When Bell Beakers mixed with Eneolithic Europeans: Pömmelte and the Europe-wide concept of sanctuary


Recent open access paper The ring sanctuary of Pömmelte, Germany: a monumental, multi-layered metaphor of the late third millennium BC, by Spatzier and Bertemes, Antiquity (2018) 92(363):655-673.

Interesting excerpts (emphasis mine):

In recent decades, evidence has accumulated for comparable enclosures of later dates, including the Early Bronze Age Únětice Culture between 2200 and 1600 BC, and thus into the chronological and cultural context of the Nebra sky disc. Based on the analysis of one of these enclosure sites, recently excavated at Pömmelte on the flood plain of the Elbe River near Magdeburg, Saxony-Anhalt, and dating to the late third millennium BC

The main occupation began at 2321–2211 cal BC, with the stratigraphically earliest features containing exclusively Bell Beaker finds. Bell Beaker ceramics continue after 2204–2154 cal BC (boundary occupation I/II), although they were probably undecorated, but are now complemented by Únětice Culture (and other Early Bronze Age) types. At this time, with features common to both cultures predominate. Only contexts dating to the late main occupation phase (late phase II) and thereafter contained exclusively Únětice Culture finds. Evidently, the bearers of the Bell Beaker Culture were the original builders of the enclosure. During a second phase of use, Final Neolithic and Early Bronze Age cultures coexisted and intermingled. The material remains, however, should not be taken as evidence for successive groups of differing archaeological cultures, but as witnesses to a cultural transition from the Bell Beaker Culture to the Únětice Culture (Spatzier 2015). The main occupation ended 2086–2021 cal BC with the deconstruction of the enclosure; Bell Beaker finds are now absent. Finally, a few features (among them one shaft) and radiocarbon dates attest the sporadic re-use of the site in a phase of abandonment/re-use that ended 1636– 1488 cal BC.

Cultural sequence and chronological model of the Pömmelte enclosure’s occupation (dates in 1σ-precision) (designed by André Spatzier).

How the above-ground structures possibly influenced perception may reveal another layer of meaning that highlights social functions related to ritual. While zone I was disconnected from the surroundings by a ‘semi-translucent’ post-built border, zones II/III were separated from the outside world by a wooden wall (i.e. the palisade), and zone III probably separated individuals from the crowd gathered in zone II. Accessing the interior or centre therefore meant passing through transitional zones, to first be secluded and then segregated. Exiting the structure meant re-integration and re-connection. The experience possibly induced when entering and leaving the monument reflects the three stages of ‘rites of passage’ described by van Gennep (1909): separation, liminality and incorporation. The enclosure’s outer zone(s) represents the pre- and post-liminal phase; the central area, the liminal phase. Seclusion and liminality in the interior promoted a sense of togetherness, which can be linked to Turner’s “communitas” (1969: 132–33). We might therefore see monuments such as the Pömmelte enclosure as important communal structures for social regulation and the formation of identity.

Layers of meaning of the Pömmelte enclosure as deduced from the archaeological record (design by André Spatzier).

(…) The long-term stability of these connotations must be emphasised. As with the tradition of making depositions, these meanings were valid from the start of the occupation — c. 2300 BC — until at least the early period following the deconstruction event, c. 2050 BC. While the spatial organisation and the solar alignment of the main entrances were maintained throughout the main occupation, stone axes and ‘formal’ graves indicate the continuation of the spatial concepts described above until the twentieth to nineteenth centuries BC.

These layers of meaning mirror parallel concepts of space including, although not necessarily restricted to, the formation of group identities (see Hansen & Meyer 2013: 5). They can perhaps be better understood as a ‘cosmological geography’ manifested in the symbolism of superimposed levels of conceptual ideas related to space and to certain cardinal points (Figure 8). This idea is closely related to Eliade’s (1959: 29–36) understanding of “organized — hence comicized — territory”, that is territory consecrated to provide orientation within the homogeneity of the chaotic ‘outside world’, and the equivalence of spatial consecration and cosmogony. Put differently, the Pömmelte enclosure can be interpreted as a man-made metaphor and an icon of the cosmos, reflecting the Weltanschauung (a comprehensive conception of the world) of the people who built and used it. By bringing together Eliade and Rappaport’s ideas of meaningfulness in relation to religious experience (Rappaport 1999: 391–95), it may be argued that Pömmelte was a place intended to induce oneness with the cosmos. In combining multiple layers that symbolically represent different aspects of life (first-ordermeaning), the enclosure became an icon metaphorically representing the world (second-order-meaning). As this icon was the place to reaffirm life symbolism ritually, through their actions, people perhaps experienced a sense of rootedness in, or unity with, the cosmos (highest-order-meaning). Although we can only speculate about the perceptions of ancient people, such a theory aiming to describe general principles of religious experience can provide insight.


The circular enclosure of Pömmelte is the first Central European monumental complex of primarily sacred importance that has been excavated and studied in detail. It reveals aspects of society and belief during the transition from the Final Neolithic to the Early Bronze Age, in the second half of the third millennium BC. Furthermore, it offers details of ritual behaviour and the way that people organised their landscape. A sacred interior was separated from the profane environment, and served as a venue for rites that secured the continuity of the social, spiritual and cosmic order. Ancestor worship formed another integral part of this: a mound-covered burial hut and a square-shaped ditch sanctuary (located, respectively, within and near the enclosure’s south-eastern sector; cf. Figure 2)—dating to 2880–2580 cal BC and attributed to the Corded Ware Culture (Spatzier 2017a: 235–44)—suggest that this site was deliberately chosen. With construction of the ring sanctuary, this place gained an immense expansion in meaning—comparable to Stonehenge. Through architectural transformation, both of these sites developed into sanctuaries with increasingly complex religious functions, including in relation to the cult of the dead. The cosmological and social functions, and the powerful symbolism of the Nebra sky disc and hoard (Meller 2010: 59–70), are reflected in Pömmelte’s monumental architecture.

All of these features—along with Pömmelte’s dating, function and complex ring structure—are well documented for British henge monuments (Harding 2003; Gibson 2005). The continuous use of circular enclosures in Central Europe from around 3000– 1500 BC remains to be confirmed, but strong evidence indicates usage spanning from the fifth to the first millennia BC (Spatzier 2017a: 273–96). From 2500 BC onwards, examples in Central Europe, Iberia and Bulgaria (Bertemes 2002; Escudero Carrillo et al. 2017) suggest a Europe-wide concept of sanctuary. This indicates that in extensive communication networks at the beginning of bronze metallurgy (Bertemes 2016), intellectual and religious contents circulated alongside raw materials. The henge monuments of the British Isles are generally considered to represent a uniquely British phenomenon, unrelated to Continental Europe; this position should now be reconsidered. The uniqueness of Stonehenge lies, strictly speaking, with its monumental megalithic architecture.

Model of the spatial organisation of the Pömmelte enclosure (designed by André Spatzier).

The Classical Bell Beaker heritage

No serious scholar can argue at this point against the male-biased East Bell Beaker migrations that expanded the European languages related to Late Proto-Indo-European-speaking Yamna (see David Reich’s comments), and thus most likely North-West Indo-European – the ancestor of Italo-Celtic, Germanic, and Balto-Slavic, apart from Pre-Celtic IE in the British Isles, Lusitano-Galician in Iberia, or Messapic in Italy (see here a full account).

With language, these migrants (several ten thousands) brought their particular Weltanschauung to all of Western, Central, and Northern Europe. Their admixture precisely in Hungary shows that they had close interactions with non-Indo-European peoples (genetically related to the Globular Amphorae culture), something that we knew from the dozens of non-Indo-European words reconstructed exclusively for North-West Indo-European, apart from the few reconstructed non-Indo-European words that NWIE shares with Palaeo-Balkan languages, which point to earlier loans from their ancestors, Yamna settlers migrating along the lower Danube.

It is not difficult to imagine that the initial East Bell Beaker group shared a newly developed common cosmological point of view that clashed with other neighbouring Yamna-related worldviews (e.g. in Balkan EBA cultures) after the cultural ties with Yamna were broken. Interesting in this respect is for example their developed (in mythology as in the new North-West Indo-European concept) *Perkwūnos, the weather god – probably remade (in language as in concept) from a Yamna minor god also behind Old Indian parjányas, the rain god – as one of the main gods from the new Pantheon, distinct from *Dyēus patēr, the almighty father sky god. In support of this, the word *meldh-n- ‘lightning’, behind the name of the mythological hammer of the weather god (cf. Old Norse Mjǫllnir or Latvian Milna), was also a newly coined North-West Indo-European term, although the myth of the hero slaying the dragon with the magical object is older.

The Hand of Perkūnas by Mikalojus Konstantinas Čiurlionis, from Wikipedia

Circular enclosures are known in Europe since the Neolithic. Also, the site selected for the Pömmelte enclosure had been used to bury Corded Ware individuals some centuries before its construction, and Corded Ware symbolism (stone axe vs. quern) is seen in the use given by Bell Beakers and later Únětice at this place. All this and other regional similarities between Bell Beakers and different local cultures (see here an example of Iberian Bell Beakers) points to syncretism of the different Bell Beaker groups with preceding cultures in the occupied regions. After all, their genealogical ancestors included also those of their maternal side, and not all encountered males disappeared, as is clearly seen in the resurge of previous paternal lineages in Central-East Europe and in Scandinavia. The admixture of Bell Beakers with previous groups (especially those of similar steppe-related ancestry from Corded Ware) needs more complex analyses to clarify potential early dialectal expansions (read what Iosif Lazaridis has to say).

The popular “big and early” expansions

These syncretic trends gave rise to distinct regional cultures, and eventually different local groups rose to power in the new cultural regions and ousted the old structures. Social norms, hierarchy, and pantheons were remade. Events like this must have been repeated again and again in Bronze and Iron Age Europe, and in many cases it was marked by a difference in the prevailing archaeological culture attested, and probably accompanied by certain population replacements that will be seen with more samples and studies of fine-scale population structure.

Some of these cultural changes, marked by evident haplogroup or admixture replacement, are defined as a ‘resurge’ of ancestry linked to previous populations, although that is obviously not equivalent to a resurge of a previous cultural group, because they usually represent just a successful local group of the same supraregional culture with a distinct admixture and/or haplogroup (see e.g. resurge of R1a-Z645 in Central-East European Bronze Age). Social, religious, or ethnic concepts may have changed in each of these episodes, along with the new prestige dialect.

NOTE. A recent open access paper on two newly studied Middle Bronze Age inhumations from Stonehenge give an interesting idea of potential differences in social identities, in ancestry and geographic origin (which characterize ethnicity) may have been marked by differences in burial ceremonies: Lives before and after Stonehenge: An osteobiographical study of four prehistoric burials recently excavated from the Stonehenge World Heritage Site, by Mays et al. Journal of Archaeological Science: Reports (2018) 20:692-710.

This must have happened then many times during the hundreds (or thousands in some cases) of years until the first attestation of a precise ancient language and culture (read e.g. about one of the latest branches to be attested, Balto-Slavic). Ancient language contacts, like substrates or toponymy, can only rarely be detected after so many changes, so their absence (or the lack of proper studies on them) is usually not relevant – and certainly not an argument – in scholarly discussions. Their presence, on the other hand, is a proof of such contacts.

Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

We have dozens of papers supporting Uralic dialectal substrate influence on Pre-Germanic, Proto-Balto-Slavic, and Pre- and Proto-Indo-Iranian (and even Proto-Celtic), as well as superstrate influence of Palaeo-Germanic (i.e. from Pre- to Proto-Germanic) and Proto-Balto-Slavic into Proto-Finno-Saamic, much stronger than the Indo-Iranian adstrate influence on Finno-Ugric (see the relative importance of each influence) which locates all these languages and their evolution to the north and west of the steppe (with Proto-Permic already separated, in North-East Europe, as is Proto-Ugric further east near the Urals), probably around the Baltic and Scandinavia after the expansion of Bell Beakers. These connections have been known in linguistics for decades.

Apart from some early 20th century scholars, only a minority of Indo-Europeanists support nowadays an Indo-European (i.e. centum) substrate for Balto-Slavic, to keep alive an Indo-Slavonic group based on a hypothetical 19th century Satem group; so e.g. Holzer with his Temematic, and Kortlandt supporting him, also with some supposed Indo-European substrate with heavy non-Indo-European influence for Germanic and Balto-Slavic, that now (thanks mainly to the views of the Copenhagen group) have been linked to the Corded Ware culture, as it has become clear even to them that Bell Beakers expanded North-West Indo-European.

NOTE. The Temematic etymologies have been (all of them) fully dismissed e.g. in Matasović (2013). I have already explained why an Indo-Slavonic group from Sredni Stog is not tenable, and genetics (showing Late PIE only from Yamna expansions) is proving that, too.

For their part, only a minority among Uralicists, such as Kuz’mina, Parpola or Häkkinen, believe in an ‘eastern’ origin of Uralic languages, around the Southern Urals. Genomic finds – like their peers – are clearly not supporting their views. But even if we accept this hypothesis, there is little space beyond Abashevo and related East Corded Ware cultures after the recent papers on Corded Ware and Fennoscandian samples. And yet here we are:

The Copenhagen “Homeland” interactive map

Brought to you by the Copenhagen fantasy map series, Indo-Europeans after (no, really, after) the expansion of Yamna settlers in Hungary ca. 2700 BC: Yamna settlers have magically disappeared. Yamna-related Balkan EBA cultures and the hundreds of Yamna kurgans around the Lower Danube and in Hungary up to Saxony-Anhalt do not exist. Dat huge mythical Middle Dnieper territory lasting (unchanged) for a thousand years, in sooo close contact with Yamna territory (so beautifully ‘linked’ together that they must have been BFFs and admixed!). Uralic Mesolithic hunter-gatherers resisting IE invasions in Volosovo for 1,500 years like Asterix’ Gaulish village against the Romans. Tiny pockets of Bell Beakers will eventually emerge from (surprise!) Corded Ware territories beautifully scattered over Central and Northern Europe (unlike those eastern CWC mega-regions). And, of course, you can almost see Kroonen & Iversen’s Kurgan Pre-Germanic mixing already with their agricultural substrate TRB precisely in full-IE Denmark (quite appropriate for the Danish school). And sheep symbols representing wool finds, for no reason. A great map to mock for years to come, with each new genetic paper.

The new propaganda tool GIS timeline map of the Copenhagen group:

  • consciously ignores Yamna settlers along the Danube, in the Balkans, and in Hungary, and initial East Bell Beakers, i.e. the obvious origin and expansion of North-West Indo-Europeans, but in contrast magnifies (and expands in time) regions for Sredni Stog / Corded Ware cultures (which suggests that this is yet another absurd attempt to revive the theories of the Danish school…);
  • substitutes arrows for Kron-like colors (where danger red = Indo-European) with the same end result of many other late 20th century whole-Europe Kurgan maps, linking Sredni Stog and Corded Ware with Yamna, but obviating the precise origin of Corded Ware peoples (is it Sredni Stog, or is it that immutable Middle Dnieper group? is it West Yamna, or Yamna Hungary? is it wool, or is it wheels?);
  • relegates Uralic speakers to a tiny corner, a ‘Volosovo’ cultural region, thus near Khvalynsk/Yamna (but not too much), that miraculously survives surrounded by all-early-splitting, all-Northern Eneolithic Indo-Europeans, thus considering Uralic languages irrelevant not only to locate the PIE Urheimat, but also to locate their own homeland; also, cultures identified in color with Uralic speakers expand until the Iron Age with enough care not to even touch in the map one of the known R1a samples published to date (because, for some people, apparently R1a must be Indo-European); and of course N1c or Siberian ancestry are irrelevant, too;
  • and adds findings of wheels and wool probably in support of some new ideas based on yet another correlation = causation argument (that I cannot then properly criticize without access to its reasoning beyond cute SmartArt-like symbols) similar to their model – already becoming a classic example of wrong use of statistical methods – based on the infamously named Yamnaya ancestral component, which is obviously still used here, too.

The end result is thus similar to any other simplistic 1990s Gimbutas (or rather the recently radicalized IE Sredni Stog -> Corded Ware -> BBC version by the Danish workgroup) + 2000s R1a-map + 2010s Yamnaya ancestry; but, hard to believe, it is published in mid-2018. A lot of hours of senseless effort, because after its publication it becomes ipso facto outdated.

For comparison of Yamna and Bell Beaker expansions, here is a recent simplistic, static (and yet more accurate) pair of maps, from the Reich Lab:

Cultural maps from Eneolithic and Chalcolithic cultures in Wang et al. (2018).

If the Copenhagen group keeps on pushing Gimbutas’ long ago outdated IE Sredni Stog -> Corded Ware theory as modified by Kristiansen, with their recently invented Corded Ware -> Bell Beaker model in genetics, at some point they are bound to clash with the Reich-Jena team, which seems to have less attachment to the classic Kurgan model and the wrong interpretations of the 2015 papers, and that would be something to behold. Because, as Cersei would say: “When you play the game of thrones, you win or you die. There is no middle ground.” And when you play the game of credibility, after so many, so wrong publications, well…

NOTE. I have been working on a similar GIS tool for quite some time, using my own maps and compiled genetic data, which I currently only use for my 2018 revision of the Indo-European demic diffusion model. Maybe within some weeks or months I will be able to publish the maps properly, after the revised papers. It’s a pitty that so much work on GIS and analysis with genetic data and cultural regions has to be duplicated, but I intend to keep some decent neutrality in my revised cultural maps, and this seems impossible at this point with some workgroups who have put all their eggs in one broken basket…


Canid Y-chromosome phylogeny reveals distinct haplogroups among Neolithic European dogs


Open access Analysis of the canid Y-chromosome phylogeny using short-read sequencing data reveals the presence of distinct haplogroups among Neolithic European dogs, by Oetjens et al., BMC Genomics (2018) 19:350.

Interesting excerpts (modified for clarity, emphasis mine):


Canid mitochondrial phylogenies show that dogs and wolves are not reciprocally monophyletic. The mitochondrial tree contains four deeply rooted clades encompassing dogs and many grey wolf groups. These four clades form the basis of dog mitochondrial haplogroup assignment, known as haplogroups A-D. The time of the most recent common ancestor (TMRCA) of haplogroups A-D significantly predates estimates for domestication based on archeological and genetic evidence. Instead, these clades may represent variation present among the founding population of the dog lineage or the results of wolf introgressions into dog populations. The relative frequencies of mitochondria haplogroups are not stable over time, with changes reflecting processes such as drift, migration, and population growth. Although the mitochondria A and B haplogroups are most common in contemporary European dogs, surveys of ancient samples indicate that the majority of ancient European dogs carried the C or D mitochondrial haplotype. This apparent turnover in mitochondrial haplogroups may reflect the migration of a distinct dog population into Europe over the past 15,000 years.

Maximum likelihood phylogeny of 118 candid Y-chromosomes A Y-chromosome haplogroup tree produced by RAxML (8.1.13) using the GTR+ I model is depicted. Clades in the tree have been collapsed by haplogroup assignment. The number of samples within each collapsed node is indicated in parentheses next to the haplogroup assignment. For each node, percent bootstrap support out of 1000 iterations is indicated above the branch. The locations of three ancient samples, based on the presence of diagnostic mutations, are indicated in red


Using the variation discovered from sequence data, we applied a Bayesian MCMC approach to estimate TMRCAs for each haplotype group. Our estimated Y-chromosome mutation rate (3.07 × 10− 10 substitutions per site per year, relaxed clock model) falls within the range of a previous estimate by Ding et al. who used a similar calibration and estimate 1.35 × 10− 10– 4.31 × 10− 10 substitutions per site per year. The TMRCAs we estimated are substantially older than mitochondria phylogenies calibrated with tip dates of ancient samples, which report clade-specific TMRCAs < 25,000 years ago. We note that our Y-chromosome TMRCA estimates are extremely sensitive to our assumptions about the age of the root of the tree and should be interpreted with caution due to the uncertainty in this single calibration point. However, the relative ages of the branches and the chronological order of haplogroup divergences are more robust than the absolute estimated dates.

In general, the relationships between Y-chromosome haplogroups and autosomal ancestry we report are very similar to the relationships described in Shannon et al. As noted earlier, our dataset includes a subset of wolves with Y-chromosomes assigned to a dog Y-haplogroup. However, ADMIXTURE analysis does not indicate substantial recent dog ancestry in these samples, suggesting that their placement on the Y-chromosome phylogeny reflects variation in Y-chromosome haplotypes that was present in the ancestral population and therefore predates the domestication process or is the result of ancient introgression events whose signature of autosomal ancestry has been diluted.

The relationship between autosomal ancestry and Y-chromosome haplogroups Major groupings of canine ancestry are shown based on a principal components analysis of autosomal markers from 499 village dogs from Shannon et al. a. The geographic origin of each sample is indicated by color. The 104 male dogs used in this study are projected onto the resulting principal components and colored based on haplogroup (b). Village dogs from (a) are shown as transparent dots in (b)


Using sequencing data, we find that the estimated TMRCA of dog Y haplogroups predates dog domestication. We further reveal the placement of several wolf Y-chromosomes within deep branches of dog haplogroup clades. Using an expanded set of mutations diagnostic for each haplogroup, we find that distinct Y haplogroups were present in Europe during the Neolithic and that CTC, a ~ 4700 year old ancient dog from Germany has a Y-chromosome that shares diagnostic alleles with wolves found in India.

Other studies

On the same subject, you can read another recent study, bioRxiv preprint New Evidence of the Earliest Domestic Dogs in the Americas, by Perri et al. (2018); and also a recent, open access paper (see above featured image) Ancient European dog genomes reveal continuity since the Early Neolithic, by Botigué et al., Science Communications (2017).

While Proto-Indo-European- and Proto-Uralic-speakers had a close relationship with dogs (revealed in their reconstructed language and attributed archaeological cultures), I think it will be very difficult to ascertain any population movement based on them, unless there is a clear, well-established archaeological relationship between a specific culture and dog-breeding.

Nevertheless, I would say that this kind of studies are more likely to give some information related to these and other cultures than, for example, the study of honeybees in honey-hunting vs. beekeeping cultures (see e.g. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera, by Cridland, Tsutsui, and Ramírez GBE 2017), which was also related to the development of both PIE and PU cultures.

See also:

Bayesian estimation of partial population continuity by using ancient DNA and spatially explicit simulations


Open access Bayesian estimation of partial population continuity by using ancient DNA and spatially explicit simulations, by Silva et al., Evolutionary Applications (2018).

Abstract (emphasis mine):

The retrieval of ancient DNA from osteological material provides direct evidence of human genetic diversity in the past. Ancient DNA samples are often used to investigate whether there was population continuity in the settlement history of an area. Methods based on the serial coalescent algorithm have been developed to test whether the population continuity hypothesis can be statistically rejected by analysing DNA samples from the same region but of different ages. Rejection of this hypothesis is indicative of a large genetic shift, possibly due to immigration occurring between two sampling times. However, this approach is only able to reject a model of full continuity model (a total absence of genetic input from outside), but admixture between local and immigrant populations may lead to partial continuity. We have recently developed a method to test for population continuity that explicitly considers the spatial and temporal dynamics of populations. Here we extended this approach to estimate the proportion of genetic continuity between two populations, by using ancient genetic samples. We applied our original approach to the question of the Neolithic transition in Central Europe. Our results confirmed the rejection of full continuity, but our approach represents an important step forward by estimating the relative contribution of immigrant farmers and of local hunter‐gatherers to the final Central European Neolithic genetic pool. Furthermore, we show that a substantial proportion of genes brought by the farmers in this region were assimilated from other hunter‐gatherer populations along the way from Anatolia, which was not detectable by previous continuity tests. Our approach is also able to jointly estimate demographic parameters, as we show here by finding both low density and low migration rate for pre‐Neolithic hunter‐gatherers. It provides a useful tool for the analysis of the numerous aDNA datasets that are currently being produced for many different species.

A) Different zones defined for computing proportions of ancestry in Central Europeans 4,500 BP. B) Schematic representation of various population contributions. C) Mean proportions of ancestry from the various PHG zones (A+B+C+D) in Central European populations from zone A at the end of the Neolithic transition 4,500 BP, computed for autosomal and mitochondrial markers.

Relevant excerpts:

Our results are in general accordance with two distinct ancestry components that have previously been detected at the continental scale by Lazaridis, Patterson et al. (2014): the “early European farmer” (EEF), which corresponds here to the NFA from Anatolia (zone C in Figure 3), and the “West European hunter-gatherer” (WHG), which corresponds here to the PHG from zones A and B in Figure 3. Notably, the contribution of an Ancient North Eurasians (ANE) component is not included in our model as we did not consider potential post-Neolithic immigration waves, which could have contributed to the modern European genetic pool, such as the wave that came from the Pontic steppes and was associated with the Yamnaya culture (Haak, Lazaridis et al. 2015). Without considering the ANE ancestry component, our estimate of the autosomal genetic contribution of Early farmers to the gene pool of Central European populations (25%) tends to be lower than the EEF ancestry estimated in most modern Western European populations, but is of the same order than the estimations in modern Estonians and in the ancient Late Neolithic genome “Karsdorf” from Germany (Lazaridis, Patterson et al. 2014, Haak, Lazaridis et al. 2015). Note that the contribution of hunter-gatherers to Neolithic communities appears to be variable in different regions of Europe (Skoglund, Malmstrom et al. 2012, Brandt, Haak et al. 2013, Lazaridis, Patterson et al. 2014), while we computed an average value for Central Europe. Moreover, we computed the ancestry of the two groups at the end of the Neolithic period while previous studies estimated it in modern times. Finally, previous studies used molecular information to directly estimate admixture proportions, while we use molecular information to estimate the model parameters and, then, we computed the expected genetic contributions of both groups using the best parameters, without using molecular information during this second step. Model assumptions may thus influence the inferences on the relative genetic contribution of both groups. In particular, we made the assumption of a uniform expansion of NFA with constant and similar assimilation of PHG over the whole continent but spatio-temporally heterogeneous environment, variable assimilation rate and long distance dispersal may have played an important role. The effects of those factors should be investigated in future studies.

Indo-Europeans and Finno-Ugric peoples might have shared the love for weed


Funny and interesting read to help relax the trolling wave caused by the first early Hittite samples:

Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies, by McPartland, Guy, & Hegman, Vegetation History and Archaeobotany (2018).

Abstract (emphasis mine):

Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelniţa culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.

Interesting excerpts (modified to make them more readable):

C. sativa during the Copper age

We compared the territories of Copper age cultures with locations of C–H pollen consistent with Cannabis in Fig. 5. This suggests that two Copper age cultures had the potential to domesticate wild-type C. sativa: the Greek Chalcolithic, and the Cucuteni-Tripolye culture. C–H pollen consistent with cultivated Cannabis occurred at one site in Bulgaria. This site may correspond to the Varna culture or Gumelniţa culture. However, pollen at five other Varna and Gumelniţa sites was interpreted as Humulus, or undetermined C/H. Archaeological studies of Gumelniţa and Cucuteni-Tripolye sites have found C. sativa seeds and less-robust evidence—pottery seed impressions (Clarke and Merlin 2013; Long et al. 2017; McPartland and Hegman 2017).

Cannabis distribution ca. 4,500–2,300 cal BP.

C. sativa during the Bronze age

Eight Bronze age cultures had potential: C–H pollen consistent with wild-type Cannabis in Fig. 6 appeared within the boundaries of several Bronze age cultures. These include the Netted Ware culture, Ezero culture, Yamnaya culture, Corded Ware culture, Bell-Beaker culture, Terramara culture, Aegean Bronze age, and Mycenaean Greece. C–H pollen interpreted as cultivated C. sativa appeared in four studies: One study in Yamnaya territory agrees with archaeological studies, which have recovered C. sativa seeds or pottery seed impressions (Clarke and Merlin 2013; Long et al. 2017; McPartland and Hegman 2017). Two study sites are associated with the Terramara culture. However, pollen in 11 other studies at Terramara sites suggested Humulus or indeterminate C/H pollen. One FPS in France was likely contaminated by taphonomic processes, as admitted by its authors.

Scythian contacts with Celts and Balto-Slavs

The Scythians impacted deeply on the Celts, in the realms of art, animal husbandry, military strategy, language, and even clothing. The oldest evidence of Scythian–Celtic interactions that we could find was a 7th century bce burial in Bulgaria, which combined elements of Scythian culture along with a Hallstatt vessel (Braund 2015). Scythian artifacts in Hallstatt-occupied Hungary first appear around 550 bce (Bartosiewicz and Gál 2010). A Hallstatt burial at Vix in France from 525 bce contains items and motifs inspired by Scythian culture (Megaw 1966). These data collectively suggest a conservative date of 550 bce as the terminus post quem for Scythian contact with the Celts. Only three sites in Celtic territory showed pollen signals consistent with hemp cultivation prior to 550 bce. To wit, the oldest ones had problems with dating. In contrast, 28 FPSs in Celtic territory showed pollen signals of hemp cultivation arising post-550 bce, after their contact with the Scythians.

The Scythians also impacted Proto-Slavic cultures. The Scythians left a trail of burned-out settlements built by the Proto-Slavic Lusatian culture around 600 bce (Bukowski 1977). A horde of Scythian artifacts found at Witaszkowo in Lusatia dates to 550 bce (Furtwängler 1883). Only two pre-550 bce sites in Slavic/Baltic territory showed signals consistent with hemp cultivation, and they occurred in the southeast, towards the Scythian homeland. Ralska-Jasiewiczowa and van Geel (1998) linked the appearance of Cannabis pollen in Poland with Scythian incursions. The Scythians appear to be responsible for the spread of Cannabis amongst several Iron age European cultures.

There you have it, the long-sought Yamna – Corded Ware cultural connection. Finno-Ugric peoples liked it wild, though 😉

Brexit forces relocation of one of today’s main Yamna research projects to Finland


Archaeologist Volker Heyd is bringing his ERC Advanced Grant to Helsinki. So has proudly reported the University of Helskinki.

Some interesting excerpts (emphasis mine):

With his research group, Heyd wants to map out how the Yamnaya culture, also known as the Pit Grave culture, migrated from the Eurasian steppes to prehistoric south-eastern Europe approximately 3,000 years BCE. Most of the burial mounds typical of the Yamnaya culture have already been destroyed, but new techniques enable their identification and study.

The project is using multidisciplinary methods to solve the mystery. Archaeologists are collaborating with scholars of biological and environmental sciences, using the methods of funerary archaeology, landscape archaeology and remote sensing that are at the group’s disposal. From the field of biological sciences, the group is making use of genetics/DNA analysis, biological anthropology and biogeochemistry. As for environmental sciences, their contribution is in the form of palaeoclimatology, which studies climate before modern meteorological observations, and soil formation processes.

The project, coordinated by the discipline of archaeology at the University of Helsinki, will also welcome researchers from Mainz, London, Bristol and Budapest, in addition to which the group will collaborate with Czech, Slovak and Polish colleagues. Field studies and sample collection for the project will be conducted in Romania, Bulgaria, Hungary and Serbia.

In Helsinki, Volker Heyd’s main collaborator is Professor Heikki Seppä from the Department of Geosciences and Geography on the Kumpula Campus, while the team will also be hiring three postdoctoral researchers.

Yamna – East Bell Beaker migration 3000-2300 BC, after Heyd (2007, 2012)

Yam­naya from the east changed Europe forever

The researchers wish to understand how the Yamnaya migrated to Europe and how the arrival of a new culture changed an entire continent.

How many people actually arrived? Taking the scale of the changes, some estimates range in the millions, but according to Volker Heyd, the number of people representing the Yamnaya culture in southeast Europe was around several ten thousands. It is indeed remarkable how such a relatively small group of people has had such a significant and far-reaching impact on Europe.

The Yamnaya also brought with them new cultural and social norms that have had far-reaching consequences. For instance, patriarchy and monogamy seems to be part of the Yamnaya legacy. Another established theory speculates that marriages made women migrate and travel even across great distances.

In accordance with primogeniture, the first-born son of the family inherited his parents’ possessions, while the younger siblings had to make their own way through other means. Among other things, this practice guaranteed ample human resources for the legions of the Roman Empire, which enabled its establishment and expansion, and later filled the ranks of medieval monasteries across Europe.

Another interesting question is what made representatives of the Yamnaya culture migrate from the eastern European steppes to the west. Heyd believes that the underlying reason may have been climate change. The Yamnaya were almost exclusively dependent on animal husbandry. As the climate changed – when rainfalls decreased in the east – they may have been forced to migrate west to secure the welfare of their cattle.

North-East Europe and Corded Ware

Heyd has already been here as a visiting professor in the Helsinki University Humanities programme since the beginning of the year, working on another project. Together with Postdoctoral Researcher Kerkko Nordqvist, he is investigating the prehistoric settlement of north-eastern Europe 3,000 – 6,000 years ago with research methods similar to the new Yamnaya project. One of their central research questions is what made people migrate to this region, and which innovations they brought with them. In this case also, the reasons behind the migration may be related to changes in the environment and climate.

This is probably bad news for research in the UK (I say probably because I guess many Brexiteers will be happy to have less foreign researchers in their country), but it is great news to see both researchers, Heyd and Nordqvist (whose Ph.D. thesis includes research on the Corded Ware culture that I have recently mentioned) – , be able to collaborate together to assess Indo-European and Uralic migrations.

Heyd’s website at the University of Bristol states that he is currently working on:

  1. The Milking Revolution in Temperate Neolithic Europe (NeoMilk)‘. Funded by an ERC Advanced Grant, European Union, to R. Evershed. See, for further information: www.neomilk-erc.eu
  2. The Yamnaya Impact‘: Archaeology and scientific research of/into the Yamnaya populations of Southeastern Europe and their impact on contemporary local and neighboring 3rd millennium BC societies as well as their role in the emergence of the Corded Ware and Bell Beaker complexes in Europe.
  3. The Prehistoric Peopling of Northeastern Europe‘: Inter-/crossdisciplinary studies on the archaeology, anthropology, linguistics, and bio- and environmental sciences of early Uralic speakers and their first horizon of interactions with Indo-European speakers. This wider project is in cooperation with colleagues from Helsinki and Turku Universities in Finland, as well as from Russia, Estonia and Poland.
  4. Czech Republic‘: I am closely cooperating with the Institute of Archaeology, Czech Academy of Sciences, in Prague for two research projects funded by the Czech Grant Agency in which we measure various isotopes from human remains in Bristol to understand past mobility and diet. The Humboldt-Kolleg -conference ‘Reinecke’s Heritage’ (with P. Pavúk, M. Ernée and J. Peska) held in June 2017 at Chateau Křtiny/Moravia is also part of this cooperation. See, for further information: http://ukar.ff.cuni.cz/reinecke.
Image modified from Narasimhan et al. (2018), including the most likely proto-language identification of different groups. Original description “Modeling results including Admixture events, with clines or 2-way mixtures shown in rectangles, and clouds or 3-way mixtures shown in ellipses”. See the original full image here.

On the genetic aspect, we have gross Yamna migrations today as clearly depicted as they will ever be: late Khvalynsk/Yamna expanded Late Proto-Indo-European languages, and Bell Beakers brought North-West Indo-European to almost all of Europe, as predicted in Harrison and Heyd (2007). Full stop.

There is still fine-grained population structure, though, as Lazaridis puts it, to be detected in migratory movements contemporary or subsequent to the Yamna settlements in South-East Europe and the East Bell Beaker expansion.

We will probably lack a comprehensive description of local archaeological cultural exchanges – to fit the potential dialectal developments and expansions – to be coupled with small-scale migratory movements in genetics, as more samples are made available.

This work from the University of Helsinki will hopefully provide the necessary detailed anthropological foundations to be used with future genetic studies to obtain a more precise picture of the formation and expansion of North-West Indo-Europeans.


The time and place of European admixture in Ashkenazi Jewish history

Open access The time and place of European admixture in Ashkenazi Jewish history, by Xue, Lencz, Darvasi, Pe’er, & Carmi, PLOS Genetics (2018).

Abstract (emphasis mine):

The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60–80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25–50 generations ago.

Principal Component Analysis (PCA) of the European and Middle-Eastern samples used as reference panels in our study. The analysis was performed using SmartPCA [25] with default parameters (except no outlier removal). The populations included within each region are listed in Table 1 of the main text. The PCA plot supports the partitioning of the European and Middle-Eastern populations into the broad regional groups used in the analysis. https://doi.org/10.1371/journal.pgen.1006644.s001

Interesting excerpts:

(…) AJ genetics defies simple demographic theories. Hypotheses such as a wholly Khazar, Turkish, or Middle-Eastern origin have been disqualified [4–7, 17, 55], but even a model of a single Middle-Eastern and European admixture event cannot account for all of our observations. The actual admixture history might have been highly complex, including multiple geographic sources and admixture events. Moreover, due to the genetic similarity and complex history of the European populations involved (particularly in Southern Europe [51]), the multiple paths of AJ migration across Europe [10], and the strong genetic drift experienced by AJ in the late Middle Ages [9, 16], there seems to be a limit on the resolution to which the AJ admixture history can be reconstructed.

A proposed model for the recent AJ history. The proposed intervals for the dates and admixture proportions are based on multiple methods, as described in the main text. https://doi.org/10.1371/journal.pgen.1006644.g007

Historical model and interpretation

Under our model, admixture in Europe first happened in Southern Europe, and was followed by a founder event and a minor admixture event (likely) in Eastern Europe. Admixture in Southern Europe possibly occurred in Italy, given the continued presence of Jews there and the proposed Italian source of the early Rhineland Ashkenazi communities [3]. What is perhaps surprising is the timing of the Southern European admixture to ≈24–49 generations ago, since Jews are known to have resided in Italy already since antiquity. This result would imply no gene flow between Jews and local Italian populations almost until the turn of the millennium, either due to endogamy, or because the group that eventually gave rise to contemporary Ashkenazi Jews did not reside in Southern Europe until that time. More detailed and/or alternative interpretations are left for future studies.

Recent admixture in Northern Europe (Western or Eastern) is consistent with the presence of Ashkenazi Jews in the Rhineland since the 10th century and in Poland since the 13th century. Evidence from the IBD analysis suggests that Eastern European admixture is more likely; however, the results are not decisive. An open question in AJ history is the source of migration to Poland in late Medieval times; various speculations have been proposed, including Western and Central Europe [2, 10]. The uncertainty on whether gene flow from Western Europeans did or did not occur leaves this question open.

The effect of gene flow from the Middle-East into Southern EU on f4 statistics. Panels (A) and (B) demonstrate f4(West-EU,YRI;AJ,ME) and f4(South-EU,YRI;AJ,ME), respectively (cf S4A Fig). Paths from the Middle-East into AJ are indicated with red arrows; paths from YRI to Western or Southern Europe with green arrows. The f4 statistic is proportional to the total overlap between these paths (black bars). Whereas panel (B) (f4(South-EU,YRI;AJ,ME)) has more overlapping branches than in (A), migration from the Middle-East into Southern EU introduces a branch where the arrows run in opposite directions (patterned bar). Hence, the observed f4 statistic in (B) may be lower (depending on branch lengths) than in (A), even if Southern EU is the true source of gene flow into AJ. https://doi.org/10.1371/journal.pgen.1006644.s005

Featured image: Expulsions of Jews, from Wikipedia.

Optimal Migration Routes of Initial Upper Palaeolithic Populations to Eurasia


Ecological Niche and Least-Cost Path Analyses to Estimate Optimal Migration Routes of Initial Upper Palaeolithic Populations to Eurasia, by Kondo et al. (2018), from The Middle and Upper Paleolithic Archeology of the Levant and Beyond, Replacement of Neanderthals by Modern Humans Series. Chapter downloadable at Academia.edu.


This paper presents a computer-based method to estimate optimal migration routes of early human population groups by a combination of ecological niche analysis and least-cost path analysis. In the proposed method, niche probability is predicted by MaxEnt, an ecological niche model based on the maximum entropy theory. Location of known archaeological sites and environmental factors derived from palaeoterrain and palaeoclimate models, are input to the model to calculate the niche probability at each spatial pixel and weights of the environmental factors. The inverse of probability score is then used as an index of relative dispersal rate to accumulate the travel cost from a given origin. Based on this cumulative cost surface, least-cost paths from the origin to given destinations are visualised. This method was applied to the Initial Upper Palaeolithic population group (probably of modern humans) in Eurasia. The model identified three migration routes from the Levant to (1) Central Europe via Anatolia and Eastern Europe, (2) the Russian steppe via Caucasus Mountains, and (3) the Altai region via the southern coastal Iran and Afghanistan.

Cumulative cost to the southernmost IUP site (Wadi Aghir) using the inverse of the niche probability of the recovery experiment (corresponding to a warm/humid phase) as friction value

Check out also the chapter The Middle to Upper Paleolithic Transition in the Zagros: The Appearance and Evolution of the Baradostian, by Sonia Shidrang, from the same book. Also downloadable at Academia.edu.

Featured image from the chapter: “Niche probability for the IUP lithic industry predicted by MaxEnt using the palaeoclimate model from the recovery experiment (corresponding to a warm/humid phase).”

See also:

The Russian school and the Yamna cultural-historical community, with emphasis on the north-west Pontic region


I have already talked about the Russian school of thought and their position regarding a Mesolithic origin of Proto-Indo-European in Northern Europe (see below related posts).

Since their archaeologists (Ukrainian, Russian, and Kazakh) are the nearest to potential Indo-Uralic origins, I have also recommended to follow some renown researchers closely.

Recently Leo S. Klejn referred to the position of Svetlana Ivanova. I found a recent summary of her model for genetic finds in an article appeared in Генофонд.рф: Степное население в Центральной Европе эпохи ранней бронзы, или путешествие туда и обратно

Aspects I agree with

– There is a Yamna cultural-historical community (i.e. with a potential ethnolinguistic unity). Although many different inner groups can be distinguished (based on cultural, social, anthropological differences), one cannot divide the culture in distinct cultures.

EDIT (28 JAN 2018): You can read a more detailed report about the Yamna cultural-historical community, by Svetlana Ivanova (in Russian).

– There is an older Neolithic cultural-historical community of the Pontic-Caspian steppe (i.e. with a potential ethnolinguistic unity), marked in genetics by CHG ancestry in the region. It is impressive that they supported that before the Mathieson et al. third revision (september 2017) with their finding of “Yamnaya” component in Ukraine Eneolithic. Chapeau for archaeology, again.

Late Eneolithic North-West Pontic zone (after Brujako and Samojlova (eds.), 2013)

Aspects I am neutral about, but are potentially quite relevant for the future

Repin is a culture different from Yamna.

– The Budzhak culture is likely the heir of Repin, which is compatible with its expansion westward. According to Klejn and Anthony (Usatovo), this region was connected to (and might have influenced) the Corded Ware culture. Therefore – that is my contribution, not theirs – a hidden community of R1a-M417 subclades (that a lot of people are eager to find) might have stemmed from there.

EDIT (28 JAN 2018): Read papers about the Budzhak jars and asks, by Svetlana Ivanova (in Russian).

NOTE: In my opinion, as I have said before, the Budzhak/Usatovo-Corded Ware connection is too late to be meaningful for Genomic finds (taking into account the earliest Corded Ware samples, their steppe ancestry, and the TMRCA for R1a-M417 subclades) – it is after all a late group appeared during or after the Yamna expansion along the Danube ca. 3000 BC or later, as supported by most archaeologists today, see e.g. Rassamakin. The most likely model is that R1a-M417 subclades with steppe ancestry expanded from groups near Eneolithic Ukraine, whether from steppe, forest-steppe, or forest zone. Also, in my opinion (supporting Anthony’s original interpretation of Repin, as closely connected to Yamna) it is more likely that the (until now) ‘hidden’ western Yamna community hosting R1b-L51 subclades that later evolved into East Bell Beaker is in fact represented by Repin…

Globular Amphorae and Corded Ware cultures are related, because GAC is actually not a uniform culture, but a ‘complex’ (i.e., in the same sense that Bell Beaker was not a culture, but a complex, as genetics has shown), and CWC is also a complex of cultures, as supported by Furholt. If that is true, the sampling of certain peoples classified as from Globular Amphorae – which some have rushed to cite as the end of the GAC-CWC connection might not be the last word, and Kristiansen’s model of long-lasting GAC-CWC connection may still be open.

Yamna culture and its surroundings (after Brujako and Samojlova (eds.), 2013)

Aspects I disagree with

– There is no migration, but long-lasting contacts that show up in genetics, since the Mesolithic-Neolithic transition. In my opinion, the expansion of admixture + haplogroup reduction and expansion depict clear migratory movements (although, obviously, without cultural identification no speculative ethnolinguistic grouping can be proposed). That much is obvious from Genomics, and if we are not going to accept the most basic findings as proof in favour of certain anthropological models, then Archaeology will not benefit at all from genetic studies.

– Because this is the Russian school of thought, when they talk about Proto-Indo-European they refer to a homeland dating to the Mesolithic-Neolithic transition, and therefore cultural-historical communities after that (and long-lasting contacts) refer to potential continuations of Proto-Indo-European. Following common language guesstimates, though, there is no reason to date the split of Anatolian from a common Indo-Hittite before ca- 4500 BC, since there is no reason to date a Late Proto-Indo-European beyond 4000-3000 BC, apart from controversial glottochronological studies…

A call for collaboration

Again, please, geneticists, archaeologists, and linguists: do collaborate. Merely by talking, the so-called ‘Yamnaya ancestral component’ would have never been given that dreadful name, and maybe we could end this quest to find a Mesolithic homeland for a reconstructed language guesstimated to have been spoken millennia after that time (and maybe turn it into a quest for an older macro-language)…


Massive Migrations? The Impact of Recent aDNA Studies on our View of Third Millennium Europe

Thanks to Joshua Jonathan, I have discovered the paper Massive Migrations? The Impact of Recent aDNA Studies on our View of Third Millennium Europe, by Martin Furholt, European Journal of Archaeology (28 SEP 2017).


New human aDNA studies have once again brought to the forefront the role of mobility and migration in shaping social phenomena in European prehistory, processes that recent theoretical frameworks in archaeology have downplayed as an outdated explanatory notion linked to traditional culture history. While these new genetic data have provided new insights into the population history of prehistoric Europe, they are frequently interpreted and presented in a manner that recalls aspects of traditional culture-historical archaeology that were rightly criticized through the 1970s to the 1990s. They include the idea that shared material culture indicates shared participation in the same social group, or culture, and that these cultures constitute one-dimensional, homogeneous, and clearly bounded social entities. Since the new aDNA data are used to create vivid narratives describing ‘massive migrations’, the so-called cultural groups are once again likened to human populations and in turn revitalized as external drivers for socio-cultural change. Here, I argue for a more nuanced consideration of molecular data that more explicitly incorporates anthropologically informed mobility and migration models.

I was copying and pasting whole excerpts to post them here, but I think it is best to read the full paper.

From the paper: “Simplified map showing the extent of the most important archaeological units of classification in the third millennium cal BC in Europe discussed in this text.”

It is a great summary of potential flaws of the current reasoning in genetic papers.

It should be a must-read for any serious geneticist involved in discussions on migrations, especially regarding archaeology in Indo-European studies.

As for the answers to the paper, well, unsurprisingly quite disappointing that of Haak, neither addressing the main flaw of their proposed “Yamna -> Corded Ware migration” model, nor taking the opportunity to evaluate other potential models fitting their findings of steppe ancestry in Corded Ware peoples, not even those directly suggested to them (like the expansion of Suvorovo-Novodanilovka chiefs).

NOTE: A funny thing about the paper is that, although published at the end of September, it does not take into account certain recent developments supporting Furholt’s doubts, such as the Esperstedt’s family, the new sample of Sredni Stog (and consequently the change in interpretations of outliers in Eneolithic Ukraine populations), or even the elevated steppe ancestry found in East Bell Beaker peoples. I guess Haak’s answer to all that would still be the same thorough argument: “meh, massive Indo-European migration Yamnaya -> Corded Ware is right”…

#EDIT (30 DEC 2017): Check out the interesting article by Bruce G. Trigger, referenced by John Hawks, about the question of descriptive vs. theoretical archaeologist vs. ethnologist/anthropologist from the 1950s to the 1980s. Interesting to see how today the new playboys in Academia, geneticists, are playing the archaeologist playing the ethnologist playing the linguist in Indo-European questions, and how we are living a historical debate on essential questions for the future of all these disciplines.


Genetic landscapes showing human genetic diversity aligning with geography


New preprint at BioRxiv, Genetic landscapes reveal how human genetic diversity aligns with geography, by Peter, Petkova, and Novembre (2017).


Summarizing spatial patterns in human genetic diversity to understand population history has been a persistent goal for human geneticists. Here, we use a recently developed spatially explicit method to estimate “effective migration” surfaces to visualize how human genetic diversity is geographically structured (the EEMS method). The resulting surfaces are “rugged”, which indicates the relationship between genetic and geographic distance is heterogenous and distorted as a rule. Most prominently, topographic and marine features regularly align with increased genetic differentiation (e.g. the Sahara desert, Mediterranean Sea or Himalaya at large scales; the Adriatic, inter-island straits in near Oceania at smaller scales). We also see traces of historical migrations and boundaries of language families. These results provide visualizations of human genetic diversity that reveal local patterns of differentiation in detail and emphasize that while genetic similarity generally decays with geographic distance, there have regularly been factors that subtly distort the underlying relationship across space observed today. The fine-scale population structure depicted here is relevant to understanding complex processes of human population history and may provide insights for geographic patterning in rare variants and heritable disease risk.

Regional patterns of genetic diversity. a: scale bar for relative effective migration rate. Posterior effective migration surfaces for b: Western Eurasia (WEA) e: Central/Eastern Eurasia (CEA) g: Africa (AFR) h Southern African hunter-gatherers (SAHG) k: and Southeast Asian (SEA) analysis panels. ‘X’ marks locations of samples noted as displaced or recently admixed, ‘H’ denotes Hunter-Gatherer populations (both ‘X’ and ‘H’ samples are omitted from the EEMS model fit); in panel g, red circles indicate Nilo-Saharan speakers and in panel h, ‘B’ denotes Bantu-speaking populations. Approximate location of troughs are shown with dashed lines (see Extended Data Figure 4). PCA plots: c: WEA d:Europeans in WEA f: CEA i: SAHG j: AFR l: SEA. Individuals are displayed as grey dots. Large dots reflect median PC position for a sample; with colors reflecting geography matched to the corresponding EEMS figure. In the EEMS plots, approximate sample locations are annotated. For exact locations, see annotated Extended Data Figure 4 and Table S1. Features discussed in the main text and supplement are labeled. FST values per panelemphasize the low absolute levels of differentiation.”

Among ‘effective migration surfaces‘ (or potential past migration routes), the Pontic-Caspian steppe and its most direct connection with the Carpathian basin, the Danubian plains, appear maybe paradoxically as a constant ‘trough’ (below average migration rate) in all maps.

After all, we could have agreed that this region should be a priori thought as the route of many migrations from the steppe and Asia into Central Europe (and thus of ‘effective migration’) in prehistoric, proto-historic and historic times, such as Suvorovo-Novodanilovka (Pre-Anatolian), Yamna (Late Indo-European), probably Srubna, Scythian-Cimmerian, Sarmatian, Huns, Goths, Avars, Slavs, Mongols

It most likely (at least partially) represents a rather recent historical barrier to admixture, involving successive Byzantine, South Slavic, and Ottoman spheres of influence positioned against Balto-Slavic societies of Eastern Europe.

Location of troughs in West Eurasia (below average migration rate in more than 95% of MCMC iterations) are given in brown. Sample locations and EEMS grid are displayed for the West Eurasian analysis panel. FST values are provided per panel to emphasize the low absolute levels of differentiation.

Featured image, from the article: “Large-scale patterns of population structure. a: EEMS posterior mean effective migration surface for Afro-Eurasia (AEA) panel. ‘X’ marks locations of samples excluded as displaced or recently admixed. ‘H marks locations of excluded hunter-gatherer populations. Regions and features discussed in the main text are labeled. Approximate locations of troughs are annotated with dashed lines (see Extended Data Figure 4). b: PCA plot of AEA panel: Individuals are displayed as grey dots, colored dots reflect median of sample locations; with colors reflecting geography and matching with the EEMS plot. Locations displayed in the EEMS plot reflect the position of populations after alignment to grid vertices used in the model (see methods).”

Images and text available under a CC-BY-NC-ND 4.0 International License.

Discovered via Razib Khan’s blog.