R, and could be of hg. R1b-M269, but could also be even non-P.
  • I6561 from Alexandria is probably of hg. R1a-M417, likely R1a-Z645, maybe R1a-Z93, but can’t be known beyond that, which is more in line with the TMRCA of R1a subclades and the radiocarbon date of the sample.
  • I2181, the Yamnaya individual (supposedly Pre-R1b-L51) at Lopatino II is R1b-M269, negative for R1b-L51. Nothing beyond that.

You can ask me to try mapping more data or to test the haplogroup of more samples, provided you give me a proper link to the relevant data, they are interesting for the subject of this blog…and I have the time to do it.

Related

Vikings, Vikings, Vikings! “eastern” ancestry in the whole Baltic Iron Age

vikings-middle-age

Open access Population genomics of the Viking world, by Margaryan et al. bioRxiv (2019), with a huge new sampling from the Viking Age.

Interesting excerpts (emphasis mine, modified for clarity):

To understand the genetic structure and influence of the Viking expansion, we sequenced the genomes of 442 ancient humans from across Europe and Greenland ranging from the Bronze Age (c. 2400 BC) to the early Modern period (c. 1600 CE), with particular emphasis on the Viking Age. We find that the period preceding the Viking Age was accompanied by foreign gene flow into Scandinavia from the south and east: spreading from Denmark and eastern Sweden to the rest of Scandinavia. Despite the close linguistic similarities of modern Scandinavian languages, we observe genetic structure within Scandinavia, suggesting that regional population differences were already present 1,000 years ago.

Maps illustrating the following texts have been made based on data from this and other papers:

  • Maps showing ancestry include only data from this preprint (which also includes some samples from Sigtuna).
  • Maps showing haplogroup density include Vikings from other publications, such as those from Sigtuna in Krzewinska et al. (2018), and from Iceland in Ebenesersdóttir et al. (2018).
  • Maps showing haplogroups of ancient DNA samples based on their age include data from all published papers, but with slightly modified locations to avoid overcrowding (randomized distance approx. ± 0.1 long. and lat.).

middle-ages-europe-y-dna
Y-DNA haplogroups in Europe during the Viking expansions (full map). See other maps from the Middle Ages.

We find that the transition from the BA to the IA is accompanied by a reduction in Neolithic farmer ancestry, with a corresponding increase in both Steppe-like ancestry and hunter-gatherer ancestry. While most groups show a slight recovery of farmer ancestry during the VA, there is considerable variation in ancestry across Scandinavia. In particular, we observe a wide range of ancestry compositions among individuals from Sweden, with some groups in southern Sweden showing some of the highest farmer ancestry proportions (40% or more in individuals from Malmö, Kärda or Öland).

Ancestry proportions in Norway and Denmark on the other hand appear more uniform. Finally we detect an influx of low levels of “eastern” ancestry starting in the early VA, mostly constrained among groups from eastern and central Sweden as well as some Norwegian groups. Testing of putative source groups for this “eastern” ancestry revealed differing patterns among the Viking Age target groups, with contributions of either East Asian- or Caucasus-related ancestry.

saami-ancestry-vikings
Ancestry proportions of four-way models including additional putative source groups for target groups for which three-way fit was rejected (p ≤ 0.01);

Overall, our findings suggest that the genetic makeup of VA Scandinavia derives from mixtures of three earlier sources: Mesolithic hunter-gatherers, Neolithic farmers, and Bronze Age pastoralists. Intriguingly, our results also indicate ongoing gene flow from the south and east into Iron Age Scandinavia. Thus, these observations are consistent with archaeological claims of wide-ranging demographic turmoil in the aftermath of the Roman Empire with consequences for the Scandinavian populations during the late Iron Age.

Genetic structure within Viking-Age Scandinavia

We find that VA Scandinavians on average cluster into three groups according to their geographic origin, shifted towards their respective present-day counterparts in Denmark, Sweden and Norway. Closer inspection of the distributions for the different groups reveals additional complexity in their genetic structure.

vikings-danish-ancestry
Natural neighbor interpolation of “Danish ancestry” among Vikings.

We find that the ‘Norwegian’ cluster includes Norwegian IA individuals, who are distinct from both Swedish and Danish IA individuals which cluster together with the majority of central and eastern Swedish VA individuals. Many individuals from southwestern Sweden (e.g. Skara) cluster with Danish present-day individuals from the eastern islands (Funen, Zealand), skewing towards the ‘Swedish’ cluster with respect to early and more western Danish VA individuals (Jutland).

Some individuals have strong affinity with Eastern Europeans, particularly those from the island of Gotland in eastern Sweden. The latter likely reflects individuals with Baltic ancestry, as clustering with Baltic BA individuals is evident in the IBS-UMAP analysis and through f4-statistics.

vikings-norwegian-ancestry
Natural neighbor interpolation of “Norwegian ancestry” among Vikings.

For more on this influx of “eastern” ancestry see my previous posts (including Viking samples from Sigtuna) on Genetic and linguistic continuity in the East Baltic, and on the Pre-Proto-Germanic homeland based on hydrotoponymy.

Baltic ancestry in Gotland

Genetic clustering using IBS-UMAP suggested genetic affinities of some Viking Age individuals with Bronze Age individuals from the Baltic. To further test these, we quantified excess allele sharing of Viking Age individuals with Baltic BA compared to early Viking Age individuals from Salme using f4 statistics. We find that many individuals from the island of Gotland share a significant excess of alleles with Baltic BA, consistent with other evidence of this site being a trading post with contacts across the Baltic Sea.

vikings-finnish-ancestry
Natural neighbor interpolation of “Finnish ancestry” among Vikings.

The earliest N1a-VL29 sample available comes from Iron Age Gotland (VK579) ca. AD 200-400 (see Iron Age Y-DNA maps), which also proves its presence in the western Baltic before the Viking expansion. The distribution of N1a-VL29 and R1a-Z280 (compared to R1a in general) among Vikings also supports a likely expansion of both lineages in succeeding waves from the east with Akozino warrior-traders, at the same time as they expanded into the Gulf of Finland.

vikings-y-dna-haplogroup-r1a-z280-over-r1a
Density of haplogroup R1a-Z280 (samples in pink) overlaid over other R1a samples (in green, with R1a-Z284 in cyan) among Vikings.

Vikings in Estonia

(…) only one Viking raiding or diplomatic expedition has left direct archaeological traces, at Salme in Estonia, where 41 Swedish Vikings who died violently were buried in two boats accompanied by high-status weaponry. Importantly, the Salme boat-burial predates the first textually documented raid (in Lindisfarne in 793) by nearly half a century. Comparing the genomes of 34 individuals from the Salme burial using kinship analyses, we find that these elite warriors included four brothers buried side by side and a 3rd degree relative of one of the four brothers. In addition, members of the Salme group had very similar ancestry profiles, in comparison to the profiles of other Viking burials. This suggests that this raid was conducted by genetically homogeneous people of high status, including close kin. Isotope analyses indicate that the crew descended from the Mälaren area in Eastern Sweden thus confirming that the Baltic-Mid-Swedish interaction took place early in the VA.

vikings-swedish-ancestry
Natural neighbor interpolation of “Swedish ancestry” among Vikings.

Viking samples from Estonia show thus ancient Swedes from the Mälaren area, which proves once again that hg. N1a-VL29 (especially subclade N1a-L550) and tiny proportions of so-called “Siberian ancestry” expanded during the Early Iron Age into the whole Baltic Sea area, not only into Estonia, and evidently not spreading with Balto-Finnic languages (since the language influence is in the opposite direction, east-west, Germanic > Finno-Samic, during the Bronze Age).

N1a-VL29 lineages spread again later eastwards with Varangians, from Sweden into north-eastern Europe, most likely including the ancestors of the Rurikid dynasty. Unsurprisingly, the arrival of Vikings with Swedish ancestry into the East Baltic and their dispersal through the forest zone didn’t cause a language shift of Balto-Finnic, Mordvinic, or East Slavic speakers to Old Norse, either…

NOTE. For N1a-Y4339 – N1a-L550 subclade of Swedish origin – as main haplogroup of modern descendants of Rurikid princes, see Volkov & Seslavin (2019) – full text in comments below. Data from ancient samples show varied paternal lineages even among early rulers traditionally linked to Rurik’s line, which explains some of the discrepancies found among modern descendants:

  • A sample from Chernihiv (VK542) potentially belonging to Gleb Svyatoslavich, the 11th century prince of Tmutarakan/Novgorod, belongs to hg. I2a-Y3120 (a subclade of early Slavic I2a-CTS10228) and has 71% “Modern Polish” ancestry (see below).
  • Izyaslav Ingvarevych, the 13th century prince of Dorogobuzh, Principality of Volhynia/Galicia, is probably behind a sample from Lutsk (VK541), and belongs to hg. R1a-L1029 (a subclade of R1a-M458), showing ca. 95% of “Modern Polish” ancestry.
  • Yaroslav Osmomysl, the 12th century Prince of Halych (now in Western Ukraine), was probably of hg. E1b-V13, yet another clearly early Slavic haplogroup.

vikings-y-dna-haplogroup-n1a
Density of haplogroup N1a-VL29, N1a-L550 (samples in pink, most not visible) among Vikings. Samples of hg. R1b in blue, hg. R1a in green, hg. I in orange.

Finnish ancestry

Firstly, modern Finnish individuals are not like ancient Finnish individuals, modern individuals have ancestry of a population not in the reference; most likely Steppe/Russian ancestry, as Chinese are in the reference and do not share this direction. Ancient Swedes and Norwegians are more extreme than modern individuals in PC2 and 4. Ancient UK individuals were more extreme than Modern UK individuals in PC3 and 4. Ancient Danish individuals look rather similar to modern individuals from all over Scandinavia. By using a supervised ancient panel, we have removed recent drift from the signal, which would have affected modern Scandinavians and Finnish populations especially. This is in general a desirable feature but it is important to check that it has not affected inference.

ancient-modern-finns-steppe
PCA of the ancient and modern samples using the ancient palette, showing different PCs. Modern individuals are grey and the K=7 ancient panel surrogate populations are shown in strong colors, whilst the remaining M-K=7 ancient populations are shown in faded colors.

The story for Modern-vs-ancient Finnish ancestry is consistent, with ancient Finns looking much less extreme than the moderns. Conversely, ancient Norwegians look like less-drifted modern Norwegians; the Danish admixture seen through the use of ancient DNA is hard to detect because of the extreme drift within Norway that has occurred since the admixture event. PC4 vs PC5 is the most important plot for the ancient DNA story: Sweden and the UK (along with Poland, Italy and to an extent also Norway) are visibly extremes of a distribution the same “genes-mirror-geography” that was seen in the Ancient-palette analysis. PC1 vs PC2 tells the same story – and stronger, since this is a high variance-explained PC – for the UK, Poland and Italy.

Uniform manifold approximation and projection (UMAP) analysis of the VA and other ancient samples.

Evidence for Pictish Genomes

The four ancient genomes of Orkney individuals with little Scandinavian ancestry may be the first ones of Pictish people published to date. Yet a similar (>80% “UK ancestry) individual was found in Ireland (VK545) and five in Scandinavia, implying that Pictish populations were integrated into Scandinavian culture by the Viking Age.

Our interpretation for the Orkney samples can be summarised as follows. Firstly, they represent “native British” ancestry, rather than an unusual type of Scandinavian ancestry. Secondly, that this “British” ancestry was found in Britain before the Anglo-Saxon migrations. Finally, that in Orkney, these individuals would have descended from Pictish populations.

vikings-british-ancestry
Natural neighbor interpolation of “British ancestry” among Vikings.

(…) ‘UK’ represents a group from which modern British and Irish people all receive an ancestry component. This information together implies that within the sampling frame of our data, they are proxying the ‘Briton’ component in UK ancestry; that is, a pre-Roman genetic component present across the UK. Given they were found in Orkney, this makes it very likely that they were descended from a Pictish population.

Modern genetic variation within the UK sees variation between ‘native Briton’ populations Wales, Scotland, Cornwall and Ireland as large compared to that within the more ‘Anglo-Saxon’ English. This is despite subsequent gene flow into those populations from English-like populations. We have not attempted to disentangle modern genetic drift from historically distinct populations. Roman-era period people in England, Wales, Ireland and Scotland may not have been genetically close to these Orkney individuals, but our results show that they have a shared genetic component as they represent the same direction of variation.

Density of haplogroup R1b-L21 (samples in red), overlaid over all samples of hg. R1b among Vikings (R1b-U106 in green, other R1b-L151 in deep red). To these samples one may add the one from Janakkala in south-western Finland (AD ca. 1300), of hg. R1b-L21, possibly related to these population movements.

For more on Gaelic ancestry and lineages likely representing slaves among early Icelanders, see Ebenesersdóttir et al. (2018).

Y-DNA

As in the case of mitochondrial DNA, the overall distribution profile of the Y chromosomal haplogroups in the Viking Age samples was similar to that of the modern North European populations. The most frequently encountered male lineages were the haplogroups I1, R1b and R1a.

Haplogroup I (I1, I2)

The distribution of I1 in southern Scandinavia, including a sample from Sealand (VK532) ca. AD 100 (see Iron Age Y-DNA maps) proves that it had become integrated into the West Germanic population already before their expansions, something that we already suspected thanks to the sampling of Germanic tribes.

vikings-y-dna-haplogroup-i
Density of haplogroup I (samples in orange) among Vikings. Samples of hg. R1b in blue, hg. R1a in green, N1a in pink.
vikings-y-dna-haplogroup-i1-over-i
Density of haplogroup I1 (samples in red) overlaid over all samples of hg. I among Vikings.

Haplogroup R1b (M269, U106, P312)

Especially interesting is the finding of R1b-L151 widely distributed in the historical Nordic Bronze Age region, which is in line with the estimated TMRCA for R1b-P312 subclades found in Scandinavia, despite the known bottleneck among Germanic peoples under U106. Particularly telling in this regard is the finding of rare haplogroups R1b-DF19, R1b-L238, or R1b-S1194. All of that points to the impact of Bell Beaker-derived peoples during the Dagger period, when Pre-Proto-Germanic expanded into Scandinavia.

Also interesting is the finding of hg. R1b-P297 in Troms, Norway (VK531) ca. 2400 BC. R1b-P297 subclades might have expanded to the north through Finland with post-Swiderian Mesolithic groups (read more about Scandinavian hunter-gatherers), and the ancestry of this sample points to that origin.

However, it is also known that ancestry might change within a few generations of admixture, and that the transformation brought about by Bell Beakers with the Dagger Period probably reached Troms, so this could also be a R1b-M269 subclade. In fact, the few available data from this sample show that it comes from the natural harbour Skarsvågen at the NW end of the island Senja, and that its archaeologist thought it was from the Viking period or slightly earlier, based on the grave form. From Prescott (2017):

In 1995, Prescott and Walderhaug tentatively argued that a dramatic transformation took place in Norway around the Late Neolithic (2350 BCE), and that the swift nature of this transition was tied to the initial Indo-Europeanization of southern and coastal Norway, at least to Trøndelag and perhaps as far north as Troms. (…)

The Bell Beaker/early Late Neolithic, however, represents a source and beginning of these institution and practices, exhibits continuity to the following metal age periods and integrated most of Northern Europe’s Nordic region into a set of interaction fields. This happened around 2400 BCE, at the MNB to LN transition.

NOTE. This particular sample is not included in the maps of Viking haplogroups.

vikings-y-dna-haplogroup-r1b
Density of haplogroup R1b (samples in blue) among Vikings. Samples of hg. I in orange, hg. R1a in green, N1a in pink.
vikings-y-dna-haplogroup-r1b-U106-over-r1b
Density of haplogroup R1b-U106 (samples in green) overlaid over all samples of hg. R1b (other R1b-L23 samples in red) among Vikings.
vikings-y-dna-haplogroup-r1b-P312-over-r1b
Density of R1b-L151 (xR1b-U106) (samples in deep red) overlaid over all samples of hg. R1b (R1b-U106 in green, other R1b-M269 in blue) among Vikings.

Haplogroup R1a (M417, Z284)

The distribution of hg. R1a-M417, in combination with data on West Germanic peoples, shows that it was mostly limited to Scandinavia, similar to the distribution of I1. In fact, taking into account the distribution of R1a-Z284 in particular, it seems even more isolated, which is compatible with the limited impact of Corded Ware in Denmark or the Northern European Plain, and the likely origin of R1a-Z284 in the expansion with Battle Axe from the Gulf of Finland. The distribution of R1a-Z280 (see map above) is particularly telling, with a distribution around the Baltic Sea mostly coincident with that of N1a.

vikings-y-dna-haplogroup-r1a
Density of haplogroup R1a (samples in green) among Vikings. Samples of hg. R1b in blue, of hg. I in orange, N1a in pink.
vikings-y-dna-haplogroup-r1a-z284-over-r1a
Density of haplogroup R1a-Z284 (samples in cyan) overlaid over all samples of hg. R1a (in green, with R1a-Z280 in pink) among Vikings.

Other haplogroups

Among the ancient samples, two individuals were derived haplogroups were identified as E1b1b1-M35.1, which are frequently encountered in modern southern Europe, Middle East and North Africa. Interestingly, the individuals carrying these haplogroups had much less Scandinavian ancestry compared to the most samples inferred from haplotype based analysis. A similar pattern was also observed for less frequent haplogroups in our ancient dataset, such as G (n=3), J (n=3) and T (n=2), indicating a possible non-Scandinavian male genetic component in the Viking Age Northern Europe. Interestingly, individuals carrying these haplogroups were from the later Viking Age (10th century and younger), which might indicate some male gene influx into the Viking population during the Viking period.

vikings-italian-ancestry
Natural neighbor interpolation of “Italian ancestry” among Vikings.

As the paper says, the small sample size of rare haplogroups cannot distinguish if these differences are statistically relevant. Nevertheless, both E1b samples have substantial Modern Polish-like ancestry: one sample from Gotland (VK474), of hg. E1b-L791, has ca. 99% “Polish” ancestry, while the other one from Denmark (VK362), of hg. E1b-V13, has ca. 35% “Polish”, ca. 35% “Italian”, as well as some “Danish” (14%) and minor “British” and “Finnish” ancestry.

Given the E1b-V13 samples of likely Central-East European origin among Lombards, Visigoths, and especially among Early Slavs, and the distribution of “Polish” ancestry among Viking samples, VK362 is probably a close description of the typical ancestry of early Slavs. The peak of Modern Polish-like ancestry around the Upper Pripyat during the (late) Viking Age suggests that Poles (like East Slavs) have probably mixed since the 10th century with more eastern peoples close to north-eastern Europeans, derived from ancient Finno-Ugrians:

vikings-polish-ancestry
Natural neighbor interpolation of “Polish ancestry” among Vikings.

Similarly, the finding of R1a-M458 among Vikings in Funen, Denmark (VK139), in Lutsk, Poland (VK541), and in Kurevanikha, Russia (VK160), apart from the early Slav from Usedom, may attest to the origin of the spread of this haplogroup in the western Baltic after the Bell Beaker expansion, once integrated in both Germanic and Balto-Slavic populations, as well as intermediate Bronze Age peoples that were eventually absorbed by their expansions. This contradicts, again, my simplistic initial assessment of R1a-M458 expansion as linked exclusively (or even mainly) to Balto-Slavs.

antiquity-europe-y-dna
Y-DNA haplogroups in Europe during Antiquity (full map). See other maps of cultures and ancient DNA from Antiquity.

Related

Iberia: East Bell Beakers spread Indo-European languages; Celts expanded later

iberia-migrations-celts

New paper (behind paywall), The genomic history of the Iberian Peninsula over the past 8000 years, by Olalde et al. Science (2019).

NOTE. Access to article from Reich Lab: main paper and supplementary materials.

Abstract:

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.

Interesting excerpts:

From the Bronze Age (~2200–900 BCE), we increase the available dataset (6, 7, 17) from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period (Fig. 1, C and D), albeit with less impact in the south (table S13). The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry (Fig. 2B). These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups (Fig. 2B and fig. S6).

Y-chromosome turnover was even more pronounced (Fig. 2B), as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269. These patterns point to a higher contribution of incoming males than females, also supported by a lower proportion of nonlocal ancestry on the X-chromosome (table S14 and fig. S7), a paradigm that can be exemplified by a Bronze Age tomb from Castillejo del Bonete containing a male with Steppe ancestry and a female with ancestry similar to Copper Age Iberians.

iberian-adna

For the Iron Age, we document a consistent trend of increased ancestry related to Northern and Central European populations with respect to the preceding Bronze Age (Figs. 1, C and D, and 2B). The increase was 10 to 19% (95% confidence intervals given here and in the percentages that follow) in 15 individuals along the Mediterranean coast where non-Indo-European Iberian languages were spoken; 11 to 31% in two individuals at the Tartessian site of La Angorrilla in the southwest with uncertain language attribution; and 28 to 43% in three individuals at La Hoya in the north where Indo-European Celtiberian languages were likely spoken (fig. S6 and tables S11 and S12).

This trend documents gene flow into Iberia during the Late Bronze Age or Early Iron Age, possibly associated with the introduction of the Urnfield tradition (18). Unlike in Central or Northern Europe, where Steppe ancestry likely marked the introduction of Indo-European languages (12), our results indicate that, in Iberia, increases in Steppe ancestry were not always accompanied by switches to Indo-European languages.

I think it is obvious they are extrapolating the traditional (not that well-known) linguistic picture of Iberia during the Iron Age, believing in continuity of that picture (especially non-Indo-European languages) during the Urnfield period and earlier.

What this data shows is, as expected, the arrival of Celtic languages in Iberia after Bell Beakers and, by extension, in the rest of western Europe. Somewhat surprisingly, this may have happened during the Urnfield period, and not during the La Tène period.

Also important are the precise subclades:

We thus detect three Bronze Age males who belonged to DF27 (154, 155), confirming its presence in Bronze Age Iberia. The other Iberian Bronze Age males could belong to DF27 as well, but the extremely low recovery rate of this SNP in our dataset prevented us to study its true distribution. All the Iberian Bronze Age males with overlapping sequences at R1b-L21 were negative for this mutation. Therefore, we can rule out Britain as a plausible proximate origin since contemporaneous British males are derived for the L21 subtype.


New open access paper Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula, by Villalba-Mouco et al. Cell (2019):

BAL0051 could be assigned to haplogroup I1, while BAL003 carries the C1a1a haplogroup. To the limits of our typing resolution, EN/MN individuals CHA001, CHA003, ELT002 and ELT006 share haplogroup I2a1b, which was also reported for Loschbour [73] and Motala HG [13], and other LN and Chalcolithic individuals from Iberia [7, 9], as well as Neolithic Scotland, France, England [9], and Lithuania [14]. Both C1 and I1/ I2 are considered typical European HG lineages prior to the arrival of farming. Interestingly, CHA002 was assigned to haplogroup R1b-M343, which together with an EN individual from Cova de Els Trocs (R1b1a) confirms the presence of R1b in Western Europe prior to the expansion of steppe pastoralists that established a related male lineage in Bronze Age Europe [3, 6, 9, 13, 19]. The geographical vicinity and contemporaneity of these two sites led us to run genomic kinship analysis in order to rule out any first or second degree of relatedness. Early Neolithic individual FUC003 carries the Y haplogroup G2a2a1, commonly found in other EN males from Neolithic Anatolia [13], Starçevo, LBK Hungary [18], Impressa from Croatia and Serbia Neolithic [19] and Czech Neolithic [9], but also in MN Croatia [19] and Chalcolithic Iberia [9].

See also

Early Medieval Alemannic graveyard shows diverse cultural and genetic makeup

alemannic-niederstotzingen

Open access Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard, by O’Sullivan et al., Science (2018) 4(9):eaao1262

Interesting excerpts:

Introduction

The Alemanni were a confederation of Germanic tribes that inhabited the eastern Upper Rhine basin and surrounding region (Fig. 1) (1). Roman ethnographers mentioned the Alemanni, but historical records from the 3rd to the 6th century CE contain no regular description of these tribes (2). The upheaval that occurred during the European Migration Period (Völkerwanderung) partly explains the interchangeability of nomenclature with the contemporaneous Suebi people of the same region and periods of geographic discontinuity in the historical record (3). This diverse nomenclature reflects centuries of interactions between Romans and other Germanic groups such as the Franks, Burgundians, Thuringians, Saxons, and Bavarians. With the defeat of the Alemanni by Clovis I of the Franks in 497 CE, Alamannia became a subsumed Duchy of the Merovingian Kingdom. This event solidified the naming of the inhabitants of this region as Alemanni (3). From the 5th to the 8th century CE, integration between the Franks and the Alemanni was reflected by changed burial practices, with households (familia) buried in richly furnished graves (Adelsgrablege) (4). The splendor of these Adelsgräber served to demonstrate the kinship structure, wealth, and status of the familia and also the power of the Franks (Personenverbandstaaten, a system of power based on personal relations rather than fixed territory). Because inclusion in familia during the Merovingian period was not necessarily based on inheritance or provenance, debate continues on the symbolism of these burial rites (5).

The 7th century CE Alemannic burial site at Niederstotzingen in southern Germany, used circa 580 to 630 CE, represents the best-preserved example of such an Alemannic Adelsgrablege. (…)

alemannic-haplogroup

Strontium and oxygen isotope data from the enamel showed that most individuals are local rather than migrants (Table 1, table S2, and fig. S2), except for individuals 10 and 3B. (…)

Analysis of uniparental markers

mtDNA haplogroups were successfully assigned to all 13 individuals (Table 1). Notably, there are three groups of individuals that share, among the assigned positions, identical haplotypes: individuals 4, 9, and 12B in haplogroup X2b4; individuals 1 and 3A in haplogroup K1a; and individuals 2 and 5 in haplogroup K1a1b2a1a.

Most individuals belong to the R1b haplogroup (individuals 1, 3A, 3C, 6, 9, 12A, 12B, and 12C), which has the highest frequency (>70%) in modern western European populations (20). Five individuals (1, 3A, 9, 12B, and 12C) share the same marker (Z319) defining haplogroup R1b1a2a1a1c2b2b1a1 [=ISOGG R1b1a1a2a1a1c2b2b1a1a] (…) individuals 1, 3A, and 6 have R1b lineage and marker Z347 (R1b1a2a1a1c2b2b) [=ISOGG R1b1a1a2a1a1c2b2b], which belongs to the same male ancestral lineage as marker Z319 [i.e. all R1b-U106]. Individual 3B instead carries NRY haplogroup G2a2b1, which is rare in modern north, west, and east European populations (<5%), only reaching common abundance in the Caucasus (>70%), southern Europe, and the Near East (10 to 15%)

Genome-wide capture

alemannic-pca
PCA plot of Niederstotzingen individuals, modern west Eurasians, and selected ancient Europeans. Genome-wide ancient data were projected against modern west Eurasian populations. Colors on PCA indicate more general Eurasian geographic boundaries than countries: dark green, Caucasus; bright green, eastern Europe; yellow, Sardinia and Canary Islands; bright blue, Jewish diaspora; bright purple, western and central Europe; red, southern Europe; dark brown, west Asia; light purple, Spain; dark purple, Russia; pale green, Middle East; orange, North Africa. The transparent circles serve to highlight the genetic overlap between regions of interest.

Genomically, the individuals buried at Niederstotzingen can be split into two groups: Niederstotzingen North (1, 3A, 6, 9, 12B, and 12C), who have genomic signals that most resemble modern northern and eastern European populations, and Niederstotzingen South (3B and 3C), who most resemble modern-day Mediterraneans, albeit with recent common ancestry to other Europeans. Niederstotzingen North is composed of those buried with identifiable artifacts: Lombards (individual 6), Franks (individual 9), and Byzantines (individuals 3A and 12B), all of whom have strontium and oxygen isotope signals that support local provenance (fig. S2) (8). Just two individuals, 3B (Niederstotzingen South) and 10 (no sufficient autosomal data, with R1 Y-haplogroup), have nonlocal strontium isotope signals. The δ18O values suggest that individuals 10 and 3B may have originated from a higher-altitude region, possibly the Swiss-German Alpine foothills (8). Combined with the genome affinity of individual 3B to southern Europeans, these data provide direct evidence for incoming mobility at the site and for contact that went beyond exchange of grave goods (4). Familia had holdings across the Merovingian Kingdom and traveled long distances to maintain them; these holdings could have extended from northern Italy to the North Sea. Nobles displayed and accrued power by recruiting outside individuals into the household as part of their traveling retinue. Extravagant burial rites of these familia are symbolic evidence of the Frankish power systems based on people Personenverbandstaaten imposed from the 5th until the 8th century CE (4). The assignment of grave goods and the burial pattern do not follow any apparent pattern with respect to genetic origin or provenance, suggesting that relatedness and fellowship were held in equal regard at this burial.

Kinship

Both kinship estimates show first-degree relatedness for pairs 1/3A, 1/6, 1/9, 3A/9, and 9/12B and second-degree relatedness for 1/12B, 3A/6, 3A/12B, and 6/9. Except for 12C, all of the Niederstotzingen North individuals are detectably and closely related. The Niederstotzingen South individuals are not detectably related to each other or any other members of the cohort. (…)

We demonstrated that five of the individuals (1, 3A, 6, 9, and 12B) were kin to at least second degree (Fig. 3 and tables S15 and S16); four of these were buried with distinguishable grave goods (discussed above and in fig. S1). These data show that at Niederstotzingen, at least in death, diverse cultural affiliations could be appropriated even within the same family across just two generations. This finding is somewhat similar to the burial of the Frankish King Childeric in the 5th century CE with a combination of Frankish and Byzantine grave goods that symbolized both his provenance and military service to the Romans (4). The burial of three unrelated individuals (3B, 3C, and 12C) in multiple graves beside the rest of the cohort would imply that this Alemannic group buried their dead based on a combination of familial ties and fellowship. One explanation could be that they were adopted as children from another region to be trained as warriors, which was a common practice at the time; these children were raised with equal regard in the familia (2, 4).

alemannic-family
Reconstruction of first- and second-degree relatedness among all related individuals. Bold black lines and blue lines indicate first- and second-degree relatedness, respectively. Dark blue squares are identified males with age-at-death estimates years old (y.o.), mtDNA haplotypes, and NRY haplogroups. Red circles represent unidentified females that passed maternal haplotypes to their offspring. The light square represents one male infant that shares its maternal haplotype with individuals 12B and 9. N.D., not determined.

Conclusion

The 7th century CE burial in Niederstotzingen represents the best-preserved example of an Alemannic Adelsgrablege. The observation that burial of the remains was close to a Roman crossroads, orientated in a considered way, and associated with rich grave goods points to a noble gravesite of an Alemannic familia with external cultural influences. The high percentage of males in the burial site suggests that this site was intended for a ranked warrior group, meaning that the individuals are not representative of the population existing in 7th century CE Alemannia. The kinship estimates show that kinship structure was organized around the familia, which is defined by close association of related and unrelated individuals united for a common purpose. The apparent kinship structure is consistent with the hypothesized Personenverbandstaaten, which was a system by which Merovingian nobles enforced rule in the Duchies of Alemannia, Thuringia, Burgundy, and elsewhere. Beyond the origin of the grave goods, we show isotopic and genetic evidence for contact with communities external to the region and evidence for shared ancestry between northern and southern Europeans. This finding invites debate on the Alemannic power system that may have been highly influenced by mobility and personal relations.

Texts and images distributed under the terms of the Creative Commons Attribution-NonCommercial license.

Related

Origins of equine dentistry in Mongolia in the early first millennium BC

New paper (behind paywall) Origins of equine dentistry, by Taylor et al. PNAS (2018).

Interesting excerpts (emphasis mine):

The practice of horse dentistry by contemporary nomadic peoples in Mongolia, coupled with the centrality of horse transport to Mongolian life, both now and in antiquity, raises the possibility that dental care played an important role in the development of nomadic life and domestic horse use in the past. To investigate, we conducted a detailed archaeozoological study of horse remains from tombs and ritual horse inhumations across the Mongolian Steppe, assessing evidence for anthropogenic dental modifications and comparing our findings with broader patterns in horse use and nomadic material culture.

We conducted a detailed study of archaeological horse collections spanning the past 3,200 y, including those from the Late Bronze Age DSK complex (ca. 1200–700 BCE, n = 70), Early Iron Age Slab Burial culture (ca. 700–300 BCE, n = 4), Pazyryk culture (ca. 600–200 BCE, n = 2), Late Iron Age Xiongnu Empire (ca. 200 BCE–200 CE, n = 3), Early Middle Ages post-Xiongnu period (ca. 100–550 CE, n = 3), and Turkic Khaganate (ca. 600–800 CE, n = 3).

horse-riding-mongolia
A (top): Contemporary Mongolian herder engaged in horseback riding, using left-handed rein position causing asymmetric pressures to the horse’s skull. Photo by Orsoo Bayarsaikhan. B(center) contemporary Mongolian horse skulls, showing asymmetric and skewed thinning to the nasal bones caused by bridle pressure. C(bottom) Asymmetric deformation to the cranial bones of a Deer Stone-Khirigsuur horse (left), alongside an early Middle Ages horse with a similar feature (right). Modified from Taylor and Tuvshinjargal (2018).

Discussion

This Late Bronze Age dental modification counts among the earliest documented instances of equine veterinary care, and the oldest known evidence for horse dentistry. At first glance, the detailed historical record of early equine veterinary care in places such as China, Greece, Rome, and Syria, which spans the late second millennium BCE through the early centuries CE (11, 15, 16), might imply that equine dentistry emerged in the sedentary civilizations of the Old World. However, the earliest textual references describe only nonsurgical medicinal treatments and make few mentions of oral health (11). Recent archaeological discoveries suggest that human care of domestic animals was practiced by hunter-gatherers as far back as the Paleolithic (46), and that pastoralists may have occasionally practiced surgical procedures on domestic animals as early as the Neolithic in Europe (47). The evidence presented here indicates that horse dentistry was developed by nomadic pastoralists living on the steppes of Mongolia and northeast Asia during the Late Bronze Age, concurrent with the local adoption of the metal bit and many centuries before the first mention of dental practices in historical accounts from sedentary Old World civilizations.

Our results reveal a fundamental link between equine dentistry and the emergence of horsemanship in the steppes of Eurasia. At the turn of the first millennium BCE, militarized, horse-mounted peoples reshaped the social and economic landscape of many areas of the Eurasian continent. Conflagrations with equestrian peoples, such as those between the Persian Empire and the Pontic “Scythians,” plagued alluvial civilizations from the Near East to India and China, while large-scale movements of people linked East and West in never-before-seen ways (48). The archaeological and historical records indicate that the earliest horseback riding was accomplished without stirrups or saddles, and probably using only bitless or organic-mouthpiece bridles (49, 50). The bronze snaffle bit, and the improved control it provided, was a key technological development that enabled the use of horseback riding for more stressful and difficult activities, such as long-distance transportation and warfare (32). We argue that these technological improvements in horse control were preceded and sustained by innovations in veterinary dentistry by nomadic peoples living in the continental interior. By increasing herd survival and mitigating behavioral and health issues caused by horse equipment, innovations in equine dentistry improved the reliability of horseback riding for ancient nomads, enabling horses to be used for nonpastoral activities like warfare, high-speed riding, and distance travel.

damage-tooth-horse
Damage to the retained wolf tooth in a 4-5 year old mummified horse, dating to the 2-4th centuries CE from the site of Urd Ulaan-Uneet in western Mongolia

Conclusion

Archaeozoological data from Mongolian horses indicate that the nomadic practice of equine dentistry dates back more than 3,000 y to the DSK complex, a Late Bronze Age culture associated with the first mounted horseback riding and mobile pastoralism in eastern Eurasia. Attempted removal of deciduous incisors through sawing of the exterior suggests experimentation with dental extraction, but not the removal of wolf teeth. The appearance of extracted first premolars in the first millennium BCE coincides with the arrival of metal bits in the archaeological record and oral trauma linked with metal bit use, suggesting that innovations in dental practice were an adaptation to the mechanical changes in horse equipment. These bronze and metal bits provided greater control over the horse, facilitating the development of military uses for the horse, but also introduced new dental problems with the first premolar. Our results indicate that, coincident with the earliest evidence for metal bit use, wolf tooth extraction was practiced in Mongolia by ca. 750 BCE and continued through the early Middle Ages. These results push back the earliest dates for equine dentistry by more than a millennium and suggest that nomadic peoples developed key innovations in veterinary care that enabled more sophisticated horse control, ultimately changing the structure of communication, exchange, and military power in ancient Eurasia.

Related

Tracking material cultures with ancient DNA: medieval Norse walrus ivory trade, and leather shields from Zanzibar

norse-walrus-ivory-trade

Two papers have been recently published, offering another interesting use of ancient DNA analysis for Archaeology and, potentially, Linguistics.

Open access Ancient DNA reveals the chronology of walrus ivory trade from Norse Greenland, by Star, Barrett, Gondek, & Boessenkool, bioRxiv (2018).

Abstract (emphasis mine):

The search for walruses as a source of ivory -a popular material for making luxury art objects in medieval Europe- played a key role in the historic Scandinavian expansion throughout the Arctic region. Most notably, the colonization, peak and collapse of the medieval Norse colony of Greenland have all been attributed to the proto-globalization of ivory trade. Nevertheless, no studies have directly traced European ivory back to distinct populations of walrus in the Arctic. This limits our understanding of how ivory trade impacted the sustainability of northern societies and the ecology of the species they relied on. Here, we compare the mitogenomes of 27 archaeological walrus specimens from Europe and Greenland (most dated between 900 and 1400 CE) and 10 specimens from Svalbard (dated to the 18th and 19th centuries CE) to partial mitochondrial (MT) data of over 300 modern walruses. We discover two monophyletic mitochondrial clades, one of which is exclusively found in walrus populations of western Greenland and the Canadian Arctic. Investigating the chronology of these clades in our European archaeological remains, we identify a significant shift in resource use from predominantly eastern sources towards a near exclusive representation of walruses from western Greenland. These results provide empirical evidence for the economic importance of walrus for the Norse Greenland settlements and the integration of this remote, western Arctic resource into a medieval pan-European trade network.

walrus-ivory-trade-norse-greenland
(A) Population distribution, historic trade routes and sample locations of Atlantic walrus in the northern Atlantic region. The range of modern Atlantic walrus (dark grey) and putative dispersal routes (black arrows) follow (58) and (31). Eight breeding populations are recognized (58); 1 – Foxe Basin, 2 – Hudson Bay, 3 – Hudson Strait, 4, – West Greenland, 5 – North Water, 6 – East Greenland, 7 – Svalbard/Franz Josef land, 8 – Novaya Zemlya. Historic trade routes from Greenland –including the location of Norse settlements– and northern Fennoscandia/Russia (yellow) indicate possible sources from which walrus ivory was exported to Europe during the Middle Ages. The Svalbard specimens (orange) were originally from hunting stations of the 1700s and 1800s. The other Atlantic walrus specimens (red, grey) were obtained from museum collections. (B) Bayesian phylogenetic tree obtained using BEAST (84) based on 346 mitochondrial SNPs using Pacific walrus (PAC) as an outgroup. Numbers represent the different specimens as listed in Table S1, and colors match the sampling locations as in Fig. 1A. Branches with a posterior probability of one (grey circles) are indicated. (C) Distribution of RFLP and control region (CR) haplotypes of modern Atlantic walrus populations. The RFLP clade classification follows Born, Andersen et al. (2001). The distribution of a distinct ACC CR haplotype is from 306 modern specimens (see material and methods).

Determination of the geographical origin of leather shields from Zanzibar using ancient DNA tools, by Bastian, Jacot-des-Combes, Hänni, & Perrier, J Arch. Sci (2018) 19:323-333.

Abstract:

Zanzibar shields are documented in several books and preserved in many European, African and Omani museums. They are relatively small and decorated; therefore, we can assume that they served to not only to protect the hand during sword combat but also to attract the attention of the attacker. As with all shields, they are also an object of prestige and armorial bearing to identify the owner’s army corps. Within the incredible cultural and ethnic mosaic of this part of the Indian Ocean, the shield enables alliances, protection systems and allegiance to be specified and clarified.

This study is a step towards understanding the nature of the relationships between Oman and the various communities living on the western coast of the Indian Ocean based on their material culture, especially their shields. Identifying the animal species used to make the shields was crucial in establishing both the manufacturers and the consumers of these objects. DNA analyses indicated that the leather used for the studied Zanzibar shields is rhinoceros (Diceros bicornis michaeli); a subspecies historically only present on the coast of East Africa. Our results also indicate that the shields, used mainly in Oman, Zanzibar and other regions with a strong relationship with Oman power, were made in Zanzibar and the Arabian Peninsula.

zanzibar-shield-rhinoceros
Ancient distribution of Diceros bicornis michaeli (eastern black rhinoceros) from southern Sudan, Ethiopia, and Somalia through Kenya into northern-central Tanzania. Dark grey represents the presence of both species. At the tip of the arrow: Zanzibar Island. Copyright: Fabiola Bastian.

In a time when many geneticists seem to have shifted their full attention to novel statistical methods applied to a few ancient individuals, it feels good to see some of them using their research to complement traditional academic disciplines instead.

This kind of studies may help track with more detail the most obvious harbinger of potential prehistoric language change: the diffusion of material culture.

See also: