The complex origin of Samoyedic-speaking populations

uralic-turkic

Open access Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations, by Karafet et al. Am J Hum Biol (2018) e23194.

Interesting excerpts (emphasis mine):

Siberian groups

Consistent with their origin, Mongolic-speaking Buryats demonstrate genetic similarity with Mongols, and Turkic-speaking Altai-Kizhi and Teleuts are drawn close to CAS groups. The Tungusic-speaking Evenks collected in central and eastern Siberia cluster together and overlap with Yukagirs. Dolgans are widely scattered in the plot, justifying their recent origin from one Evenk clan, Yakuts, and Russian peasants in the 18th century (Popov, 1964). Uralic-speaking populations comprise a very wide cluster with Komi drawn to Europe, and Khants showing a closer affinity with Selkups, Tundra and Forest Nentsi. Yenisey-speaking Kets are intermingled with Selkups. Interestingly, Samoyedic-speaking Nganasans from the Taymyr Peninsula form a separate tight cluster closer to Evenks, Yukagirs, and Koryaks.

pca-siberian-uralic
Principal component analysis (PCA) using the “drop one in” technique for 27 present-day (N = 424) and 6 ancient populations (N = 20). PCA was performed on 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples

ADMIXTURE and the “Siberian component”

Among Siberians, the Komi are primarily Europeans, while Nganasans, Evenks, Yukagirs, and Koryaks are nearly 100% East Asians. At K = 4 finer scale subcontinental structure can be distinguished with the emergence of a “Siberian” component. This component is highly pronounced in the Nganasans. Outside Siberia, this component is present in Germany and in CAS at low frequency. Within ancient cultures, this component has the highest frequency in three BA Karasuk samples. It is also found in Mal’ta, ENE Afanasievo and BA Andronovo, but not in Ust’-Ishim and BA Okunevo. At K = 5, the “Siberian” component is roughly subdivided into two components with different geographic distributions. The “Nganasan” component is frequent in nearly all Siberian populations, except the Komi, Kets and Selkups. The newly derived “Selkup-Ket” component is found at high frequencies in western Siberian populations. It is observed in BA Karasuk and in Mal’ta. At K = 6, the western Siberian “Nentsi-Khant” ancestry component was developed in Forest and Tundra Nentsi, Khants. This component is also present at low levels in EUR, CAS, Tibet, and southern Siberia.

Identity-by-descent

The Dolgans share more segments with the Nganasans than within themselves (54.13 vs 41.72, Mann-Whitney test, P = .000000000001562546). The result is not surprising as the demographic data showed that the Nganasans were subjected to intense assimilation by the Dolgans in the second half of the 20th century (Goltsova, Osipova, Zhadanov, & Villems, 2005). Tundra Nentsi share more IBD with Forest Nentsi than within themselves (83.96 vs 50.3, P = .000055) possibly due to the common origin and long-term gene flow. The Ket and Selkup populations allocate significantly more IBD blocks between populations than with individuals from their own population (121.2 cM vs 85.9 cM for Kets, P = .000008, and 121.2 cM vs 114.9 cM for Selkups, P = .043).

admixture-siberian
ADMIXTURE plot. Clustering of 444 individuals from 27 present-day and 6 ancient populations (281 093 SNPs) assuming K6 to K7 clusters. Individuals are shown as vertical bars colored in ratio to their estimated ancestry within each cluster

Haplogroup N in Siberia

Although Siberia exhibits 42 haplogroups, the vast majority of Siberian Y-chromosomes belong only to 4 of the 18 major clades (N = 46.2%; C = 20.9%; Q = 14.4%; and R = 15.2%). The Y-chromosome haplogroup N is widely spread across Siberia and Eastern Europe (Ilumae et al., 2016; Karafet et al., 2002; Wong et al., 2016) and reaches its maximum frequency among Siberian populations such as Nganasans (94.1%) and Yakuts (91.9%). Within Siberia, two sister subclades N-P43 and N-L708 show different geographic distributions. N-P43 and derived haplogroups N-P63 and N- P362 (phylogenetically identical to N-B478* and N-B170, respectively) (Ilumae et al., 2016) are extremely rare in other major geographic regions. Likely originating in western Siberia, they are limited almost entirely to northwest Siberia, the Volga- Uralic regions, and the Taymyr Peninsula (ie, do not extend to eastern Siberia). Conversely, clade N-L708 is frequent in all Siberian populations except the Kets and Selkups, reaching its highest frequency in the Yakuts (91.9%).

Surprisingly, not a single sign of the proposed reindeer pastoralist horde led by Nganasans into north-eastern Europe. This is strange because “Siberian” migrants hypothetically imposed their language over Indo-Europeans quite recently, apparently after the Iron Age

Interesting comparisons among Siberian groups, though.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

Related

Early Iranian steppe nomadic pastoralists also show Y-DNA bottlenecks and R1b-L23

New paper (behind paywall) Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads, by Krzewińska et al. Science (2018) 4(10):eaat4457.

Interesting excerpts (emphasis mine, some links to images and tables deleted for clarity):

Late Bronze Age (LBA) Srubnaya-Alakulskaya individuals carried mtDNA haplogroups associated with Europeans or West Eurasians (17) including H, J1, K1, T2, U2, U4, and U5 (table S3). In contrast, the Iron Age nomads (Cimmerians, Scythians, and Sarmatians) additionally carried mtDNA haplogroups associated with Central Asia and the Far East (A, C, D, and M). The absence of East Asian mitochondrial lineages in the more eastern and older Srubnaya-Alakulskaya population suggests that the appearance of East Asian haplogroups in the steppe populations might be associated with the Iron Age nomads, starting with the Cimmerians.

scythian-cimmerian-sarmatian-y-dna-mtdna

#UPDATE (5 OCT 2018): Some Y-SNP calls have been published in a Molgen thread, with:

  • Srubna samples have possibly two R1a-Z280, three R1a-Z93.
  • Cimmerians may not have R1b: cim357 is reported as R1a.
  • Some Scythians have low coverage to the point where it is difficult to assign even a reliable haplogroup (they report hg I2 for scy301, or E for scy197, probably based on some shared SNPs?), but those which can be reliably assigned seem R1b-Z2103 [hence probably the use of question marks and asterisks in the table, and the assumption of the paper that all Scythians are R1b-L23]:
    • The most recent subclade is found in scy305: R1b-Z2103>Z2106 (Z2106+, Y12538/Z8131+)
    • scy304: R1b-Z2103 (M12149/Y4371/Z8128+).
    • scy009: R1b-P312>U152>L2 (P312+, U152?, L2+)?
  • Sarmatians are apparently all R1a-Z93 (including tem002 and tem003);
  • You can read here the Excel file with (some probably as speculative as the paper’s own) results.

    About the PCA

    1. Srubnaya-Alakulskaya individuals exhibited genetic affinity to northern and northeastern present-day Europeans, and these results were also consistent with outgroup f3 statistics.
    2. The Cimmerian individuals, representing the time period of transition from Bronze to Iron Age, were not homogeneous regarding their genetic similarities to present-day populations according to the PCA. F3 statistics confirmed the heterogeneity of these individuals in comparison with present-day populations
    3. The Scythians reported in this study, from the core Scythian territory in the North Pontic steppe, showed high intragroup diversity. In the PCA, they are positioned as four visually distinct groups compared to the gradient of present-day populations:
      1. A group of three individuals (scy009, scy010, and scy303) showed genetic affinity to north European populations (…).
      2. A group of four individuals (scy192, scy197, scy300, and scy305) showed genetic similarities to southern European populations (…).
      3. A group of three individuals (scy006, scy011, and scy193) located between the genetic variation of Mordovians and populations of the North Caucasus (…). In addition, one Srubnaya-Alakulskaya individual (kzb004), the most recent Cimmerian (cim357), and all Sarmatians fell within this cluster. In contrast to the Scythians, and despite being from opposite ends of the Pontic-Caspian steppe, the five Sarmatians grouped close together in this cluster.
      4. A group of three Scythians (scy301, scy304, and scy311) formed a discrete group between the SC and SE and had genetic affinities to present-day Bulgarian, Greek, Croatian, and Turkish populations (…).
      5. Finally, one individual from a Scythian cultural context (scy332) is positioned outside of the modern West Eurasian genetic variation (Fig. 1C) but shared genetic drift with East Asian populations.
    scythian-cimmerian-pca
    Radiocarbon ages and geographical locations of the ancient samples used in this study. Figure panels presented (Left) Bar plot visualizing approximate timeline of presented and previously published individuals. (Right) Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals (table S5) in relation to modern reference panel from the Human Origins data set (41).

    Cimmerians

    The presence of an SA component (as well as finding of metals imported from Tien Shan Mountains in Muradym 8) could therefore reflect a connection to the complex networks of the nomadic transmigration patterns characteristic of seasonal steppe population movements. These movements, although dictated by the needs of the nomads and their animals, shaped the economic and social networks linking the outskirts of the steppe and facilitated the flow of goods between settled, semi-nomadic, and nomadic peoples. In contrast, all Cimmerians carried the Siberian genetic component. Both the PCA and f4 statistics supported their closer affinities to the Bronze Age western Siberian populations (including Karasuk) than to Srubnaya. It is noteworthy that the oldest of the Cimmerians studied here (cim357) carried almost equal proportions of Asian and West Eurasian components, resembling the Pazyryks, Aldy-Bel, and Iron Age individuals from Russia and Kazakhstan (12). The second oldest Cimmerian (cim358) was also the only one with both uniparental markers pointing toward East Asia. The Q1* Y chromosome sublineage of Q-M242 is widespread among Asians and Native Americans and is thought to have originated in the Altai Mountains (24)

    Scythians

    In contrast to the eastern steppe Scythians (Pazyryks and Aldy-Bel) that were closely related to Yamnaya, the western North Pontic Scythians were instead more closely related to individuals from Afanasievo and Andronovo groups. Some of the Scythians of the western Pontic-Caspian steppe lacked the SA and the East Eurasian components altogether and instead were more similar to a Montenegro Iron Age individual (3), possibly indicating assimilation of the earlier local groups by the Scythians.

    Toward the end of the Scythian period (fourth century CE), a possible direct influx from the southern Ural steppe zone took place, as indicated by scy332. However, it is possible that this individual might have originated in a different nomadic group despite being found in a Scythian cultural context.

    scythian-alakul-variation
    Genetic diversity and ancestral components of Srubnaya-Alakulskaya population.(here called “Srubnaya”): (Left) Mean f3 statistics for Srubnaya and other Bronze Age populations. Srubnaya group was color-coded the same as with PCA. (Right) Pairwise mismatch estimates for Bronze Age populations.

    Comments

    I am surprised to find this new R1b-L23-based bottleneck in Eastern Iranian expansions so late, but admittedly – based on data from later times in the Pontic-Caspian steppe near the Caucasus – it was always a possibility. The fact that pockets of R1b-L23 lineages remained somehow ‘hidden’ in early Indo-Iranian communities was clear already since Narasimhan et al. (2018), as I predicted could happen, and is compatible with the limited archaeological data on Sintashta-Potapovka populations outside fortified settlements. I already said that Corded Ware was out of Indo-European migrations then, this further supports it.

    Even with all these data coming just from a north-west Pontic steppe region (west of the Dnieper), these ‘Cimmerians’ – or rather the ‘Proto-Scythian’ nomadic cultures appearing before ca. 800 BC in the Pontic-Caspian steppes – are shown to be probably formed by diverse peoples from Central Asia who brought about the first waves of Siberian ancestry (and Asian lineages) seen in the western steppes. You can read about a Cimmerian-related culture, Anonino, key for the evolution of Finno-Permic peoples.

    Also interesting about the Y-DNA bottleneck seen here is the rejection of the supposed continuous western expansions of R1a-Z645 subclades with steppe tribes since the Bronze Age, and thus a clearest link of the Hungarian Árpád dynasty (of R1a-Z2123 lineage) to either the early Srubna-related expansions or – much more likely – to the actual expansions of Hungarian tribes near the Urals in historic times.

    NOTE. I will add the information of this paper to the upcoming post on Ugric and Samoyedic expansions, and the late introduction of Siberian ancestry to these peoples.

    A few interesting lessons to be learned:

    • Remember the fantasy story about that supposed steppe nomadic pastoralist society sharing different Y-DNA lineages? You know, that Yamna culture expanding with R1b from Khvalynsk-Repin into the whole Pontic-Caspian steppes and beyond, developing R1b-dominated Afanasevo, Bell Beaker, and Poltavka, but suddenly appearing (in the middle of those expansions through the steppes) as a different culture, Corded Ware, to the north (in the east-central European forest zone) and dominated by R1a? Well, it hasn’t happened with any other steppe migration, so…maybe Proto-Indo-Europeans were that kind of especially friendly language-teaching neighbours?
    • Remember that ‘pure-R1a’ Indo-Slavonic society emerged from Sintashta ca. 2100 BC? (or even Graeco-Aryan??) Hmmmm… Another good fantasy story that didn’t happen; just like a central-east European Bronze Age Balto-Slavic R1a continuity didn’t happen, either. So, given that cultures from around Estonia are those showing the closest thing to R1a continuity in Europe until the Iron Age, I assume we have to get ready for the Gulf of Finland Balto-Slavic soon.
    • Remember that ‘pure-R1a’ expansion of Indo-Europeans based on the Tarim Basin samples? This paper means ipso facto an end to the Tarim Basin – Tocharian artificial controversy. The Pre-Tocharian expansion is represented by Afanasevo, and whether or not (Andronovo-related) groups of R1a-Z645 lineages replaced part or eventually all of its population before, during, or after the Tocharian expansion into the Tarim Basin, this does not change the origin of the language split and expansion from Yamna to Central Asia; just like this paper does not change the fact that these steppe groups were Proto-Iranian (Srubna) and Eastern Iranian (Scythian) speakers, regardless of their dominant haplogroup.
    • And, best of all, remember the Copenhagen group’s recent R1a-based “Indo-Germanic” dialect revival vs. the R1b-Tocharo-Italo-Celtic? Yep, they made that proposal, in 2018, based on the obvious Yamna—R1b-L23 association, and the desire to support Kristiansen’s model of Corded Ware – Indo-European expansion. Pepperidge Farm remembers. This new data on Early Iranians means another big NO to that imaginary R1a-based PIE society. But good try to go back to Gimbutas’ times, though.
    olander-classificatoin
    Olander’s (2018) tree of Indo-European languages. Presented at Languages and migrations in pre-historic Europe (7-12 Aug 2018)

    Do you smell that fresher air? It’s the Central and East European post-Communist populist and ethnonationalist bullshit (viz. pure blond R1a-based Pan-Nordicism / pro-Russian Pan-Slavism / Pan-Eurasianism, as well as Pan-Turanism and similar crap from the 19th century) going down the toilet with each new paper.

    #EDIT (5 OCT 2018): It seems I was too quick to rant about the consequences of the paper without taking into account the complexity of the data presented. Not the first time this impulsivity happens, I guess it depends on my mood and on the time I have to write a post on the specific work day…

    While the data on Srubna, Cimmerians, and Sarmatians shows clearer Y-DNA bottlenecks (of R1a-Z645 subclades) with the new data, the Scythian samples remain controversial, because of the many doubts about the haplogroups (although the most certain cases are R1b-Z2103), their actual date, and cultural attribution. However, I doubt they belong to other peoples, given the expansionist trends of steppe nomads before, during, and after Scythians (as shown in statistical analyses), so most likely they are Scythian or ‘Para-Scythian’ nomadic groups that probably came from the east, whether or not they incorporated Balkan populations. This is further supported by the remaining R1b-P312 and R1b-Z2103 populations in and around the modern Eurasian steppe region.

    scythian-peoples-balkans
    Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe groups Basarabi and Scythians. Ďurkovič et al. (2018).

    You can find an interesting and detailed take on the data published (in Russian) at Vol-Vlad’s LiveJournal (you can read an automatic translation from Google). I think that post is maybe too detailed in debunking all information associated to the supposed Scythians – to the point where just a single sample seems to be an actual Scythian (?!) -, but is nevertheless interesting to read the potential pitfalls of the study.

    Related

    Yamna/Afanasevo elite males dominated by R1b-L23, Okunevo brings ancient Siberian/Asian population

    afanasevo-okunevo

    Open access paper New genetic evidence of affinities and discontinuities between bronze age Siberian populations, by Hollard et al., Am J Phys Anthropol. (2018) 00:1–11.

    NOTE. This seems to be a peer-reviewed paper based on a more precise re-examination of the samples from Hollard’s PhD thesis, Peuplement du sud de la Sibérie et de l’Altaï à l’âge du Bronze : apport de la paléogénétique (2014).

    Interesting excerpts:

    Afanasevo and Yamna

    The Afanasievo culture is the earliest known archaeological culture of southern Siberia, occupying the Minusinsk-Altai region during the Eneolithic era 3600/3300 BC to 2500 BC (Svyatko et al., 2009; Vadetskaya et al., 2014). Archeological data showed that the Afanasievo culture had strong affinities with the Yamnaya and pre-Yamnaya Eneolithic cultures in the West (Grushin et al., 2009). This suggests a Yamnaya migration into western Altai and into Afanasievo. Note that, in most current publications, “the Yamnaya culture” combines the so-called “classical Yamnaya culture” of the Early Bronze Age and archeological sites of the preceding Repin culture in the middle reaches of the Don and Volga rivers. In the present article we conventionally use the term Yamnaya in the same sense, in which case the beginning of the “Yamnaya culture” can be dated after the middle of the 4th millennium BC, when the Afanasievo culture appeared in the Altai.

    Because of numerous traits attributed to early Indo-Europeans and cultural relations with Kurgan steppe cultures, members of the Afanasievo culture are believed to have been Indo-European speakers (Mallory and Mair, 2000). In a recent whole-genome sequencing study, Allentoft et al. (2015) concluded that Eastern Yamnaya individuals and Afanasievo individuals were genetically indistinguishable. Moreover, this study and one published concurrently by Haak et al. (2015) analyzed 11 Eastern Yamnaya males and showed that all of them belonged to the R1b1a1a (formerly R1b1a) (…)

    indo-european-uralic-migrations-afanasevo
    Early Chalcolithic migrations ca. 3300-2600 BC.

    Published works indicate that R1b was a predominant haplogroup from the late Neolithic to the early Bronze Age, notably in the Bell Beaker and Yamnaya cultures (Allentoft et al., 2015; Haak et al., 2015; Lee et al., 2012; Mathieson et al., 2015). Nearly 100% of the Afanasievo men we typed belonged to the R1b1a1a subhaplogroup and, for at least three of them, more precisely to the L23 (xM412) subclade. (…)

    (…) our results therefore support the hypothesis of a genetic link between Afanasievo and Yamnaya. This also suggests that R1b was indeed dominant in the early Bronze Age Siberian steppe, at least in individuals that were buried in kurgans (possibly an elite part of the population). The geographical and temporal distribution of subhaplogroup R1b1a1a supports the hypothesis of population expansion from West to East in the Eurasian steppe during this period. It should however be noted that the Yamnaya burials from which the samples for DNA analysis were obtained (Allentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015) were dated within the limits of the Afanasievo period. Ancestors of both East Yamnaya and Afanasievo populations must therefore be sought in the context of earlier Eneolithic cultures in Eastern Europe. Sufficient Y-chromosomal data from such Eneolithic populations is, unfortunately, not yet available.

    mtdna-ydna-afanasevo-okunevo
    Mitochondrial- (A) and Y- (B) haplogroup distribution in studied populations

    Okunevo and paternal lineage shift in South Siberia

    Results obtained in the current study, from more than a dozen Okunevo individuals belonging to the earliest stage of Okunevo culture, that is the Uibat period (2500–2200 BC) (Lazaretov, 1997), suggest a discontinuity in the genetic pool between Afanasievo and Okunevo cultures. Although Y-chromosomal data obtained for bearers of the Okunevo culture showed that one individual carried haplogroup R1b, most Okunevo Y-haplogroups are representative of an Asian component represented by paternal lineages Q and NO1.

    Okunevo carrier of Y-haplogroup Q1b1a-L54, which also supports this hypothesis (L54 being a marker of the lineage from which M3, the main Ameridian lineage, arose). Okunevo people could therefore be a remnant paleo-Siberian population with possible Afanasievo input, as suggested by the presence of the R1b1a1a2a subhaplogroup in one individual.

    indo-european-uralic-migrations-afanasevo-late
    Late Chalcolithic migrations ca. 2600-2250 BC.

    Replacement of Asian Indo-European elite lineages by R1a

    Published genetic data from the late Bronze Age Andronovo culture from the Minusinsk Basin (Keyser et al., 2009), the Sintashta culture from Russia (Allentoft et al., 2015) and the Srubnaya culture from the region of Samara (Mathieson et al., 2015), show that males did not belong to Y-haplogroup R1b but mostly to R1a clades: there appears to have been a change in the dominant Y-chromosomal haplogroup between the early and the late Bronze Age in these regions. Moreover, as described in Allentoft et al. (2015), the Andronovo and Sintashta peoples were closely related to each other but clearly distinct from both Yamnaya and Afanasievo. Although these results do not imply that Y-haplogroup R1b was entirely absent in these later populations, they could correspond to a replacement of the elite between these two main periods and therefore a difference in the haplogroups of the men that were preferentially buried.

    indo-european-uralic-migrations-okunevo-andronovo
    Early Bronze Age migrations ca. 2250-1750 BC.

    Afanasevo and the Tarim Basin

    The discovery, in the Tarim Basin, of well-preserved mummies from the Bronze Age allows for the construction of two hypotheses regarding the peopling of the Xinjiang province at this period. The “steppe hypothesis,” argues for a link with nomadic steppe herders (Hemphill and Mallory, 2004), possibly represented in this case by Afanasievo populations and their descendants (Mallory and Mair, 2000). However, newly published cultural data from the burial grounds of Gumugou (Wang, 2014) and Xiaohe (Xinjiang, 2003, 2007) shows material culture and burial rites incompatible with the Afanasievo culture. The earliest 14C date for Tarim Basin burials would place them at the turn of the 2nd millenium BC (Wang, 2013), 500 years after the Afanasievo period.

    Instead, early Gumugou and Xiaohe burial grounds were contemporary with the start of the Andronovo period. Likewise, the Bronze Age population of the Xinjiang at Gumugou/Qäwrighul is not phenotypically closest to Afanasievo but to the Andronovo (Fedorovo) group of northeastern Kazakhstan and western Altai (Kozintsev, 2009). Our investigations demonstrate that Y-chromosomal lineage composition is also compatible with the notion that the ancient Tarim population was genetically distinct from the Afanasievo population. The only Y-haplogroup found by Li et al. (2010) in the Bronze Age Tarim Basin population was Y-haplogroup R1a, which suggests a proximity of this population with Andronovo groups rather than Afanasievo groups.

    I don’t think these finds are much of a surprise based on what we already know, or need much explanation…

    I would add that, once again, we have more proof that the movement of Okunevo and related ancient Siberian migrants from Central or North Asia will not be able to explain the presence of Uralic languages spread over North-East Europe and Scandinavia already during the Bronze Age.

    Also interesting is to read in more peer-reviewed papers the idea of Late Indo-European speakers clearly linked to the expansion of patrilineally-related elite males marked by haplogroup R1b-L23, most likely since Eneolithic Khvalynsk/Repin cultures.

    Related:

    Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region

    copper-age-early_yamna-corded-ware

    The Indo-Iranian – Finno-Ugric connection

    On the linguistic aspect, this is what the Copenhagen group had to say (in the linguistic supplement) based on Kuz’mina (2001):

    (…) a northern connection is suggested by contacts between the Indo-Iranian and the Finno-Ugric languages. Speakers of the Finno-Ugric family, whose antecedent is commonly sought in the vicinity of the Ural Mountains, followed an east-to-west trajectory through the forest zone north and directly adjacent to the steppes, producing languages across to the Baltic Sea. In the languages that split off along this trajectory, loanwords from various stages in the development of the Indo-Iranian languages can be distinguished: 1) Pre-Proto-Indo-Iranian (Proto-Finno-Ugric *kekrä (cycle), *kesträ (spindle), and *-teksä (ten) are borrowed from early preforms of Sanskrit cakrá- (wheel, cycle), cattra- (spindle), and daśa- (10); Koivulehto 2001), 2) Proto-Indo-Iranian (Proto-Finno-Ugric *śata (one hundred) is borrowed from a form close to Sanskrit śatám (one hundred), 3) Pre-Proto-Indo-Aryan (Proto-Finno-Ugric *ora (awl), *reśmä (rope), and *ant- (young grass) are borrowed from preforms of Sanskrit ā́rā- (awl), raśmí- (rein), and ándhas- (grass); Koivulehto 2001: 250; Lubotsky 2001: 308), and 4) loanwords from later stages of Iranian (Koivulehto 2001; Korenchy 1972). The period of prehistoric language contact with Finno-Ugric thus covers the entire evolution of Pre-Proto-Indo-Iranian into Proto-Indo-Iranian, as well as the dissolution of the latter into Proto-Indo- Aryan and Proto-Iranian. As such, it situates the prehistoric location of the Indo-Iranian branch around the southern Urals (Kuz’mina 2001).

    NOTE. While I agree with the evident ancestral nature of the *kekrä borrowing, I will repeat it here again: I don’t believe that the distinction of late Proto-Indo-Iranian from ‘Pre-Proto-Indo-Aryan’ loans is warranted; not for words reconstructed from recent Finno-Ugric languages.

    copper-age-late-urals
    The time and place for Finno-Ugric and Indo-Iranian contacts. Late Copper Age migrations in Asia ca. 2800-2300 BC.

    In this period of a Pre-Proto-Indo-Iranian community, which is to be associated with East Yamna/Poltavka, ca. 3000-2400 BC – as accepted in the supplement from de Barros Damgaard et al. (Nature 2018) – , both Poltavka and Abashevo/Balanovo herders were expanding ca. 2800-2600 BC to the east (and Abashevo already admixing into Poltavka territory), near the southern Urals.

    There is no other, clearer, later connection between Finno-Ugric and Proto-Indo-Iranian speakers. Even the arrival of the Seima-Turbino phenomenon (after ca. 2000 BC), if it brought migrants to North-East Europe, would not fit the linguistic, archaeological, or genetic data. It is by now quite clear that Seima-Turbino does not fit with incoming N1c1 lineages and/or Siberian ancestry, either, for those looking for these as potential signs of incoming Uralic speakers.

    While the Copenhagen group did not have access to data from Sintashta ca. 2100 BC onwards – now available in Narasimhan et al. (2018) – when submitting the papers, we already know that there was a clear long period of slow progressive admixture in the North Caspian region. It can be seen in the genetic contribution of Yamna to incoming Abashevo groups, and in the R1b-L23 samples still appearing in Sintashta until ca. 1800 BC (as I predicted could happen).

    Since the first sample signalling incoming Abashevo migrants is found in the Poltavka outlier dated ca. 2700 BC (of R1a-Z93 lineage), this represents a rather unique, several centuries long process of admixture in the North Caspian region, different from the massive Afanasevo or Bell Beaker migrations in Asia and Europe, whereby a great part of the native male population was suddenly replaced.

    This offers further support for language continuity despite genetic replacement in the development of East Yamna/Poltavka (part of the Steppe EMBA cline, formed by Yamna and Afanasevo) mixing with Abashevo migrants (probably identical to Corded Ware samples) to form Potapovka, Sintashta, and later Srubna, and Andronovo communities (all forming, with Corded Ware groups, a wide Eurasian Steppe MLBA cloud). See the available data from Narasimhan et al. (2018).

    yamna-late-proto-indo-european
    Image modified from Narasimhan et al. (2018), including the most likely proto-language identification of different groups. Original description “Modeling results including Admixture events, with clines or 2-way mixtures shown in rectangles, and clouds or 3-way mixtures shown in ellipses”. See the original full image here.

    The continuous interactions and migrations left thus eventually two communities in the southern Urals genetically similar, but ethnolinguistically diverse:

    • To the north, Abashevo-Balanovo – but potentially also Fatyanovo, and related North-East European late Corded Ware groups – borrowed necessary words from Indo-Iranian neighbours, while maintaining their Finno-Ugric language and culture.
    • To the south, immigrants (or their descendants) of Abashevo origin expanding among Pre-Proto-Indo-Iranian-speaking North Caspian communities assimilated the surrounding culture and language, giving it their own accent (i.e. ‘satemizing’ it) and turning it into Proto-Indo-Iranian (see e.g. Parpola’s account).

    Anthropologically, this ‘long-term founder effect’ that appears as genetic replacement is probably explained by the faster life history in MLBA North Caspian populations, likely due to a combination of changing environmental and social circumstances.

    NOTE. The prevalent explanation before the latest studies on the Sintashta society were social strife and isolation of small groups, an argument I used in my demic diffusion model. Other, similar cases of proven linguistic continuity despite genetic replacement are seen in Iberian Bronze Age after the expansion of R1b-L23 lineages (with Vasconic, Iberian, and Tartessian surviving at least until proto-historic times), and in Remote Oceania.

    bronze_age_early_Asia-andronovo
    Diachronic map of migrations in Asia ca. 2250-1750 BC

    Implications for Late PIE migrations

    I am happy to see that people are resorting now to dialectal classifications and Y-DNA to explain the findings in Old Hittites, Tocharians (and related migrations), and Indo-Iranians. It is especially interesting to see precisely this Danish group downplay the relevance of ancestry and favor complex anthropological models when assessing migrations and ethnolinguistic identification.

    So let’s talk about the growing elephant in the room.

    It seems we all accept now Tocharian’s more archaic Late PIE nature, which is supported by waves of late Khvalynsk migrants starting probably ca. 3300 BC, as seen in different samples to the east in Central Asia, and to the south in Iran. Almost all of them share R1b-L23 lineages.

    NOTE. Whereas their early LPIE dialects have not survived to historic times, the rather speculative hypotheses of Euphratic and Gutian languages may be of interest.

    We also know of the coetaneous migrants that settled to the west of the Don River (in the territory of the previous late Sredni Stog culture), to form the western South-Bug / Lower Don groups, which, together with the Volga-Ural / North Caucasian groups formed the early Yamna culture, that dominated from ca. 3300 BC over the Pontic-Caspian steppe.

    It is only logical that the other attested languages belonging to the common Late PIE trunk must come from these groups, which must have stuck together for quite some time – after the recently proven late Khvalynsk migrations – , to allow for the spread of isoglosses (not found in Tocharian) among them.

    This is agreed, even by the Copenhagen group, who expressly state that Yamna is to be identified with the rest of Late PIE languages after the Tocharian-related migrations.

    copper-age-early_yamna-corded-ware
    Early Yamna community and its migrations ca. 3000 BC onwards.

    The period of an early Yamna community constrained to the Pontic-Caspian steppe (ca. 3300-3000 BC) is followed by renewed waves of Late Proto-Indo-European migrations, during which areal contacts and innovations (even between unrelated LPIE branches) can still be reconstructed.

    These later migrations can be precisely described as follows (after the latest studies):

    • Yamna migrants, of mixed R1b-L51 and R1b-Z2103 lineages, settle ca. 3000-2600 BC along the lower Danube, in the Balkans and the Carpathian basin, giving rise later to groups of:
    • In the Pontic-Caspian steppe, early Yamna groups evolve into (from west to east) Late Yamna, Catacomb, and Poltavka groups, ca. 2800-2300 BC, all still dominated by R1b-L23 lineages (see discussion on the Catacomb sample), with:
      • Poltavka peoples admixing with Abashevo migrants to form admixed Potapovka and Sintashta-Petrovka groups, showing still after ca. 1800 BC a mixed society of R1a-Z93 and R1b-Z2103 lineages (see Narasimhan et al. 2018);
        • Expanding early Proto-Iranian and Proto-Indo-Aryan groups in Srubna (to the west) and Andronovo (to the east), during the first half of the 2nd millennium BC, dominate over the Bronze Age steppe and Central Asia with expanding R1a-Z93 lineages.

    Conclusion

    chalcolithic_late_Europe_Bell_Beaker
    Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

    1) East Bell Beakers clearly dominated culturally and genetically over almost all of Europe, ca. 2500-2000 BC, including previous Corded Ware territory, representing thus the most recent massive migration of steppe peoples in Europe, and being the only pan-European culture derived from Late Proto-Indo-European-speaking Yamna. They must therefore be identified with North-West Indo-European speakers, as proposed by Mallory (2013), and not just Italo-Celtic (as supported recently by the Danish school, based on Gimbutas’ outdated model):

    1.A) For Germanic, we already have proof that an appropriate, unitary Scandinavian society, ripe for the development of a common Pre-Germanic language (that expanded much later, during the Iron Age, as Proto-Germanic) could have developed only after the arrival of Bell Beakers (see Prescott 2017). The association of proto-historic Germanic tribes mainly with the expansion of R1b-U106 lineages bears witness to that.

    NOTE. Even without taking into account the likely L51 samples from Khvalynsk, it is by now quite clear that R1b-L51 lineages were already admixed in Yamna settlers from the Carpathian Basin, and any subclade of U106, L21, DF27, or U152 can thus be found everywhere in Europe associated with any of those North-West Indo-European migrations. What we are seing later, as in the East Bell Beaker migrants arriving in the British Isles (L21), Iberia (DF27), or the Netherlands/Scandinavia (U106), is the further reduction in variability coupled with the expansion of a few sucessful families (and their lineages), as we know it usually happens during migrations.

    1.B) For Balto-Slavic, it seems they were not part of the eastern Corded Ware peoples: the Copenhagen group denies an Indo-Slavonic group in the Nature paper, referring instead to a dominion of early Iranians in the steppes, following their traces to proto-historic and historic Iranian-speaking peoples. And we knew already that Bell Beakers dominated over Central-East Europe, before the resurge of R1a-Z645 lineages in the region, which is compatible with the North-West Indo-European nature of their language undergoing a satemization process similar (but not equal to) to the Indo-Iranian one (see the full discussion on Balto-Slavic here).

    NOTE. The few ancestral traits common to Germanic and Balto-Slavic are today considered a common substrate language to both, and not due to close contacts (and still less a common branch, as was proposed in the 1st half of the 20th c.). You can read e.g. Kortlandt’s Baltic, Slavic, Germanic (2017), or our Corded Ware substrate hypothesis (2017). In both theories, the referenced substrate is likely a non-Indo-European language, and in both cases it is related to the Corded Ware culture, which represents their most common immediate ancestral population before the spread of Bell Beakers.

    2) The late Corded Ware groups of Finland and Estonia, as well as Fatyanovo and Abashevo (and succeeding groups of Eastern Europe) may now be more clearly associated with Proto-Finno-Ugric dialects, and thus probably Corded Ware groups in general with Uralic languages, whose western branches have not survived to this day, with their culture and language being replaced quite early by expanding Bell Beakers.

    NOTE. While the demise of Central and Central-East European CWC groups is evident, continuous contacts among Battle Axe culture groups in Scandinavia and the Gulf of Finland through the Baltic Sea – and the strong Bronze Age Palaeo-Germanic influence on Finnic languages (stronger than earlier Indo-Iranian borrowings) may point to the continuity of Proto-Finnic in Northern Scandinavia, which may force a reinterpretation of the prehistoric location of Proto-Finnic-speaking groups.

    Those supporting a Corded Ware expansion of Germanic or Balto-Slavic with R1a subclades, now rejecting the expansion of Proto-Indo-European from an Anatolian homeland (following the spread of Neolithic farmer ancestry), and negating the close Proto-Indo-Iranian – Uralic contacts, are willfully ignoring linguistic, archaeological, and genetic data whenever it does not fit with their previous theories.

    Good times ahead to chase false syllogisms and contradictions everywhere.

    Related:

    “How Asian nomadic herders built new Bronze Age cultures”

    I recently wrote about a good informal summary of genomic research in 2017 for geneticists.

    I found a more professional review article, How Asian nomadic herders built new Bronze Age cultures, by Bruce Bower, appeared in Science News (25th Nov. 2017).

    NOTE: I know, I know, the Pontic-Caspian steppe is in East Europe, not Asia, but what can you do about people’s misconceptions regarding European geography? After all, the division is a conventional one, there are not many landmarks to divide Eurasia…

    It refers to Kristiansen’s model, which we already know supports the expansion of IE languages with the Corded Ware culture, and a later Corded Ware -> Bell Beaker migration. This is followed by many geneticists today as “The steppe model”.

    Corded Ware culture emerged as a hybrid way of life that included crop cultivation, breeding of farm animals and some hunting and gathering, Kristiansen argues. Communal living structures and group graves of earlier European farmers were replaced by smaller structures suitable for families and single graves covered by earthen mounds. Yamnaya families had lived out of their wagons even before trekking to Europe. A shared emphasis on family life and burying the dead individually indicates that members of the Yamnaya and Corded Ware cultures kept possessions among close relatives, in Kristiansen’s view.

    “The Yamnaya and the Corded Ware culture were unified by a new idea of transmitting property between related individuals and families,” Kristiansen says.

    Yamnaya migrants must have spoken a fledgling version of Indo-European languages that later spread across Europe and parts of Asia, Kristiansen’s group contends. Anthony, a longtime Kristiansen collaborator, agrees. Reconstructed vocabularies for people of the Corded Ware culture include words related to wagons, wheels and horse breeding that could have come only from the Yamnaya, Anthony says.

    As Indo-European languages spread, the Yamnaya’s genetic impact in Europe remained substantial, even after the disappearance of Corded Ware culture around 4,400 years ago, Reich’s team reported online May 9 at bioRxiv.org. About 50 percent of the ancestry of individuals from a later Bronze Age culture, dubbed the Bell Beaker culture for its pottery vessels shaped like an inverted bell, derived from Yamnaya stock. Such pottery spread across much of Europe starting nearly 4,770 years ago and disappeared by 3,800 years ago. Migrations of either people or ideas may have accounted for that dispersal.

    NOTE. Anthony, as we know, has already changed his mind with the most recent data.

    The author juxtaposes other opinions, to somehow balance the article:

    Like many of his colleagues, archaeologist Volker Heyd of the University of Bristol in England was jolted by the 2015 reports of a close genetic link between Asian herders and a Bronze Age culture considered native to Europe. But, Heyd says, the story of ancient Yamnaya migrations is more complex than the rapid-change scenario sketched out by Kristiansen and Anthony.

    No evidence exists that Yamnaya people rapidly developed practices typical of the Corded Ware culture in one part of Europe, Heyd argues in the April Antiquity. Cultural shifts in Europe around 5,000 years ago must have emerged from an extended series of small-scale dealings with Yamnaya and other pastoralists, which was then capped off by a large influx of steppe wagon travelers, he says.

    For instance, individual graves and other signs of contact with the Yamnaya people and even earlier Asian pastoralists appear in Europe 1,000 to 2,000 years before DNA-transforming migrations occurred. Consider that the Yamnaya account for 5 percent of the ancestry of Ötzi the Iceman, who lived in southeastern Europe roughly 300 years before the Yamnaya’s big move (SN: 5/27/17, p. 13). Little is known about those earlier encounters.

    Efforts to decipher ties between Yamnaya and Corded Ware culture are complicated by the fact that DNA is available from just a few people from each group, says Heyd, who is currently excavating Yamnaya graves in Hungary. Ancient DNA samples analyzed in the 2015 papers come from only a handful of Yamnaya and Corded Ware culture sites in a few parts of Europe and Russia.

    Heyd suspects that Yamnaya travelers had even earlier contacts, perhaps by 5,400 years ago, with central and eastern Europeans known for making globe-shaped pots with small handles. Individuals from that culture, excavated at two sites in Poland and Ukraine, possess no Yamnaya genes, a team affiliated with Reich’s lab reported online May 9 at bioRxiv.org. But Heyd thinks mating between members of that European culture and Yamnaya migrants may have occurred a bit farther east, where cross-cultural contacts probably occurred at the boundary of European forests and Asian grasslands.

    Other genetic clues point to a long history of Asian pastoralists crossing into parts of Europe. Small amounts of DNA from steppe herders, possibly the Yamnaya, appeared in three hunter-gatherer skeletons from southeastern Europe dating to as early as around 6,500 years ago.

    It is always interesting to see how reports gradually evolve, including more and more doubts about the ‘Yamnaya component’, and how it may be correctly interpreted. Slow but steady wins the race.

    Check out the full article.

    Featured image: from the article, based on the 2015 papers and Kristiansen’s model.

    See also: