“Steppe ancestry” step by step (2019): Mesolithic to Early Bronze Age Eurasia


The recent update on the Indo-Anatolian homeland in the Middle Volga region and its evolution as the Indo-Tocharian homeland in the Don–Volga area as described in Anthony (2019) has, at last, a strong scientific foundation, as it relies on previous linguistic and archaeological theories, now coupled with ancient phylogeography and genomic ancestry.

There are still some inconsistencies in the interpretation of the so-called “Steppe ancestry”, though, despite the one and a half years that have passed since we first had access to the closest Pontic–Caspian steppe source populations. Even my post “Steppe ancestry” step by step from a year ago is already outdated.


The population selection process for models shown below included (1) plausibility of potential influences in the particular geographic and archaeological context; (2) looking for their clusters or particular samples in the PCA; and (3) testing with qpAdm for potential source populations that might have been involved in their development.

The results and graphics posted are therefore intended to simplistically show potential admixture events between populations potentially close to the actual sources of the target samples, whenever such mating networks could be supported by archaeology.

NOTE. This is an informal post and I am not a geneticist, so I am turning this flexibility to my advantage. If any reader is – for some strange reason – looking for a strict hypothesis testing, for the use of a full set of formal stats (as used e.g. in Ning et al. 2019 for Proto-Tocharians), and correctly redacted and peer-reviewed text, this is not the right place to find them.

An example pedigree (a) of a focal individual sampled in the modern day, placed in its geographic context to make the spatial pedigree (b). Dashed lines denote matings, and solid lines denote parentage, with red hues for the maternal ancestors and blue hues for the paternal ancestors. In the spatial pedigree, each plane represents a sampled region in a discrete (nonoverlapping) generation, and each dot shows the birth location of an individual. The pedigree of the focal individual is highlighted back through time and across space. Image modified from Bradburd and Ralph (2019).

Despite the natural impulse to draw straight mixture trajectories (see e.g. Wang et al. 2019), simply adding or subtracting samples used for a PCA shows how the plot is affected by different variables (see e.g. what happens by including more South Asian samples to the PCA below), hence the need to draw curved arrows – not necessarily representing a sizable drift; at least not in recent prehistoric admixture events for which we have a reasonable chronological transect.

Representation of mixture events between European prehistoric peoples in the PCA. Image modified from David Reich‘s Who We Are and How We Got Here (2018).

Ethnolinguistic identification is a risky business that brings back memories of an evil use of cultural history and its consequences (at least in Western Europe, where this tradition was discontinued after WWII), but it seems necessary for those of us who want to find some confirmation of proposed dialectal schemes and language contacts.

Eneolithic Steppe vs. Steppe Maykop

First things first: I tested Bronze Age Eurasian peoples for the only two true steppe populations sampled to date, as potential sources of their “Steppe ancestry” – conventionally described as an EHG:CHG admixture, similar to that found in the first sampled Yamnaya individuals. I used the rightpops of Wang et al. (2018), but with a catch: since authors used WHG as a leftpop and Villabruna as a rightpop, and I find that a little inconsequential*, I preferred the strategy in Ning et al. (2019), contrasting as outgroup Eneolithic_Steppe (ca. 4300 BC) vs. Steppe_Maykop (ca. 3500 BC) when testing for WHG as a source population.

*WHG usually includes samples from a ‘western’ cluster (Loschbour and La Braña) and an ‘eastern’ cluster (Villabruna and Koros), see Lipson et al. (2017). Therefore, it doesn’t make much sense to include the same (or a very similar) population as a source AND an outgroup.

NOTE. For all other qpAdm analyses below, where WHG was not used as leftpop, I have used Villabruna as rightpop following Wang et al. (2019).

Map of samples and sites mentioned in Wang et al. (2019), modified from the original to include labels of Eneolithic_Steppe and Steppe_Maykop samples. See PCA and ADMIXTURE grahpic for the identification of specific samples.

Results are not much different from what has been reported. In general, Yamnaya and related groups such as Bell Beakers and Steppe-related Chalcolithic/Bronze Age populations show good fits for Eneolithic_Steppe as their closest source for Steppe ancestry, and bad fits for Steppe_Maykop, whereas Corded Ware groups show the opposite, supporting their known differences.

This trend seems to be tempered in some groups, though, most likely due the influence of Samara_LN-like admixture in Circum-Baltic Late Neolithic and Eastern Corded Ware groups, and the influence of Anatolia_N/EEF-like admixture in Balkan and late European CWC or BBC groups. In fact, the more EEF-related ancestry in a populatoin, the less reliable these generic models (and even specific ones) seem to become when distinguishing the Steppe-related source.

NOTE. For more on this, see the discussion on Circum-Baltic Corded Ware peoples, and the discussion on Mycenaeans and their potential source populations.

These are just broad strokes of what might have happened around the Pontic–Caspian steppes before and during the Early Bronze Age expansions. The most relevant quest right now for Indo-European studies is to ascertain the chain of admixture events that led to the development and expansion of Indo-Uralic and its offshoots, Indo-European and Uralic.

Eastern European Mesolithic with the expansion of Post-Swiderian cultures. See full map.

A history of Steppe ancestry

This post is divided in (more or less accurate) chronological developments as follows:

  1. Hunter-gatherer pottery and the steppes
  2. Khvalynsk and Sredni Stog
  3. Post-Stog and Proto-Corded Ware
  4. Yamnaya and Afanasievo

1. Hunter-gatherer pottery and the steppes

I laid out in the ASOSAH book series the general idea – based on attempts to reconstruct the linguistic ancestor of Indo-Uralic – that Eurasiatic speakers might have expanded with the North-Eastern Techno-Complex that spread through north-eastern Europe during the warm period represented by the transition of the Palaeolithic to the Mesolithic.

If one were to trust the traditional migrationist view, a post-Swiderian population expanded from central-eastern Europe (potentially related originally to Epi-Gravettian peoples, represented by WHG ancestry) into north-eastern Europe, and then further east into the Trans-Urals, to then reappear in eastern Europe as a back-migration represented by the spread of hunter-gatherer pottery.

The marked shift from WHG-like towards EHG-related ancestry from Baltic Mesolithic (ca. 30%) to Combed Ware cultures (ca. 65%-100%) supports this continuous westward expansion, that is possibly best represented in the currently available sampling by the ‘south-eastern’ shift (CHG:ANE-related) of the hunter-gatherer from Lebyazhinka IV (5600 BC) relative to the older one from Sidelkino (9300 BC), both from the Samara region in the Middle Volga:

Mesolithic-Neolithic transition ca. 7000-6000 BC, with hunter-gatherer pottery groups spreading westwards. See full map.

From Anthony (2019):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair-Shak III and Varfolomievka, they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

Given the lack of a proper geographical and chronological transect of ancient DNA from eastern European groups, and the discontinuous appearance of both R1b-M73 and R1b-M269 lineages on both sides of the Urals within the WHG:ANE cline, where EHG appears to have formed, it is impossible at this point to assert anything with enough degree of certainty. For simplicity purposes, though, I risked to equate the expansion of R1b-M73 in West Siberia as potentially associated with Micro-Altaic, and the expansion of hg. R1b-M269 with the spread of Indo-Uralic on both sides of the Urals.

NOTE. For incrementally speculative associations of languages with prehistoric cultures and their potential link to ancestry ± haplogroup expansions, you can check sections on Early Indo-Europeans and Uralians, Indo-Uralians, Altaic peoples, Eurasians, or Nostratians. I explained why I made these simplistic choices here.

While this identification of the Indo-Uralic expansion with hg. R1b is more or less straightforward for the Cis-Urals, given the available ancient DNA samples, it will be very difficult (if at all possible) to trace the migration of these originally R1b-M269-rich populations into Trans-Uralian groups that could eventually be linked to Yukaghir speakers. The sheer number of potential admixture events and bottlenecks in Siberian forest, taiga, and tundra regions since the Mesolithic until Yukaghirs were first attested is guaranteed to give more than one headache in upcoming years…

Spread of hunter-gatherer pottery in eastern Europe ca. 6000-5000 BC. See full map.

The slight increase in WHG-related ancestry in Ukraine Neolithic groups relative to Mesolithic ones questions the arrival of this eastern influence in the north Pontic area, or at least its relevance in genomic terms, although the cluster formed is similar to the previous one and to Combed Ware groups – despite the Central European and Baltic influences in the north Pontic region – with some samples showing 0% change relative to Mesolithic groups.

Structure and change in hunter-gatherer-related populations, from Mathieson et al. (2018). Inferred ancestry proportions for populations modelled as a mixture of WHG, EHG and CHG. Dashed lines show populations from the same geographic region. Percentages indicate proportion of WHG + EHG ancestry. Standard errors range from 1.5 to 8.3%.

NOTE. For more on Indo-Uralic and its reconstruction from a linguistic point of view, check out its dedicated section on ASOSAH, or the recently published (behind paywall) The Precursors of Proto-Indo-European, edited by Kloekhorst and Pronk, Brill (2019). Authors of specific chapters have posted their contributions to Academia.edu, where they can be downloaded for free.

2. Khvalynsk and Sredni Stog

The cluster formed by the three available samples of the Khvalynsk culture (early 5th millennium BC) might be described, as expected from its position in the PCA, as a mixture of EHG-like populations of the Middle Volga with CHG-like ancestry close to that represented by samples from Progress-2 and Vonyuchka, in the North Caucasus Piedmont (ca. 4300 BC):

This variable CHG-like admixture shown in the wide cluster formed by the available Khvalynsk-related samples support the interpretation of a recently created CHG mating network in Anthony (2019):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

Detail of the PCA of Eurasian samples, including Neolithic clusters with the hypothesized gene flows related to (1) the formation and (2) expansion of Khvalynsk and the (3) emergence of late Sredni Stog. See full image.

The richest copper assemblage found in all Khvalynsk burials belongs to an individual of hg. R1b-V1636 and intermediate Samara_HG:Eneolithic_Steppe ancestry, while full Eneolithic_Steppe-like admixture in the Middle Volga is represented by the commoner of Khvalynsk II, of hg. Q1. The finding of hg. R1b-V1636 in the North Caucasus Piedmont – and R1b-P297 in the Samara region (probably including Yekaterinovka) begs the question of the origin of hg. R1b-V1636 in the Khvalynsk community. Based on its absence in ancient samples from the forest zone, it is tempting to assign it to steppe hunter-gatherers down the Lower Volga and possibly to the east of it, who infiltrated the Samara region precisely during these population movements described by Anthony (2019).

Suvorovo-related samples from the Balkans, including the Varna and Smyadovo outliers of Steppe ancestry, are closely related to the Khvalynsk expansion:

Similarly, the ancestry of late Sredni Stog samples from Dereivka seem to be directly related to the expansion of Mariupol-like individuals over populations of Suvorovo-Novodanilovka-like admixture, as suggested by the resurgence of typical Ukraine Neolithic haplogroups, the shift in the PCA, and the models of Eneolithic_Steppe vs. Steppe_Maykop above:

#EDIT (11 Nov 2019): In fact, the position of the unpublished Greece_Neolithic outlier that appeared in the Wang et al. (2018) preprint (see full PCA and ADMIXTURE) show that the expanding Suvorovo chiefs from the Balkans formed a tight cluster close to the two published outliers with Steppe ancestry from Bulgaria.

The Ukraine_Neolithic outlier, possibly a Novodanilovka-related sample suggests, based on its position in the PCA close to the late Trypillian outlier of Steppe-related ancestry, that Ukraine_Eneolithic samples from Dereivka are a mixture of Ukraine_Neolithic and a Novodanilovka-like community similar to Suvorovo.

The Trypillian_Eneolithic-like admixture found among Proto-Corded Ware peoples (see below) would then feature potentially a small Steppe_Eneolithic-like component already present in the north Pontic area, too.

Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Furthermore, whereas Anthony (2019) mentions a long-lasting predominance of hg. R1b in elite graves of the Eneolithic Volga basin, not a single sample of hg. R1a is mentioned supporting the community formed by the Alexandria individual, supposedly belonging to late Sredni Stog groups, but with a Corded Ware-like genetic profile (suggesting yet again that it is possibly a wrongly dated sample).

NOTE. A lack of first-hand information rather than an absence of R1a-M417 samples in the north Pontic forest-steppes would not be surprising, since Anthony is involved in the archaeology of the Middle Volga, but not in that of the north Pontic area.

Khvalynsk expansion through the Pontic–Caspian steppes in the early 5th millennium BC. See full map.

3. Post-Stog and Proto-Corded Ware

The origin of the Pre-Corded Ware ancestry is still a mystery, because of the heterogeneity of the sampled groups to date, and because the only ancestral sample that had a compatible genetic profile – I6561 from Alexandria – shows some details that make its radiocarbon date rather unlikely.

The most likely explanation for the closest source population of Corded Ware groups, found in the three core samples of Steppe_Maykop and in Trypillian Eneolithic samples from the first half of the 4th millennium BC, is still that a population of north Pontic forest-steppe hunter-gatherers hijacked this kind of ancestry, that was foreign to the north Pontic region before the Late Eneolithic period, later expanding east and west through the Podolian–Volhynian upland, due to the complex population movements of the Late Eneolithic.

NOTE. The idea of Trypillia influencing the formation of the Steppe_MLBA ancestry proper of Uralic peoples has been around for quite some time already, since the publication of Narasimhan et al. (2018) (see here or here).

Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers, with hypothesized gene flows related to the (1) formation and (2) initial expansion of Pre-Corded Ware ancestry, as well as (3) later regional admixture events. See full image.

The specifics of how the Proto-Corded Ware community emerged remain unclear at this point, despite the simplistic description by Rassamakin (1999) of the Late Eneolithic north Pontic population movements as a two-stage migration of 1) late Trypillian groups (Usatovo) west → east, and (2) Late Maykop–Novosvobodnaya east → west. So, for example, Manzura (2016) on the Zhivotilovka “cultural-historical horizon” (emphasis mine):

Indeed, the very complex combination of different cultural traits in the burial sites of the Zhivotilovka type is able to generate certain problems in the search for the origins of this phenomenon. The only really consistent attribute is the burial rite in contracted position on the left or right side. Yu. Rassamakin is correct in asserting that this position of the deceased can be considered as new in the North Pontic region (Rassamakin 1999, 97). However, this opinion can be accepted only partially for the territory between Dniester and Lower Don. This position is well known in the Usatovo culture in the Northwest Pontic region, although skeletons on the right side are evidenced there only in double burials, whereas single burials contain the deceased only in a contracted position on the left side. On the other hand, the southern and western orientation of the deceased, which is one of the main burial traits of the Zhivotilovka type, is not characteristic of the Usatovo culture. Nevertheless, it is possible to suppose that at least part of the Usatovo population could have played a part in the formation of the cultural type under consideration here. One aspect of this cultural tradition, for instance, could be represented by skeletons on the left side and oriented in north-eastern and eastern directions.

Especially close ties can be traced between the Zhivotilovka and Maykop-Novosvobodnaya traditions, as exemplified by similar burial customs and various grave goods. It is beyond any doubt that the Maykop-Novosvobodnaya population was actively involved in the spread of the main Zhivotilovka cultural traits. The influence of North Caucasian traditions can be well observed, at least as far as the Dnieper Basin, but farther west influence is not manifested pronouncedly. The role of cultural units situated between the Dniester and Don rivers in the process of emergence of the Zhivotilovka type looks somewhat vague. Now, it can be quite confidently asserted that at the end of the 4th millennium BC this territory was settled by migrants from the North Caucasus and Carpathian-Dniester region. This event in theory had to stimulate cultural transformations in the Azov-Black Sea steppes and, thus, bearers of local cultural traditions perhaps could have participated in forming the culture under consideration. In any event, the Zhivotilovka type can be regarded as a complex phenomenon that emerged within the regime of intensive cultural dialogue and that it absorbed totally diff erent cultural traditions. The spread of the Zhivotilovka graves across the Pontic steppes from the Carpathians to the Lower Don or even to the Kuban Basin clearly signalizes a rapid dissolution of former cultural borders and the beginning of active movements of people, things and ideas over vast territories.


What were the factors or reasons that could have provoked this event? In the beginning of the second half of the 4th millennium BC two advanced cultural centers emerged in the south of Eastern Europe. These were the Maykop-Novosvobodnaya and Usatovo cultures, which in spite of their separation by great distances were structurally very alike. This is expressed in similar monumental burial architecture, complex burial rites, even the composition of grave goods, developed bronze metallurgy, high standards of material culture, etc. Both cultures in a completely formed state exemplify prosperous societies with a high level of economic and social organization, which can correspond to the type of ranked or early complex societies. Normally, the social elite in such polities tends to rigidly control basic domains social, economic and spiritual life using different mechanisms, even open compulsion (Earle 1987, 294-297). To some extent similar social entities can be found at this moment in the forest-steppe zone of the Carpathian-Dniester region, as reflected by the well organized settlement of Brânzeni III and the Vykhatitsy cemetery (Маркевич 1981; Дергачев 1978). In spite of their complex character, such societies represent rather friable structures, which could rapidly disintegrate due to unfavourable inner or external factors.

The societies in question emerged and existed during a time of favourable natural climatic conditions, which is considered to be a transitional period from the Atlantic to the Subboreal period, lasting approximately from 3600 to 3300 cal BC, or a climatic optimum for the steppe zone (Иванова и др. 2011, 108; Спиридонова, Алешинская 1999, 30-31). These conditions to a large degree could guarantee a stable exploitation of basic resources and support existing social hierarchies. However, after 3300 cal BC significant climatic changes occurred, accompanied by an increasing aridization and fall in temperature. This event is usually termed the “Piora oscillation” or “Rapid Climatic Event”, and is regarded as having been of global character (Magny, Haas 2004). These rapid changes could have seriously disturbed existing economic and social relations and finally provoked a similar rapid disintegration of complex social structures. In this case the sites of the Zhivotilovka type could represent mere fragments of former prosperous societies, which under conditions of the absence of centralized social control and stable cultural borders tried to recombine social and economic ties. However, the population possessed the necessary social experience and important technological resources, such as developed stock-breeding based on the breeding of small cattle and wheeled transport, so they were ready for opening new territories in their search for a better life.

Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

For more on chronology and the potentially larger, longer-lasting Zhivotilovka–Volchansk–Gordineşti cultural horizon and its expansion through the Podolian–Volhynian upland, read e.g. on the Yampil Complex in the latest volume 22 of Baltic-Pontic Studies (2017):

In the forest-steppe zone of the North-West Pontic area, important data concerning the chronological position of the Zhivotilovka-Volchansk group have been produced by the exploration of the Bursuceni kurgan, which is still awaiting full publication [Yarovoy 1978; cf. also Demcenko 2016; Manzura 2016]. Burials linked with the mentioned group were stratigraphically the eldest in the kurgan, and pre-dated a burial in the extended position and [Yamnaya culture] graves. Two of these burials (features 20 and 21) produced radiocarbon dates falling around 3350-3100 BC [Petrenko, Kovaliukh 2003: 108, Tab. 7]. Similar absolute age determinations were obtained for Podolia kurgans at Prydnistryanske [Goslar et al. 2015]. These dates, falling within the Late Eneolithic, mark the currently oldest horizon of kurgan burials in the forest-steppe zone of the North-West Pontic area. The Podolia graves linked with other, older traditions of the steppe Eneolithic seem to represent a slightly later horizon dated to the transition between the Late Eneolithic and Early Bronze Age.

The presence on the left bank of the Dniester River of kurgans associated with the Eneolithic tradition, which at the same time reveals connections with the Gordineşti-Kasperovce-Horodiştea complex, raises questions about the western range of the new trend in funerary rituals, and its potential connection with the expansion of the late Trypilia culture to the West Podolia and West Volhynia Regions. The data potentially suggesting the attribution of kurgans from the upper Dniester basin to this period is patchy and difficult to verify [e.g. Liczkowce – see Sulimirski 1968: 173]. In this context, the discovery of vessels in the Gordineşti style in a kurgan at Zawisznia near Sokal is inspiring [Antoniewicz 1925].

Burials representing funerary traditions of Zhivotilovka-Volchansk group in Podolie kurgans: 1 – Porohy, grave 3A/7, 2 – Kuzmin, grave 2/2 [after Klochko et al. 2015b, Bubulich, Khakhey 2001]

Another interesting aspect of potential source populations, in combination with those above for Eneolithic_Steppe vs. Steppe_Maykop, are groups with worse fits for Steppe_Maykop_core, which include Potapovka and Srubnaya, as reported by Wang et al. (2018), but also Sintastha_MLBA (although not Andronovo). This is compatible with the long-term admixture of Abashevo chiefs dominating over a majority of Poltavka-like herders in the Don-Volga-Ural steppes during the formation of the Sintashta-Potapovka-Filatovka community, also visible in the typical Yamnaya lineages and Yamnaya-like ancestry still appearing in the region centuries after the change in power structures had occurred.

NOTE. If you feel tempted to test for mixtures of Khvalynsk_EN, Eneolithic_Steppe, Yamnaya, etc. as a source population for Corded Ware, go for it, but it’s almost certain to give similar ‘good’ fits – whatever the model – in some Corded Ware groups and not in others. It is still unclear, as far as I know, how to formally distinguish a mixture of Corded Ware-related from a Yamnaya-related source in the same model, and the results obtained with a combination of Steppe_Maykop-related + Eneolithic_Steppe-related sources will probably artificially select either one or the other source, as it probably happened in Ning et al. (2019) with Proto-Tocharian samples (see qpAdm values) that most likely had a contribution of both, based on their known intense interactions in the Tarim Basin.

Expansion of north Pontic cultures and related groups during the Late Eneolithic. See full map.

#EDIT (22 NOV 2019): New preprint Gene-flow from steppe individuals into Cucuteni-Trypillia associated populations indicates long-standing contacts and gradual admixture, by Immel et al. bioRxiv (2019), on Gordinești samples from Moldova ca. 3500-3100 BC. Relevant excerpts (emphasis mine):

A principal component analysis of the four Moldova females together with previously published data sets of ancient Eurasians showed that Gordinești, Pocrovca 1 and Pocrovca 3 grouped with later dating Bell Beakers from Germany and Hungary close to the four CTC males from Verteba, while Pocrovca 2 fell into the LBK cluster next to Neolithic farmers from Anatolia and Starčevo individual.

When looking at various proxies for steppe-related ancestry (Yamnaya Samara, Ukraine Mesolithic, Caucasian hunter-gatherer (CHG), Eastern hunter gatherer (EHG)), we did not observe any significant difference in genetic influx from either Yamnaya Samara, EHG or Ukraine Mesolithic. However, relative to CHG, we detected a substantial shift towards Yamnaya Samara steppe-related ancestry. Consequently, Yamnaya Samara, Ukraine Mesolithic and EHG appear to be equally suitable proxies for steppe-related ancestry in the Moldovan CTC individuals.

We did not obtain feasible models when running qpAdm on the X-chromosome in order to test for male-biased admixture from hunter-gatherers or individuals with steppe-related ancestry.

It is not surprising that Gordinești, Pocrovca 1 and Pocrovca 3 showed genetic affinities with later dating Bronze Age or Bell Beaker individuals. The common link among them is the considerable steppe-related ancestry, which each group likely received independently from different parental populations.

Principal component analysis of the CTC individuals from Moldova (Gordinești, Pocrovca 1, Pocrovca 2, Pocrovca 3) in red and the CTC individuals from Verteba Cave (I1926, I2110, I2111, I3151) in blue together with 23 selected ancient populations/individuals projected onto a basemap of 58 modern-day West Eurasian populations (not shown). HG=hunter-gatherer, LBK=Linearbandkeramik, PU=Proto-Unetice, TRB=Trichterbecher (Funnel Beaker Culture, FBC). PC1 is shown on the x-axis and PC2 on the y-axis.

4. Yamnaya and Afanasievo

I don’t think it makes much sense to test for GAC (or Iberia_CA, for that matter) as Wang et al. (2019) did, given the implausibility of them taking part in the formation of late Repin during the mid-4th millennium BC around the Don-Volga interfluve (represented by its offshoots Yamnaya and Afanasievo), whether these or other EEF-related populations show ‘better’ fits or not. Therefore, I only tested for more or less straightforward potential source populations:

Detail of the PCA of Eurasian samples, including Yamnaya groups and related clusters, as well as outliers, with hypothesized gene flows related to its (1) formation and (2) expansion. Also included is the inferred position of the admixed sample Yamnaya_Hungary_EBA1. See full image.

Quite unexpectedly – for me, at least – it appears that Afanasievo and Yamnaya invariably prefer Khvalynsk_EN as the closest source rather than a combination including Eneolithic_Steppe directly. In other words, late Repin shows largely genetic continuity with the Steppe ancestry already shown by the three sampled individuals from the Khvalynsk II cemetery, in line with the known strong bottlenecks of Khvalynsk-related groups under R1b lineages, visible also later in Afanasievo and Yamnaya and derived Indo-European-speaking groups under R1b-L23 subclades.

NOTE. This explains better the reported bad fits of models using directly Eneolithic_Steppe instead of Khvalynsk_EN for Afanasievo and Yamnaya Kalmykia, as is readily evident from the results above, instead of a rejection of an additional contribution to an Eneolithic_Steppe-like population, as I interpreted it, based on Anthony (2019).

Map of major sites of the Zhivotilovka-Volchansk group (A) and Repin culture (B), by Rassamakin (see 1994 and 2013). (A) 1 – Primorskoye; 2 – Vasilevka; 3 – Aleksandrovka; 4 – Boguslav; 5 – Pavlograd; 6 – Zhivotilovka; 7 – Podgorodnoye; 8 – Novomoskovsk; 9- Sokolovo; 10 – Dneprelstan; 11- Razumovka; 12 – Pologi; 13 – Vinogradnoye; 14 – Novo-Filipovka; 15 – Volchansk; 16 – Yuryevka; 17 – Davydovka; 18 – Novovorontsovka; 19 – Ust-Kamenka; 20 – Staroselye; 21- Velikaya Aleksandrovka; 22- Kovalevka; 23 – Tiraspol; 24 – Cura-Bykuluy; 25 – Roshkany; 26 – Tarakliya; 27 – Kazakliya; 28 – Bolgrad; 29 – Sarateny; 30 – Bursucheny; 31 – Novye Duruitory; 232 – Kosteshty. (B) 1 – Podgorovka; 2 – Aleksandria; 3 – Volonterovka; 4 – Zamozhnoye; 5 – Kremenevka; 6 – Ogorodnoye; 7 – Boguslav; 8 – Aleksandrovka; 9 – Verkhnaya Mayevka; 10 – Duma Skela; 11 – Zamozhnoye; 12 – Mikhailovka II.

This might suggest that the Steppe ancestry visible in samples from Progress-2 and Vonyuchka, sharing the same cluster with the Khvalynsk II cemetery commoner of hg. Q1, most likely represents North Caspian or Black Sea–Caspian steppe hunter-gatherer ancestry that increased as Khvalynsk settlers expanded to the south-west towards the Greater Caucasus, probably through female exogamy. That would mean that Steppe_Maykop potentially represents the ‘original’ ancestry of steppe hunter-gatherers of the North Caucasus steppes, which is also weakly supported by the available similar admixture of the Lola culture. The chronology, geographical location and admixture of both clusters seemed to indicate the opposite.

Modelling results for the Steppe and Caucasus cluster. Additional ‘eastern’ AG-Siberian gene flow in Steppe Maykop relative to Eneolithic Steppe. From Wang et al. (2019).

Due to the limitations of the currently available sampling and statistical tools, and barring the dubious Alexandria outlier, it is unclear how much of the late Trypillian-related admixture of late Repin (as reflected in Yamnaya and Afanasievo) corresponds to late Trypillian, Post-Stog, or Proto-Corded Ware groups from the north Pontic area. A mutual exchange suggestive of a common mating network (also supported by the mixed results obtained when including Khvalynsk_EN as source for early Corded Ware groups) seem to be the strongest proof to date of the Late Proto-Indo-European – Uralic contacts reflected in the period when post-laryngeal vocabulary was borrowed (with some samples predating the merged laryngeal loss), before the period of intense borrowing from Pre- and Proto-Indo-Iranian.

Between-group differences of Yamnaya samples are caused – like those between Corded Ware groups – by the admixture of a rapidly expanding society through exogamy with regional populations, evidenced by the inconstant affinities of western or southern outliers for previous local populations of the west Pontic or Caucasus area. This explanation for the gradual increase in local admixture is also supported by the strong, long-term patrilineal system and female exogamy practiced among expanding Proto-Indo-Europeans.

Groups of the Yamnaya culture and its western expansion after ca. 3100 BC, and Corded Ware after ca. 2900 BC See full map.

Bell Beakers and Mycenaeans

This Eneolithic_Steppe ancestry is also found among Bell Beaker groups (see above). More specifically, all Bell Beaker groups prefer a source closest to a combination of Yamnaya from the Don and Baden LCA individuals from Hungary, rather than with Corded Ware and GAC, despite the quite likely admixture of western Yamnaya settlers with (1) south-eastern European (west Pontic, Balkan) Chalcolithic populations during their expansion through the Lower Danube and with (2) late Corded Ware groups (already admixed with GAC-like populations) during their expansion as East Bell Beakers:

Similarly, Mycenaeans show good fits for a source close to the Yamnaya outlier from Bulgaria:

Detail of the PCA of Eurasian samples, including Bell Beaker and Balkan EBA groups and related clusters, as well as outliers, including ancestral Yamnaya samples from Hungary (position inferred) and Bulgaria. Also marked are Minoans, Mycenaeans and Armenian BA samples. See full image.

You can read more on Yamnaya-related admixture of Bell Beakers and Mycenaeans, and on Afanasievo-related admixture of Iron Age Proto-Tocharians.


The use of the concept of “Yamnaya ancestry”, then “Steppe ancestry” (and now even “Yamnaya Steppe ancestry“?) has already permeated the ongoing research of all labs working with human population genomics. Somehow, the conventional use of Yamnaya_Samara samples opposed to a combination of other ancient samples – alternatively selected among WHG, EHG, CHG/Iran_N, Anatolia_N, or ANE – has spread and is now unquestionably accepted as one of the “three quite distinct” ancestral groups that admixed to form the ancestry of modern Europeans, which is a rather odd, simplistic and anachronistic description of prehistory…

It has now become evident that authors involved with the Proto-Indo-European homeland question – and the tightly intertwined one of the Proto-Uralic homeland – are going to dedicate a great part of the discussion of many future papers to correct or outright reject the conclusions of previous publications, instead of simply going forward with new data.

The most striking argument to mistrust the current use of “Steppe ancestry” (as an alternative name for Yamnaya_Samara, and not as ancestry proper of steppe hunter-gatherers) is not the apparent difference in direct Eneolithic sources of Steppe ancestry for Corded Ware and Yamnaya-related peoples – closer to the available samples classified as Steppe_Maykop and Eneolithic_Steppe, respectively – or their different evolution under marked Y-DNA bottlenecks.

It is not even the lack of information about the distant origin of these Pontic–Caspian steppe hunter-gatherers of the 5th and 4th millennium BC, with their shared ancestral component potentially separated during the warmer Palaeolithic-Mesolithic transition, when the steppes were settled, without necessarily sharing any meaningful recent history before the formation of the Proto-Indo-Uralic community.

NOTE. I have raised this question multiple times since 2017 (see e.g. here or here).

The most striking paradox about simplistically misinterpreting “Steppe ancestry” as representative of Indo-European expansions is that those sub-Neolithic Pontic–Caspian steppe hunter-gatherers that had this ancestry in the 6th millennium BC were probably non-Indo-European-speaking communities, most likely related to the North(West) Caucasian language family, based on the substrate of Indo-Anatolian that sets it apart from Uralic within the Indo-Uralic trunk, and on later contacts of Indo-Tocharian with North-West Caucasian and Kartvelian, the former probably represented by Maykop and its contact with the Repin and early Yamnaya cultures.

NOTE. For more on this, see Allan Bomhard’s recent paper on the Caucasian substrate hypothesis and its ongoing supplement Additional Proto-Indo-European/Northwest Caucasian Lexical Parallels.

“Spatiotemporal kriging of YAM steppe ancestry during the Holocene, using 5000 spatial grid points. The colors represent the predicted ancestry proportion at each point in the grid.” Image with evolution from ca. 2800 BC until the present day, modified from Racimo et al. (2019). The Copenhagen group considers the expansion of this component as representative of expanding Indo-Europeans…

This kind of error happens because we all – hence also authors, peer reviewers, and especially journal editors – love far-fetched conclusions and sensational titles, forgetting what a paper actually shows and – always more importantly in scientific reports – what it doesn’t show. This is particularly true when more than one field is involved and when extraordinary claims involve aspects foreign to the journal’s (and usually the own authors’) main interests. One would have thought that the glottochronological fiasco published in Science in 2012 (open access in PMC) should have taught an important lesson to everyone involved. It didn’t, because apparently no one has felt the responsibility or the shame to retract that paper yet, even in the age of population genomics.

If anything, the excesses of mathematical linguistics – using computational methods to try and reconstruct phylogenetic trees – have perpetuated a form of misunderstood Scientism which blindly relies on a simple promise made by authors in the Materials and Method section (rarely if ever kept beyond it) to use statistics rather than resorting to the harder, well-informed, comprehensive reasoning that is needed in the comparative method. After all, why should anyone invest hundreds of hours (or simply show an interest in) learning about historical linguistics, about ancient Indo-European or Uralic languages, carefully argumenting and discussing each and every detail of the reconstruction, when one can simply rely on the own guts to decide what is Science and what isn’t? When one can trust a promise that formulas have been used?

The conservative, null hypothesis when studying prehistoric Eurasian samples related to evolving cultures was universally understood as no migration, or “pots not people” (as most western archaeologists chose to believe until recently), whereas the alternative one should have been that there were in fact migration events, some of them potentially related to the expansion of Eurasian languages ancestral to the historically attested ones. Beyond this migrationist view there were obviously dozens of thorough theories concerning potential linguistic expansions associated with specific prehistoric cultures, and a myriad of less developed alternatives, all of which deserved to be evaluated after the null hypothesis had been rejected.

Despite the shortcomings of the 2015 papers and their lack of testing or discussion of different language expansion models, the spread of the so-called “Yamnaya ancestry” – an admixture especially prevalent (after the demise of the Yamnaya) among the most likely ancient Uralic-speaking groups as well as among modern Uralic speakers and recently acculturated groups from Eastern Europe – has been nevertheless invariably concluded by each lab to support the theories of their leading archaeologist, often combined with pre-aDNA theories of geneticists based on modern haplogroup distributions. This is as evident a case of confirmation bias, circular reasoning, and jumping to conclusions as it gets.

Why many researchers of other labs have chosen to follow such conclusions instead of challenging or simply ignoring them is difficult to understand.


Baltic Finns in the Bronze Age, of hg. R1a-Z283 and Corded Ware ancestry


Open access The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East, by Saag et al. Current Biology (2019).

Interesting excerpts:

In this study, we present new genomic data from Estonian Late Bronze Age stone-cist graves (1200–400 BC) (EstBA) and Pre-Roman Iron Age tarand cemeteries (800/500 BC–50 AD) (EstIA). The cultural background of stone-cist graves indicates strong connections both to the west and the east [20, 21]. The Iron Age (IA) tarands have been proposed to mirror “houses of the dead” found among Uralic peoples of the Volga-Kama region [22].

(…) The 33 individuals included 15 from EstBA, 6 from EstIA, 5 from Pre-Roman to Roman Iron Age Ingria (500 BC–450 AD) (IngIA), and 7 from Middle Age Estonia (1200–1600 AD) (EstMA) and yielded endogenous DNA ∼4%–88%, average genomic coverages ∼0.017–0.734×, and contamination estimates <4% (Table S1). We analyzed the data in the context of modern and other ancient individuals, including from Neolithic Estonia [13].

Archaeological Information, Genetic Sex, mtDNA and Y Chromosome Haplogroups, and Average Coverage of the Individuals of This Study. Modified from the paper to mark distinct Y-DNA haplogroups in the LBA and IA.

We identified chrY hgs for 30 male individuals (Tables 1 and S2; STAR Methods). All 16 successfully haplogrouped EstBA males belonged to hg R1a, showing no change from the CWC period, when this was also the only chrY lineage detected in the Eastern Baltic [11, 13, 30, 31]. Three EstIA and two IngIA individuals also belonged to hg R1a, but three EstIA males belonged to hg N3a, the earliest so far observed in the Eastern Baltic. Three EstMA individuals belonged to hg N3a, two to hg R1a, and one to hg J2b. ChrY lineages found in the Baltic Sea region before the CWC belong to hgs I, R1b, R1a5, and Q [10, 11, 12, 13, 17, 32]. Thus, it appears that these lineages were substantially replaced in the Eastern Baltic by hg R1a [10, 11, 12, 13], most likely through steppe migrations from the east [30, 31]. (…) Our results enable us to conclude that, although the expansion time for R1a1 and N3a3′5 in Eastern Europe is similar [25], hg N3a likely reached Estonia or at least became comparably frequent to modern Estonia [1] only during the BA-IA transition.

A clear shift toward West Eurasian hunter-gatherers is visible between European LN and BA (including Baltic CWC) and EstBA individuals, the latter clustering together with Latvian and Lithuanian BA individuals [11]. EstIA, IngIA, and EstMA individuals project between BA individuals and modern Estonians, partially overlapping with both.

(…) EstBA individuals are clearly distinguishable from Estonian CWC individuals as the former have more of the blue component most frequent in WHGs and less of the brown and yellow components maximized in Caucasus hunter-gatherers and modern Khanty, respectively. The individuals of EstBA, EstIA, IngIA, EstMA, and modern Estonia are quite similar to each other on average, indicating that the relatively high proportion of WHG ancestry in modern Eastern Baltic populations compared to other present-day Europeans [15] traces back to the BA.

Detail of the PCA, modified from the paper to label populations. Estonian Bronze Age and Iron Age samples cluster close to Early Corded Ware from the Baltic.. Principal-component analysis results of modern West Eurasians with ancient individuals projected onto the first two components (PC1 and PC2). BA, Bronze Age; EF, early farmers; HG, hunter-gatherers; IA, Iron Age; IMA, Iron/Middle Ages; LN, Late Neolithic; LNBA, Late Neolithic/Bronze Age; MA, Middle Ages

When comparing Estonian CWC and EstBA using autosomal outgroup f3 and Patterson’s D statistics (Table S3), the latter is more similar to other Baltic BA populations, to Baltic IA and Middle Age (MA) populations, and also to populations similar to WHGs and Scandinavian hunter-gatherers (SHGs), but not to Estonian CCC (Figures 2A and S2A; Data S1). The increase in WHG or SHG ancestry could be connected to western influences seen in material culture [20, 21] and facilitated by a decline in local population after the CCC-CWC period [20]. A slight trend of bigger similarity of Estonian CWC to forest or steppe zone populations and of EstBA to European early farmer populations can also be seen.

(…) When comparing to modern populations, Estonian CWC is slightly more similar to Caucasus individuals but EstBA to Baltic populations and Finnic speakers (Figure 2B; Data S1). Outgroup f3 and D statistics do not reveal apparent differences when comparing EstBA to EstIA, EstIA to IngIA, and EstIA to EstMA (Data S1).

qpAdm results. Error bars indicate one SE. Central MN, Central European Middle Neolithic; EstBA, Estonian Bronze Age; EstIA, Estonian Iron Age; IngIA, Ingrian Iron Age; EstMA, Estonian Middle Ages; WHG, western hunter-gatherers.

These results highlight how uniparental and autosomal data can lead to different demographic inferences—the genetic change between CWC and BA not seen in uniparental lineages is clear in autosomal data and the appearance of chrY hg N in the IA is not matched by a clear shift in autosomal profiles.

EstBA individuals have no Nganasan-related ancestry and EstIA, IngIA, and EstMA individuals on average have 2% or 4% (Figure 3; Data S1). The differentiation remains when using BA or IA Fennoscandian populations [26] instead of Nganasans (Data S1). Notably, the proportion of Nganasan-related ancestry varies between 0% and 12% among sampled EstIA, IngIA, and EstMA individuals (Data S1), which may suggest its relatively recent admixture into the target population. Moreover, two individuals from Kunda (0LS10 and V10) have the highest proportions of Nganasan ancestry among EstIA (6% and 8%), one of them has chrY hg N3a, and isotopic analysis suggests neither individual being born in Kunda [34].

About these two males from Tarand-graves, ‘foreign’ to Kunda:

0LS10: Male from tarand III (burial 9; TÜ 1325: L777), age 17–25 years [34]. He had a fragment of a sheep/goat bone and ceramics as grave goods. This burial has two radiocarbon dates: 2430 ± 35 BP (Poz-10801; 760–400 cal BC) and 2530 ± 41 BP (UBA-26114; 800–530 cal BC) [34]. According to the isotopic analysis, the person was not born in the vicinity of Kunda; his place of birth is still unknown (but south-western Finland and Sweden are excluded) [34]. Sampled tooth r P1.

V10: Male from tarand XI (burial 24; TÜ 1325: L1925), age 25–35 years [34], date 2484 ± 40 BP (UBA-26115; 790–430 cal BC) [34]. He had a few potsherds near the skull. Likewise, this person was not locally born [34]. Sampled tooth l P1.

Autosomal Analyses’ Results for Gyvakarai1 as the closest available Corded Ware source for Balto-Finnic populations.

The paper shows thus:

  • Major continuity of ancestry from Corded Ware to modern Estonians, with only slight changes in different periods. In fact, one of the best fits for the Late Bronze Age ancestry is Gyvakarai1, one of the Corded Ware “outliers” described as “closer to Yamna”, which I already said may be closer to Sredni Stog/EHG populations instead. Another interesting take is that the change from Bronze Age to Iron Age corresponds to an increase in Baltic Corded Ware-related ancestry, rather than being driven by Siberian ancestry.
  • pca-mittnik-gyvakarai
    File modified by me from Mittnik et al. (2018) to include the approximate position of the most common ancestral components, and an identification of potential outliers. Zoomed-in version of the European Late Neolithic and Bronze Age samples. “Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). From Mittnik et al. (2018).
  • A Volosovo-related migration of hg. N1c with Netted Ware into the area seems to be discarded, based on the full replacement of paternal lines and continuity of R1a-Z283. It is only during the Tarand-grave period when a system of chiefdoms (spread from Ananyino/Akozino) brings haplogroup N1c to the Gulf of Finland. During the Iron Age, the proportion of paternal lineages is still clearly in favour of R1a (50% in the coast, 100% in Ostrobothnia), which indicates a gradual replacement led by elites, likely because of the incorporation of Akozino warrior-traders spreading all over the Baltic, bringing the described shared Mordvinic traits in Fennic.
  • finno-ugric-haplogroup-n
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).
  • The arrival of Akozino warrior-traders (bringing N1c and R1a lineages) was probably linked to this minimal “Nganasan-like” ancestry of some samples in the transition to the Iron Age. This arrival is supported by samples 0LS10 (the earliest hg. N1c) and V10 (of hg. R1a), both dated to ca. 800-400 BC, with V10 showing the highest “Nganasan-like” ancestry with 4.8%, both of them neighbouring samples showing 0%. This variable admixture among local and foreign paternal lineages might support the described social system of family alliances with intermarriages. In fact, a medieval sample, 0LS03_1 (hg. R1a) also shows a recent “Nganasan-like” ancestry, which probably points to the integration of different Arctic-related ancestry components among Modern Estonians, in this case related to Finnish expansions and thus integration of Levänluhta-related ancestry, as per the supplementary data.
  • NOTE. Such minimal proportions of “Nganasan-like” ancestry evidence the process of admixture of Volga Finns in Akozino territory through their close interactions with Permians of Ananyino, who in turn acquired this Palaeo-Arctic admixture most likely during the expansion of the linguistic community to hunter-gatherer territories, to the north of the Cis-Urals. This process of stepped infiltration and expansion without language change is not dissimilar to the one seen among Indo-Iranians and Balto-Slavs of hg. R1b, or Vasconic speakers of hg. I2a, although in the case of Baltic Finns of hg. R1a the process of infiltration and expansion of hg. N1c is much less dramatic, with no radical replacement anywhere before the huge bottlenecks observable in Finns.

  • The expansion of haplogroup N1c among Finnic populations, as we are going to see in samples from the Middle Ages such as Luistari, is the consequence of late founder effects after huge bottlenecks expected based on the analysis of modern populations. The expansion of N1c-VL29 is different in origin from that of N1c-Z1936 among Samic (later integrated into Finnish populations), most likely from the east and originally associated with Lovozero Ware.
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders. Map from Ilumäe et al. (2016).

In spite of all this, the conclusion of the paper is (surprise!) that Siberian ancestry and hg. N heralded the arrival of Finnic to the Gulf of Finland in the Iron Age… However, this conclusion is supposedly* supported, not by their previous papers, but by a recent phylogenetic study by Honkola et al. (2013), which doesn’t actually argue for such a late ‘arrival’: it argues for the split of Balto-Finnic around 1500 BC.

NOTE. I say ‘supposedly’ because Kristiina Tambets, for example, has been following the link of Uralic with haplogroup N since the 2000s, so this is not some conclusion they just happened to misread from some random paper they Googled. In those initial assessments, she argued that the “ancient homeland” of the Tat C mutation suggested that Finno-Ugrians were in Fennoscandia before Indo-Europeans. Apparently, since haplogroup N appears later and from the east, it is now more important to follow this haplogroup than what is established in archaeology and linguistics.

Even in the referred paper, this split is considered an in situ development, since the phylogenetic study takes the information – among others – 1) from Parpola and Carpelan, who consider Netted Ware, a culture derived from Fatyanovo/Abashevo and Volosovo, as the culprit of the Finno-Ugric expansion; and 2) from Kallio (2006), who clearly states that Proto-Balto-Finnic (like Proto-Finno-Samic) was spoken around the Gulf of Finland during the Bronze Age. Both of them set the terminus ante quem of the language presence in the Baltic ca. 1900 BC.

Anyways, as a consequence of geneticists keeping these untenable pre-ancient DNA haplogroup-based arguments today, I expect to see this “Finnic” language expansion also described for the Western Baltic, Scandinavia or northern Europe, when this same proportion of hg. N1c and “Nganasan” ancestry is observed in Iron Age samples around the Baltic Sea. The nativist trends that this domination of “Finns” all over Northern Europe 2,500 years ago will create will be even more fun to read than the current ones…

EDIT (10 May 2019) How I see the reaction of many to ancient DNA, in keeping their old theories:


Corded Ware—Uralic (II): Finno-Permic and the expansion of N-L392/Siberian ancestry


This is the second of four posts on the Corded Ware—Uralic identification:

I read from time to time that “we have not sampled Uralic speakers yet”, and “we are waiting to see when Uralic-speaking peoples are sampled”. Are we, though?

Proto-language homelands are based on linguistic data, such as guesstimates for dialectal evolution, loanwords and phonetic changes for language contacts, toponymy for ancient territories, etc. depending on the available information. The trace is then followed back, using available archaeological data, from the known historic speakers and territory to the appropriate potential prehistoric cultures. Only then can genetic analyses help us clarify the precise prehistoric population movements that better fit the models.

The traditional family tree of the Uralic branches. Kallio (2014)

The linguistic homeland

We thought – using linguistic guesstimates and fitting prehistoric cultures and their expansion – that Yamna was the Late Proto-Indo-European culture, so when Yamna was sampled, we had Late Proto-Indo-Europeans sampled. Simple deduction.

We thought that north-eastern Europe was a Uralic-speaking area during the Neolithic:

  • For those supporting a western continuity (and assuming CWC was Indo-European), the language was present at least since the Comb Ware culture, potentially since the Mesolithic.
  • For those supporting a late introduction into Finland, Uralic expanded the latest with Abashevo-related movements after its incorporation of Volosovo and related hunter-gatherers.

The expansion to the east must have happened through progressive infiltrations with Seima-Turbino / Andronovo-related expansions.

Some datings for the traditional proto-stages from Uralic to Finnic. Kallio (2014).

Finding the linguistic homeland going backwards can be described today as follows:

I. Proto-Fennic homeland

Based on the number of Baltic loanwords, not attested in the more eastern Uralic branches (and reaching only partially Mordvinic), the following can be said about western Finno-Permic languages (Junttila 2014):

The Volga-Kama Basin lies still too far east to be included in a list of possible contact locations. Instead, we could look for the contact area somewhere between Estonia in the west and the surroundings of Moscow in the east, a zone with evidence of Uralic settlement in the north and Baltic on the south side.

The only linguistically well-grounded version of the Stone Age continuation theory was presented by Mikko Korhonen in 1976. Its validity, however, became heavily threatened when Koivulehto 1983a-b proved the existence of a Late Proto-Indo-European or Pre-Baltic loanword layer in Saami, Finnic, and Mordvinic. Since this layer must precede the Baltic one and it was presumably acquired in the Baltic Sea region, Koivulehto posited it on the horizon of the Battle Axe period. This forces a later dating for the Baltic–Finnic contacts.

Today the Battle Axe culture is dated at 3200 to 3000 BC, a period far too remote to correspond linguistically with Proto-Baltic (Kallio 1998a).

Since the Baltic contacts began at a very initial phase of Proto-Finnic, the language must have been relatively uniform at that time. Hence, if we consider that the layer of Baltic loanwords may have spread over the Gulf of Finland at that time, we could also insist that the whole of the Proto-Finnic language did so.

Prehistoric Balts as the southern neighbours of Proto-Finnic speakers. 1 = The approximated area of Proto-Uralic. 2 = The approximated area of Finnic during the Iron Age. 3 = The area of ancient Baltic hydronyms. 4 = The area of Baltic languages in about 1200 AD. 5 = The problem: When did Uralic expand westwards and when did it meet Baltic? Junntila (2012).

II. Proto-Finno-Saamic homeland

The evidence of continued Palaeo-Germanic loanwords (from Pre- to Proto-Germanic stages) is certainly the most important data to locate the Finno-Saamic homeland, and from there backwards into the true Uralic homeland. Following Kallio (2017):

(…) the loanword evidence furthermore suggests that the ancestors of Finnic and Saamic had at least phonologically remained very close to Proto-Uralic as late as the Bronze Age (ca. 1700–500 BC). In particular, certain loanwords, whose Baltic and Germanic sources point to the first millennium BC, after all go back to the Finno-Saamic proto-stage, which is phonologically almost identical to the Uralic proto-stage (see especially the table in Sammallahti 1998: 198–202). This being the case, Dahl’s wave model could perhaps have some use in Uralic linguistics, too.

The presence of Pre-Germanic loanwords points rather to the centuries around the turn of the 2nd – 1st millennium BC or earlier. Proto-Germanic words must have been borrowed before the end of Germanic influence in the eastern Baltic at the beginning of the Iron Age, which sets a clear terminus ante quem ca. 800 BC.

The arrival of Bell Beaker peoples in Scandinavia ca. 2350 BC, heralding the formation of the Dagger Period, as well as the development of Pre-Germanic in common with Finnic-like populations point to the late 3rd / early 2nd millennium BC as the first time of close interaction through the Baltic region.

III. Proto-Uralic homeland

(…) the earliest Indo-European loanwords in the Uralic languages (…) show that Proto-Uralic cannot have been spoken much earlier than Proto-Indo-European dated about 3500 BC (Koivulehto 2001: 235, 257). As the same loanword evidence naturally also shows that the Uralic and Indo-European homelands were not located far from one another, the Uralic homeland can most likely be located in the Middle and Upper Volga region, right north of the Indo-European homeland*. From the beginning of the Subneolithic period about 5900 BC onwards, this region was an important innovation centre, from where several cultural waves spread to the Finnish Gulf area, such as the Sperrings Ware wave about 4900 BC, the Combed Ware wave about 3900 BC, and the Netted Ware wave about 1900 BC (Carpelan & Parpola 2001: 78–90).

The mainstream position is nowadays trying to hold together the traditional views of Corded Ware as Indo-European, and a Uralic Fennoscandia during the Bronze Age.

The following is an example of how this “Volosovo/Forest Zone hunter-gatherer theory” of Uralic origins looks like, as a ‘mixture’ of cultures and languages that benefits from the lack of genetic data for certain regions and periods (taken from Parpola 2018):

The extent of Typical Comb Ware (TCW), Asbestos- and Organic-tempered Wares (AOW) and Volosovo and Garino-Bor cultures; areas with deposits of native copper in Karelia and copperbearing sandstone in Volga-Kama-area are marked dark gray (after Zhuravlev 1977; Krajnov 1987; Nagovitsyn 1987; Chernykh 1992; Carpelan 1999; Zhul´nikov 1999). From Nordqvist et al. (2012).

The Corded Ware (or Battle Axe) culture intruded into the Eastern Baltic and coastal Finland already around 3100 BCE. The continuity hypothesis maintains that the early Proto-Finnic speakers of the coastal regions, who had come to Finland in the 4th millennium BCE with the Comb-Pitted Ware, coexisted with the Corded Ware newcomers, gradually adopting their pastoral culture and with it a number of NW-IE loanwords, but assimilating the immigrants linguistically.

The fusion of the Corded Ware and the local Comb-Pitted Ware culture resulted into the formation of the Kiukais culture (c. 2300–1500) of southwestern Finland, which around 2300 received some cultural impulses from Estonia, manifested in the appearance of the Western Textile Ceramic (which is different from the more easterly Textile Ceramic or Netted Ware, and which is first attested in Estonia c. 2700 BCE, cf. Kriiska & Tvauri 2007: 88), and supposed to have been accompanied by an influx of loanwords coming from Proto-Baltic. At the same time, the Kiukais culture is supposed to have spread the custom of burying chiefs in stone cairns to Estonia.

The coming of the Corded Ware people and their assimilation created a cultural and supposedly also a linguistic split in Finland, which the continuity hypothesis has interpreted to mean dividing Proto-Saami-Finnic unity into its two branches. Baltic Finnic, or simply Finnic, would have emerged in the coastal regions of Finland and in the northern East Baltic, while preforms of Saami would have been spoken in the inland parts of Finland.

The Nordic Bronze Age culture, correlated above with early Proto-Germanic, exerted a strong influence upon coastal Finland and Estonia 1600–700 BCE. Due to this, the Kiukais culture was transformed into the culture of Paimio ceramics (c. 1600–700 BCE), later continued by Morby ceramics (c. 700 BCE – 200 CE). The assumption is that clear cultural continuity was accompanied by linguistic continuity. Having assimilated the language of the Germanic traders and relatively few settlers of the Bronze Age, the language of coastal Finland is assumed to have reached the stage of Proto-Finnish at the beginning of the Christian era. In Estonia, the Paimio ceramics have a close counterpart in the contemporaneous Asva ceramics.

Eastern homelands?

I will not comment on Siberian or Central Asian homeland proposals, because they are obviously not mainstream, still less today when we know that Uralic was certainly in contact with Proto-Indo-European, and then with Pre- and Proto-Indo-Iranian, as supported even by the Copenhagen group in Damgaard et al. (2018).

This is what Kallio (2017) has to say about the agendas behind such proposals:

Interestingly, the only Uralicists who generally reject the Central Russian homeland are the Russian ones who prefer the Siberian homeland instead. Some Russians even advocate that the Central Russian homeland is only due to Finnish nationalism or, as one of them put it a bit more tactfully, “the political and ideological situation in Finland in the first decades of the 20th century” (Napolskikh 1995: 4).

Still, some Finns (and especially those who also belong to the “school who wants it large and wants it early”) simultaneously advocate that exactly the same Central Russian homeland is due to Finnlandisierung (Wiik 2001: 466).

Hence, for those of you willing to learn about fringe theories not related to North-Eastern Europe, you also have then the large and early version of the Uralic homeland, with Wiik’s Palaeolithic continuity of Uralic peoples spread over all of eastern and central Europe (hence EHG and R1a included):

Palaeolithic boat peoples and Finno-Ugric. Source

These fringe Finnish theories look a lot like the Corded Ware expansion… Better not go the Russian or Finnish nationalist ways? Agreed then, let’s discuss only rational proposals based on current data.

The archaeological homeland

For a detailed account of the Corded Ware expansion with Battle Axe, Fatyanovo-Balanovo, and Abashevo groups into the area, you can read my recent post on the origin of R1a-Z645.

1. Textile ceramics

During the 2nd millennium BC, textile impressions appear in pottery as a feature across a wide region, from the Baltic area through the Volga to the Urals, in communities that evolve from late Corded Ware groups without much external influence.

While it has been held that this style represents a north-west expansion from the Volga region (with the “Netted Ware” expansion), there are actually at least two original textile styles, one (earlier) in the Gulf of Finland, common in the Kiukainen pottery, which evolves into the Textile ware culture proper, and another which seems to have an origin in the Middle Volga region to the south-east.

The Netted ware culture is the one that apparently expands into inner Finland – a region not densely occupied by Corded Ware groups until then. There are, however, no clear boundaries between groups of both styles; textile impressions can be easily copied without much interaction or population movement; and the oldest textile ornamentation appeared on the Gulf of Finland. Hence the tradition of naming all as groups of Textile ceramics.

Maximum distribution of Textile ceramics during the Bronze Age (ca. 2000-800 BC). Asbestos-tempered ware lies to the north (and is also continued in western Fennoscandia).

The fact that different adjacent groups from the Gulf of Finland and Forest Zone share similar patterns making it very difficult to differentiate between ‘Netted Ware’ or ‘Textile Ware’ groups points to:

  • close cultural connections that are maintained through the Gulf of Finland and the Forest Zone after the evolution of late Corded Ware groups; and
  • no gross population movements in the original Battle Axe / Fatyanovo regions, except for the expansion of Netted Ware to inner Finland, Karelia, and the east, where the scattered Battle Axe finds and worsening climatic conditions suggest most CWC settlements disappeared at the end of the 3rd millennium BC and recovered only later.

NOTE. This lack of population movement – or at least significant replacement by external, non-CWC groups – is confirmed in genetic investigation by continuity of CWC-related lineages (see below).

The technology present in Textile ceramics is in clear contrast to local traditions of sub-Neolithic Lovozero and Pasvik cultures of asbestos-tempered pottery to the north and east, which point to a different tradition of knowledge and learning network – showing partial continuity with previous asbestos ware, since these territories host the main sources of asbestos. We have to assume that these cultures of northern and eastern Fennoscandia represent Palaeo-European (eventually also Palaeo-Siberian) groups clearly differentiated from the south.

The Chirkovo culture (ca. 1800-700 BC) forms on the middle Volga – at roughly the same time as Netted Ware formed to the west – from the fusion of Abashevo and Balanovo elites on Volosovo territory, and is also related (like Abashevo) to materials of the Seima-Turbino phenomenon.

Bronze Age ethnolinguistic groups

In the Gulf of Finland, Kiukainen evolves into the Paimio ceramics (in Finland) — Asva Ware (in Estonia) culture, which lasts from ca. 1600 to ca. 700 BC, probably representing an evolving Finno-Saamic community, while the Netted Ware from inner Finland (the Sarsa and Tomitsa groups) and the groups from the Forest Zone possibly represent a Volga-Finnic community.

NOTE. Nevertheless, the boundaries between Textile ceramic groups are far from clear, and inner Finland Netted Ware groups seem to follow a history different from Netted Ware groups from the Middle and Upper Volga, hence they could possibly be identified as an evolving Pre-Saamic community.

Based on language contacts, with Early Baltic – Early Finnic contacts starting during the Iron Age (ca. 500 BC onwards), this is a potential picture of the situation at the end of this period, when Germanic influence on the coast starts to fade, and Lusatian culture influence is stronger:

The linguistic situation in Lapland and the northern Baltic Sea Area in the Early Iron Age prior to the expansion of Saami languages; the locations of the language groups are schematic. The black line indicates the distribution of Saami languages in the 19th century, and the gray line their approximate maximal distribution before the expansion of Finnic. Aikio (2012)

The whole Finno-Permic community remains thus in close contact, allowing for the complicated picture that Kallio mentions as potentially showing Dahl’s wave model for Uralic languages.

Genetic data shows a uniform picture of these communities, with exclusively CWC-derived ancestry and haplogroups. So in Mittnik et al. (2018) all Baltic samples show R1a-Z645 subclades, while the recent session on Estonian populations in ISBA 8 (see programme in PDF) clearly states that:

[Of the 24 Bronze Age samples from stone-cist graves] all 18 Bronze Age males belong to R1a.

Regarding non-Uralic substrates found in Saami, supposedly absorbed during the expansion to the north (and thus representing languages spoken in northern Fennoscandia during the Bronze Age) this is what Aikio (2012) has to say:

The Saami substrate in the Finnish dialects thus reveals that also Lakeland Saami languages had a large number of vocabulary items of obscure origin. Most likely many of these words were substrate in Lakeland Saami, too, and ultimately derive from languages spoken in the region before Saami. In some cases the loan origin of these words is obvious due to their secondary Proto-Saami vowel combinations such as *ā–ë in *kāvë ‘bend; small bay’ and *šāpšë ‘whitefish’. This substrate can be called ‘Palaeo-Lakelandic’, in contrast to the ‘Palaeo-Laplandic’ substrate that is prominent in the lexicon of Lapland Saami. As the Lakeland Saami languages became extinct and only fragments of their lexicon can be reconstructed via elements preserved in Finnish place-names and dialectal vocabulary, we are not in a position to actually study the features of this Palaeo-Lakelandic substrate. Its existence, however, appears evident from the material above.

If we wanted to speculate further, based on the data we have now, it is very likely that two opposing groups will be found in the region:

A) The central Finnish group, in this hypothesis the Palaeo-Lakelandic group, made up of the descendants of the Mesolithic pioneers of the Komsa and Suomusjärvi cultures, and thus mainly Baltic HG / Scandinavian HG ancestry and haplogroups I / R1b(xM269) (see more on Scandinavian HG).

Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018).

B) Lapland and Kola were probably also inhabited by similar Mesolithic populations, until it was eventually assimilated by expanding Siberian groups (of Siberian ancestry and N1c-L392 lineages) from the east – entering the region likely through the Kola peninsula – , forming the Palaeo-Laplandic group, which was in turn later replaced by expanding Proto-Saamic groups.

Siberian ancestry appears first in Fennoscandia at Bolshoy Oleni Ostrov ca. 1520 BC, with haplogroup N1c-L392 (2 samples, BOO002 and BOO004), and with Siberian ancestry. This is their likely movement in north-eastern Europe, from Lamnidis et al (2018):

The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period.

PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

Obviously, these groups of asbestos-tempered ware are not connected to the Uralic expansion. From the same paper:

The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

2. The Early Iron Age

The Ananino culture appears in the Vyatka-Kama area, famed for its metallurgy, with traditions similar to the North Pontic area, by this time developing Pre-Sauromatian traditions. It expanded to the north in the first half of the first millennium BC, remaining in contact with the steppes, as shown by the ‘Scythian’ nature of its material culture.

NOTE. The Ananino culture can be later followed through its zoomorphic styles into Iron Age Pjanoborskoi and Gljadenovskoi cultures, later to Ural-Siberian Middle Age cultures – Itkuska, Ust’-Poluiska, Kulaiska cultures –, which in turn can be related as prototypes of medieval Permian styles.

Territory of (early and maximum) Ananino material culture. Vasilyev (2002).

At the same time as the Ananino culture begins to expand ca. 1000 BC, the Netted Ware tradition from the middle Oka expanded eastwards into the Oka-Vyatka interfluve of the middle Volga region, until then occupied by the Chirkovo culture. Eventually the Akozino or Akhmylovo group (ca. 800-300 BC) emerged from the area, showing a strong cultural influence from the Ananino culture, by that time already expanding into the Cis-Urals region.

The Akozino culture remains nevertheless linked to the western Forest Zone traditions, with long-ranging influences from as far as the Lusatian culture in Poland (in metallurgical techniques), which at this point is also closely related with cultures from Scandinavia (read more on genetics of the Tollense Valley).

Mälar celts and molds for casting (a) and the main distribution area (в) of Mälar-type celts of the Mälar type in the Volga-Kama region (according to Kuzminykh 1983: figure 92) and Scandinavia (according to Baudou 1960: Karte 10); Ananino celts and molds for casting (б) and the main distribution area (г) of the distribution of the celts of the Ananino type in the Volga-Kama area (according to Kuzminykh 1983: figure 9); dagger of Ananino type (д).Map from (Yushkova 2010)

Different materials from Akozino reach Fennoscandia late, at the end of the Bronze Age and beginning of the Early Iron Age, precisely when the influence of the Nordic Bronze Age culture on the Gulf of Finland was declining.

This is a period when Textile ceramic cultures in north-eastern Europe evolve into well-armed chiefdom-based groups, with each chiefdom including thousands or tens of thousands, with the main settlements being hill forts, and those in Fennoscandia starting ca. 1000-400 BC.

Mälar-type celts and Ananino-type celts appear simultaneously in Fennoscandia and the Forest Zone, with higher concentrations in south-eastern Sweden (Mälaren) and the Volga-Kama region, supporting the existence of a revived international trade network.

Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Paimio—Asva Ware culture evolves (ca. 700-200 BC) into the Morby (in Finland) — Ilmandu syle (in Estonia, Latvia, and Mälaren) culture. The old Paimio—Asva tradition continues side by side with the new one, showing a clear technical continuity with it, but with ornamentation compared to the Early Iron Age cultures of the Upper Volga area. This new south-eastern influence is seen especially in:

  • Akozino-Mälar axes (ca. 800-500 BC): introduced into the Baltic area in so great numbers – especially south-western Finland, the Åland islands, and the Mälaren area of eastern Sweden – that it is believed to be accompanied by a movement of warrior-traders of the Akozino-Akhmylovo culture, following the waterways that Vikings used more than a thousand years later. Rather than imports, they represent a copy made with local iron sources.
  • Tarand graves (ca. 500 BC – AD 400): these ‘mortuary houses’ appear in the coastal areas of northern and western Estonia and the islands, at the same time as similar graves in south-western Finland, eastern Sweden, northern Latvia and Courland. Similar burials are found in Akozino-Akhmylovo, with grave goods also from the upper and middle Volga region, while grave goods show continuity with Textile ware.

The use of asbestos increases in mainland Finnish wares with Kjelmøy Ware (ca. 700 BC – AD 300), which replaced the Lovozero Ware; and in the east in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (ca. 700-500 BC – AD 200), where they replaced the previous Sarsa-Tomitsa ceramics.

The Gorodets culture appears during the Scythian period in the forest-steppe zone north and west of the Volga, shows fortified settlements, and there are documented incursions of Gorodets iron makers into the Samara valley, evidenced by deposits of their typical pottery and a bloom or iron in the region.

Iron Age ethnolinguistic groups

According to (Koryakova and Epimakhov 2007):

It is commonly accepted by archaeology, ethnography, and linguistics that the ancestors of the Permian peoples (the Udmurts, Komi-Permians, and Komi-Zyryans) left the sites of Ananyino cultural intercommunity.

NOTE. For more information on the Late Metal Ages and Early Medieval situation of Finno-Ugric languages, see e.g. South-eastern contact area of Finnic languages in the light of onomastics (Rahkonen 2013).

Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2011)

Certain innovations shared between Proto-Fennic (identified with the Gulf of Finland) and Proto-Mordvinic (from the Gorodets culture) point to their close contact before the Proto-Fennic expansion, and thus to the identification of Gorodets as Proto-Mordvinic, hence Akozino as Volgaic (Parpola 2018):

  • the noun paradigms and the form and function of individual cases,
  • the geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • the change of numeral *luka ‘ten’ with *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature (hence possibly from Siberian influence in north-eastern Europe).
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Purple area show likely zones of predominant Siberian ancestry and N1c-L392 lineages. Blue areas likely zones of predominant CWC ancestry and R1a-Z645 lineages. Fading purple arrows represent likely stepped movements of haplogroup N1c-L392 for centuries (Siberian → Ananino → Akozino → Fennoscandia), found eventually in tarand graves. Blue arrows represent eventual expansions of Fennic and (partially displaced) Saamic. Modified image from Vasilyev (2002).

The introduction of a strongly hierarchical chiefdom system can quickly change the pre-existing social order and lead to a major genetic shift within generations, without a radical change in languages, as shown in Sintashta-Potapovka compared to the preceding Poltavka society (read more about Sintashta).

Fortified settlements in the region represented in part visiting warrior-traders settled through matrimonial relationships with local chiefs, eager to get access to coveted goods and become members of a distribution network that could guarantee them even military assistance. Such a system is also seen synchronously in other cultures of the region, like the Nordic Bronze Age and Lusatian cultures (Parpola 2013).

The most likely situation is that N1c subclades were incorporated from the Circum-Artic region during the Anonino (Permic) expansion to the north, later emerged during the formation of the Akozino group (Volgaic, under Anonino influence), and these subclades in turn infiltrated among the warrior traders that spread all over Fennoscandia and the eastern Baltic (mainly among Fennic, Saamic, Germanic, and Balto-Slavic peoples), during the age of hill forts, creating alliances partially based on exogamy strategies (Parpola 2013).

Over the course of these events, no language change is necessary in any of the cultures involved, since the centre of gravity is on the expanding culture incorporating new lineages:

  • first on the Middle Volga, when Ananino expands to the north, incorporatinig N1c lineages from the Circum-Artic region.
  • then with the expansion of the Akozino-Akhmylovo culture into Ananino territory, admixing with part of its population;
  • then on the Baltic region, when materials are imported from Akozino into Fennoscandia and the eastern Baltic (and vice versa), with local cultures being infiltrated by foreign (Akozino) warrior-traders and their materials;
  • and later with the different population movements that led eventually to a greater or lesser relevance of N1c in modern Finno-Permic populations.

To argue that this infiltration and later expansion of lineages changed the language in one culture in one of these events seems unlikely. To use this argument of “opposite movement of ethnic and language change” for different successive events, and only on selected regions and cultures (and not those where the greatest genetic and cultural impact is seen, like e.g. Sweden for Akozino materials) is illogical.

NOTE. Notice how I write here about “infiltration” and “lineages”, not “migration” or “populations”. To understand that, see below the next section on autosomal studies to compare Bronze Age, Iron Age, Medieval and Modern Estonians, and see how little the population of Estonia (homeland of Proto-Fennic and partially of Proto-Finno-Saamic) has changed since the Corded Ware migrations, suggesting genetic continuity and thus mostly close inter-regional and intra-regional contacts in the Forest Zone, hence a very limited impact of the absorbed N1c lineages (originally at some point incorporated from the Circum-Artic region). You can also check on the most recent assessment of R1a vs. N1c in modern Uralic populations.

Iron Age and later populations

From the session on Estonian samples on ISBA 8, by Tambets et al.:

[Of the 13 samples from the Iron Age tarand-graves] We found that the Iron Age individuals do in fact carry chrY hg N3 (…) Furthermore, based on their autosomal data, all of the studied individuals appear closer to hunter-gatherers and modern Estonians than Estonian CWC individuals do.

EDIT (16 OCT) A recent abstract with Saag as main author (Tambets second) cites 3 out of 5 sampled Iron Age individuals as having haplogroup N3.

EDIT (28 OCT): Notice also the appearance of N1a1a1a1a1a1a1-L1025 in Lithuania (ca. 300 AD), from Damgaard (Nature 2018); the N1c sample of the Krivichi Pskov Long Barrows culture (ca. 8th-10th c. AD), and N1a1a1a1a1a1a7-Y4341 among late Vikings from Sigtuna (ca. 10th-12th c. AD) in Krzewinska (2018).

PCA of Estonian samples from the Bronze Age, Iron Age and Medieval times. Tambets et al. (2018, upcoming).

Looking at the plot, the genetic inflow marking the change from the Bronze Age to the Iron Age looks like an obvious expansion of nearby peoples with CWC-related ancestry, i.e. likely from the south-east, near the Middle Volga, where influence of steppe peoples is greater (hence likely Akozino) into a Proto-Fennic population already admixed (since the arrival of Corded Ware groups) with Comb Ware-like populations.

All of these groups were probably R1a-Z645 (likely R1a-Z283) since the expansion of Corded Ware peoples, with an introduction of some N1c lineages precisely during this Iron Age period. This infiltration of N1c-L392 with Akozino is obviously not directly related to Siberian cultures, given what we know about the autosomal description of Estonian samples.

Rather, N1c-L392 lineages were likely part of the incoming (Volgaic) Akozino warrior-traders, who settled among developing chiefdoms based on hill fort settlements of cultures all over the Baltic area, and began to appear thus in some of the new tarand graves associated with the Iron Age in north-eastern Europe.f

A good way to look at this is to realize that no new cluster appears compared to the data we already have from Baltic LN and BA samples from Mittnik et al. (2018), so the Estonian BA and IA clusters must be located (in a proper PCA) in the cline from Pit-Comb Ware culture through Baltic BA to Corded Ware groups:

PCA and ADMIXTURE analysis reflecting three time periods in Northern European prehistory. a Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). Population labels of modern West Eurasians are given in Supplementary Fig. 7 and a zoomed-in version of the European Late Neolithic and Bronze Age samples is provided in Supplementary Fig. 8. b Ancestral components in ancient individuals estimated by ADMIXTURE (k = 11)

This genetic continuity from Corded Ware (the most likely Proto-Uralic homeland) to the Proto-Fennic and Proto-Saamic communities in the Gulf of Finland correlates very well with the known conservatism of Finno-Saamic phonology, quite similar to Finno-Ugric, and both to Proto-Uralic (Kallio 2017): The most isolated region after the expansion of Corded Ware peoples, the Gulf of Finland, shielded against migrations for almost 1,500 years, is then the most conservative – until the arrival of Akozino influence.

NOTE. This has its parallel in the phonetic conservatism of Celtic or Italic compared to Finno-Ugric-influenced Germanic, Balto-Slavic, or Indo-Iranian.

Only later would certain regions (like Finland or Lappland) suffer Y-DNA bottlenecks and further admixture events associated with population displacements and expansions, such as the spread of Fennic peoples from their Estonian homeland (evidenced by the earlier separation of South Estonian) to the north and east:

The Finnic family tree. Kallio (2014).

The initial Proto-Fennic expansion was probably coupled with the expansion of Proto-Saami to the north, with the Kjelmøy Ware absorbing the Siberian population of Lovozero Ware, and potentially in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (Carpelan and Parpola 2017).

This Proto-Saami population expansion from the mainland to the north, admixing with Lovozero-related peoples, is clearly reflected in the late Iron Age Saamic samples from Levänluhta (ca. 400-800 AD), as a shift (of 2 out of 3 samples) to Siberian-like ancestry from their original CWC_Baltic-like situation (see PCA from Lamnidis et al. 2018 above).

Also, Volgaic and Permic populations from inner Finland and the Forest Zone to the Cis-Urals and Circum-Artic regions probably incorporate Siberian ancestry and N1c-L392 lineages during these and later population movements, while the westernmost populations – Estonian, Mordvinic – remain less admixed (see PCA from Tambets et al. 2018 below).

We also have data of N1c-L392 in Nordic territory in the Middle Ages, proving its likely strong presence in the Mälaren area since the Iron Age, with the arrival of Akozino warrior traders. Similarly, it is found among Balto-Slavic groups along the eastern Baltic area. Obviously, no language change is seen in Nordic Bronze Age and Lusatian territory, and none is expected in Estonian or Finnish territory, either.

Therefore, no “N1c-L392 + Siberian ancestry” can be seen expanding Finno-Ugric dialects, but rather different infiltrations and population movements with limited effects on ancestry and Y-DNA composition, depending on the specific period and region.

Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected. See Tambets et al. (2018) for more information.

An issue never resolved

Because N1c-L392 subclades & Siberian ancestry, which appear in different proportions and with different origins among some modern Uralic peoples, do not appear in cultures supposed to host Uralic-speaking populations until the Iron Age, people keep looking into any direction to find the ‘true’ homeland of those ‘Uralic N1c peoples’? Kind of a full circular reasoning, anyone? The same is valid for R1a & steppe ancestry being followed for ‘Indo-Europeans’, or R1b-P312 & Neolithic farmer ancestry being traced for ‘Basques’, because of their distribution in modern populations.

I understand the caution of many pointing to the need to wait and see how samples after 2000 BC are like, in every single period, from the middle and upper Volga, Kama, southern Finland, and the Forest Zone between Fennoscandia and the steppe. It’s like waiting to see how people from Western Yamna and the Carpathian Basin after 3000 BC look like, to fill in what is lacking between East Yamna and Bell Beakers, and then between them and every single Late PIE dialect.

But the answer for Yamna-Bell Beaker-Poltavka peoples during the Late PIE expansion is always going to be “R1b-L23, but with R1a-Z645 nearby” (we already have a pretty good idea about that); and the answer for the Forest Zone and northern Cis- and Trans-Urals area – during the time when Uralic languages are known to have already been spoken there – is always going to be “R1a-Z645, but with haplogroup N nearby”, as is already clear from the data on the eastern Baltic region.

So, without a previously proposed model as to where those amateurs expressing concern about ‘not having enough data’ expect to find those ‘Uralic peoples’, all this waiting for the right data looks more like a waiting for N1c and Siberian ancestry to pop up somewhere in the historic Uralic-speaking area, to be able to say “There! A Uralic-speaking male!”. Not a very reasonable framework to deal with prehistoric peoples and their languages, I should think.

But, for those who want to do that, let me break the news to you already:

First N1c – Finno-Ugric person arrives in Estonia to teach Finno-Saamic to Balto-Slavic peoples.

And here it is, an appropriate fantasy description of the ethnolinguistic groups from the region. You are welcome:

  • During the Bronze Age, late Corded Ware groups evolve as the western Textile ware Fennic Balto-Slavic group in the Gulf of Finland; the Netted Ware Saamic Balto-Slavic group of inner Finland; the south Netted Ware / Akozino Volgaic Balto-Slavic groups of the Middle Volga; and the Anonino Permic Balto-Slavic group in the north-eastern Forest Zone; all developing still in close contact with each other, allowing for common traits to permeate dialects.
  • These Balto-Slavic groups would then incorporate west of the Urals during and after the Iron Age (ca. 800-500 BC first, and also later during their expansion to the north) limited ancestry and lineages from eastern European hunter-gatherer groups of Palaeo-European Fennic and Palaeo-Siberian Volgaic and Permic languages from the Circum-Artic region, but they adopted nevertheless the language of the newcomers in every single infiltration of N1c lineages and/or admixture with Siberian ancestry. Oh and don’t forget the Saamic peoples from central Sweden, of course, the famous N1c-L392 ‘Rurikid’ lineages expanding Saamic to the north and replacing Proto-Germanic…

The current model for those obsessed with modern Y-DNA is, therefore, that expanding Neolithic, Bronze Age and Iron Age cultures from north-eastern Europe adopted the languages of certain lineages originally from sub-Neolithic (Scandinavian and Siberian) hunter-gatherer populations of the Circum-Artic region; lineages that these cultures incorporated unevenly during their expansions. Hmmmm… Sounds like an inverse Western movie, where expanding Americans end up speaking Apache, and the eastern coast speaks Spanish until Italian migrants arrive and make everyone speak English… or something. A logic, no-nonsense approach to ethnolinguistic identification.

I kid you not, this is the kind of models we are going to see very soon. In 2018 and 2019, with ancient DNA able to confirm or reject archaeological hypotheses based on linguistic data, people will keep instead creating new pet theories to support preconceived ideas based on the Y-DNA prevalent among modern populations. That is, information available in the 2000s.

So what’s (so much published) ancient DNA useful for, exactly?

[Next post on the subject: Corded Ware—Uralic (III): Seima-Turbino and the Ugric and Samoyedic expansion]

See also


Wang et al. (2018) Suppl. data: R1b-M269 in Baltic Neolithic?


Looking for information on Novosvobodnaya samples from Wang et al. (2018) for my latest post, I stumbled upon this from the Supplementary Data 2 (download the Excel table):

Latvia_MN1.SG (ZVEJ26)

Skeletal element: petrous
Sample: Latvia_MN_dup.I4627.SG
Date: 4251-3976 calBCE
Location: Zvejnieki
mtDNA: U4a1
Y-DNA: R1b1a1a2
Coverage: 0.15
SNPs hit on autosomes: 167445

The data on Mathieson et al. (2018) is as follows:

I4627 (ZVEJ26)

Skeletal element: petrous
Origin: ThisStudy (New data; Individual first published in JonesNatureCommunications2017)
Sample: Latvia_MN
Date:4251-3976 calBCE (5280±55 BP, Ua-3639)
mtDNA: U4a1
Y-DNA: R1b1a1a(xR1b1a1a2)
Coverage: 1.77
SNPs hit on autosomes: 686273

Y-Chromosome derived SNPs: R1b1a1a:PF6475:17986687C->A; R1b1a1a:CTS3876:15239181G->C; R1b1a1a:CTS5577:16376495A->C; R1b1a1a:CTS9018:18617596C->T; R1b1a1a:FGC57:7759944G->A; R1b1a1a:L502:19020340G->C; R1b1a1a:PF6463:16183412C->A; R1b1a1a:PF6524:23452965T->C; R1b1a:A702:10038192G->A; R1b1a:FGC35:18407611C->T; R1b1a:FGC36:13822833G->T; R1b1a:L754:22889018G->A; R1b1a:L1345:21558298G->T; R1b1a:PF6249:8214827C->T; R1b1a:PF6263:21159055C->A; R1b1:CTS2134:14193384G->A; R1b1:CTS2229:14226692T->A; R1b1:L506:21995972T->A; R1b1:L822:7960019G->A; R1b1:L1349:22722580T->C; R1b:M343:2887824C->A; R1:CTS2565:14366723C->T; R1:CTS3123:14674176A->C; R1:CTS3321:14829196C->T; R1:CTS5611:16394489T->G; R1:L875:16742224A->G; R1:P238:7771131G->A; R1:P286:17716251C->T; R1:P294:7570822G->C; R:CTS207:2810583A->G; R:CTS2913:14561760A->G; R:CTS3622:15078469C->G; R:CTS7876:17722802G->A; R:CTS8311:17930099C->A; R:F33:6701239G->A; R:F63:7177189G->A; R:F82:7548900G->A; R:F154:8558505T->C; R:F370:16856357T->C; R:F459:18017528G->T; R:F652:23631629C->A; R:FGC1168:15667208G->C; R:L1225:22733758C->G; R:L1347:22818334C->T; R:M613:7133986G->C; R:M734:18066156C->T; R:P224:17285993C->T; R:P227:21409706G->C

Context of Latvia_MN1

The Middle Neolithic is known to mark the westward expansion of Comb Ware and related cultures in North-Eastern Europe.

Mathieson et al. (2017 and 2018) had this to say about the Middle Neolithic in the Baltic:

At Zvejnieki in Latvia, using 17 newly reported individuals and additional data for 5 previously reported34 individuals, we observe a transition in hunter-gatherer-related ancestry that is opposite to that seen in Ukraine. We find that Mesolithic and Early Neolithic individuals (labelled ‘Latvia_HG’) associated with the Kunda and Narva cultures have ancestry that is intermediate between WHG (approximately 70%) and EHG (approximately 30%), consistent with previous reports34–36(Supplementary Table 3). We also detect a shift in ancestry between Early Neolithic individuals and those associated with the Middle Neolithic Comb Ware complex (labelled ‘Latvia_MN’), who have more EHG-related ancestry; we estimate that the ancestry of Latvia_MN individuals comprises 65% EHG-related ancestry, but two of the four individuals appear to be 100% EHG in principal component space (Fig. 1b).

From Mathieson et al. (2018). Ancient individuals projected onto principal components defined by 777 presentday west Eurasians (shown in Extended Data Fig. 1); data include selected published individuals (faded circles, labelled) and newly reported individuals (other symbols, outliers enclosed in black circles). Coloured polygons cover individuals that had cluster memberships fixed at 100% for supervised ADMIXTURE analysis.

Other samples and errors on Y-SNP calls

The truth is, this is another sample (Latvia_MN_dup.I4627.SG) from the same individual ZVEJ26.

There is another sample used for the analysis of ZVEJ26, with the same data as in Mathieson et al. (2018), i.e. better coverage, and Y-DNA R1b1a1a(xR1b1a1a2).

Most samples in the tables from Wang et al. (2018) seem to be classified correctly, as in previous papers, but for:

  • Blätterhöhle Cave sample from Lipson et al. (2017), wrongly classified (again) as R1b1a1a2a1a2a1b2 (I am surprised no R1b-autochtonous-continuity-fan rushed to proclaim something based on this);
  • Mal’ta 1 sample from Raghavan et al. (2013) as R1b1a1a2;
  • Iron Gates HG, Schela Cladovey from Gonzalez Fortes (2017) as R1b1a1a2;
  • Oase1 from Fu (2015) as N1c1a;
  • samples from Skoglund et al. (2017) from Africa also wrongly classified as R1b1a1a2 and subclades.

It seems therefore that the poor coverage / SNPs hit on autosomes is the key common factor here for these Y-SNP calls, and so it is in the Zvejnieki MN1 duplicated sample. Anyway, if all Y-SNP calls come from the same software applied to all data, and this is going to be used in future papers, this seems to be a great improvement compared to Narasimhan et al. (2018)

EDIT (25 JUN 2018): I have been reviewing some more papers apart from Mathieson et al. (2018) and Olalde et al. (2018) to compare the reported haplogroups, and there seems to be many potential errors (or updated data, difficult to say sometimes, especially when the newly reported haplogroup is just one or two subclades below the reported one in ‘old’ papers), not only those listed above.

The sample accession number in the European Nucleotide Archive (ENA) is SAMEA45565168 (Latvia_MN1/ZVEJ26) (see here), in case anyone used to this kind of analysis wishes to repeat the Y-SNP calls on both samples.

EDIT (25 JUN 2018): Added that it is another sample with lesser coverage from the same ZVEJ26 individual.


North-Eastern Europe in the Stone Age – bridging the gap between the East and the West


Interesting PhD thesis The Stone Age of north-eastern Europe 5500–1800 calBC : bridging the gap between the East and the West by Kerkko Nordqvist (2018).

Some interesting excerpts:

On the Corded Ware and related cultures

The arrival of Corded Ware is without a doubt the clearest example of migration recognized in Finnish Stone Age archaeology. Its appearance has been understood to result from the movement of a new population from the southern or southeastern Baltic Sea area to the southern and western coasts of Finland (Europaeus 1922: 137; Luho 1948: 57; Edgren 1970: 62; Matiskainen 1994: 14) (Fig. 36). Native inhabitants of the coastal region — presented as representatives of Comb Ware population — have rarely been given any larger role in this development (Luoto 1986: 19; Asplund 1995: 74; see also Article III), and their fate has usually been described as displacement, assimilation or some kind of co-existence (Äyräpää 1952a: 24–25; Edgren 1997: 169–171; Carpelan 1999: 263–264; Núñez 2004: 362).

Another important part of the Finnish narrative is the distance that the Corded Ware population assumedly kept, not only from the (Pöljä Ware-producing) hunter-gatherers inhabiting the Finnish inland, but also from the other Corded Ware groups in the northern Baltic Sea area (Edgren 1970: 61; Äyräpää 1973: 199, 207; Carpelan 1999: 266).56 The image of Finnish Corded Ware is static: it is seen to exist in the area of present-day Finland facing little change for centuries (Edgren 1992: 96; see also Luoto 1986: 17; Matiskainen 1994). However, the archaic nature assigned to Corded Ware derives greatly from the out-dated idea of pan-European A-horizon, unrealistic dating given for the phenomenon, as well as an overly narrow view of cultural dynamics concerning what can be accepted as Corded Ware (cf. Furholt 2014; Article III).

The only larger change has been connected to the so-called 2nd wave of Corded Ware, supposedly reaching Finnish coasts from Estonia towards the end of Corded Ware’s existence. However, this event has never really been substantiated, and in Finnish assemblages it seems to materialize only through the so-called sharp-butted axes (see Soikkeli 1912; Äyräpää 1952b: 89–90) (Fig. 37) — pottery related to the 2nd wave has never been presented, although its influences are recognized in later pottery types (Carpelan 1979: 15; Carpelan et al. 2008: 206; see also Lavento 2001: 24–25). Along the northern limit of Corded Ware, in the so-called Middle Zone, the 2nd wave assumedly contributed to the creation of hybrid pottery, which in the earlier research has been vaguely called Middle or Intermediate Zone Ceramics (Carpelan 1979: 15; 2004b: 52). More recently it has been proposed that such mixing of influences and hybridization would have started immediately or soon after the arrival of Corded Ware at least on the south-eastern coast and the Karelian Isthmus, and influences would have been transmitted towards the inland and the middle-zone, too (see Mökkönen 2011: 62–63; Article III; see also Carpelan 1999: 262).

Distribution of the so-called Middle and Late Neolithic asbestos- and organictempered wares. Organic admixtures were commonly used in wide regions to the east and south-east of the research area during this time as well, but asbestos-tempered pottery has only occasionally been reported from areas further east of Lake Onega, the Vologda and Arkhangelsk Oblasts (see Ошибкина 1978; Козырева 1983; Жульников 2007). Illustration: K. Nordqvist.

On assumed early Corded Ware materials in North-East Europe

The emergence of Corded Ware was previously dated in Finland as early as 3200 calBC (Edgren 1992: 92; Matiskainen 1994: 14; Carpelan 2004b: 48–49). The age was based on a few conventional dates from mixed contexts, and has been lately readjusted to around 2900–2800 calBC (Mökkönen 2011: 17–18; Article III). This has not only moved the dating closer to the initial dates given to Corded Ware in Europe (Włodarczak 2009), but also changed the cultural context into which Corded Ware may have arrived in north-eastern Europe. The old dating permitted the assumption of a temporal overlap with Typical/Late Comb Ware (see Edgren 1970: 59–60; see also Carpelan 1999: 262) — with regards to the new dating, even if the Comb Ware tradition continued in some form to the 3rd millennium calBC, it is really not known how the coastal societies transformed and what they looked like during this time. All in all, only a few sites have been securely dated to the 3200–2800 calBC period, which makes estimating all the mechanisms through which Corded Ware was established quite complicated.

Most Corded Ware materials derive from mixed, multi-period settlement contexts, which explain the generally limited knowledge about Corded Ware assemblages. Pottery is the most commonly identified element, although its study has been heavily concentrated on beakers and beaker-like cups: apart from so-called short-wave moulded vessels, household pottery is not much recognized (Edgren 1970: 25–26; see Nordqvist & Häkälä 2014: 18–19). Furthermore, apart from individual remarks, organic tempers have been excluded from the Corded Ware technological repertoire in Finland (Edgren 1970: 33; Korkeakoski- Väisänen 1993: 15) — as shown in Article III, organic-tempered Corded Ware is present at least on the Finnish southern coast and the Karelian Isthmus, and has been reported from Southern Ostrobothnia as well. Organic-tempered pottery found in southern Finland is similar to the so-called Estonian (or Late) Corded Ware, which is thought to be the result of local development (Янитс 1959: 166; Kriiska 2000: 75; see also Kholkina 2017: 155) (Fig. 38). Even preliminary mapping of such pottery (Finnish data is still based on non-systematic survey) shows that an interaction sphere existed in the eastern Gulf of Finland area, reaching from Estonia to the areas of present-day Finland and the Karelian Isthmus in Russia (Article III) (Fig. 36). Sharp-butted axes fit well into this context: rather than being an indication of some ambivalent and unidirectional 2nd wave of influence, they provide better evidence of more continuous contacts across the sea.

The origins and spread of Corded Ware have become highly topical in the last few years with the development of analytical techniques such as genetic and isotopic research (Allentoft et al. 2015; Haak et al. 2015; Sjögren et al. 2016; Kristiansen et al. 2017). Generally, archaeogenetic studies have evidenced large population replacements in Europe, and seem to provide solid support for migration — still, numerous problems related to representativity and interpretation of the data remain to be solved (see Vander Linden 2016; Heyd 2017; Ion 2017). No material is available for such studies from the research area, as no bones have been preserved in the excavated burials. The closest analysed and published individuals from Estonia, Latvia and Lithuania (Allentoft et al. 2015; Jones et al. 2017; Mittnik et al. 2018; Saag et al. 2017) show that the development of Corded Ware in the Baltic States clearly involved newcomers. At the same time, archaeological materials from north-eastern Europe also indicate the input and presence of indigenous people — settling this discrepancy between different source materials is an important task for future research.

On modern political borders and preconceptions defining archaeological cultures

The results presented above illustrate how the modern political borders may appear to be present in the past. For Finnish prehistory they mean also that instead of one ‘Finnish’ group, there are several Corded Ware populations operational within the present-day state. Recent geochemical analyses of clay pastes and grog tempers of Corded Ware have pointed towards the existence of different pottery recipes in different parts of Finland, as well as towards connections and movement across the northern Baltic Sea area (Holmqvist et al. 2018).

The area of Battle Axe/Corded Ware cultures (shaded), with the traditional limit of Finnish Corded Ware shown as a solid line. The distribution of organic-tempered (Estonian) Corded Ware is marked with a dashed line, while the so-called Middle Zone is indicated roughly by hatching. Illustration: K. Nordqvist.

In the present-day Russian territory, a Corded Ware presence has been recognized on the Karelian Isthmus (Крайнов 1987b: 61, Карта 6). In Finnish archaeology this area has been mostly considered a periphery of Finnish Corded Ware (Äyräpää 1952a: 22–23; 1973: 207; Meinander 1954a: 151–152; Huurre 2003: 236; Carpelan et al. 2008: 206), but the identification of organic-tempered Cored Ware in areas north of the Gulf (as well as mapping of all stray finds; Nordqvist & Häkälä 2014; Article III) shows that a Corded Ware presence on the Isthmus was stronger than thought. In other words, the normative perception of culture and strong presuppositions of what Corded Ware should be has led to the exclusion of part of the material culturethe Karelian Isthmus was not just a subsidiary area of Finnish Corded Ware, but a region with its own character and tradition.

No Corded Ware pottery finds have been reported in the areas north of Lake Ladoga. The solitary Corded Ware influences noted in simultaneous Karelian pottery have been connected with the central Russian Fatyanovo culture (Жульников 1999: 53–54; 2008: 419). Because the Fatyanovo territory extends close to the research area in the east and south-east (see Крайнов 1987b: 61, Карта 6; see also Жульников 2008: 417, Рис. 3), it is not surprising that recent studies have revealed evidence of connections between the eastern Gulf of Finland and central Russian battle axe cultures (Kriiska et al. 2015: 47; Крийска et al. 2015: 201; Article III; see also Kholkina 2017: 154–155).

People prefer ethnolinguistic identification “large and early”

The East has been mostly contextualized through the cultural entity perceived to exist between the Baltic Sea and the Urals, i.e. the ‘Comb Ware cultural sphere’. Its binding elements have been kinship- and exchange-based connections, which would have transmitted influences over this vast area. Karelia, the closest-lying region of the East, has been occasionally mentioned as an important area of influence (Tallgren 1938b; Äyräpää 1944), but generally it has not been given any prominent position in the narratives. In fact, Karelia and much of the Comb Ware sphere gained their insignia and paraphernalia already during the first half of the 20th century, and only fairly petrified stereotypes have been presented in the subsequent literature.

On the arrival of the Metal Ages, influence from Pre-Proto-Germanic, and the reasons for the genetic bottleneck

Periodization-wise the question is straightforward: the Neolithic ends with the onset of the Early Metal Period, the Eneolithic (in Russia) and the Bronze Age (in Finland).

A much larger problem affecting the study of transition has been the general decrease and even lack of archaeological material pertaining to this time. This situation prevails in large areas from the later 3rd millennium calBC onwards and is accentuated during the 2nd millennium calBC. The disappearance of archaeological evidence has been explained by decreasing population numbers which would have been caused by the deteriorating climate (Lavento 2015: 125; see also Sundell 2014). Nevertheless, in the territory of present-day Finland the abundant number of burial cairns (see Meinander 1954b: 89–120; Saipio 2011) as well as pollen analyses showing anthropogenic activities dating to this time (see Alenius et al. 2009; Augustson et al. 2013) indicate that no complete depopulation took place. Therefore, in addition to sparse habitation, the change must be explained also through changing ways of living and material cultures, which make the material remains more difficult to identify archaeologically (also Lavento 2015: 125, 132).

The changes taking place during this time seem to be connected to external influences. On the coast, the Kiukainen culture is thought to have transformed under Scandinavian influences into the so-called Western Bronze Age, exhibiting changes in their settlements, material culture, means of subsistence and their world view (Meinander 1954b: 196–197; Lavento 2015: 198–199). Development further east, in the areas previously occupied by populations producing asbestos and organic-tempered wares, is characterized by the appearance of so-called Textile Ware, apparently introduced there by a new population originating from the south-east and ultimately from the Volga region (Meinander 1954b; Гурина 1961; Косменко 1992; Lavento 2001). Even though it is not clear what the relationships between the carriers of this new tradition and the local populations were (did the latter perish, assimilate, or coexist?), it is evident that changes took place in all fields of life — and the traditional image of an archaic, static inland is not considered correct anymore (see Saipio 2008; Lavento 2015). However, this does not imply one synchronous or abrupt change or a complete turnover but, for example, traditional forms of subsistence held their ground alongside (slash and burn) agriculture for centuries, even millennia to come.

All in all, a complex account of events in North-East Europe that will define the ethnolinguistic identification of Corded Ware migrants.


Uralic as a Corded Ware substrate of Indo-Iranian, and loanwords in Finno-Ugric


Asko Parpola has recently published a new paper, Finnish vatsa ~ Sanskrit vatsá and the formation of Indo-Iranian and Uralic languages.


Finnish vatsa ‘stomach’ < PFU *vaćća < Proto-Indo-Aryan *vatsá- ‘calf’ < PIE *vet-(e)s-ó- ‘yearling’ contrasts with Finnish vasa- ‘calf’ < Proto-Iranian *vasa- ‘calf’. Indo-Aryan -ts- versus Iranian -s- refl ects the divergent development of PIE *-tst- in the Iranian branch (> *-st-, with Greek and Balto-Slavic) and in the Indo-Aryan branch ( > *-tt-, probably due to Uralic substratum). The split of Indo-Iranian can be traced in the archaeological record to the differentiation of the Yamnaya culture in the North Pontic and Volga steppes respectively during the third millennium BCE, due to the use of separate sources of metal: the Iranian branch was dependent on the North Caucasus, while the Indo-Aryan branch was oriented towards the Urals. It is argued that the Abashevo culture of the Mid-Volga-Kama-Belaya basins and the Sejma-Turbino trade network (2200–1900 BCE) were bilingual in Proto-Indo-Aryan and PFU, and introduced the PFU as the basis of West Uralic (Volga-Finnic) into the Netted Ware Culture of the Upper Volga-Oka (1900–200 BCE).

He updates thus his quite recent model from On the emergence, contacts and dispersal of Proto-Indo-European, Proto-Uralic and Proto-Aryan in an archaeological perspective (2017).

In it he supported a North-West Indo-European expansion with Corded Ware, and a Neolithic Proto-Uralic community in East Europe (associated with the Comb Ware culture), as I did before the famous 2015 papers.

In fact, he supports that the satemization trend of Proto-Indo-Iranian is due to a Proto-Finno-Ugric substratum in its population in the Volga-Ural region, similar to the model I propose (with the Corded Ware substratum hypothesis).

NOTE. While for Parpola the ‘satemizing’ substratum of Balto-Slavic (a NWIE dialect) may not come exactly from the same Finno-Ugric population as for Indo-Iranian, but from a different Uralic dialect (as I explain in my hypothesis), for the few extant supporters of an Indo-Slavonic group there should not be any problem identifying the same ancient substrate as for the Proto-Indo-Iranian population…

Now that North-West Indo-European is clearly associated with the Yamna -> Bell Beaker expansion, I understand that his previous model is obsolete and needs a revision.

I find it especially difficult to understand (in light of his previous theory) why he compares Indo-Aryan *vatsa– and Iranian *vasa– to assert that the former is the origin of the loanword in Finno-Ugric, when the Proto-Indo-Iranian form is essentially the same as the Indo-Aryan one, with respect to the *w– evolution into *v– in both PII and late FU dialects…

NOTE: I wrote him yesterday asking for this issue, I will post here his answer.

EDIT (20 MAR 2018): The summary of his answer regarding his selection of Indo-Aryan *vatsa– vs. Iranian *vasa– (instead of just PII *watsa-/vatsa-) is one based on Archaeology (and likley guesstimates), since he understands the split into Iranian and Indo-Aryan to have happened early within the Yamna culture, so that the cultural admixture of Abashevo must have happened after the separation.

Potential spread of Finnic. “Distribution of the Netted Ware according to Carpelan (2002: 198). A: Emergence of the Netted Ware on the Upper Volga c. 1900 calBC. B: Spread of Netted Ware by c. 1800 calBC. C: Early Iron Age spread of Netted Ware. (After Carpelan 2002: 198 > Parpola 2012a: 151.)

His effort to link the actual expansion of Finno-Ugric to Corded Ware territory, linking it also partially to population movements from the Seima-Turbino phenomenon – probably associated with the initial expansion of N1c lineages – is another good example of convergence of the different anthropological theories thanks to recent Genomic studies.