More Celts of hg. R1b, more Afanasievo ancestry, more maps

iron-age-early-celtic-expansion

Interesting recent developments:

Celts and hg. R1b

Gauls

Recent paper (behind paywall) Multi-scale archaeogenetic study of two French Iron Age communities: From internal social- to broad-scale population dynamics, by Fischer et al. J Archaeol Sci (2019).

In it, Fischer and colleagues update their previous data for the Y-DNA of Gauls from the Urville-Nacqueville necropolis, Normandy (ca. 300-100 BC), with 8 samples of hg. R, at least 5 of them R1b. They also report new data from the Gallic cemetery at Gurgy ‘Les Noisats’, Southern Paris Basin (ca. 120-80 BC), with 19 samples of hg. R, at least 13 of them R1b.

In both cases, it is likely that both communities belonged (each) to the same paternal lineages, hence the patrilocal residence rules and patrilineality described for Gallic groups, also supported by the different maternal gene pools.

The interesting data would be whether these individuals were of hg. R1b-L21, hence mainly local lineages later replaced or displaced to the west, or – a priori much more likely – of some R1b-U152 and/or R1b-DF27 subclades from Central Europe that became less and less prevalent as Celts expanded into more isolated regions south of the Pyrenees and into the British Isles. Such information is lacking in the paper, probably due to the poor coverage of the samples.

early-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Early Iron Age. See full map.

Other Celts

As for early Celts, we already have:

Celtiberians from the Basque Country (one of hg. I2a) and likely Celtic genetic influence in north-east Iberia (all R1b), where Iberian languages spread later, showing that Celts expanded from some place in Central Europe, probably already with the Urnfield culture (ca. 1300 BC on).

Two Hallstatt samples from Bylany, Bohemia (ca. 836-780 BC), by Damgaard et al. Nature (2018), one of them of hg. R1b-U152.

mitterkirchen-grab-hu-i-8-hallstatt
Photo and diagram of burial HÜ-I/8, Mitterkirchen, Oberösterreich, Leskovar 1998.

Another Hallstatt HaC/D1 sample from Mittelkirchen, Austria (ca. 850-650/600), by Kiesslich et al. (2012), with predicted hg. G2a (see Athey’s haplogroup prediction).

One sample of early La Tène culture A from Putzenfeld am Dürrnberg, Hallein, Austria (ca 450–380 BC), by Kiesslich et al. (2012), with predicted hg. R1b (see Athey’s haplogroup prediction).

NOTE. For potential unreliability of haplogroup prediction with Whit Atheys’ haplogroup predictor, see e.g. Zhang et al. (2017).

kelten-dna-putzenfeld-duerrnberg-grab-376
Photo and diagram of Burial 376, Putzenfeld, Dürrnberg bei Hallein, Moser 2007.

Three Britons from Hinxton, South Cambridgeshire (ca. 170 BC – AD 80) from Schiffels et al. (2016), two of them of local hg. R1b-S461.

Indirectly, data of Vikings by Margaryan et al. (2019) from the British Isles and beyond show hg. R1b associated with modern British-like ancestry, also linked to early “Picts”, hence likely associated with Britons even after the Anglo-Saxon settlement. Supporting both (1) my recent prediction of hg. R1b-M167 expanding with Celts and (2) the reason for its presence among modern Scandinavians, is the finding of the first ancient sample of this subclade (VK166) among the Vikings of St John’s College Oxford, associated with the ‘St Brice’s Day Massacre’ (see Margaryan et al. 2019 supplementary materials).

The R1b-M167 sample shows 23.5% British-like ancestry, hence autosomally closer to other local samples (and related to the likely Picts from Orkney) than to some of his deceased partners at the site. Other samples with sizeable British-like ancestry include VK177 (32.6%, hg. R1b-U152), VK173 (33.3%, hg. I2a1b1a), or VK150 (25.6%, hg. I2a1b1a), while typical Germanic subclades like I1 or R1b-U106 – which may be associated with Anglo-Saxons, too – tend to show less.

late-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Late Iron Age. See full map.

I remember some commenter asking recently what would happen to the theory of Proto-Indo-European-speaking R1b-rich Yamnaya culture if Celts expanded with hg. R1a, because there were only one hg. R1b and one (possibly) G2a from Hallstatt. As it turns out, they were mostly R1b. However, the increasingly frequent obsession of searching for specific haplogroups and ancestry during the Iron Age and the Middle Ages is weird, even as a desperate attempt, because:

  1. it is evident that the more recent the ancient DNA samples are, the more they are going to resemble modern populations of the same area, so ancient DNA would become essentially useless;
  2. cultures from the early Iron Age onward (and even earlier) were based on increasingly complex sociopolitical systems everywhere, which is reflected in haplogroup and ancestry variability, e.g. among Balts, East Germanic peoples, Slavs (of hg. E1b-V13, I2a-L621), or Tocharians.

In fact, even the finding of hg. R1b among Celts of central and western Europe during the Iron Age is rather unenlightening, because more specific subclades and information on ancestry changes are needed to reach any meaningful conclusion as to migration vs. acculturation waves of expanding Celtic languages, which spread into areas that were mostly Indo-European-speaking since the Bell Beaker expansion.

Afanasevo ancestry in Asia

Wang and colleagues continue to publish interesting analyses, now in the preprint Inland-coastal bifurcation of southern East Asians revealed by Hmong-Mien genomic history, by Xia et al. bioRxiv (2019).

Interesting excerpt (emphasis mine):

Although the Devil’s Cave ancestry is generally the predominant East Asian lineage in North Asia and adjacent areas, there is an intriguing discrepancy between the eastern [Korean, Japanese, Tungusic (except northernmost Oroqen), and Mongolic (except westernmost Kalmyk) speakers] and the western part [West Xiōngnú (~2,150 BP), Tiānshān Hun (~1,500 BP), Turkic-speaking Karakhanid (~1,000 BP) and Tuva, and Kalmyk]. Whereas the East Asian ancestry of populations in the western part has entirely belonged to the Devil’s Cave lineage till now, populations in the eastern part have received the genomic influence from an Amis-related lineage (17.4–52.1%) posterior to the presence of the Devil’s Cave population roughly in the same region (~7,600 BP)12. Analogically, archaeological record has documented the transmission of wet-rice cultivation from coastal China (Shāndōng and/or Liáoníng Peninsula) to Northeast Asia, notably the Korean Peninsula (Mumun pottery period, since ~3,500 BP) and the Japanese archipelago (Yayoi period, since ~2,900 BP)2. Especially for Japanese, the Austronesian-related linguistic influence in Japanese may indicate a potential contact between the Proto-Japonic speakers and population(s) affiliating to the coastal lineage. Thus, our results imply that a southern-East-Asian-related lineage could be arguably associated with the dispersal of wet-rice agriculture in Northeast Asia at least to some extent.

afanasevo-namazga-devils-gate-xiongnu-huns-tianshan-admixture
Spatial and temporal distribution of ancestries in East Asians. Reference populations and corresponding hypothesized ancestral populations: (1) Devil’s Cave (~7,600 BP), the northern East Asian lineage; (2) Amis, the southern East Asian lineage (= AHM + AAA + AAN); (3) Hòabìnhian (~7,900 BP), a lineage related to Andamanese and indigenous hunter-gatherer of MSEA; (4) Kolyma (~9,800 BP), “Ancient Palaeo-Siberians”; (5) Afanasievo (~4,800 BP), steppe ancestry; (6) Namazga (~5,200 BP), the lineage of Chalcolithic Central Asian. Here, we report the best-fitting results of qpAdm based on following criteria: (1) a feasible p-value (&mt; 0.05), (2) feasible proportions of all the ancestral components (mean &mt; 0 and standard error < mean), and (3) with the highest p-value if meeting previous conditions.

In this case, the study doesn’t compare Steppe_MLBA, though, so the findings of Afanasievo ancestry have to be taken with a pinch of salt. They are, however, compared to Namazga, so “Steppe ancestry” is there. Taking into account the limited amount of Yamnaya-like ancestry that could have reached the Tian Shan area with the Srubna-Andronovo horizon in the Iron Age (see here), and the amount of Yamnaya-like ancestry that appears in some of these populations, it seems unlikely that this amount of “Steppe ancestry” would emerge as based only on Steppe_MLBA, hence the most likely contacts of Turkic peoples with populations of both Afanasievo (first) and Corded Ware-derived ancestry (later) to the west of Lake Baikal.

(1) The simplification of ancestral components into A vs. B vs. C… (when many were already mixed), and (2) the simplistic selection of one OR the other in the preferred models (such as those published for Yamnaya or Corded Ware), both common strategies in population genomics pose evident problems when assessing the actual gene flow from some populations into others.

Also, it seems that when the “Steppe”-like contribution is small, both Yamnaya and Corded Ware ancestry will be good fits in admixed populations of Central Asia, due to the presence of peoples of EHG-like (viz. West Siberia HG) and/or CHG-like (viz. Namazga) ancestry in the area. Unless and until these problems are addressed, there is little that can be confidently said about the history of Yamnaya vs. Corded Ware admixture among Asian peoples.

Maps, maps, and more maps

As you have probably noticed if you follow this blog regularly, I have been experimenting with GIS software in the past month or so, trying to map haplogroups and ancestry components (see examples for Vikings, Corded Ware, and Yamnaya). My idea was to show the (pre)historical evolution of ancestry and haplogroups coupled with the atlas of prehistoric migrations, but I have to understand first what I can do with GIS statistical tools.

My latest exercise has been to map modern haplogroup distribution (now added to the main menu above) using data from the latest available reports. While there have been no great surprises – beyond the sometimes awful display of data by some papers – I think it is becoming clearer with each new publication how wrong it was for geneticists to target initially those populations considered “isolated” – hence subject to strong founder effects – to extrapolate language relationships. For example:

  • The mapping of R1b-M269, in particular basal subclades, corresponds nicely with the Indo-European expansions.
  • There is no clear relationship of R1b, not even R1b-DF27 (especially basal subclades), with Basques. There is no apparent relationship between the distribution of R1b-M269 and some mythical non-Indo-European “Old Europeans”, like Etruscans or Caucasian speakers, either.
  • Basal R1a-M417 shows an interesting distribution, as do maps of basal Z282 and Z93 subclades, despite the evident late bottlenecks and acculturation among Slavs.
  • The distribution of hg. N1a-VL29 (and other N1a-L392 subclades) is clearly dissociated from Uralic peoples, and their expansion in the whole Baltic Sea during the Iron Age doesn’t seem to be related to any specific linguistic expansion.
  • haplogroup-n1a-vl29
    Modern distribution of haplogroup N1a-VL29. See full map.
  • Even the most recent association in Post et al. (2019) with hg. N1a-Z1639 – due to the lack of relationship of Uralic with N1a-VL29 – seems like a stretch, seeing how it probably expanded from the Kola Peninsula and the East Urals, and neither the Lovozero Ware nor forest hunter-fishers of the Cis- and Trans-Urals regions were Uralic-speaking cultures.
  • The current prevalence of hg. R1b-M73 supports its likely expansion with Turkic-speaking peoples.
  • The distribution of haplogroup R1b-V88 in Africa doesn’t look like it was a mere founder effect in Chadic peoples – although they certainly underwent a bottleneck under it.
  • The distribution of R1a-M420 (xM198) and hg. R1b-M343 (possibly not fully depicted in the east) seem to be related to expansions close to the Caucasus, supporting once more their location in Eastern Europe / West Siberia during the Mesolithic.
  • The mapping of E1b-V13 and I-M170 (I haven’t yet divided it into subclades) are particularly relevant for the recent eastward expansion of early Slavic peoples.

All in all, modern haplogroup distribution might have been used to ascertain prehistoric language movements even in the 2000s. It was the obsession with (and the wrong assumptions about) the “purity” of certain populations – say, Basques or Finns – what caused many of the interpretation problems and circular reasoning we are still seeing today.

I have also updated maps of Y-chromosome haplogroups reported for ancient samples in Europe and/or West Eurasia for the Early Eneolithic, Early Chalcolithic, Late Chalcolithic, Early Bronze Age, Middle Bronze Age, Late Bronze Age, Early Iron Age, Late Iron Age, Antiquity, and Middle Ages.

Haplogroup inference

I have also tried Yleaf v.2 – which seems like an improvement over the infamous v.1 – to test some samples that hobbyists and/or geneticists have reported differently in the past. I have posted the results in this ancient DNA haplogroup page. It doesn’t mean that the inferences I obtain are the correct ones, but now you have yet another source to compare.

Not many surprises here, either:

  • M15-1 and M012, two Proto-Tocharians from Shirenzigou, are of hg. R1b-PH155, not R1b-M269.
  • I0124, the Samara HG, is of hg. R1b-P297, but uncertain for both R1b-M73 and R1b-M269.
  • I0122, the Khvalynsk chieftain, is of hg. R1b-V1636.
  • I2181, the Smyadovo outlier of poor coverage, is possibly of hg. R, and could be of hg. R1b-M269, but could also be even non-P.
  • I6561 from Alexandria is probably of hg. R1a-M417, likely R1a-Z645, maybe R1a-Z93, but can’t be known beyond that, which is more in line with the TMRCA of R1a subclades and the radiocarbon date of the sample.
  • I2181, the Yamnaya individual (supposedly Pre-R1b-L51) at Lopatino II is R1b-M269, negative for R1b-L51. Nothing beyond that.

You can ask me to try mapping more data or to test the haplogroup of more samples, provided you give me a proper link to the relevant data, they are interesting for the subject of this blog…and I have the time to do it.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Pro-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1a2-M25 (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1a2-M25, and at least one Q1a1-B284, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1a2-M25 (in particular Q1a2-L712), and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk. Q1a-M25 was earlier found in a Baltic hunter-gatherer, which supports a widespread distribution of Q1a2 and Q1a1 in North Eurasia during the Neolithic and Bronze Age.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related

Bronze Age cultures in the Tarim Basin and the elusive Proto-Tocharians

andronovo-xiaohe-horizon

Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

Summary excerpts, mainly from the conclusions (emphasis mine):

Both the Xiaohe and the Gumugou groups are suggested as possibly originating from southern Siberia or Central Asia and being related to Afanasievo and Andronovo people (Han 1986, 1994; Li et al. 2010, 2015). But a latest research suggest that the Xiaohe males are genetic distinct from the Afanasievo males, considering the paternal lineages (Hollard et al. 2018). From genetic evidence, it is suggested that southern Siberia and Central Asia were dominated by Europeans during the Bronze Age. Southern Siberia was predominant by Europeans since the Bronze Age as a result of eastward migration of Kurgan people (Keyser et al. 2009). Central Asia started to have an eastern Eurasian maternal lineage that coexisted with the previous western maternal lineage from around 700 BCE (Lalueza-Fox et al. 2004). Based on the research mentioned above, we can conclude as that the Xiaohe and the Gumugou people possibly came from the southern Siberia or Central Asia.

Origin of the Xiaohe horizon

There are two hypotheses about the origins of the Xiaohe horizon. The “steppe hypothesis” assumes that the early settlers (Gumugou people) of the Tarim Basin came from the Afanasievo culture in the Minusinsk Basin-Altai Mountains regions (Kuz’mina et al. 2008; Mallory et al. 2008). The “oasis hypothesis” argues that the early settlers were related to the spreading of the oasis-based agricultural groups from the Bactria and Margiana parts of the southern Central Asia area (Chen et al. 1995). Both hypotheses mainly relied on the use of some materials such as animal cattle, sheep/goats, camel hair, and plant wheat, whose origins were bound to western traditions. But these proofs cannot provide enough support to claim that the Xiaohe horizon cultures were from Afanasievo or BMAC cultures, except for telling there were possible cultural connections or interactions among them. What’s more, there were no horses or potteries in the Xiaohe horizon.

It is worth noting that Ephedra plant is commonly thought as a strong candidate of the Soma or Haoma sacred drink for the ancient Indians or Iranians. Soma is the name recorded in the Vedic Brahmanism religious literature Rigveda, Haoma in the Zoroastrianism Avesta, and indicates as a ritual drink from plant juice. The reason to address Ephedra plant to Soma-Haoma drink is mainly because of its ephedrine, which works on muscle strength, low blood pressure, (and asthma) to make people get rid of tiredness (Houben 2013). Furthermore, it is thought that Ephedra with anti-fatigue function gives gods or the dead immortality, longevity, and resurrection (Mahdihassan 1987). From a mobile consideration of Vedic Aryans perspective, it is thought Vedic Aryans made use of Ephedra, cannabis and poppy to produce Soma drink in Margiana, only Ephedra in Bactria and in Indian mountains area, but other substitutes in Indian plains (Shah 2014). From the Ephedra perspective, it is agreeable that the Xiaohe-Gumugou people were related to the Indo-Aryan peoples (Mallory et al. 1997; Wang 2017).

gumugou-xiaohe
The distribution map of the sites in the Xiaohe cultural horizon.

Burial customs

Both the Xiaohe and the Gumugou groups maintained similar burial customs, but we can distinguish a developing process from the slight diverse ways of the Gumugou cemetery to the highly consistent and advanced technology in making coffins of the Xiaohe cemetery. In terms of the dressing, the dead wore a felt cap, a pair of leather boots, a bracelet twined on the right wrist, and was wrapped in a big felt mantle. The dead in the Xiaohe cemetery also wore a loin-cloth. Commonly, both cemeteries contained burials goods of Ephedra twigs, grains of wheat and millet, grass-made baskets, animal ears (such as calf ears), and livestock. Wooden coffins in the two cemeteries were constructed in a similar way, by assembling two side-planks, two end-boards, a lid consisting of a few short straight boards, and covered with livestock hide (mainly cattle hide in the Xiaohe cemetery and sheep/goats hide in the Gumugou cemetery).

Considering the similar and continuous burial behaviours in the two cemeteries, it can be assumed that both the Xiaohe and the Gumugou societies were stable and consistent. The Xiaohe cemetery had both the special clay-lid wooden coffins and the normal coffins in its early phase (burial layers 4th-5th), then turned to be stable and consistent with the normal coffins (burial layers 1st-3rd), and have developed better construction of the boat-shape coffins. The Gumugou cemetery contained two main burial patterns, type I; the sun-radiating-spokes burials and type II; the normal burials, which coexisted during the same time. Burials of type II were similar but not limited to strict rules. Burials in both the Xiaohe and the Gumugou cemetery were fairly heterogeneous, and the clay-lid wooden coffins in the Xiaohe cemetery and the sun-radiating-spokes burials in the Gumugou cemetery only took up in a small percentage of each cemetery. These special burial types could indicate special roles of the dead in their related societies. Either the dead had high social positions or possibly they actually had a different ancestry origin. It is argued here that the latter is something that is quite possible, considering the mixed populations in the two cemeteries.

The sun-radiating-spokes burials share some features with a similar type of grave, constructed of circular stone kerbs of the stone-pit graves. The sun-radiating-spokes burials might represent an adaption to the local desert environment, which had better access to wood rather than stones. Circular stone kerbs with stone-pit in centre were widely seen in Bronze Age Afanasievo and Andronovo burials, and also in the late Bronze Age and early Iron Age burials along the Tian Shan. The present study suggests a high possibility that the six males buried in the sun-radiating-spokes graves came from the contemporary parallel Andronovo horizon, and kept some of their own ancestry memories in an adapted way.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

Societies

Although the Xiaohe and Gumugou societies were stable and consistent, it does not mean that the societies were isolated, and we can see strong indications of them being open to the outside. With time, the Xiaohe population were getting even more diverse origins, as newcomers kept joining the group from outside. However, the burial behaviours in the Xiaohe cemetery did not change as a consequence if these additions. This suggests that the newcomers inherited the local burial customs, and strongly indicates that they became part of the community and adopted the new social identity, possibly through marriage. As a result, the diverse populations can well explain the coexistence of different cultural elements in the burials, e.g. cattle, sheep/goats, camel hair (from Central Asia), grains of wheat (from the west) and millet (from the east), etc.

The Xiaohe and the Gumugou societies were similar, but the Xiaohe society developed to a more advanced level both in economy and in social structure. First, the oasis-based economic system of the Xiaohe and the Gumugou had similar husbandry, but later this was developed to different extent. Both societies mainly relied on livestock, and while the Xiaohe people favoured cattle, the Gumugou people favoured sheep/goats. The two societies also developed agriculture, which can be seen from the grains of wheat and millet. It has been shown that grains of wheat are bread wheat. The Xiaohe people also cooked porridge with millet and milk, and had dairy products.

From these evidences, we can assume that the Xiaohe people have developed a stronger economic level. Secondly, the Xiaohe society had more distinguished gender roles, resulting in different social roles for men and women in terms of work and religions. The female and male dead were buried in a distinguished way with loin-cloths and wooden monuments. Sexual identity on a social level refers to how people consider and expect different genders to act and behave under the social and cultural framework. In the Xiaohe society, men carried out hunting tasks (creatures like vultures, badgers, lizards, snakes); women were associated to the rebirth of lives. To synthesize, a possible relation between the Xiaohe and the Gumugou societies is that they represent two parallel groups who shared similar economic systems because of the similar environment, or that there is a chronological difference where the Gumugou people may have existed earlier. The absolute dating information from the two cemeteries is insufficient to rule out the second situation.

tarim-basin-regions
The area division of the Tarim Basin and its surroundings (The division is made based on the mountain ranges including Altai Mountains, Tian Shan, and Kunlun Mountains, and also the distribution of ancient cemeteries in the whole Xinjiang generally.)

Surroundings

To place the Xiaohe horizon in the larger context of the Bronze Age burials in its surroundings, the hypothesis presented in this study is that the Xiaohe-Gumugou people might possibly represent a parallel to the Andronovo groups, with an eastward migration, that developed their own societies and ethnicities in the Tarim Basin with some ancestral memories still preserved. Considering the location and the geographical features of Xinjiang, the Altai Mountains and the Tian Shan left open access from the Eurasian Steppe to the Dzungarian Basin. The Hami Basin-the Balikun Grassland was the first intersection area to combine the possible western and eastern cultural influences. To pass by the Turpan Basin and enter into the Tarim Basin, there were two possible routes, one northern route along the southern edge of Tian Shan, and one southern route along the northern edge of Kunlun Mountains.

In the early Bronze Age, the burials in Xinjiang had some clear typical geographic features that distinguish them from their surroundings. But from the late Bronze Age to the early Iron Age, the tradition with circular kerbs of stones with stone-pits burials expanded along the southern edge of the Tian Shan, which was a major shift of burial practice that possibly could be linked to the expansion of the Andronovo horizon or a general nomadic expansion.

Although there were no horses or wagons found in the Xiaohe burials, the wooden horse-hoof objects were an indication of horses, which did not exist in their daily lives anymore, but possibly were related to some settlers’ ancestral memories of their nomadic origins. However, it was more important for them to assimilate to the common social identities of their new group. After people died, it was preferred to be buried in the communal cemetery. Even if the dead bodies were lost, wooden substitutes will be used in graves to represent the dead, since they believed in afterlife and thought that the end of the death is rebirth.

Comments

While the results of Li et al. (2010, 2015) of Xiaohe mummies regarding Y-chromosome haplogroups – showing mostly R1a(xZ93) – and radiocarbon dates of the samples are yet to be confirmed, Proto-Tocharians are known to have had contacts with Samoyeds, early Indo-Iranians (in turn in contact with the BMAC language), then into Common Tocharian with ancient Iranians, and then Indo-Aryan and Iranian languages again (for more on this, see Ged Carling‘s publications).

The connection of the Tocharian branch with Afanasevo is essentially indisputable today, like that of Late Proto-Indo-European with late Repin/early Yamna, even more so than it was just 10 years ago, thanks to the most recent genetic investigation. The common genetic stock of Yamna and Afanasevo – as well as that of East Bell Beakers and Palaeo-Balkan peoples – fits perfectly earlier predictions based on the linguistic estimates of the separation and evolution of the diverse language communities, and the tentative attribution to Eurasian steppe-related cultures.

early-bronze-age-tocharian-chemurchek
Tentative identification of language groups among Early Bronze Age cultures. Pre-/Proto-Tocharian is traditionally associated with Chemurchek. See full image.

The trail leading from Afanasevo to Common Tocharians, on the other hand, seems to be more tricky, not unlike many other Indo-European-speaking groups from Europe and Asia, whose precise evolution until their historical attestation is often unclear. Nevertheless, the eventual presence of diverse haplogroups among historical Tocharians – whether they coincide with ancient DNA recovered from BMAC, South India, Andronovo, or Bronze Age Tian Shan populations – will only be relevant to understand the genetic evolution of the speakers of Tocharian during its different stages.

If the genetic trail backwards from known Tocharians to (earlier) unknown Common Tocharians, and forwards from known Pre-Tocharians to (later) unknown Proto-Tocharians leads unequivocally to these populations from the Xiaohe cultural horizon, this paper shows one of the mechanisms through which peoples of the Andronovo cultural horizon (or, more precisely, male lines derived from it) may have become integrated into a Tocharian-speaking population, not dissimilar to what happened in the steppes between Uralic-speaking Abashevo and Pre-Proto-Indo-Iranian-speaking Catacomb-Poltavka to form the Proto-Indo-Iranian-speaking Sintashta-Potapovka-Filatovka culture.

As we have discussed in this blog many times over, to solve this ethnolinguistic identification of prehistoric cultures one needs to investigate ancient DNA in combination with linguistic guesstimates and the Indo-European homeland problem from a wide anthropological perspective. People not understanding this simple concept are bound to end up in some comical Tocharo-Indo-Iranian grouping related to Corded Ware ancestry from Andronovo, similar to the Celto-Ibero-Basques of elevated CEU BA ancestry and hg. R1b-P312 to the south of the Pyrenees during the Iron Age from Olalde et al. (2019), and to the Balto-Finno-Slavs of hg. R1a-Z283 and elevated “Steppe ancestry” in the BA-IA East Baltic from Saag et al. (2019)

Related

The complex origin of Samoyedic-speaking populations

uralic-turkic

Open access Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations, by Karafet et al. Am J Hum Biol (2018) e23194.

Interesting excerpts (emphasis mine):

Siberian groups

Consistent with their origin, Mongolic-speaking Buryats demonstrate genetic similarity with Mongols, and Turkic-speaking Altai-Kizhi and Teleuts are drawn close to CAS groups. The Tungusic-speaking Evenks collected in central and eastern Siberia cluster together and overlap with Yukagirs. Dolgans are widely scattered in the plot, justifying their recent origin from one Evenk clan, Yakuts, and Russian peasants in the 18th century (Popov, 1964). Uralic-speaking populations comprise a very wide cluster with Komi drawn to Europe, and Khants showing a closer affinity with Selkups, Tundra and Forest Nentsi. Yenisey-speaking Kets are intermingled with Selkups. Interestingly, Samoyedic-speaking Nganasans from the Taymyr Peninsula form a separate tight cluster closer to Evenks, Yukagirs, and Koryaks.

pca-siberian-uralic
Principal component analysis (PCA) using the “drop one in” technique for 27 present-day (N = 424) and 6 ancient populations (N = 20). PCA was performed on 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples

ADMIXTURE and the “Siberian component”

Among Siberians, the Komi are primarily Europeans, while Nganasans, Evenks, Yukagirs, and Koryaks are nearly 100% East Asians. At K = 4 finer scale subcontinental structure can be distinguished with the emergence of a “Siberian” component. This component is highly pronounced in the Nganasans. Outside Siberia, this component is present in Germany and in CAS at low frequency. Within ancient cultures, this component has the highest frequency in three BA Karasuk samples. It is also found in Mal’ta, ENE Afanasievo and BA Andronovo, but not in Ust’-Ishim and BA Okunevo. At K = 5, the “Siberian” component is roughly subdivided into two components with different geographic distributions. The “Nganasan” component is frequent in nearly all Siberian populations, except the Komi, Kets and Selkups. The newly derived “Selkup-Ket” component is found at high frequencies in western Siberian populations. It is observed in BA Karasuk and in Mal’ta. At K = 6, the western Siberian “Nentsi-Khant” ancestry component was developed in Forest and Tundra Nentsi, Khants. This component is also present at low levels in EUR, CAS, Tibet, and southern Siberia.

Identity-by-descent

The Dolgans share more segments with the Nganasans than within themselves (54.13 vs 41.72, Mann-Whitney test, P = .000000000001562546). The result is not surprising as the demographic data showed that the Nganasans were subjected to intense assimilation by the Dolgans in the second half of the 20th century (Goltsova, Osipova, Zhadanov, & Villems, 2005). Tundra Nentsi share more IBD with Forest Nentsi than within themselves (83.96 vs 50.3, P = .000055) possibly due to the common origin and long-term gene flow. The Ket and Selkup populations allocate significantly more IBD blocks between populations than with individuals from their own population (121.2 cM vs 85.9 cM for Kets, P = .000008, and 121.2 cM vs 114.9 cM for Selkups, P = .043).

admixture-siberian
ADMIXTURE plot. Clustering of 444 individuals from 27 present-day and 6 ancient populations (281 093 SNPs) assuming K6 to K7 clusters. Individuals are shown as vertical bars colored in ratio to their estimated ancestry within each cluster

Haplogroup N in Siberia

Although Siberia exhibits 42 haplogroups, the vast majority of Siberian Y-chromosomes belong only to 4 of the 18 major clades (N = 46.2%; C = 20.9%; Q = 14.4%; and R = 15.2%). The Y-chromosome haplogroup N is widely spread across Siberia and Eastern Europe (Ilumae et al., 2016; Karafet et al., 2002; Wong et al., 2016) and reaches its maximum frequency among Siberian populations such as Nganasans (94.1%) and Yakuts (91.9%). Within Siberia, two sister subclades N-P43 and N-L708 show different geographic distributions. N-P43 and derived haplogroups N-P63 and N- P362 (phylogenetically identical to N-B478* and N-B170, respectively) (Ilumae et al., 2016) are extremely rare in other major geographic regions. Likely originating in western Siberia, they are limited almost entirely to northwest Siberia, the Volga- Uralic regions, and the Taymyr Peninsula (ie, do not extend to eastern Siberia). Conversely, clade N-L708 is frequent in all Siberian populations except the Kets and Selkups, reaching its highest frequency in the Yakuts (91.9%).

Surprisingly, not a single sign of the proposed reindeer pastoralist horde led by Nganasans into north-eastern Europe. This is strange because “Siberian” migrants hypothetically imposed their language over Indo-Europeans quite recently, apparently after the Iron Age

Interesting comparisons among Siberian groups, though.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

See also

Related

Early Iranian steppe nomadic pastoralists also show Y-DNA bottlenecks and R1b-L23

New paper (behind paywall) Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads, by Krzewińska et al. Science (2018) 4(10):eaat4457.

Interesting excerpts (emphasis mine, some links to images and tables deleted for clarity):

Late Bronze Age (LBA) Srubnaya-Alakulskaya individuals carried mtDNA haplogroups associated with Europeans or West Eurasians (17) including H, J1, K1, T2, U2, U4, and U5 (table S3). In contrast, the Iron Age nomads (Cimmerians, Scythians, and Sarmatians) additionally carried mtDNA haplogroups associated with Central Asia and the Far East (A, C, D, and M). The absence of East Asian mitochondrial lineages in the more eastern and older Srubnaya-Alakulskaya population suggests that the appearance of East Asian haplogroups in the steppe populations might be associated with the Iron Age nomads, starting with the Cimmerians.

scythian-cimmerian-sarmatian-y-dna-mtdna

#UPDATE (5 OCT 2018): Some Y-SNP calls have been published in a Molgen thread, with:

  • Srubna samples have possibly two R1a-Z280, three R1a-Z93.
  • Cimmerians may not have R1b: cim357 is reported as R1a.
  • Some Scythians have low coverage to the point where it is difficult to assign even a reliable haplogroup (they report hg I2 for scy301, or E for scy197, probably based on some shared SNPs?), but those which can be reliably assigned seem R1b-Z2103 [hence probably the use of question marks and asterisks in the table, and the assumption of the paper that all Scythians are R1b-L23]:
    • The most recent subclade is found in scy305: R1b-Z2103>Z2106 (Z2106+, Y12538/Z8131+)
    • scy304: R1b-Z2103 (M12149/Y4371/Z8128+).
    • scy009: R1b-P312>U152>L2 (P312+, U152?, L2+)?
  • Sarmatians are apparently all R1a-Z93 (including tem002 and tem003);
  • You can read here the Excel file with (some probably as speculative as the paper’s own) results.

    About the PCA

    1. Srubnaya-Alakulskaya individuals exhibited genetic affinity to northern and northeastern present-day Europeans, and these results were also consistent with outgroup f3 statistics.
    2. The Cimmerian individuals, representing the time period of transition from Bronze to Iron Age, were not homogeneous regarding their genetic similarities to present-day populations according to the PCA. F3 statistics confirmed the heterogeneity of these individuals in comparison with present-day populations
    3. The Scythians reported in this study, from the core Scythian territory in the North Pontic steppe, showed high intragroup diversity. In the PCA, they are positioned as four visually distinct groups compared to the gradient of present-day populations:
      1. A group of three individuals (scy009, scy010, and scy303) showed genetic affinity to north European populations (…).
      2. A group of four individuals (scy192, scy197, scy300, and scy305) showed genetic similarities to southern European populations (…).
      3. A group of three individuals (scy006, scy011, and scy193) located between the genetic variation of Mordovians and populations of the North Caucasus (…). In addition, one Srubnaya-Alakulskaya individual (kzb004), the most recent Cimmerian (cim357), and all Sarmatians fell within this cluster. In contrast to the Scythians, and despite being from opposite ends of the Pontic-Caspian steppe, the five Sarmatians grouped close together in this cluster.
      4. A group of three Scythians (scy301, scy304, and scy311) formed a discrete group between the SC and SE and had genetic affinities to present-day Bulgarian, Greek, Croatian, and Turkish populations (…).
      5. Finally, one individual from a Scythian cultural context (scy332) is positioned outside of the modern West Eurasian genetic variation (Fig. 1C) but shared genetic drift with East Asian populations.
    scythian-cimmerian-pca
    Radiocarbon ages and geographical locations of the ancient samples used in this study. Figure panels presented (Left) Bar plot visualizing approximate timeline of presented and previously published individuals. (Right) Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals (table S5) in relation to modern reference panel from the Human Origins data set (41).

    Cimmerians

    The presence of an SA component (as well as finding of metals imported from Tien Shan Mountains in Muradym 8) could therefore reflect a connection to the complex networks of the nomadic transmigration patterns characteristic of seasonal steppe population movements. These movements, although dictated by the needs of the nomads and their animals, shaped the economic and social networks linking the outskirts of the steppe and facilitated the flow of goods between settled, semi-nomadic, and nomadic peoples. In contrast, all Cimmerians carried the Siberian genetic component. Both the PCA and f4 statistics supported their closer affinities to the Bronze Age western Siberian populations (including Karasuk) than to Srubnaya. It is noteworthy that the oldest of the Cimmerians studied here (cim357) carried almost equal proportions of Asian and West Eurasian components, resembling the Pazyryks, Aldy-Bel, and Iron Age individuals from Russia and Kazakhstan (12). The second oldest Cimmerian (cim358) was also the only one with both uniparental markers pointing toward East Asia. The Q1* Y chromosome sublineage of Q-M242 is widespread among Asians and Native Americans and is thought to have originated in the Altai Mountains (24)

    Scythians

    In contrast to the eastern steppe Scythians (Pazyryks and Aldy-Bel) that were closely related to Yamnaya, the western North Pontic Scythians were instead more closely related to individuals from Afanasievo and Andronovo groups. Some of the Scythians of the western Pontic-Caspian steppe lacked the SA and the East Eurasian components altogether and instead were more similar to a Montenegro Iron Age individual (3), possibly indicating assimilation of the earlier local groups by the Scythians.

    Toward the end of the Scythian period (fourth century CE), a possible direct influx from the southern Ural steppe zone took place, as indicated by scy332. However, it is possible that this individual might have originated in a different nomadic group despite being found in a Scythian cultural context.

    scythian-alakul-variation
    Genetic diversity and ancestral components of Srubnaya-Alakulskaya population.(here called “Srubnaya”): (Left) Mean f3 statistics for Srubnaya and other Bronze Age populations. Srubnaya group was color-coded the same as with PCA. (Right) Pairwise mismatch estimates for Bronze Age populations.

    Comments

    I am surprised to find this new R1b-L23-based bottleneck in Eastern Iranian expansions so late, but admittedly – based on data from later times in the Pontic-Caspian steppe near the Caucasus – it was always a possibility. The fact that pockets of R1b-L23 lineages remained somehow ‘hidden’ in early Indo-Iranian communities was clear already since Narasimhan et al. (2018), as I predicted could happen, and is compatible with the limited archaeological data on Sintashta-Potapovka populations outside fortified settlements. I already said that Corded Ware was out of Indo-European migrations then, this further supports it.

    Even with all these data coming just from a north-west Pontic steppe region (west of the Dnieper), these ‘Cimmerians’ – or rather the ‘Proto-Scythian’ nomadic cultures appearing before ca. 800 BC in the Pontic-Caspian steppes – are shown to be probably formed by diverse peoples from Central Asia who brought about the first waves of Siberian ancestry (and Asian lineages) seen in the western steppes. You can read about a Cimmerian-related culture, Anonino, key for the evolution of Finno-Permic peoples.

    Also interesting about the Y-DNA bottleneck seen here is the rejection of the supposed continuous western expansions of R1a-Z645 subclades with steppe tribes since the Bronze Age, and thus a clearest link of the Hungarian Árpád dynasty (of R1a-Z2123 lineage) to either the early Srubna-related expansions or – much more likely – to the actual expansions of Hungarian tribes near the Urals in historic times.

    NOTE. I will add the information of this paper to the upcoming post on Ugric and Samoyedic expansions, and the late introduction of Siberian ancestry to these peoples.

    A few interesting lessons to be learned:

    • Remember the fantasy story about that supposed steppe nomadic pastoralist society sharing different Y-DNA lineages? You know, that Yamna culture expanding with R1b from Khvalynsk-Repin into the whole Pontic-Caspian steppes and beyond, developing R1b-dominated Afanasevo, Bell Beaker, and Poltavka, but suddenly appearing (in the middle of those expansions through the steppes) as a different culture, Corded Ware, to the north (in the east-central European forest zone) and dominated by R1a? Well, it hasn’t happened with any other steppe migration, so…maybe Proto-Indo-Europeans were that kind of especially friendly language-teaching neighbours?
    • Remember that ‘pure-R1a’ Indo-Slavonic society emerged from Sintashta ca. 2100 BC? (or even Graeco-Aryan??) Hmmmm… Another good fantasy story that didn’t happen; just like a central-east European Bronze Age Balto-Slavic R1a continuity didn’t happen, either. So, given that cultures from around Estonia are those showing the closest thing to R1a continuity in Europe until the Iron Age, I assume we have to get ready for the Gulf of Finland Balto-Slavic soon.
    • Remember that ‘pure-R1a’ expansion of Indo-Europeans based on the Tarim Basin samples? This paper means ipso facto an end to the Tarim Basin – Tocharian artificial controversy. The Pre-Tocharian expansion is represented by Afanasevo, and whether or not (Andronovo-related) groups of R1a-Z645 lineages replaced part or eventually all of its population before, during, or after the Tocharian expansion into the Tarim Basin, this does not change the origin of the language split and expansion from Yamna to Central Asia; just like this paper does not change the fact that these steppe groups were Proto-Iranian (Srubna) and Eastern Iranian (Scythian) speakers, regardless of their dominant haplogroup.
    • And, best of all, remember the Copenhagen group’s recent R1a-based “Indo-Germanic” dialect revival vs. the R1b-Tocharo-Italo-Celtic? Yep, they made that proposal, in 2018, based on the obvious Yamna—R1b-L23 association, and the desire to support Kristiansen’s model of Corded Ware – Indo-European expansion. Pepperidge Farm remembers. This new data on Early Iranians means another big NO to that imaginary R1a-based PIE society. But good try to go back to Gimbutas’ times, though.
    olander-classificatoin
    Olander’s (2018) tree of Indo-European languages. Presented at Languages and migrations in pre-historic Europe (7-12 Aug 2018)

    Do you smell that fresher air? It’s the Central and East European post-Communist populist and ethnonationalist bullshit (viz. pure blond R1a-based Pan-Nordicism / pro-Russian Pan-Slavism / Pan-Eurasianism, as well as Pan-Turanism and similar crap from the 19th century) going down the toilet with each new paper.

    #EDIT (5 OCT 2018): It seems I was too quick to rant about the consequences of the paper without taking into account the complexity of the data presented. Not the first time this impulsivity happens, I guess it depends on my mood and on the time I have to write a post on the specific work day…

    While the data on Srubna, Cimmerians, and Sarmatians shows clearer Y-DNA bottlenecks (of R1a-Z645 subclades) with the new data, the Scythian samples remain controversial, because of the many doubts about the haplogroups (although the most certain cases are R1b-Z2103), their actual date, and cultural attribution. However, I doubt they belong to other peoples, given the expansionist trends of steppe nomads before, during, and after Scythians (as shown in statistical analyses), so most likely they are Scythian or ‘Para-Scythian’ nomadic groups that probably came from the east, whether or not they incorporated Balkan populations. This is further supported by the remaining R1b-P312 and R1b-Z2103 populations in and around the modern Eurasian steppe region.

    scythian-peoples-balkans
    Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe groups Basarabi and Scythians. Ďurkovič et al. (2018).

    You can find an interesting and detailed take on the data published (in Russian) at Vol-Vlad’s LiveJournal (you can read an automatic translation from Google). I think that post is maybe too detailed in debunking all information associated to the supposed Scythians – to the point where just a single sample seems to be an actual Scythian (?!) -, but is nevertheless interesting to read the potential pitfalls of the study.

    Related

    Yamna/Afanasevo elite males dominated by R1b-L23, Okunevo brings ancient Siberian/Asian population

    afanasevo-okunevo

    Open access paper New genetic evidence of affinities and discontinuities between bronze age Siberian populations, by Hollard et al., Am J Phys Anthropol. (2018) 00:1–11.

    NOTE. This seems to be a peer-reviewed paper based on a more precise re-examination of the samples from Hollard’s PhD thesis, Peuplement du sud de la Sibérie et de l’Altaï à l’âge du Bronze : apport de la paléogénétique (2014).

    Interesting excerpts:

    Afanasevo and Yamna

    The Afanasievo culture is the earliest known archaeological culture of southern Siberia, occupying the Minusinsk-Altai region during the Eneolithic era 3600/3300 BC to 2500 BC (Svyatko et al., 2009; Vadetskaya et al., 2014). Archeological data showed that the Afanasievo culture had strong affinities with the Yamnaya and pre-Yamnaya Eneolithic cultures in the West (Grushin et al., 2009). This suggests a Yamnaya migration into western Altai and into Afanasievo. Note that, in most current publications, “the Yamnaya culture” combines the so-called “classical Yamnaya culture” of the Early Bronze Age and archeological sites of the preceding Repin culture in the middle reaches of the Don and Volga rivers. In the present article we conventionally use the term Yamnaya in the same sense, in which case the beginning of the “Yamnaya culture” can be dated after the middle of the 4th millennium BC, when the Afanasievo culture appeared in the Altai.

    Because of numerous traits attributed to early Indo-Europeans and cultural relations with Kurgan steppe cultures, members of the Afanasievo culture are believed to have been Indo-European speakers (Mallory and Mair, 2000). In a recent whole-genome sequencing study, Allentoft et al. (2015) concluded that Eastern Yamnaya individuals and Afanasievo individuals were genetically indistinguishable. Moreover, this study and one published concurrently by Haak et al. (2015) analyzed 11 Eastern Yamnaya males and showed that all of them belonged to the R1b1a1a (formerly R1b1a) (…)

    indo-european-uralic-migrations-afanasevo
    Early Chalcolithic migrations ca. 3300-2600 BC.

    Published works indicate that R1b was a predominant haplogroup from the late Neolithic to the early Bronze Age, notably in the Bell Beaker and Yamnaya cultures (Allentoft et al., 2015; Haak et al., 2015; Lee et al., 2012; Mathieson et al., 2015). Nearly 100% of the Afanasievo men we typed belonged to the R1b1a1a subhaplogroup and, for at least three of them, more precisely to the L23 (xM412) subclade. (…)

    (…) our results therefore support the hypothesis of a genetic link between Afanasievo and Yamnaya. This also suggests that R1b was indeed dominant in the early Bronze Age Siberian steppe, at least in individuals that were buried in kurgans (possibly an elite part of the population). The geographical and temporal distribution of subhaplogroup R1b1a1a supports the hypothesis of population expansion from West to East in the Eurasian steppe during this period. It should however be noted that the Yamnaya burials from which the samples for DNA analysis were obtained (Allentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015) were dated within the limits of the Afanasievo period. Ancestors of both East Yamnaya and Afanasievo populations must therefore be sought in the context of earlier Eneolithic cultures in Eastern Europe. Sufficient Y-chromosomal data from such Eneolithic populations is, unfortunately, not yet available.

    mtdna-ydna-afanasevo-okunevo
    Mitochondrial- (A) and Y- (B) haplogroup distribution in studied populations

    Okunevo and paternal lineage shift in South Siberia

    Results obtained in the current study, from more than a dozen Okunevo individuals belonging to the earliest stage of Okunevo culture, that is the Uibat period (2500–2200 BC) (Lazaretov, 1997), suggest a discontinuity in the genetic pool between Afanasievo and Okunevo cultures. Although Y-chromosomal data obtained for bearers of the Okunevo culture showed that one individual carried haplogroup R1b, most Okunevo Y-haplogroups are representative of an Asian component represented by paternal lineages Q and NO1.

    Okunevo carrier of Y-haplogroup Q1b1a-L54, which also supports this hypothesis (L54 being a marker of the lineage from which M3, the main Ameridian lineage, arose). Okunevo people could therefore be a remnant paleo-Siberian population with possible Afanasievo input, as suggested by the presence of the R1b1a1a2a subhaplogroup in one individual.

    indo-european-uralic-migrations-afanasevo-late
    Late Chalcolithic migrations ca. 2600-2250 BC.

    Replacement of Asian Indo-European elite lineages by R1a

    Published genetic data from the late Bronze Age Andronovo culture from the Minusinsk Basin (Keyser et al., 2009), the Sintashta culture from Russia (Allentoft et al., 2015) and the Srubnaya culture from the region of Samara (Mathieson et al., 2015), show that males did not belong to Y-haplogroup R1b but mostly to R1a clades: there appears to have been a change in the dominant Y-chromosomal haplogroup between the early and the late Bronze Age in these regions. Moreover, as described in Allentoft et al. (2015), the Andronovo and Sintashta peoples were closely related to each other but clearly distinct from both Yamnaya and Afanasievo. Although these results do not imply that Y-haplogroup R1b was entirely absent in these later populations, they could correspond to a replacement of the elite between these two main periods and therefore a difference in the haplogroups of the men that were preferentially buried.

    indo-european-uralic-migrations-okunevo-andronovo
    Early Bronze Age migrations ca. 2250-1750 BC.

    Afanasevo and the Tarim Basin

    The discovery, in the Tarim Basin, of well-preserved mummies from the Bronze Age allows for the construction of two hypotheses regarding the peopling of the Xinjiang province at this period. The “steppe hypothesis,” argues for a link with nomadic steppe herders (Hemphill and Mallory, 2004), possibly represented in this case by Afanasievo populations and their descendants (Mallory and Mair, 2000). However, newly published cultural data from the burial grounds of Gumugou (Wang, 2014) and Xiaohe (Xinjiang, 2003, 2007) shows material culture and burial rites incompatible with the Afanasievo culture. The earliest 14C date for Tarim Basin burials would place them at the turn of the 2nd millenium BC (Wang, 2013), 500 years after the Afanasievo period.

    Instead, early Gumugou and Xiaohe burial grounds were contemporary with the start of the Andronovo period. Likewise, the Bronze Age population of the Xinjiang at Gumugou/Qäwrighul is not phenotypically closest to Afanasievo but to the Andronovo (Fedorovo) group of northeastern Kazakhstan and western Altai (Kozintsev, 2009). Our investigations demonstrate that Y-chromosomal lineage composition is also compatible with the notion that the ancient Tarim population was genetically distinct from the Afanasievo population. The only Y-haplogroup found by Li et al. (2010) in the Bronze Age Tarim Basin population was Y-haplogroup R1a, which suggests a proximity of this population with Andronovo groups rather than Afanasievo groups.

    I don’t think these finds are much of a surprise based on what we already know, or need much explanation…

    I would add that, once again, we have more proof that the movement of Okunevo and related ancient Siberian migrants from Central or North Asia will not be able to explain the presence of Uralic languages spread over North-East Europe and Scandinavia already during the Bronze Age.

    Also interesting is to read in more peer-reviewed papers the idea of Late Indo-European speakers clearly linked to the expansion of patrilineally-related elite males marked by haplogroup R1b-L23, most likely since Eneolithic Khvalynsk/Repin cultures.

    Related:

    Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region

    copper-age-early_yamna-corded-ware

    The Indo-Iranian – Finno-Ugric connection

    On the linguistic aspect, this is what the Copenhagen group had to say (in the linguistic supplement) based on Kuz’mina (2001):

    (…) a northern connection is suggested by contacts between the Indo-Iranian and the Finno-Ugric languages. Speakers of the Finno-Ugric family, whose antecedent is commonly sought in the vicinity of the Ural Mountains, followed an east-to-west trajectory through the forest zone north and directly adjacent to the steppes, producing languages across to the Baltic Sea. In the languages that split off along this trajectory, loanwords from various stages in the development of the Indo-Iranian languages can be distinguished: 1) Pre-Proto-Indo-Iranian (Proto-Finno-Ugric *kekrä (cycle), *kesträ (spindle), and *-teksä (ten) are borrowed from early preforms of Sanskrit cakrá- (wheel, cycle), cattra- (spindle), and daśa- (10); Koivulehto 2001), 2) Proto-Indo-Iranian (Proto-Finno-Ugric *śata (one hundred) is borrowed from a form close to Sanskrit śatám (one hundred), 3) Pre-Proto-Indo-Aryan (Proto-Finno-Ugric *ora (awl), *reśmä (rope), and *ant- (young grass) are borrowed from preforms of Sanskrit ā́rā- (awl), raśmí- (rein), and ándhas- (grass); Koivulehto 2001: 250; Lubotsky 2001: 308), and 4) loanwords from later stages of Iranian (Koivulehto 2001; Korenchy 1972). The period of prehistoric language contact with Finno-Ugric thus covers the entire evolution of Pre-Proto-Indo-Iranian into Proto-Indo-Iranian, as well as the dissolution of the latter into Proto-Indo- Aryan and Proto-Iranian. As such, it situates the prehistoric location of the Indo-Iranian branch around the southern Urals (Kuz’mina 2001).

    NOTE. While I agree with the evident ancestral nature of the *kekrä borrowing, I will repeat it here again: I don’t believe that the distinction of late Proto-Indo-Iranian from ‘Pre-Proto-Indo-Aryan’ loans is warranted; not for words reconstructed from recent Finno-Ugric languages.

    copper-age-late-urals
    The time and place for Finno-Ugric and Indo-Iranian contacts. Late Copper Age migrations in Asia ca. 2800-2300 BC.

    In this period of a Pre-Proto-Indo-Iranian community, which is to be associated with East Yamna/Poltavka, ca. 3000-2400 BC – as accepted in the supplement from de Barros Damgaard et al. (Nature 2018) – , both Poltavka and Abashevo/Balanovo herders were expanding ca. 2800-2600 BC to the east (and Abashevo already admixing into Poltavka territory), near the southern Urals.

    There is no other, clearer, later connection between Finno-Ugric and Proto-Indo-Iranian speakers. Even the arrival of the Seima-Turbino phenomenon (after ca. 2000 BC), if it brought migrants to North-East Europe, would not fit the linguistic, archaeological, or genetic data. It is by now quite clear that Seima-Turbino does not fit with incoming N1c1 lineages and/or Siberian ancestry, either, for those looking for these as potential signs of incoming Uralic speakers.

    While the Copenhagen group did not have access to data from Sintashta ca. 2100 BC onwards – now available in Narasimhan et al. (2018) – when submitting the papers, we already know that there was a clear long period of slow progressive admixture in the North Caspian region. It can be seen in the genetic contribution of Yamna to incoming Abashevo groups, and in the R1b-L23 samples still appearing in Sintashta until ca. 1800 BC (as I predicted could happen).

    Since the first sample signalling incoming Abashevo migrants is found in the Poltavka outlier dated ca. 2700 BC (of R1a-Z93 lineage), this represents a rather unique, several centuries long process of admixture in the North Caspian region, different from the massive Afanasevo or Bell Beaker migrations in Asia and Europe, whereby a great part of the native male population was suddenly replaced.

    This offers further support for language continuity despite genetic replacement in the development of East Yamna/Poltavka (part of the Steppe EMBA cline, formed by Yamna and Afanasevo) mixing with Abashevo migrants (probably identical to Corded Ware samples) to form Potapovka, Sintashta, and later Srubna, and Andronovo communities (all forming, with Corded Ware groups, a wide Eurasian Steppe MLBA cloud). See the available data from Narasimhan et al. (2018).

    yamna-late-proto-indo-european
    Image modified from Narasimhan et al. (2018), including the most likely proto-language identification of different groups. Original description “Modeling results including Admixture events, with clines or 2-way mixtures shown in rectangles, and clouds or 3-way mixtures shown in ellipses”. See the original full image here.

    The continuous interactions and migrations left thus eventually two communities in the southern Urals genetically similar, but ethnolinguistically diverse:

    • To the north, Abashevo-Balanovo – but potentially also Fatyanovo, and related North-East European late Corded Ware groups – borrowed necessary words from Indo-Iranian neighbours, while maintaining their Finno-Ugric language and culture.
    • To the south, immigrants (or their descendants) of Abashevo origin expanding among Pre-Proto-Indo-Iranian-speaking North Caspian communities assimilated the surrounding culture and language, giving it their own accent (i.e. ‘satemizing’ it) and turning it into Proto-Indo-Iranian (see e.g. Parpola’s account).

    Anthropologically, this ‘long-term founder effect’ that appears as genetic replacement is probably explained by the faster life history in MLBA North Caspian populations, likely due to a combination of changing environmental and social circumstances.

    NOTE. The prevalent explanation before the latest studies on the Sintashta society were social strife and isolation of small groups, an argument I used in my demic diffusion model. Other, similar cases of proven linguistic continuity despite genetic replacement are seen in Iberian Bronze Age after the expansion of R1b-L23 lineages (with Vasconic, Iberian, and Tartessian surviving at least until proto-historic times), and in Remote Oceania.

    bronze_age_early_Asia-andronovo
    Diachronic map of migrations in Asia ca. 2250-1750 BC

    Implications for Late PIE migrations

    I am happy to see that people are resorting now to dialectal classifications and Y-DNA to explain the findings in Old Hittites, Tocharians (and related migrations), and Indo-Iranians. It is especially interesting to see precisely this Danish group downplay the relevance of ancestry and favor complex anthropological models when assessing migrations and ethnolinguistic identification.

    So let’s talk about the growing elephant in the room.

    It seems we all accept now Tocharian’s more archaic Late PIE nature, which is supported by waves of late Khvalynsk migrants starting probably ca. 3300 BC, as seen in different samples to the east in Central Asia, and to the south in Iran. Almost all of them share R1b-L23 lineages.

    NOTE. Whereas their early LPIE dialects have not survived to historic times, the rather speculative hypotheses of Euphratic and Gutian languages may be of interest.

    We also know of the coetaneous migrants that settled to the west of the Don River (in the territory of the previous late Sredni Stog culture), to form the western South-Bug / Lower Don groups, which, together with the Volga-Ural / North Caucasian groups formed the early Yamna culture, that dominated from ca. 3300 BC over the Pontic-Caspian steppe.

    It is only logical that the other attested languages belonging to the common Late PIE trunk must come from these groups, which must have stuck together for quite some time – after the recently proven late Khvalynsk migrations – , to allow for the spread of isoglosses (not found in Tocharian) among them.

    This is agreed, even by the Copenhagen group, who expressly state that Yamna is to be identified with the rest of Late PIE languages after the Tocharian-related migrations.

    copper-age-early_yamna-corded-ware
    Early Yamna community and its migrations ca. 3000 BC onwards.

    The period of an early Yamna community constrained to the Pontic-Caspian steppe (ca. 3300-3000 BC) is followed by renewed waves of Late Proto-Indo-European migrations, during which areal contacts and innovations (even between unrelated LPIE branches) can still be reconstructed.

    These later migrations can be precisely described as follows (after the latest studies):

    • Yamna migrants, of mixed R1b-L51 and R1b-Z2103 lineages, settle ca. 3000-2600 BC along the lower Danube, in the Balkans and the Carpathian basin, giving rise later to groups of:
    • In the Pontic-Caspian steppe, early Yamna groups evolve into (from west to east) Late Yamna, Catacomb, and Poltavka groups, ca. 2800-2300 BC, all still dominated by R1b-L23 lineages (see discussion on the Catacomb sample), with:
      • Poltavka peoples admixing with Abashevo migrants to form admixed Potapovka and Sintashta-Petrovka groups, showing still after ca. 1800 BC a mixed society of R1a-Z93 and R1b-Z2103 lineages (see Narasimhan et al. 2018);
        • Expanding early Proto-Iranian and Proto-Indo-Aryan groups in Srubna (to the west) and Andronovo (to the east), during the first half of the 2nd millennium BC, dominate over the Bronze Age steppe and Central Asia with expanding R1a-Z93 lineages.

    Conclusion

    chalcolithic_late_Europe_Bell_Beaker
    Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

    1) East Bell Beakers clearly dominated culturally and genetically over almost all of Europe, ca. 2500-2000 BC, including previous Corded Ware territory, representing thus the most recent massive migration of steppe peoples in Europe, and being the only pan-European culture derived from Late Proto-Indo-European-speaking Yamna. They must therefore be identified with North-West Indo-European speakers, as proposed by Mallory (2013), and not just Italo-Celtic (as supported recently by the Danish school, based on Gimbutas’ outdated model):

    1.A) For Germanic, we already have proof that an appropriate, unitary Scandinavian society, ripe for the development of a common Pre-Germanic language (that expanded much later, during the Iron Age, as Proto-Germanic) could have developed only after the arrival of Bell Beakers (see Prescott 2017). The association of proto-historic Germanic tribes mainly with the expansion of R1b-U106 lineages bears witness to that.

    NOTE. Even without taking into account the likely L51 samples from Khvalynsk, it is by now quite clear that R1b-L51 lineages were already admixed in Yamna settlers from the Carpathian Basin, and any subclade of U106, L21, DF27, or U152 can thus be found everywhere in Europe associated with any of those North-West Indo-European migrations. What we are seing later, as in the East Bell Beaker migrants arriving in the British Isles (L21), Iberia (DF27), or the Netherlands/Scandinavia (U106), is the further reduction in variability coupled with the expansion of a few sucessful families (and their lineages), as we know it usually happens during migrations.

    1.B) For Balto-Slavic, it seems they were not part of the eastern Corded Ware peoples: the Copenhagen group denies an Indo-Slavonic group in the Nature paper, referring instead to a dominion of early Iranians in the steppes, following their traces to proto-historic and historic Iranian-speaking peoples. And we knew already that Bell Beakers dominated over Central-East Europe, before the resurge of R1a-Z645 lineages in the region, which is compatible with the North-West Indo-European nature of their language undergoing a satemization process similar (but not equal to) to the Indo-Iranian one (see the full discussion on Balto-Slavic here).

    NOTE. The few ancestral traits common to Germanic and Balto-Slavic are today considered a common substrate language to both, and not due to close contacts (and still less a common branch, as was proposed in the 1st half of the 20th c.). You can read e.g. Kortlandt’s Baltic, Slavic, Germanic (2017), or our Corded Ware substrate hypothesis (2017). In both theories, the referenced substrate is likely a non-Indo-European language, and in both cases it is related to the Corded Ware culture, which represents their most common immediate ancestral population before the spread of Bell Beakers.

    2) The late Corded Ware groups of Finland and Estonia, as well as Fatyanovo and Abashevo (and succeeding groups of Eastern Europe) may now be more clearly associated with Proto-Finno-Ugric dialects, and thus probably Corded Ware groups in general with Uralic languages, whose western branches have not survived to this day, with their culture and language being replaced quite early by expanding Bell Beakers.

    NOTE. While the demise of Central and Central-East European CWC groups is evident, continuous contacts among Battle Axe culture groups in Scandinavia and the Gulf of Finland through the Baltic Sea – and the strong Bronze Age Palaeo-Germanic influence on Finnic languages (stronger than earlier Indo-Iranian borrowings) may point to the continuity of Proto-Finnic in Northern Scandinavia, which may force a reinterpretation of the prehistoric location of Proto-Finnic-speaking groups.

    Those supporting a Corded Ware expansion of Germanic or Balto-Slavic with R1a subclades, now rejecting the expansion of Proto-Indo-European from an Anatolian homeland (following the spread of Neolithic farmer ancestry), and negating the close Proto-Indo-Iranian – Uralic contacts, are willfully ignoring linguistic, archaeological, and genetic data whenever it does not fit with their previous theories.

    Good times ahead to chase false syllogisms and contradictions everywhere.

    Related: