Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions

haplogroup-uralians

This is the fourth of four posts on the Corded Ware—Uralic identification:

Let me begin this final post on the Corded Ware—Uralic connection with an assertion that should be obvious to everyone involved in ethnolinguistic identification of prehistoric populations but, for one reason or another, is usually forgotten. In the words of David Reich, in Who We Are and How We Got Here (2018):

Human history is full of dead ends, and we should not expect the people who lived in any one place in the past to be the direct ancestors of those who live there today.

Haplogroup N

Another recurrent argument – apart from “Siberian ancestry” – for the location of the Uralic homeland is “haplogroup N”. This is as serious as saying “haplogroup R1” to refer to Indo-European migrations, but let’s explore this possibility anyway:

Ancient haplogroups

We have now a better idea of how many ancient migrations (previously hypothesized to be associated with westward Uralic migrations) look like in genetic terms. From Damgaard et al. (Science 2018):

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

The only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, which – together with the Bronze Age sample from the Kola peninsula, and the medieval sample from Ust’Ida – gives a good idea of the overall expansion of N subclades and Siberian ancestry among the Circum-Arctic peoples of Eurasia, speakers of Palaeo-Siberian languages.

eurasian-n-subclades
Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

Modern haplogroups

What we should expect from Uralic peoples expanding with haplogroup N – seeing how Yamna expands with R1b-L23, and Corded Ware expands with R1a-Z645 – is to find a common subclade spreading with Uralic populations. Let’s see if it works like that for any N-X subclade, in data from Ilumäe et al. (2016):

haplogroup_n1
Geographic-Distribution Map of hg N3 / N1c / N1a.

Within the Eurasian circum-Arctic spread zone, N3 and N2a reveal a well-structured spread pattern where individual sub-clades show very different distributions:

N1a1-M46 (or N-TAT), formed ca. 13900 BC, TMRCA 9800 BC

   N1a1a2-B187, formed ca. 9800 BC, TMRCA 1050 AD:

The sub-clade N3b-B187 is specific to southern Siberia and Mongolia, whereas N3a-L708 is spread widely in other regions of northern Eurasia.

     N1a1a1a-L708, formed ca. 6800 BC, TMRCA 5400 BC.

       N1a1a1a2-B211/Y9022, formed ca. 5400 BC, TMRCA 1900 BC:

The deepest clade within N3a is N3a1-B211, mostly present in the Volga-Uralic region and western Siberian Khanty and Mansi populations.

         N1a1a1a1a-L392/L1026), formed ca. 4400 BC, TMRCA 2800 BC:

The neighbor clade, N3a3’6-CTS6967, spreads from eastern Siberia to the eastern part of Fennoscandia and the Baltic States

haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders.

           N1a1a1a1a1a-CTS2929/VL29, formed ca. 2100 BC, TMRCA 1600 BC:

In Europe, the clade N3a3-VL29 encompasses over a third of the present-day male Estonians, Latvians, and Lithuanians but is also present among Saami, Karelians, and Finns (Table S2 and Figure 3). Among the Slavic-speaking Belarusians, Ukrainians, and Russians, about three-fourths of their hg N3 Y chromosomes belong to hg N3a3.

In the post on Finno-Permic expansions, I depicted what seems to me the most likely way of infiltration of N1c-L392 lineages with Akozino warrior-traders into the western Finno-Ugric populations, with an origin around the Barents sea.

This includes the potential spread of (a minority of) N1c-B211 subclades due to contacts with Anonino on both sides of the Urals, through a northern route of forest and forest-steppe regions (equivalent to the distribution of Cherkaskul compared to Andronovo), given the spread of certain subclades in Ugric populations.

NOTE. An alternative possibility is the association of certain B211 subclades with a southern route of expansion with Pre-Scythian and Scythian populations, under whose influence the Ananino culture emerged -which would imply a very quick infiltration of certain groups of haplogroup N everywhere among Finno-Ugrics on both sides of the Urals – , and also the expansion of some subclades with Turkic-speaking peoples, who apparently expanded with alliances of different peoples. Both (Scythian and Turkic) populations expanded from East Asia, where haplogroup N (including N1c) was present since the Neolithic. I find this a worse model of expansion for upper clades, but – given the YFull estimates and the presence of this haplogroup among Turkic peoples – it is a possibility for many subclades.

           N1a1a1a1a2-Z1936, formed ca. 2800 BC, TMRCA 2400 BC:

The only notable exception from the pattern are Russians from northern regions of European Russia, where, in turn, about two-thirds of the hg N3 Y chromosomes belong to the hg N3a4-Z1936—the second west Eurasian clade. Thus, according to the frequency distribution of this clade, these Northern Russians fit better among other non-Slavic populations from northeastern Europe. N3a4 tends to increase in frequency toward the northeastern European regions but is also somewhat unexpectedly a dominant hg N3 lineage among most Turcic-speaking Volga Tatars and South-Ural Bashkirs.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

The expansion of N1a-Z1936 in Fennoscandia is most likely associated with the expansion of Saami into asbestos ware-related territory (like the Lovozero culture) during the Late Iron Age – and mixture with its population – , and with the later Fennic expansion to the east and north, replacing their language.

           N1a1a1a1a4-M2019 (previously N3a2), formed ca. 4400 BC, TMRCA 1700 BC:

Sub-hg N3a2-M2118 is one of the two main bifurcating branches in the nested cladistic structure of N3a2’6-M2110. It is predominantly found in populations inhabiting present-day Yakutia (Republic of Sakha) in central Siberia and at lower frequencies in the Khanty and Mansi populations, which exhibit a distinct Y-STR pattern (Table S7) potentially intrinsic to an additional clade inside the sub-hg N3a2

The second widespread sub-clade of hg N is N2a. (…):

   N1a2b-P43 (B523/FGC10846/Y3184), formed ca. 6800 BC, TMRCA ca. 2700 BC:

The absolute majority of N2a individuals belong to the second sub-clade, N2a1-B523, which diversified about 4.7 kya (95% CI = 4.0–5.5 kya). Its distribution covers the western and southern parts of Siberia, the Taimyr Peninsula, and the Volga-Uralic region with frequencies ranging from from 10% to 30% and does not extend to eastern Siberia (…)

haplogroup_n2
Geographic-Distribution Map of hg N2a1 / N1a2b-P43

The “European” branch suggested earlier from Y-STR patterns turned out to consist of two clades

     N1a2b2a-Y3185/FGC10847, formed ca. 2200 BC, TMRCA 800 BC:

N2a1-L1419, spread mainly in the northern part of that region.

     N1a2b2b1-B528/Y24382, formed ca. 900 BC, TMRCA ca. 900 BC:

N2a1-B528, spread in the southern Volga-Uralic region.

Haplogroup R1a

We also have a good idea of the distribution of haplogroup R1a-Z645 in ancient samples. Its subclades were associated with the Corded Ware expansion, and some of them fit quite well the early expansion of Finno-Permic, Ugric, and Samoyedic peoples to the east.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

This is how the modern distribution of R1a among Uralians looks like, from the latest report in Tambets et al. (2018):

  • Among Fennic populations, Estonians and Karelians (ca. 1.1 million) have not suffered the greatest bottleneck of Finns (ca. 6-7 million), and show thus a greater proportion of R1a-Z280 than N1c subclades, which points to the original situation of Fennic peoples before their expansion. To trust Finnish Y-DNA to derive conclusions about the Uralic populations is as useful as relying on the Basque Y-DNA for the language spread by R1b-P312
  • Among Volga-Finnic populations, Mordovians (the closest to the original Uralic cluster, see above) show a majority of R1a lineages (27%).
  • Hungarians (ca. 13-15 million) represent the majority of Ugric (and Finno-Ugric) peoples. They are mainly R1a-Z280, also R1a-Z2123, have little N1c, and lack Siberian ancestry, and represent thus the most likely original situation of Ugric peoples in 4th century AD (read more on Avars and Hungarians).
  • Among Samoyedic peoples, the Selkup, the southernmost ones and latest to expand – that is, those not heavily admixed with Siberian populations – , also have a majority of R1a-Z2123 lineages (see also here for the original Samoyedic haplogroups to the south).

To understand the relevance of Hungarians for Ugric peoples, as well as Estonians, Karelians, and Mordovians (and northern Russians, Finno-Ugric peoples recently Russified) for Finno-Permic peoples, as opposed to the Circum-Arctic and East Siberian populations, one has to put demographics in perspective. Even a modern map can show the relevance of certain territories in the past:

population-density
Population density (people per km2) map of the world in 1994. From Wikipedia.

Summary of ancestry + haplogroups

Fennic and Samic populations seem to be clearly influenced by Palaeo-Laplandic peoples, whereas Volga-Finnic and especially Permic populations may have received gene flow from both, but essentially Palaeo-Siberian influence from the north and east.

The fact that modern Mansis and Khantys offer the highest variation in N1a subclades, and some of the highest “Siberian ancestry” among non-Nganasans, should have raised a red flag long ago. The fact that Hungarians – supposedly stemming from a source population similar to Mansis – do not offer the same amount of N subclades or Siberian ancestry (not even close), and offer instead more R1a, in common with Estonians (among Finno-Samic peoples) and Mordvins (among Volga-Finnic peoples) should have raised a still bigger red flag. The fact that Nganasans – the model for Siberian ancestry – show completely different N1a2b-P43 lineages should have been a huge genetic red line (on top of the anthropological one) to regard them as the Uralian-type population.

We know now that ethnolinguistic groups have usually expanded with massive (usually male-biased) migrations, and that neighbouring locals often ‘resurge’ later without changing the language. That is seen in Europe after the spread of Bell Beakers, with the increase of previous ancestry and lineages in Scandinavia during the formation of the Nordic ethnolinguistic community; in Central-West Europe, with the resurgence of Neolithic ancestry (and lineages) during the Bronze Age over steppe ancestry; and in Central-East Europe (with Unetice or East European Bronze Age groups like Mierzanowice, Trzciniec, or Lusatian) showing an increase in steppe ancestry (and resurge of R1a subclades); none of them represented a radical ethnolinguistic change.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

It is not hard to model the stepped arrival, infiltration, and/or resurge of N subclades and “Siberian ancestries”, as well as their gradual expansion in certain regions, associated with certain migrations first – such as the expansions to the Circum-Arctic region, and later the Scythian- and Turkic-related movements – , as well as limited regional developments, like the known bottleneck in Finns, or the clear late expansion of Ugric and Samoyedic languages to the north among nomadic Palaeo-Siberians due to traditions of exogamy and multilingualism. This fits quite well with the different arrival of N (N1c and xN1c) lineages to the different Uralic-speaking groups, and to the stepped appearance of “Siberian ancestry” in the different regions.

The aternative

It is evident that a lot of people were too attached to the idea of Palaeolithic R1b lineages ‘native’ to western Europe speaking Basque languages; of R1a lineages speaking Indo-European and spreading with Yamna; and N lineages ‘native’ to north-eastern Europe and speaking Uralic, and this is causing widespread weeping and gnashing of teeth (instead of the joy of discovering where one’s true patrilineal ancestors come from, and what language they spoke in each given period, which is the supposed objective of genetic genealogy…)

Since an Indo-Germanic branch (as revived now by some in the Copenhaguen group to fit Kristiansen’s theory of the 1980s with recent genetic data) does not make any sense in linguistics, the finding of R1a in Yamna would not have led where some think it would have, because North-West Indo-European would still be the main Late PIE branch in Europe. Don’t take my word for it; take James P. Mallory’s (2013).

mallory-adams-tree
The levels of Indo-European reconstruction, from Mallory & Adams (2006).

If an (unlikely) Indo-Slavonic group were posited, though, such a group would still be bound (with Indo-Iranian) to the steppes with East Yamna/Poltavka (admixing with Abashevo migrants, but retaining its language), developing Sintashta/Potapovka → Srubna/Andronovo, and R1a lineages would have equally undergone the known bottlenecks of the steppes where they replaced R1b-Z2103 – which this eastern group shares with Balkan languages, a haplogroup that links therefore together the Graeco-Aryan group.

As far as I know – and there might be many other similar pet theories out there – there have been proposals of “modern Balto-Slavic-like” populations (in an obvious circular reasoning based on modern populations) in some Scythian clusters of the Iron Age.

NOTE. I will not enter into “Balto-Slavic-like R1a” of the Late Bronze Age or earlier because no one can seriously believe at this point of development of Population Genetics that autosomal similarity predating 1,500+ years the appearance of Slavs equates to their (ethnolinguistic) ancestral population, without a clear intermediate cultural and genetic trail – something we lack today in the Slavic case even for the late Roman period…

finno-saamic-palaeo-germanic-substratum
The Finnic and Saamic separation looks shallower than it actually is. Invisible convergence can be ‘triangulated’ with the help of Germanic layers of mutual loanwords (Häkkinen 2012).

We also know of R1a-Z280 lineages in Srubna, probably expanding to the west. With that in mind, and knowing that Palaeo-Germanic was in close contact with Finno-Samic while both were already separated but still in contact, and that Palaeo-Germanic was also in contact and closely related to a ‘Temematic’ distinct from Balto-Slavic (and also that early Proto-Baltic and Proto-Slavic from the Roman Iron Age and later were in contact with western Uralic) this will be the linguistic map of the Iron Age if R1a is considered to expand Indo-European from some kind of “patron-client” relationship with west Yamna:

palaeo-germanic-italo-celtic
Eastern European language map during the Late Bronze Age / Iron Age, if R1a spread Indo-European languages and Eastern Yamna spoke Indo-Slavonic. Palaeo-Germanic (i.e. Pre- to Proto-Germanic) needs to be in contact with both the Samic Lovozero population and the Fennic west Circum-Arctic one. Italic and Celtic in contact with Pre-Germanic. Germanic in contact with Temematic. Balto-Slavic in contact with Iranian, and near Fennic to allow for later loanwords. For Germanic and Temematic, see Kortlandt (2018).

You might think I have some personal or political reason against this kind of proposals. I haven’t. We have been proposing Indo-European to be the language of the European Union for more than 10 years, so to support R1b-Italo-Celtic in the whole Western Europe, R1a-Germanic in Central and Eastern Europe, and R1a-Indo-Slavonic in the steppes (as the Danish group seems to be doing) has nothing inherently bad (or good) for me. If anything, it gives more reason to support the revival of North-West Indo-European in Europe.

My problem with this proposal is that it is obviously beholden to the notion of the uninterrupted cultural, historic and ethnic continuity in certain territories. This bias is common in historiography (von Falkenhausen 1993), but it extends even more easily into the lesser known prehistory of any territory, and now more than ever some people feel the need to corrupt (pre)history based on their own haplogroups (or the majority haplogroups of their modern countries). However, more than on philosophical grounds, my rejection is based on facts: this picture is not what the combination of linguistic, archaeological, and genetic data shows. Period.

Nevertheless, if Yamna + Corded Ware represented the “big and early expansion” of Germanic and Italo-Celtic peoples proper of the dream Nazi’s Lebensraum and Fascist’s spazio vitale proposals; Uralians were Siberian hunter-gatherers that controlled the whole eastern and northern Russia, and miraculously managed to push (ethnolinguistically) Neolithic agropastoralists to the west during and after the Iron Age, with gradual (and often minimal) genetic impact; and Balto-Slavic peoples were represented by horse riders from Pokrovka/Srubna, hiding then somewhere around the forest-steppe until after the Scythian expansion, and then spreading their language (without much genetic impact) during the early Middle Ages…so be it.

Related

Corded Ware—Uralic (III): “Siberian ancestry” and Ugric-Samoyedic expansions

siberian-ancestry-tambets

This is the third of four posts on the Corded Ware—Uralic identification. See

An Eastern Uralic group?

Even though proposals of an Eastern Uralic (or Ugro-Samoyedic) group are in the minority – and those who support it tend to search for an origin of Uralic in Central Asia – , there is nothing wrong in supporting this from the point of view of a western homeland, because the eastward migration of both Proto-Ugric and Pre-Samoyedic peoples may have been coupled with each other at an early stage. It’s like Indo-Slavonic: it just doesn’t fit the linguistic data as well as the alternative, i.e. the expansion of Samoyedic first, different from a Finno-Ugric trunk. But, in case you are wondering about this possibility, here is Häkkinen’s (2012) phonological argument:

ugro-samoyedic-uralic

The case of Samoyedic is quite similar to that of Hungarian, although the earliest Palaeo-Siberian contact languages have been lost. There were contacts at least with Tocharian (Kallio 2004), Yukaghir (Rédei 1999) and Turkic (Janhunen 1998). Samoyedic also:

a) has moved far from the related languages and has been exposed to strong foreign influence

b) shares a small number of common words with other branches (from Sammallahti 1988: only 123 ‘Uralic’ words, versus 390 ‘Uralic’ + ‘Finno-Ugric’ words found in other branches than Samoyedic = 31,5 %)

c) derives phonologically from the East Uralic dialect.

The phonological level is taxonomically more reliable, since it lacks the distortion caused by invisible convergence and false divergence at the lexical level. Thus we can conclude that the traditional taxonomic model, according to which Samoyedic was the first branch to split off from the Proto-Uralic unity, is just as incorrect as the view that Hungarian was the first branch to split off.

Seima-Turbino

Late Uralic can be traced back to metallurgical cultures thanks to terms like PU *wäśka ‘copper/bronze’ (borrowed from Proto-Samoyedic *wesä into Tocharian); PU *äsa and *olna/*olni, ‘lead’ or ‘tin’, found in *äsa-wäśka ‘tin-bronze’; and e.g. *weŋći ‘knife’, borrowed into Indo-Iranian (through the stage of vocalization of nasals), appearing later as Proto-Indo-Aryan *wāćī ‘knife, awl, axe’.

It is known that the southern regions of the Abashevo culture developed Proto-Indo-Iranian-speaking Sintashta-Petrovka and Pokrovka (Early Srubna). To the north, however, Abashevo kept its Uralic nature, with continuous contacts allowing for the spread of lexicon – mainly into Finno-Ugric – , and phonetic influence – mainly Uralisms into Proto-Indo-Iranian phonology (read more here).

The northern part of Abashevo (just like the south) was mainly a metallurgical society, with Abashevo metal prospectors found also side by side with Sintashta pioneers in the Zeravshan Valley, near BMAC, in search of metal ores. About the Seima-Turbino phenomenon, from Parpola (2013):

From the Urals to the east, the chain of cultures associated with this network consisted principally of the following: the Abashevo culture (extending from the Upper Don to the Mid- and South Trans-Urals, including the important cemeteries of Sejma and Turbino), the Sintashta culture (in the southeast Urals), the Petrovka culture (in the Tobol-Ishim steppe), the Taskovo-Loginovo cultures (on the Mid- and Lower Tobol and the Mid-Irtysh), the Samus’ culture (on the Upper Ob, with the important cemetery of Rostovka), the Krotovo culture (from the forest steppe of the Mid-Irtysh to the Baraba steppe on the Upper Ob, with the important cemetery of Sopka 2), the Elunino culture (on the Upper Ob just west of the Altai mountains) and the Okunevo culture (on the Mid-Yenissei, in the Minusinsk plain, Khakassia and northern Tuva). The Okunevo culture belongs wholly to the Early Bronze Age (c. 2250–1900 BCE), but most of the other cultures apparently to its latter part, being currently dated to the pre-Andronovo horizon of c. 2100–1800 BCE (cf. Parzinger 2006: 244–312 and 336; Koryakova & Epimakhov 2007: 104–105).

post-eneolithic-steppe-asia
Schematic map of the Middle Bronze Age cultures (steppe and foreststeppe
zone)

The majority of the Sejma-Turbino objects are of the better quality tin-bronze, and while tin is absent in the Urals, the Altai and Sayan mountains are an important source of both copper and tin. Tin is also available in southern Central Asia. Chernykh & Kuz’minykh have accordingly suggested an eastern origin for the Sejma-Turbino network, backing this hypothesis also by the depiction on the Sejma-Turbino knives of mountain sheep and horses characteristic of that area. However, Christian Carpelan has emphasized that the local Afanas’evo and Okunevo metallurgy of the Sayan-Altai area was initially rather primitive, and could not possibly have achieved the advanced and difficult technology of casting socketed spearheads as one piece around a blank. Carpelan points out that the first spearheads of this type appear in the Middle Bronze Age Caucasia c. 2000 BCE, diffusing early on to the Mid-Volga-Kama-southern Urals area, where “it was the experienced Abashevo craftsmen who were able to take up the new techniques and develop and distribute new types of spearheads” (Carpelan & Parpola 2001: 106, cf. 99–106, 110). The animal argument is countered by reference to a dagger from Sejma on the Oka river depicting an elk’s head, with earlier north European prototypes (Carpelan & Parpola 2001: 106–109). Also the metal analysis speaks for the Abashevo origin of the Sejma-Turbino network. Out of 353 artefacts analyzed, 47% were of tin-bronze, 36% of arsenical bronze, and 8.5% of pure copper. Both the arsenical bronze and pure copper are very clearly associated with the Abashevo metallurgy.

seima-turbino-phenomenon-parpola
Find spots of artefacts distributed by the Sejma-Turbino intercultural trader network, and the areas of the most important participating cultures: Abashevo, Sintashta, Petrovka. Based on Chernykh 2007: 77.

The Abashevo metal production was based on the Volga-Kama-Belaya area sandstone ores of pure copper and on the more easterly Urals deposits of arsenical copper (Figure 9). The Abashevo people, expanding from the Don and Mid-Volga to the Urals, first reached the westerly sandstone deposits of pure copper in the Volga and Kama basins, and started developing their metallurgy in this area, before moving on to the eastern side of the Urals to produce harder weapons and tools of arsenical copper. Eventually they moved even further south, to the area richest in copper in the whole Urals region, founding there the very strong and innovative Sintashta culture.

Regarding the most likely expansion of Eastern Uralic peoples:

Nataliya L’vovna Chlenova (1929–2009; cf. Korenyako & Ku’zminykh 2011) published in 1981 a detailed study of the Cherkaskul’ pottery. In her carefully prepared maps of 1981 and 1984 (Figure 10), she plotted Cherkaskul’ monuments not only in Bashkiria and the Trans-Urals, but also in thick concentrations on the Upper Irtysh, Upper Ob and Upper Yenissei, close to the Altai and Sayan mountains, precisely where the best experts suppose the homeland of Proto-Samoyed to be.

cherkaskul-andronovo
Distribution of Srubnaya (Timber Grave, early and late), Andronovo (Alakul’ and Fëdorovo variants) and Cherkaskul’ monuments. After Parpola 1994: 146, fig. 8.15, based on the work of N. L. Chlenova (1984: map facing page 100).

Ugric

The Cherkaskul’ culture was transformed into the genetically related Mezhovka culture (c. 1500–1000 BCE), which occupied approximately the same area from the Mid-Kama and Belaya rivers to the Tobol river in western Siberia (cf. Parzinger 2006: 444–448; Koryakova & Epimakhov 2007: 170–175). The Mezhovka culture was in close contact with the neighbouring and probably Proto-Iranian speaking Alekseevka alias Sargary culture (c. 1500–900 BCE) of northern Kazakhstan (Figure 4 no. 8) that had a Fëdorovo and Cherkaskul’ substratum and a roller pottery superstratum (cf. Parzinger 2006: 443–448; Koryakova & Epimakhov 2007: 161–170). Both the Cherkaskul’ and the Mezhovka cultures are thought to have been Proto-Ugric linguistically, on the basis of the agreement of their area with that of Mansi and Khanty speakers, who moreover in their Fëdorovo-like ornamentation have preserved evidence of continuity in material culture (cf. Chlenova 1984; Koryakova & Epimakhov 2007: 159, 175).

mezhovska-sargary-irmen
Cultures of the Final Bronze Age of the Urals and western Siberia (steppe
and forest-steppe zone).

The Mezhovka culture was succeeded by the genetically related Gamayun culture (c. 1000–700 BCE) (cf. Parzinger 2006: 446; 542–545).

From the Gamayun culture descend Trans-Urals cultures in close contact with Finno-Permic populations of the Cis-Ural region:

  • [Proto-Mansi] Itkul’ culture (c. 700–200 BCE) distributed along the eastern slope of the Ural Mountains (cf. Parzinger 2006: 552–556). Known from its walled forts, it constituted the principal Trans-Uralian centre of metallurgy in the Iron Age, and was in contact with both the Anan’ino and Akhmylovo cultures (the metallurgical centres of the Mid-Volga and Kama-Belaya region) and the neighbouring Gorokhovo culture.
    • [Proto-Hungarian] via the Vorob’evo Group (c. 700–550 BCE) (cf. Parzinger 2006: 546–549), to the Gorokhovo culture (c. 550–400 BCE) of the Trans-Uralian forest steppe (cf. Parzinger 2006: 549–552). For various reasons the local Gorokhovo people started mobile pastoral herding and became part of the multicomponent pastoralist Sargat culture (c. 500 BCE to 300 CE), which in a broader sense comprized all cultural groups between the Tobol and Irtysh rivers, succeeding here the Sargary culture. The Sargat intercommunity was dominated by steppe nomads belonging to the Iranian-speaking Saka confederation, who in the summer migrated northwards to the forest steppe
  • [Proto-Khanty] Late Bronze Age and Early Iron Age cultures related to the Gamayunskoe and Itkul’ cultures that extended up to the Ob: the Nosilovo, Baitovo, Late Irmen’, and Krasnoozero cultures (c. 900–500 BCE). Some were in contact with the Akhmylovo on the Mid-Volga.
sargat-gorokhovo-bolscherechye
Cultural groups of the Iron Age in the forest-steppe zone of western
Siberia. (

Samoyedic

Parpola (2012) connects the expansion of Samoyedic with the Cherkaskul variant of Andronovo. As we know, Andronovo was genetically diverse, which speaks in favour of different groups developing similar material cultures in Central Asia.

Juha Janhunen, author of the etymological dictionary of the Samoyed languages (1977), places the homeland of Proto-Samoyedic in the Minusinsk basin on the Upper Yenissei (cf. Janhunen 2009: 72). Mainly on the basis of Bulghar Turkic loanwords, Janhunen (2007: 224; 2009: 63) dates Proto-Samoyedic to the last centuries BCE. Janhunen thinks that the language of the Tagar culture (c. 800–100 BCE) ought to have been Proto-Samoyedic (cf. Janhunen 1983: 117– 118; 2009: 72; Parzinger 2001: 80 and 2006: 619–631 dates the Tagar culture c. 1000–200 BCE; Svyatko et al. 2009: 256, based on human bone samples, c. 900 BCE to 50 CE). The Tagar culture largely continues the traditions of the Karasuk culture (c. 1400–900 BCE), (…)

chicha-irmen-tagar-baraba-forest-siberian
Map showing the location of Chicha-1.

For the most recent expansions of Samoyedic languages to the north, into Palaeo-Siberian populations, read more about the traditional multilingualism of Siberian populations.

Genetics

Siberian ancestry

The use of a map of “Siberian ancestry” peaking in the arctic to show a supposedly late Uralic population movement (starting in the Iron Age!) seems to be the latest trend in population genomics:

siberian-ancestry-map
Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018) (see below for ADMIXTURE in specific populations).

I guess that would make this map of Neolithic farmer ancestry represent an expansion of Indo-European from the south, because Anatolia, Greece, Italy, southern France, and Iberia – where this ancestry peaks in modern populations – are among the oldest territories where Indo-European languages were recorded:

reich-farmer-ancestry
Modern genome-wide data shows that the primary gradient of farmer ancestry in Europe does not flow southeast-to-northwest but instead in an almost perpendicular direction, a result of a major migration of pastoralists from the east that displaced much of the ancestry of the first farmers.

Probably not the right interpretation of this kind of simplistic data about modern populations, though…

The most striking thing about the “Siberian ancestry” white whale is that nobody really knows what it is; just like we did not know what “Yamnaya ancestry” was, until the most recent data is making the picture clearer. Its nature is changing with each new paper, and it can be summed up by “some ancestry we want to find that is common to Uralic-speaking peoples, and should not be CWC-related”. Tambets et al. (2018) explain quite well how they “found it”:

Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a).

siberian-ancestry-modern
Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). Image from Tambets et al. (2018).

However, this ‘something’ that some people occasionally find in some Uralic populations is also common to other modern and ancient groups, and not so common in some other Uralic peoples. Simply put:

siberian-ancestry-modern-populations
Image modified from Lamnidis et al. (2018). Red line representing maximum “Siberian admixture” in Eastern European hunter-gatherers. In blue, Uralic-speaking groups. “Plot of ADMIXTURE (K=3) results containing West Eurasian populations and the Nganasan. Ancient individuals from this study are represented by thicker bars.”

I already said this in the recent publication of Siberian samples, where a renamed and radiocarbon dated Finnish_IA clearly shows that Late Iron Age Saami (ca. 400 AD) had little “Siberian ancestry”, if any at all, representing the most likely Fennic (and Samic) ancestral components before their expansion into central and northern Finland, where they admixed with circum-polar peoples of asbestos ware cultures.

I will say that again and again, any time they report the so-called “Siberian ancestry” in Uralic samples, no matter how it is defined each time: it does not seem to be that special something people are looking for, but rather (at least in a great part) a quite old ancestral component forming an evident cline with EHG, whose best proximate source are Baikal_EN (and/or Devil’s Gate) at this moment, and thus also East European hunter-gatherers for Western Uralic peoples:

dzudzuana-baikal-en-admixture
Image modified from Lazaridis et al. (2018). In red: samples with Baikal_EN ancestry in speculative estimates. In pink: samples with Baikal_EN ancestry in conservative estimates (probably marking a recent arrival of Baikal_En ancestry, see here). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

So either Samara_HG, Karelia_HG, and many other groups from eastern Europe all spoke Uralic according to this ADMIXTURE graphic (and the formation of steppe ancestry in the Volga-Ural region brought the Proto-Indo-European language to the steppes through the CHG/ANE expansion), or a great part of this “Siberian ancestry” found in modern Uralic-speaking populations is not what some people would like to think it is…

Modern populations

PCA clines can be looked for to represent expansions of ancient populations. Most recently, Flegontov et al. (2018) are attempting to do this with Asian populations:

For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

jeong-population-clines
Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.

There are potential errors with this approach:

The main one is practical – does a modern cline represent an ancestral language? The answer is: sometimes. It depends on the anthropological context that we have, and especially on the precision of the PCA:

clines-himalayan
Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. (A) PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. From Arciero et al. (2018).

The ‘Europe’, ‘Middle East’, etc. clines of the above PCA do not represent one language, but many. For starters, the PCA includes too many (and modern) populations, its precision is useless for ethnolinguistic groups. Which is the right level? Again, it depends.

The other error is one of detail of the clines drawn (which, in turn, depends on the precision of the PCA). For example, we can draw two paralell lines (or even one line, as in Flegontov et al. above) in one PCA graphic, but we still don’t have the direction of expansion. How do we know if this supposed “Uralic-speaking cline” goes from one region to the other? For that level of detail, we should examine closely modern Uralic-speaking peoples and Circum-Arctic populations:

uralic-cline
Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

The real ancient Uralic cluster (drawn above in blue) is thus probably from a North-East European source (probably formed by Battle Axe / Fatyanovo-Balanovo / Abashevo) to the east into Siberian populations, and to the north into Laplandic populations (see below also on Mezhovska ancestry for the drawn ‘European cline’, which some may a priori wrongly assume to be quite late).

The fact that the three formed clines point to an admixture of CWC-related populations from North-Eastern Europe, and that variation is greater at the Palaeo-Laplandic and Palaeo-Siberian extremities compared to the CWC-related one, also supports this as the correct interpretation.

However, judging by the two main clines formed, one could be alternatively inclined to interpret that Palaeo-Laplandic and Palaeo-Siberian populations formed a huge ancestral “Uralic” ghost cluster in Siberia (spanning from the Palaeo-Laplandic to the Palaeo-Siberian one), and from there expanded Finno-Samic on one hand, and “Volga-Ugro-Samoyed” on the other. That poses different problems: an obvious linguistic and archaeological one – which I assume a lot of people do not really care about – , and a not-so-obvious genetic one (see below for ancient samples and for the expansion of haplogroup N).

To understand the simplest solution better, one can just have a look at the PCA from Bell Beaker samples in Olalde et al. (2018), which (as Reich has already explained many times) expanded directly from Yamna R1b-L23 lineages:

olalde_pca_clines
Image modified from Olalde et al. (2018). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier with the approximate position of Yamna Hungary, probably the source of its admixture. Different Bell Beaker clines have been drawn, to represent approximate source of expansions from Central European sources into the different regions.

Unlike this PCA with ancient samples, where Bell Beaker clines could be a rough approximation to the real sources for each population, and where a cluster spanning all three depicted Early Bronze Age clusters could give a rough proximate source of European Bell Beakers in Hungary (and where one can even distinguish the Y-DNA bottlenecks in the L23 trunk created by each cline) the PCA of modern Uralic populations is probably not suitable for a good estimate of the ancient situation, which may be found shifted up or down of the drawn “Uralic” cluster along East European groups.

After all, we already know that the Siberian cline shows probably as much an ancient admixture event – from the original Uralic expansion to the east with Corded Ware ancestry – as another more recent one – a westward migration of Siberian ancestry (or even more than one). While we know with more or less exactitude what happened with the Palaeo-Laplandic admixture by expanding Proto-Finno-Samic populations (see here), the Proto-Ugric and Pre-Samoyedic populations formed probably more than one cline during the different ancient migrations through central Asia.

Ancient populations

Apparently, the Corded Ware expansion to the east was not marked by a huge change in ancestry. While the final version of Narasimhan et al. (2018) may show a little more detail about other forest-steppe Seima-Turbino/Andronovo-related migrations (and thus also Eastern Uralic peoples), we have already had enough information for quite some time to get a good idea.

mezhovska-pca
Principal component analysis. PCA of ancient individuals (according colours see legend) projected on modern West Eurasians (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European huntergatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.dataset (grey). Iron Age Scythians are shown in black; CHG, Caucasus hunter-gatherer; LNBA, late Neolithic/Bronze Age; MN, middle Neolithic; EHG, eastern European hunter-gatherer; LBK_EN, early Neolithic Linearbandkeramik; HG, hunter-gatherer; EBA, early Bronze Age; IA, Iron Age; LBA, late Bronze Age; WHG, western hunter-gatherer.

Mezhovska‘s position is similar to the later Pre-Scythian and Scythian populations. There are some interesting details: apart from haplogroup R1a-Z280 (CTS1211+), there is one R1b-M269 (PF6494+), probably Z2103, and an outlier (out of three) in a similar position to the recently described central/southern Scythian clusters.

NOTE. The finding of R1b-M269 in the forest-steppe is probably either 1) from an Afanasevo-Okunevo origin, or 2) from an admixture with neighbouring Andronovo-related populations, such as Sargary. A third, maybe less likely option is that this haplogroup admixed with Abashevo directly (as it happened in Sintashta, Potapovka, or Pokrovka) and formed part of early Uralic migrations. In any case, since Mezhovska is a Bronze Age society from the Urals region, its association with R1b-Z2103 – like the association of R1b-Z2103 in Scythian clusters – cannot be attributed to “Thracian peoples”, a link which is (as I already said) too simplistic.

The drawn “European cline” of Hungarians (see above), leading from ‘west-like’ Mansi to Hungarian populations – and hosting also Finnic and Estonian samples – , cannot therefore be attributed simply to late “Slavic/Balkan-like” admixture.

Karasuk – located further to the east – is basically also Corded Ware peoples showing clearly a recent admixture with local ANE / Baikal_EN-like populations. In terms of haplogroups it shows haplogroup Q, R1a-Z2124, and R1a-Z2123, later found among early Hungarians, and present also in ancient Samoyedic populations now acculturated.

The most interesting aspect of both Mezhovska and Karasuk is that they seem to diverge from a point close to Ukraine_Eneolithic, which is the supposed ancestral source of Corded Ware peoples (read more about the formation of “steppe ancestry”). This means that Eastern Uralians derive from a source closer to Middle Dnieper/Abashevo populations, rather than Battle Axe (shifted to Latvian Neolithic), which is more likely the source prevalent in Finno-Permic peoples.

Their initial admixture with (Palaeo-)Siberian populations is thus seen already starting by this time in Mezhovska and especially in Karasuk, but this process (compared to modern populations) is incomplete:

f4-test-karasuk-mezhovska
Visualization of f-statistics results. f4(Test, LBK; Han, Mbuti) values are plotted on x axis and f4(Test, LBK; EHG, Mbuti) values on y axis, positive deviations from zero show deviations from a clade between Test and LBK. A red dashed line is drawn between Yamnaya from Samara and Ami. Iron Age populations that can be modelled as mixtures of Yamnaya and East Eurasians (like the Ami) are arrayed around this line and appear to be distinct from the main North/South European cline (blue) on the left of the x axis.
karasuk-mezhovska-admixture
ADMIXTURE results for ancient populations. Red arrows point to the Iron Age Scythian individuals studied. LBK_EN: Early Neolithic Linearbandkeramik; EHG: Eastern European hunter-gatherer; Motala_HG: hunter-gatherer from Motala (Sweden); WHG: western hunter-gatherer; CHG: Caucasus hunter-gatherer; IA: Iron Age; EBA: Early Bronze Age; LBA: Late Bronze Age.

We know now that Samic peoples expanded during the Late Iron Age into Palaeo-Laplandic populations, admixing with them and creating this modern cline. Finns expanded later to the north (in one of their known genetic bottlenecks), admixing with (and displacing) the Saami in Finland, especially replacing their male lines.

So how did Ugric and Samoyedic peoples admix with Palaeo-Siberian populations further, to obtain their modern cline? The answer is, logically, with East Asian migrations related to forest-steppe populations of Central Asia after the Mezhovska and Karasuk periods, i.e. during the Iron Age and later. Other groups from the forest-steppe in Central Asia show similar East Asian (“Siberian”) admixture. We know this from Narasimhan et al. (2018):

(…) we observe samples from multiple sites dated to 1700-1500 BCE (Maitan, Kairan, Oy_Dzhaylau and Zevakinsikiy) that derive up to ~25% of their ancestry from a source related to present-day East Asians and the remainder from Steppe_MLBA. A similar ancestry profile became widespread in the region by the Late Bronze Age, as documented by our time transect from Zevakinsikiy and samples from many sites dating to 1500-1000 BCE, and was ubiquitous by the Scytho-Sarmatian period in the Iron Age.

We already have some information about these later migrations:

siberian-genetic-component-chronology
Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

The Ugric-speaking Sargat culture in Western Siberia shows the expected mixture of haplogroups (ca. 500 BC – 500 AD), with 5 samples of hg N and 2 of hg R1a1, in Pilipenko et al. (2017). Although radiocarbon dates and subclades are lacking, N lineages probably spread late, because of the late and gradual admixture of Siberian cultures into the Sargat melting pot.

The Samoyedic-speaking Tagar culture also shows signs of a genetic turnover in Pilipenko et al. (2018):

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains.

Before the Iron Age, the Karasuk and Mezhovska population were probably already somehow ‘to the north’ within the ancient Steppe-Altai cline (see image below9 created by expanding Seima-Turbino- and Andronovo-related populations. During the Iron Age, further Siberian contributions with Iranian expansions must have placed Uralians of the Central Asian forest-steppe areas much closer to today’s Palaeo-Siberian cline.

However, the modern genetic picture was probably fully developed only in historic times, when Samoyedic and Ugric languages expanded to the north, only in part admixing further with Palaeo-Siberian-speaking nomads from the Circum-Arctic region (see here for a recent history of Samoyedic Enets), which justifies their more recent radical ‘northern shift’.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

This late acquisition of the language by Palaeo-Siberian nomads (without much population replacement) also justifies the wide PCA clusters of very small Siberian populations. See for example in the PCA from Tambets et al. (2018):

uralic-ugric-samoyedic-modern-clines
Approximate Ugric and Samoyedic clines (exluding apparent outliers). Modified from Tambets et al. (2018). Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations

For their relationship with modern Mansi, we have information on Hungarian conqueror populations from Neparáczki et al. (2018):

Moreover, Y, B and N1a1a1a1a Hg-s have not been detected in Finno-Ugric populations [80–84], implying that the east Eurasian component of the Conquerors and Finno-Ugric people are probably not directly related. The same inference can be drawn from phylogenetic data, as only two Mansi samples appeared in our phylogenetic trees on the side branches (S1 Fig, Networks; 1, 4) suggesting that ancestors of the Mansis separated from Asian ancestors of the Conquerors a long time ago. This inference is also supported by genomic Admixture analysis of Siberian and Northeastern European populations [85], which revealed that Mansis received their eastern Siberian genetic component approximately 5–7 thousand years ago from ancestors of modern Even and Evenki people. Most likely the same explanation applies to the Y-chromosome N-Tat marker which originated from China [86,87] and its subclades are now widespread between various language groups of North Asia and Eastern Europe [88].

The genetic picture of Hungarians (their formed cline with Mansi and their haplogroups) may be quite useful for the true admixture found originally in Mansi peoples at the beginning of the Iron Age. By now it is clear even from modern populations that Steppe_MLBA ancestry accompanied the Uralic expansion to the east (roughly approximated in the graphic with Afanasievo_EBA + Bichon_LP EasternHG_M):

siberian-population-expansions
Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups. From Sikora et al. (2018).

Continue reading the final post of the series: Corded Ware—Uralic (IV): Haplogroups R1a and N in Finno-Ugric and Samoyedic.

Related

  • The traditional multilingualism of Siberian populations
  • Iron Age bottleneck of the Proto-Fennic population in Estonia
  • Y-DNA haplogroups of Tuvinian tribes show little effect of the Mongol expansion
  • Corded Ware—Uralic (I): Differences and similarities with Yamna
  • Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups
  • The Iron Age expansion of Southern Siberian groups and ancestry with Scythians
  • Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)
  • Mitogenomes from Avar nomadic elite show Inner Asian origin
  • On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  • Oldest N1c1a1a-L392 samples and Siberian ancestry in Bronze Age Fennoscandia
  • Consequences of Damgaard et al. 2018 (III): Proto-Finno-Ugric & Proto-Indo-Iranian in the North Caspian region
  • The concept of “Outlier” in Human Ancestry (III): Late Neolithic samples from the Baltic region and origins of the Corded Ware culture
  • Genetic prehistory of the Baltic Sea region and Y-DNA: Corded Ware and R1a-Z645, Bronze Age and N1c
  • More evidence on the recent arrival of haplogroup N and gradual replacement of R1a lineages in North-Eastern Europe
  • Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population
  • New Ukraine Eneolithic sample from late Sredni Stog, near homeland of the Corded Ware culture
  • Corded Ware—Uralic (II): Finno-Permic and the expansion of N-L392/Siberian ancestry

    finno-ugric-samoyedic

    This is the second of four posts on the Corded Ware—Uralic identification:

    I read from time to time that “we have not sampled Uralic speakers yet”, and “we are waiting to see when Uralic-speaking peoples are sampled”. Are we, though?

    Proto-language homelands are based on linguistic data, such as guesstimates for dialectal evolution, loanwords and phonetic changes for language contacts, toponymy for ancient territories, etc. depending on the available information. The trace is then followed back, using available archaeological data, from the known historic speakers and territory to the appropriate potential prehistoric cultures. Only then can genetic analyses help us clarify the precise prehistoric population movements that better fit the models.

    uralic-language-family
    The traditional family tree of the Uralic branches. Kallio (2014)

    The linguistic homeland

    We thought – using linguistic guesstimates and fitting prehistoric cultures and their expansion – that Yamna was the Late Proto-Indo-European culture, so when Yamna was sampled, we had Late Proto-Indo-Europeans sampled. Simple deduction.

    We thought that north-eastern Europe was a Uralic-speaking area during the Neolithic:

    • For those supporting a western continuity (and assuming CWC was Indo-European), the language was present at least since the Comb Ware culture, potentially since the Mesolithic.
    • For those supporting a late introduction into Finland, Uralic expanded the latest with Abashevo-related movements after its incorporation of Volosovo and related hunter-gatherers.

    The expansion to the east must have happened through progressive infiltrations with Seima-Turbino / Andronovo-related expansions.

    uralic-time-space
    Some datings for the traditional proto-stages from Uralic to Finnic. Kallio (2014).

    Finding the linguistic homeland going backwards can be described today as follows:

    I. Proto-Fennic homeland

    Based on the number of Baltic loanwords, not attested in the more eastern Uralic branches (and reaching only partially Mordvinic), the following can be said about western Finno-Permic languages (Junttila 2014):

    The Volga-Kama Basin lies still too far east to be included in a list of possible contact locations. Instead, we could look for the contact area somewhere between Estonia in the west and the surroundings of Moscow in the east, a zone with evidence of Uralic settlement in the north and Baltic on the south side.

    The only linguistically well-grounded version of the Stone Age continuation theory was presented by Mikko Korhonen in 1976. Its validity, however, became heavily threatened when Koivulehto 1983a-b proved the existence of a Late Proto-Indo-European or Pre-Baltic loanword layer in Saami, Finnic, and Mordvinic. Since this layer must precede the Baltic one and it was presumably acquired in the Baltic Sea region, Koivulehto posited it on the horizon of the Battle Axe period. This forces a later dating for the Baltic–Finnic contacts.

    Today the Battle Axe culture is dated at 3200 to 3000 BC, a period far too remote to correspond linguistically with Proto-Baltic (Kallio 1998a).

    Since the Baltic contacts began at a very initial phase of Proto-Finnic, the language must have been relatively uniform at that time. Hence, if we consider that the layer of Baltic loanwords may have spread over the Gulf of Finland at that time, we could also insist that the whole of the Proto-Finnic language did so.

    migration-theory
    Prehistoric Balts as the southern neighbours of Proto-Finnic speakers. 1 = The approximated area of Proto-Uralic. 2 = The approximated area of Finnic during the Iron Age. 3 = The area of ancient Baltic hydronyms. 4 = The area of Baltic languages in about 1200 AD. 5 = The problem: When did Uralic expand westwards and when did it meet Baltic? Junntila (2012).

    II. Proto-Finno-Saamic homeland

    The evidence of continued Palaeo-Germanic loanwords (from Pre- to Proto-Germanic stages) is certainly the most important data to locate the Finno-Saamic homeland, and from there backwards into the true Uralic homeland. Following Kallio (2017):

    (…) the loanword evidence furthermore suggests that the ancestors of Finnic and Saamic had at least phonologically remained very close to Proto-Uralic as late as the Bronze Age (ca. 1700–500 BC). In particular, certain loanwords, whose Baltic and Germanic sources point to the first millennium BC, after all go back to the Finno-Saamic proto-stage, which is phonologically almost identical to the Uralic proto-stage (see especially the table in Sammallahti 1998: 198–202). This being the case, Dahl’s wave model could perhaps have some use in Uralic linguistics, too.

    The presence of Pre-Germanic loanwords points rather to the centuries around the turn of the 2nd – 1st millennium BC or earlier. Proto-Germanic words must have been borrowed before the end of Germanic influence in the eastern Baltic at the beginning of the Iron Age, which sets a clear terminus ante quem ca. 800 BC.

    The arrival of Bell Beaker peoples in Scandinavia ca. 2350 BC, heralding the formation of the Dagger Period, as well as the development of Pre-Germanic in common with Finnic-like populations point to the late 3rd / early 2nd millennium BC as the first time of close interaction through the Baltic region.

    III. Proto-Uralic homeland

    (…) the earliest Indo-European loanwords in the Uralic languages (…) show that Proto-Uralic cannot have been spoken much earlier than Proto-Indo-European dated about 3500 BC (Koivulehto 2001: 235, 257). As the same loanword evidence naturally also shows that the Uralic and Indo-European homelands were not located far from one another, the Uralic homeland can most likely be located in the Middle and Upper Volga region, right north of the Indo-European homeland*. From the beginning of the Subneolithic period about 5900 BC onwards, this region was an important innovation centre, from where several cultural waves spread to the Finnish Gulf area, such as the Sperrings Ware wave about 4900 BC, the Combed Ware wave about 3900 BC, and the Netted Ware wave about 1900 BC (Carpelan & Parpola 2001: 78–90).

    The mainstream position is nowadays trying to hold together the traditional views of Corded Ware as Indo-European, and a Uralic Fennoscandia during the Bronze Age.

    The following is an example of how this “Volosovo/Forest Zone hunter-gatherer theory” of Uralic origins looks like, as a ‘mixture’ of cultures and languages that benefits from the lack of genetic data for certain regions and periods (taken from Parpola 2018):

    asbestos-ware
    The extent of Typical Comb Ware (TCW), Asbestos- and Organic-tempered Wares (AOW) and Volosovo and Garino-Bor cultures; areas with deposits of native copper in Karelia and copperbearing sandstone in Volga-Kama-area are marked dark gray (after Zhuravlev 1977; Krajnov 1987; Nagovitsyn 1987; Chernykh 1992; Carpelan 1999; Zhul´nikov 1999). From Nordqvist et al. (2012).

    The Corded Ware (or Battle Axe) culture intruded into the Eastern Baltic and coastal Finland already around 3100 BCE. The continuity hypothesis maintains that the early Proto-Finnic speakers of the coastal regions, who had come to Finland in the 4th millennium BCE with the Comb-Pitted Ware, coexisted with the Corded Ware newcomers, gradually adopting their pastoral culture and with it a number of NW-IE loanwords, but assimilating the immigrants linguistically.

    The fusion of the Corded Ware and the local Comb-Pitted Ware culture resulted into the formation of the Kiukais culture (c. 2300–1500) of southwestern Finland, which around 2300 received some cultural impulses from Estonia, manifested in the appearance of the Western Textile Ceramic (which is different from the more easterly Textile Ceramic or Netted Ware, and which is first attested in Estonia c. 2700 BCE, cf. Kriiska & Tvauri 2007: 88), and supposed to have been accompanied by an influx of loanwords coming from Proto-Baltic. At the same time, the Kiukais culture is supposed to have spread the custom of burying chiefs in stone cairns to Estonia.

    The coming of the Corded Ware people and their assimilation created a cultural and supposedly also a linguistic split in Finland, which the continuity hypothesis has interpreted to mean dividing Proto-Saami-Finnic unity into its two branches. Baltic Finnic, or simply Finnic, would have emerged in the coastal regions of Finland and in the northern East Baltic, while preforms of Saami would have been spoken in the inland parts of Finland.

    The Nordic Bronze Age culture, correlated above with early Proto-Germanic, exerted a strong influence upon coastal Finland and Estonia 1600–700 BCE. Due to this, the Kiukais culture was transformed into the culture of Paimio ceramics (c. 1600–700 BCE), later continued by Morby ceramics (c. 700 BCE – 200 CE). The assumption is that clear cultural continuity was accompanied by linguistic continuity. Having assimilated the language of the Germanic traders and relatively few settlers of the Bronze Age, the language of coastal Finland is assumed to have reached the stage of Proto-Finnish at the beginning of the Christian era. In Estonia, the Paimio ceramics have a close counterpart in the contemporaneous Asva ceramics.

    Eastern homelands?

    I will not comment on Siberian or Central Asian homeland proposals, because they are obviously not mainstream, still less today when we know that Uralic was certainly in contact with Proto-Indo-European, and then with Pre- and Proto-Indo-Iranian, as supported even by the Copenhagen group in Damgaard et al. (2018).

    This is what Kallio (2017) has to say about the agendas behind such proposals:

    Interestingly, the only Uralicists who generally reject the Central Russian homeland are the Russian ones who prefer the Siberian homeland instead. Some Russians even advocate that the Central Russian homeland is only due to Finnish nationalism or, as one of them put it a bit more tactfully, “the political and ideological situation in Finland in the first decades of the 20th century” (Napolskikh 1995: 4).

    Still, some Finns (and especially those who also belong to the “school who wants it large and wants it early”) simultaneously advocate that exactly the same Central Russian homeland is due to Finnlandisierung (Wiik 2001: 466).

    Hence, for those of you willing to learn about fringe theories not related to North-Eastern Europe, you also have then the large and early version of the Uralic homeland, with Wiik’s Palaeolithic continuity of Uralic peoples spread over all of eastern and central Europe (hence EHG and R1a included):

    atlantic-finnic-theory
    Palaeolithic boat peoples and Finno-Ugric. Source

    These fringe Finnish theories look a lot like the Corded Ware expansion… Better not go the Russian or Finnish nationalist ways? Agreed then, let’s discuss only rational proposals based on current data.

    The archaeological homeland

    For a detailed account of the Corded Ware expansion with Battle Axe, Fatyanovo-Balanovo, and Abashevo groups into the area, you can read my recent post on the origin of R1a-Z645.

    1. Textile ceramics

    During the 2nd millennium BC, textile impressions appear in pottery as a feature across a wide region, from the Baltic area through the Volga to the Urals, in communities that evolve from late Corded Ware groups without much external influence.

    While it has been held that this style represents a north-west expansion from the Volga region (with the “Netted Ware” expansion), there are actually at least two original textile styles, one (earlier) in the Gulf of Finland, common in the Kiukainen pottery, which evolves into the Textile ware culture proper, and another which seems to have an origin in the Middle Volga region to the south-east.

    The Netted ware culture is the one that apparently expands into inner Finland – a region not densely occupied by Corded Ware groups until then. There are, however, no clear boundaries between groups of both styles; textile impressions can be easily copied without much interaction or population movement; and the oldest textile ornamentation appeared on the Gulf of Finland. Hence the tradition of naming all as groups of Textile ceramics.

    textile-ware-cultures
    Maximum distribution of Textile ceramics during the Bronze Age (ca. 2000-800 BC). Asbestos-tempered ware lies to the north (and is also continued in western Fennoscandia).

    The fact that different adjacent groups from the Gulf of Finland and Forest Zone share similar patterns making it very difficult to differentiate between ‘Netted Ware’ or ‘Textile Ware’ groups points to:

    • close cultural connections that are maintained through the Gulf of Finland and the Forest Zone after the evolution of late Corded Ware groups; and
    • no gross population movements in the original Battle Axe / Fatyanovo regions, except for the expansion of Netted Ware to inner Finland, Karelia, and the east, where the scattered Battle Axe finds and worsening climatic conditions suggest most CWC settlements disappeared at the end of the 3rd millennium BC and recovered only later.

    NOTE. This lack of population movement – or at least significant replacement by external, non-CWC groups – is confirmed in genetic investigation by continuity of CWC-related lineages (see below).

    The technology present in Textile ceramics is in clear contrast to local traditions of sub-Neolithic Lovozero and Pasvik cultures of asbestos-tempered pottery to the north and east, which point to a different tradition of knowledge and learning network – showing partial continuity with previous asbestos ware, since these territories host the main sources of asbestos. We have to assume that these cultures of northern and eastern Fennoscandia represent Palaeo-European (eventually also Palaeo-Siberian) groups clearly differentiated from the south.

    The Chirkovo culture (ca. 1800-700 BC) forms on the middle Volga – at roughly the same time as Netted Ware formed to the west – from the fusion of Abashevo and Balanovo elites on Volosovo territory, and is also related (like Abashevo) to materials of the Seima-Turbino phenomenon.

    Bronze Age ethnolinguistic groups

    In the Gulf of Finland, Kiukainen evolves into the Paimio ceramics (in Finland) — Asva Ware (in Estonia) culture, which lasts from ca. 1600 to ca. 700 BC, probably representing an evolving Finno-Saamic community, while the Netted Ware from inner Finland (the Sarsa and Tomitsa groups) and the groups from the Forest Zone possibly represent a Volga-Finnic community.

    NOTE. Nevertheless, the boundaries between Textile ceramic groups are far from clear, and inner Finland Netted Ware groups seem to follow a history different from Netted Ware groups from the Middle and Upper Volga, hence they could possibly be identified as an evolving Pre-Saamic community.

    Based on language contacts, with Early Baltic – Early Finnic contacts starting during the Iron Age (ca. 500 BC onwards), this is a potential picture of the situation at the end of this period, when Germanic influence on the coast starts to fade, and Lusatian culture influence is stronger:

    aikio-finnic-saamic
    The linguistic situation in Lapland and the northern Baltic Sea Area in the Early Iron Age prior to the expansion of Saami languages; the locations of the language groups are schematic. The black line indicates the distribution of Saami languages in the 19th century, and the gray line their approximate maximal distribution before the expansion of Finnic. Aikio (2012)

    The whole Finno-Permic community remains thus in close contact, allowing for the complicated picture that Kallio mentions as potentially showing Dahl’s wave model for Uralic languages.

    Genetic data shows a uniform picture of these communities, with exclusively CWC-derived ancestry and haplogroups. So in Mittnik et al. (2018) all Baltic samples show R1a-Z645 subclades, while the recent session on Estonian populations in ISBA 8 (see programme in PDF) clearly states that:

    [Of the 24 Bronze Age samples from stone-cist graves] all 18 Bronze Age males belong to R1a.

    Regarding non-Uralic substrates found in Saami, supposedly absorbed during the expansion to the north (and thus representing languages spoken in northern Fennoscandia during the Bronze Age) this is what Aikio (2012) has to say:

    The Saami substrate in the Finnish dialects thus reveals that also Lakeland Saami languages had a large number of vocabulary items of obscure origin. Most likely many of these words were substrate in Lakeland Saami, too, and ultimately derive from languages spoken in the region before Saami. In some cases the loan origin of these words is obvious due to their secondary Proto-Saami vowel combinations such as *ā–ë in *kāvë ‘bend; small bay’ and *šāpšë ‘whitefish’. This substrate can be called ‘Palaeo-Lakelandic’, in contrast to the ‘Palaeo-Laplandic’ substrate that is prominent in the lexicon of Lapland Saami. As the Lakeland Saami languages became extinct and only fragments of their lexicon can be reconstructed via elements preserved in Finnish place-names and dialectal vocabulary, we are not in a position to actually study the features of this Palaeo-Lakelandic substrate. Its existence, however, appears evident from the material above.

    If we wanted to speculate further, based on the data we have now, it is very likely that two opposing groups will be found in the region:

    A) The central Finnish group, in this hypothesis the Palaeo-Lakelandic group, made up of the descendants of the Mesolithic pioneers of the Komsa and Suomusjärvi cultures, and thus mainly Baltic HG / Scandinavian HG ancestry and haplogroups I / R1b(xM269) (see more on Scandinavian HG).

    siberian-ancestry-map
    Frequency map of the so-called ‘Siberian’ component. From Tambets et al. (2018).

    B) Lapland and Kola were probably also inhabited by similar Mesolithic populations, until it was eventually assimilated by expanding Siberian groups (of Siberian ancestry and N1c-L392 lineages) from the east – entering the region likely through the Kola peninsula – , forming the Palaeo-Laplandic group, which was in turn later replaced by expanding Proto-Saamic groups.

    Siberian ancestry appears first in Fennoscandia at Bolshoy Oleni Ostrov ca. 1520 BC, with haplogroup N1c-L392 (2 samples, BOO002 and BOO004), and with Siberian ancestry. This is their likely movement in north-eastern Europe, from Lamnidis et al (2018):

    The large Siberian component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millenium BC, and the spread of even-based arrowheads in Lapland from 1,900 BCE. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the east. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period.

    saamic-lovozero-pca
    PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

    Obviously, these groups of asbestos-tempered ware are not connected to the Uralic expansion. From the same paper:

    The fact that the Siberian genetic component is consistently shared among Uralic-speaking populations, with the exceptions of Hungarians and the non-Uralic speaking Russians, would make it tempting to equate this component with the spread of Uralic languages in the area. However, such a model may be overly simplistic. First, the presence of the Siberian component on the Kola Peninsula at ca. 4000 yBP predates most linguistic estimates of the spread of Uralic languages to the area. Second, as shown in our analyses, the admixture patterns found in historic and modern Uralic speakers are complex and in fact inconsistent with a single admixture event. Therefore, even if the Siberian genetic component partly spread alongside Uralic languages, it likely presented only an addition to populations carrying this component from earlier.

    2. The Early Iron Age

    The Ananino culture appears in the Vyatka-Kama area, famed for its metallurgy, with traditions similar to the North Pontic area, by this time developing Pre-Sauromatian traditions. It expanded to the north in the first half of the first millennium BC, remaining in contact with the steppes, as shown by the ‘Scythian’ nature of its material culture.

    NOTE. The Ananino culture can be later followed through its zoomorphic styles into Iron Age Pjanoborskoi and Gljadenovskoi cultures, later to Ural-Siberian Middle Age cultures – Itkuska, Ust’-Poluiska, Kulaiska cultures –, which in turn can be related as prototypes of medieval Permian styles.

    ananino-culture-homeland
    Territory of (early and maximum) Ananino material culture. Vasilyev (2002).

    At the same time as the Ananino culture begins to expand ca. 1000 BC, the Netted Ware tradition from the middle Oka expanded eastwards into the Oka-Vyatka interfluve of the middle Volga region, until then occupied by the Chirkovo culture. Eventually the Akozino or Akhmylovo group (ca. 800-300 BC) emerged from the area, showing a strong cultural influence from the Ananino culture, by that time already expanding into the Cis-Urals region.

    The Akozino culture remains nevertheless linked to the western Forest Zone traditions, with long-ranging influences from as far as the Lusatian culture in Poland (in metallurgical techniques), which at this point is also closely related with cultures from Scandinavia (read more on genetics of the Tollense Valley).

    malar-celts-ananino
    Mälar celts and molds for casting (a) and the main distribution area (в) of Mälar-type celts of the Mälar type in the Volga-Kama region (according to Kuzminykh 1983: figure 92) and Scandinavia (according to Baudou 1960: Karte 10); Ananino celts and molds for casting (б) and the main distribution area (г) of the distribution of the celts of the Ananino type in the Volga-Kama area (according to Kuzminykh 1983: figure 9); dagger of Ananino type (д).Map from (Yushkova 2010)

    Different materials from Akozino reach Fennoscandia late, at the end of the Bronze Age and beginning of the Early Iron Age, precisely when the influence of the Nordic Bronze Age culture on the Gulf of Finland was declining.

    This is a period when Textile ceramic cultures in north-eastern Europe evolve into well-armed chiefdom-based groups, with each chiefdom including thousands or tens of thousands, with the main settlements being hill forts, and those in Fennoscandia starting ca. 1000-400 BC.

    Mälar-type celts and Ananino-type celts appear simultaneously in Fennoscandia and the Forest Zone, with higher concentrations in south-eastern Sweden (Mälaren) and the Volga-Kama region, supporting the existence of a revived international trade network.

    akozino-malar-axes-fennoscandia
    Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

    The Paimio—Asva Ware culture evolves (ca. 700-200 BC) into the Morby (in Finland) — Ilmandu syle (in Estonia, Latvia, and Mälaren) culture. The old Paimio—Asva tradition continues side by side with the new one, showing a clear technical continuity with it, but with ornamentation compared to the Early Iron Age cultures of the Upper Volga area. This new south-eastern influence is seen especially in:

    • Akozino-Mälar axes (ca. 800-500 BC): introduced into the Baltic area in so great numbers – especially south-western Finland, the Åland islands, and the Mälaren area of eastern Sweden – that it is believed to be accompanied by a movement of warrior-traders of the Akozino-Akhmylovo culture, following the waterways that Vikings used more than a thousand years later. Rather than imports, they represent a copy made with local iron sources.
    • Tarand graves (ca. 500 BC – AD 400): these ‘mortuary houses’ appear in the coastal areas of northern and western Estonia and the islands, at the same time as similar graves in south-western Finland, eastern Sweden, northern Latvia and Courland. Similar burials are found in Akozino-Akhmylovo, with grave goods also from the upper and middle Volga region, while grave goods show continuity with Textile ware.

    The use of asbestos increases in mainland Finnish wares with Kjelmøy Ware (ca. 700 BC – AD 300), which replaced the Lovozero Ware; and in the east in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (ca. 700-500 BC – AD 200), where they replaced the previous Sarsa-Tomitsa ceramics.

    The Gorodets culture appears during the Scythian period in the forest-steppe zone north and west of the Volga, shows fortified settlements, and there are documented incursions of Gorodets iron makers into the Samara valley, evidenced by deposits of their typical pottery and a bloom or iron in the region.

    Iron Age ethnolinguistic groups

    According to (Koryakova and Epimakhov 2007):

    It is commonly accepted by archaeology, ethnography, and linguistics that the ancestors of the Permian peoples (the Udmurts, Komi-Permians, and Komi-Zyryans) left the sites of Ananyino cultural intercommunity.

    NOTE. For more information on the Late Metal Ages and Early Medieval situation of Finno-Ugric languages, see e.g. South-eastern contact area of Finnic languages in the light of onomastics (Rahkonen 2013).

    finno-saamic-mordvin
    Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2011)

    Certain innovations shared between Proto-Fennic (identified with the Gulf of Finland) and Proto-Mordvinic (from the Gorodets culture) point to their close contact before the Proto-Fennic expansion, and thus to the identification of Gorodets as Proto-Mordvinic, hence Akozino as Volgaic (Parpola 2018):

    • the noun paradigms and the form and function of individual cases,
    • the geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
    • the change of numeral *luka ‘ten’ with *kümmen.
    • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature (hence possibly from Siberian influence in north-eastern Europe).
    ananino-textile-ware-cultures
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Purple area show likely zones of predominant Siberian ancestry and N1c-L392 lineages. Blue areas likely zones of predominant CWC ancestry and R1a-Z645 lineages. Fading purple arrows represent likely stepped movements of haplogroup N1c-L392 for centuries (Siberian → Ananino → Akozino → Fennoscandia), found eventually in tarand graves. Blue arrows represent eventual expansions of Fennic and (partially displaced) Saamic. Modified image from Vasilyev (2002).

    The introduction of a strongly hierarchical chiefdom system can quickly change the pre-existing social order and lead to a major genetic shift within generations, without a radical change in languages, as shown in Sintashta-Potapovka compared to the preceding Poltavka society (read more about Sintashta).

    Fortified settlements in the region represented in part visiting warrior-traders settled through matrimonial relationships with local chiefs, eager to get access to coveted goods and become members of a distribution network that could guarantee them even military assistance. Such a system is also seen synchronously in other cultures of the region, like the Nordic Bronze Age and Lusatian cultures (Parpola 2013).

    The most likely situation is that N1c subclades were incorporated from the Circum-Artic region during the Anonino (Permic) expansion to the north, later emerged during the formation of the Akozino group (Volgaic, under Anonino influence), and these subclades in turn infiltrated among the warrior traders that spread all over Fennoscandia and the eastern Baltic (mainly among Fennic, Saamic, Germanic, and Balto-Slavic peoples), during the age of hill forts, creating alliances partially based on exogamy strategies (Parpola 2013).

    Over the course of these events, no language change is necessary in any of the cultures involved, since the centre of gravity is on the expanding culture incorporating new lineages:

    • first on the Middle Volga, when Ananino expands to the north, incorporatinig N1c lineages from the Circum-Artic region.
    • then with the expansion of the Akozino-Akhmylovo culture into Ananino territory, admixing with part of its population;
    • then on the Baltic region, when materials are imported from Akozino into Fennoscandia and the eastern Baltic (and vice versa), with local cultures being infiltrated by foreign (Akozino) warrior-traders and their materials;
    • and later with the different population movements that led eventually to a greater or lesser relevance of N1c in modern Finno-Permic populations.

    To argue that this infiltration and later expansion of lineages changed the language in one culture in one of these events seems unlikely. To use this argument of “opposite movement of ethnic and language change” for different successive events, and only on selected regions and cultures (and not those where the greatest genetic and cultural impact is seen, like e.g. Sweden for Akozino materials) is illogical.

    NOTE. Notice how I write here about “infiltration” and “lineages”, not “migration” or “populations”. To understand that, see below the next section on autosomal studies to compare Bronze Age, Iron Age, Medieval and Modern Estonians, and see how little the population of Estonia (homeland of Proto-Fennic and partially of Proto-Finno-Saamic) has changed since the Corded Ware migrations, suggesting genetic continuity and thus mostly close inter-regional and intra-regional contacts in the Forest Zone, hence a very limited impact of the absorbed N1c lineages (originally at some point incorporated from the Circum-Artic region). You can also check on the most recent assessment of R1a vs. N1c in modern Uralic populations.

    Iron Age and later populations

    From the session on Estonian samples on ISBA 8, by Tambets et al.:

    [Of the 13 samples from the Iron Age tarand-graves] We found that the Iron Age individuals do in fact carry chrY hg N3 (…) Furthermore, based on their autosomal data, all of the studied individuals appear closer to hunter-gatherers and modern Estonians than Estonian CWC individuals do.

    EDIT (16 OCT) A recent abstract with Saag as main author (Tambets second) cites 3 out of 5 sampled Iron Age individuals as having haplogroup N3.

    EDIT (28 OCT): Notice also the appearance of N1a1a1a1a1a1a1-L1025 in Lithuania (ca. 300 AD), from Damgaard (Nature 2018); the N1c sample of the Krivichi Pskov Long Barrows culture (ca. 8th-10th c. AD), and N1a1a1a1a1a1a7-Y4341 among late Vikings from Sigtuna (ca. 10th-12th c. AD) in Krzewinska (2018).

    estonian-pca
    PCA of Estonian samples from the Bronze Age, Iron Age and Medieval times. Tambets et al. (2018, upcoming).

    Looking at the plot, the genetic inflow marking the change from the Bronze Age to the Iron Age looks like an obvious expansion of nearby peoples with CWC-related ancestry, i.e. likely from the south-east, near the Middle Volga, where influence of steppe peoples is greater (hence likely Akozino) into a Proto-Fennic population already admixed (since the arrival of Corded Ware groups) with Comb Ware-like populations.

    All of these groups were probably R1a-Z645 (likely R1a-Z283) since the expansion of Corded Ware peoples, with an introduction of some N1c lineages precisely during this Iron Age period. This infiltration of N1c-L392 with Akozino is obviously not directly related to Siberian cultures, given what we know about the autosomal description of Estonian samples.

    Rather, N1c-L392 lineages were likely part of the incoming (Volgaic) Akozino warrior-traders, who settled among developing chiefdoms based on hill fort settlements of cultures all over the Baltic area, and began to appear thus in some of the new tarand graves associated with the Iron Age in north-eastern Europe.f

    A good way to look at this is to realize that no new cluster appears compared to the data we already have from Baltic LN and BA samples from Mittnik et al. (2018), so the Estonian BA and IA clusters must be located (in a proper PCA) in the cline from Pit-Comb Ware culture through Baltic BA to Corded Ware groups:

    baltic-samples
    PCA and ADMIXTURE analysis reflecting three time periods in Northern European prehistory. a Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). Population labels of modern West Eurasians are given in Supplementary Fig. 7 and a zoomed-in version of the European Late Neolithic and Bronze Age samples is provided in Supplementary Fig. 8. b Ancestral components in ancient individuals estimated by ADMIXTURE (k = 11)

    This genetic continuity from Corded Ware (the most likely Proto-Uralic homeland) to the Proto-Fennic and Proto-Saamic communities in the Gulf of Finland correlates very well with the known conservatism of Finno-Saamic phonology, quite similar to Finno-Ugric, and both to Proto-Uralic (Kallio 2017): The most isolated region after the expansion of Corded Ware peoples, the Gulf of Finland, shielded against migrations for almost 1,500 years, is then the most conservative – until the arrival of Akozino influence.

    NOTE. This has its parallel in the phonetic conservatism of Celtic or Italic compared to Finno-Ugric-influenced Germanic, Balto-Slavic, or Indo-Iranian.

    Only later would certain regions (like Finland or Lappland) suffer Y-DNA bottlenecks and further admixture events associated with population displacements and expansions, such as the spread of Fennic peoples from their Estonian homeland (evidenced by the earlier separation of South Estonian) to the north and east:

    diversification-finnic
    The Finnic family tree. Kallio (2014).

    The initial Proto-Fennic expansion was probably coupled with the expansion of Proto-Saami to the north, with the Kjelmøy Ware absorbing the Siberian population of Lovozero Ware, and potentially in inner Finland and Karelia with the Luukonsaari and Sirnihta wares (Carpelan and Parpola 2017).

    This Proto-Saami population expansion from the mainland to the north, admixing with Lovozero-related peoples, is clearly reflected in the late Iron Age Saamic samples from Levänluhta (ca. 400-800 AD), as a shift (of 2 out of 3 samples) to Siberian-like ancestry from their original CWC_Baltic-like situation (see PCA from Lamnidis et al. 2018 above).

    Also, Volgaic and Permic populations from inner Finland and the Forest Zone to the Cis-Urals and Circum-Artic regions probably incorporate Siberian ancestry and N1c-L392 lineages during these and later population movements, while the westernmost populations – Estonian, Mordvinic – remain less admixed (see PCA from Tambets et al. 2018 below).

    We also have data of N1c-L392 in Nordic territory in the Middle Ages, proving its likely strong presence in the Mälaren area since the Iron Age, with the arrival of Akozino warrior traders. Similarly, it is found among Balto-Slavic groups along the eastern Baltic area. Obviously, no language change is seen in Nordic Bronze Age and Lusatian territory, and none is expected in Estonian or Finnish territory, either.

    Therefore, no “N1c-L392 + Siberian ancestry” can be seen expanding Finno-Ugric dialects, but rather different infiltrations and population movements with limited effects on ancestry and Y-DNA composition, depending on the specific period and region.

    estonians-hungarians-mordvinian
    Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected. See Tambets et al. (2018) for more information.

    An issue never resolved

    Because N1c-L392 subclades & Siberian ancestry, which appear in different proportions and with different origins among some modern Uralic peoples, do not appear in cultures supposed to host Uralic-speaking populations until the Iron Age, people keep looking into any direction to find the ‘true’ homeland of those ‘Uralic N1c peoples’? Kind of a full circular reasoning, anyone? The same is valid for R1a & steppe ancestry being followed for ‘Indo-Europeans’, or R1b-P312 & Neolithic farmer ancestry being traced for ‘Basques’, because of their distribution in modern populations.

    I understand the caution of many pointing to the need to wait and see how samples after 2000 BC are like, in every single period, from the middle and upper Volga, Kama, southern Finland, and the Forest Zone between Fennoscandia and the steppe. It’s like waiting to see how people from Western Yamna and the Carpathian Basin after 3000 BC look like, to fill in what is lacking between East Yamna and Bell Beakers, and then between them and every single Late PIE dialect.

    But the answer for Yamna-Bell Beaker-Poltavka peoples during the Late PIE expansion is always going to be “R1b-L23, but with R1a-Z645 nearby” (we already have a pretty good idea about that); and the answer for the Forest Zone and northern Cis- and Trans-Urals area – during the time when Uralic languages are known to have already been spoken there – is always going to be “R1a-Z645, but with haplogroup N nearby”, as is already clear from the data on the eastern Baltic region.

    So, without a previously proposed model as to where those amateurs expressing concern about ‘not having enough data’ expect to find those ‘Uralic peoples’, all this waiting for the right data looks more like a waiting for N1c and Siberian ancestry to pop up somewhere in the historic Uralic-speaking area, to be able to say “There! A Uralic-speaking male!”. Not a very reasonable framework to deal with prehistoric peoples and their languages, I should think.

    But, for those who want to do that, let me break the news to you already:

    ananino-culture-balto-slavic
    First N1c – Finno-Ugric person arrives in Estonia to teach Finno-Saamic to Balto-Slavic peoples.

    And here it is, an appropriate fantasy description of the ethnolinguistic groups from the region. You are welcome:

    • During the Bronze Age, late Corded Ware groups evolve as the western Textile ware Fennic Balto-Slavic group in the Gulf of Finland; the Netted Ware Saamic Balto-Slavic group of inner Finland; the south Netted Ware / Akozino Volgaic Balto-Slavic groups of the Middle Volga; and the Anonino Permic Balto-Slavic group in the north-eastern Forest Zone; all developing still in close contact with each other, allowing for common traits to permeate dialects.
    • These Balto-Slavic groups would then incorporate west of the Urals during and after the Iron Age (ca. 800-500 BC first, and also later during their expansion to the north) limited ancestry and lineages from eastern European hunter-gatherer groups of Palaeo-European Fennic and Palaeo-Siberian Volgaic and Permic languages from the Circum-Artic region, but they adopted nevertheless the language of the newcomers in every single infiltration of N1c lineages and/or admixture with Siberian ancestry. Oh and don’t forget the Saamic peoples from central Sweden, of course, the famous N1c-L392 ‘Rurikid’ lineages expanding Saamic to the north and replacing Proto-Germanic…

    The current model for those obsessed with modern Y-DNA is, therefore, that expanding Neolithic, Bronze Age and Iron Age cultures from north-eastern Europe adopted the languages of certain lineages originally from sub-Neolithic (Scandinavian and Siberian) hunter-gatherer populations of the Circum-Artic region; lineages that these cultures incorporated unevenly during their expansions. Hmmmm… Sounds like an inverse Western movie, where expanding Americans end up speaking Apache, and the eastern coast speaks Spanish until Italian migrants arrive and make everyone speak English… or something. A logic, no-nonsense approach to ethnolinguistic identification.

    I kid you not, this is the kind of models we are going to see very soon. In 2018 and 2019, with ancient DNA able to confirm or reject archaeological hypotheses based on linguistic data, people will keep instead creating new pet theories to support preconceived ideas based on the Y-DNA prevalent among modern populations. That is, information available in the 2000s.

    So what’s (so much published) ancient DNA useful for, exactly?

    [Next post on the subject: Corded Ware—Uralic (III): Seima-Turbino and the Ugric and Samoyedic expansion]

    Related

    Haplogroup R1a and CWC ancestry predominate in Fennic, Ugric, and Samoyedic groups

    uralic-languages

    Open access Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations, by Tambets et al. Genome Biology (2018).

    Interesting excerpts (emphasis mine):

    Methods

    A total of 286 samples of Uralic-speaking individuals, of those 121 genotyped in this study, were analysed in the context of 1514 Eurasian samples (including 14 samples published for the first time) based on whole genome single nucleotide polymorphisms (SNPs) (Additional file 1: Table S1). All these samples, together with the larger sample set of Uralic speakers, were characterized for mtDNA and chrY markers.

    The question as which material cultures may have co-spread together with proto-Uralic and Uralic languages depends on the time estimates of the splits in the Uralic language tree. Deeper age estimates (6,000 BP) of the Uralic language tree suggest a connection between the spread of FU languages from the Volga River basin towards the Baltic Sea either with the expansion of the Neolithic culture of Combed Ware, e.g. [6, 7, 17, 26] or with the Neolithic Volosovo culture [7]. Younger age estimates support a link between the westward dispersion of Proto-Finno-Saamic and eastward dispersion of Proto-Samoyedic with a BA Sejma-Turbino (ST) cultural complex [14, 18, 27, 28] that mediated the diffusion of specific metal tools and weapons from the Altai Mountains over the Urals to Northern Europe or with the Netted Ware culture [23], which succeeded Volosovo culture in the west. It has been suggested that Proto-Uralic may have even served as the lingua franca of the merchants involved in the ST phenomenon [18]. All these scenarios imply that material culture of the Baltic Sea area in Europe was influenced by cultures spreading westward from the periphery of Europe and/or Siberia. Whether these dispersals involved the spread of both languages and people remains so far largely unknown.

    The population structure of Uralic speakers

    To contextualize the autosomal genetic diversity of Uralic speakers among other Eurasian populations (Additional file 1: Table S1), we first ran the principal component (PC) analysis (Fig. 2a, Additional file 3: Figure S1). The first two PCs (Fig. 2a, Additional file 3: Figure S1A) sketch the geography of the Eurasian populations along the East-West and North-South axes, respectively. The Uralic speakers, along with other populations speaking Slavic and Turkic languages, are scattered along the first PC axis in agreement with their geographic distribution (Figs. 1 and 2a) suggesting that geography is the main predictor of genetic affinity among the groups in the given area. Secondly, in support of this, we find that FST-distances between populations (Additional file 3: Figure S2) decay in correlation with geographical distance (Pearson’s r = 0.77, p < 0.0001). On the UPGMA tree based on these FST-distances (Fig. 2b), the Uralic speakers cluster into several different groups close to their geographic neighbours.

    uralic-pca
    Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations.

    We next used ADMIXTURE [48], which presents the individuals as composed of inferred genetic components in proportions that maximize Hardy-Weinberg and linkage equilibrium in the overall sample (see the ‘Methods’ section for choice of presented K). Overall, and specifically at lower values of K, the genetic makeup of Uralic speakers resembles that of their geographic neighbours. The Saami and (a subset of) the Mansi serve as exceptions to that pattern being more similar to geographically more distant populations (Fig. 3a, Additional file 3: S3). However, starting from K = 9, ADMIXTURE identifies a genetic component (k9, magenta in Fig. 3a, Additional file 3: S3), which is predominantly, although not exclusively, found in Uralic speakers. This component is also well visible on K = 10, which has the best cross-validation index among all tests (Additional file 3: S3B). The spatial distribution of this component (Fig. 3b) shows a frequency peak among Ob-Ugric and Samoyed speakers as well as among neighbouring Kets (Fig. 3a). The proportion of k9 decreases rapidly from West Siberia towards east, south and west, constituting on average 40% of the genetic ancestry of FU speakers in Volga-Ural region (VUR) and 20% in their Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes; Fig. 3a). The proportion of this component among the Saami in Northern Scandinavia is again similar to that of the VUR FU speakers, which is exceptional in the geographic context. It is also notable that North Russians, sampled from near the White Sea, differ from other Russians by sporting higher proportions of k9 (10–15%), which is similar to the values we observe in their Finnic-speaking neighbours. Notably, Estonians and Hungarians, who are geographically the westernmost Uralic speakers, virtually lack the k9 cluster membership.

    siberian-ancestry
    Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. a Individual ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are indicated with blue (Finno-Ugric) or orange (Samoyedic). The full bar plot is presented in Additional file 3: Figure S3. b Frequency map of component k9

    We also tested the different demographic histories of female and male lineages by comparing outgroup f3 results for autosomal and X chromosome (chrX) data for pairs of populations (Estonians, Udmurts or Khanty vs others) with high versus low probability to share their patrilineal ancestry in chrY hg N (see the ‘Methods’ section, Additional file 3: Figure S13). We found a minor but significant excess of autosomal affinity relative to chrX for pairs of populations that showed a higher than 10% chance of two randomly sampled males across the two groups sharing their chrY ancestry in hg N3-M178, compared to pairs of populations where such probability is lower than 5% (Additional file 3: Figure S13).

    In sum, these results suggest that most of the Uralic speakers may indeed share some level of genetic continuity via k9, which, however, also extends to the geographically close Turkic speakers.

    uralic-modern-europe

    Identity-by-descent

    We found that it is the admixture with the Siberians that makes the Western Uralic speakers different from the tested European populations (Additional file 3: Figure S4A-F, H, J, L). Differentiating between Estonians and Finns, the Siberians share more derived alleles with Finns, while the geographic neighbours of Estonians (and Finns) share more alleles with Estonians (Additional file 3: Figure S4M). Importantly, Estonians do not share more derived alleles with other Finnic, Saami, VUR FU or Ob-Ugric-speaking populations than Latvians (Additional file 3: Figure S4O). The difference between Estonians and Latvians is instead manifested through significantly higher levels of shared drift between Estonians and Siberians on the one hand and Latvians and their immediate geographic neighbours on the other hand. None of the Uralic speakers, including linguistically close Khanty and Mansi, show significantly closer affinities to the Hungarians than any non-FU population from NE Europe (Additional file 3: Figure S4R).

    ibd-uralic-genetics
    Share of ~ 1–2 cM identity-by-descent (IBD) segments within and between regional groups of Uralic speakers. For each Uralic-speaking population representing lines in this matrix, we performed permutation test to estimate if it shows higher IBD segment sharing with other population (listed in columns) as compared to their geographic control group. Empty rectangles indicate no excess IBD sharing, rectangles filled in blue indicate comparisons when statistically significant excess IBD sharing was detected between one Uralic-speaking population with another Uralic-speaking population (listed in columns), rectangles filled in green mark the comparisons when a Uralic-speaking population shows excess IBD sharing with a non-Uralic-speaking population. For each tested Uralic speaker (matrix rows) populations in the control group that were used to generate permuted samples are indicated using small circles. For example, the rectangle filled in blue for Vepsians and Komis (A) implies that the Uralic-speaking Vepsians share more IBD segments with the Uralic-speaking Komis than the geographic control group for Vepsians, i.e. populations indicated with small circles (Central and North Russians, Swedes, Latvians and Lithuanians). The rectangle filled in green for Vepsians and Dolgans shows that the Uralic-speaking Vepsians share more IBD segments with the non-Uralic-speaking Dolgans than the geographic control group

    Time of Siberian admixture

    The time depth of the Globetrotter (Fig. 5b) inferred admixture events is relatively recent—500–1900 AD (see also complementary ALDER results, in Additional file 13: Table S12 and Additional file 3: Figure S7)—and agrees broadly with the results reported in Busby et al. [55]. A more detailed examination of the ALDER dates, however, reveals an interesting pattern. The admixture events detected in the Baltic Sea region and VUR Uralic speakers are the oldest (800–900 AD or older) followed by those in VUR Turkic speakers (∼1200–1300 AD), while the admixture dates for most of the Siberian populations (>1500 AD) are the most recent (Additional file 3: Figure S7). The West Eurasian influx into West Siberia seen in modern genomes was thus very recent, while the East Eurasian influx into NE Europe seems to have taken place within the first millennium AD (Fig. 5b, Additional file 3: Figure S7).

    Affinities of the Uralic speakers with ancient Eurasians

    We next calculated outgroup f3-statistics [48] to estimate the extent of shared genetic drift between modern and ancient Eurasians (Additional file 14: Table S13, Additional file 3: Figures S8-S9). Consistent with previous reports [45, 50], we find that the NE European populations including the Uralic speakers share more drift with any European Mesolithic hunter-gatherer group than Central or Western Europeans (Additional file 3: Figure S9A-C). Contrasting the genetic contribution of western hunter-gatherers (WHG) and eastern hunter-gatherers (EHG), we find that VUR Uralic speakers and the Saami share more drift with EHG. Conversely, WHG shares more drift with the Finnic and West European populations (Additional file 3: Figure S9A). Interestingly, we see a similar pattern of excess of shared drift between VUR and EHG if we substitute WHG with the aDNA sample from the Yamnaya culture (Additional file 3: Figure S9D). As reported before [2, 45], the genetic contribution of European early farmers decreases along an axis from Southern Europe towards the Ural Mountains (Fig. 6, Additional file 3: Figure S9E-F).

    yamna-cwc-qpgraph-admixture-uralic
    Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. b Admixture proportions (%) of ancestral components. We calculated the admixture proportions summing up the relative shares of a set of intermediate populations to explain the full spectrum of admixture components in the test population. We further did the same for the intermediate node CWC’ and present the proportions of the mixing three components in the stacked column bar of CWC’. Colour codes for ancestral components are as follows: dark green—Western hunter gatherer (WHG’); light green—Eastern hunter gatherer (EHG’); grey—European early farmer (LBK’); dark blue—carriers of Corded Ware culture (CWC’); and dark grey—Siberian. CWC’ consists of three sub-components: blue—Caucasian hunter-gatherer in Yamnaya (CHGinY’); light blue—Eastern hunter-gatherer in Yamnaya (EHGinY’); and light grey—Neolithic Levant (NeolL’)

    We then used the qpGraph software [48] to test alternative demographic scenarios by trying to fit the genetic diversity observed in a range of the extant Finno-Ugric populations through a model involving the four basic European ancestral components: WHG, EHG, early farmers (LBK), steppe people of Yamnaya/Corded Ware culture (CWC) and a Siberian component (Fig. 6, Additional file 3: Figure S10). We chose the modern Nganasans to serve as a proxy for the latter component because we see least evidence for Western Eurasian admixture (Additional file 3: Figure S3) among them. We also tested the Khantys for that proxy but the model did not fit (yielding f2-statistics, Z-score > 3). The only Uralic-speaking population that did not fit into the tested model with five ancestral components were Hungarians. The qpGraph estimates of the contributions from the Siberian component show that it is the main ancestry component in the West Siberian Uralic speakers and constitutes up to one third of the genomes of modern VUR and the Saami (Fig. 6). It drops, however, to less than 10% in most of NE Europe, to 5% in Estonians and close to zero in Latvians and Lithuanians.

    Discussion

    uralic-groups-haplogroup-r1a
    Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a lineages.

    One of the notable observations that stands out in the fineSTRUCTURE analysis is that neither Hungarians nor Estonians or Mordovians form genetic clusters with other Uralic speakers but instead do so with a broad spectrum of geographically adjacent samples. Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

    Perhaps even more surprisingly, we found that Estonians, who show close affinities in IBD analysis to neighbouring Finnic speakers and Saami, do not share an excess of IBD segments with the VUR or Siberian Uralic speakers. This is eIn this context, it is important to remind that the limited (5%, Fig. 6) East Eurasian impact in the autosomal gene pool of modern Estonians contrasts with the fact that more than 30% of Estonian (but not Hungarian) men carry chrY N3 that has an East Eurasian origin and is very frequent among NE European Uralic speakers [36]. However, the spread of chrY hg N3 is not language group specific as it shows similar frequencies in Baltic-speaking Latvians and Lithuanians, and in North Russians, who in all our analyses are very similar to Finnic-speakers. The latter, however, are believed to have either significantly admixed with their Uralic-speaking neighbours or have undergone a language shift from Uralic to Indo-European [38].ven more striking considering that the immediate neighbours—Finns, Vepsians and Karelians—do.

    With some exceptions such as Estonians, Hungarians and Mordovians, both IBD sharing and Globetrotter results suggest that there are detectable inter-regional haplotype sharing ties between Uralic speakers from West Siberia and VUR, and between NE European Uralic speakers and VUR. In other words, there is a fragmented pattern of haplotype sharing between populations but no unifying signal of sharing that unite all the studied Uralic speakers.

    Comments

    The paper is obviously trying to find a “N1c/Siberian ancestry = Uralic” link, but it shows (as previous papers using ancient DNA) that this identification is impossible, because it is not possible to identify “N1c=Siberian ancestry”, “N1c=Uralic”, or “Siberian ancestry = Uralic”. In fact, the arrival of N subclades and Siberian ancestry are late, both events (probably multiple stepped events) are unrelated to each other, and represent east-west demic diffusion waves (as well as founder effects) that probably coincide in part with the Scythian and Turkic (or associated) expansions, i.e. too late for any model of Proto-Uralic or Proto-Finno-Ugric expansion.

    On the other hand, it shows interesting data regarding ancestry of populations that show increased Siberian influence, such as those easternmost groups admixed with Yeniseian-like populations (Samoyedic), those showing strong founder effects (Finnic), or those isolated in the Circum-Artic region with neighbouring Siberian peoples in Kola (Saami). All in all, Hungarians, Estonians and Mordovians seem to show the original situation better than the other groups, which is also reflected in part in Y-DNA, conserved as a majority of R1a lineages precisely in these groups. Just another reminder that CWC-related ancestry is found in every single Uralic group, and that it represents the main ancestral component in all non-Samoyedic groups.

    estonians-hungarians-mordvinian
    Selection of the PCA, with the group of Estonians, Mordovians, and Hungarians selected.

    The qpGraph shows the ancestor of Yamna (likely Khvalynsk) and Corded Ware stemming as different populations from a common (likely Neolithic) node – whose difference is based on the proportion of Anatolian-related ancestry – , that is, probably before the Indo-Hittite expansion; and ends with CWC groups forming the base for all Uralic peoples. Below is a detail of the qpGraph on the left, and my old guess (2017) on the right, for comparison:

    yamna-corded-ware-qpgraph

    #EDIT (22 sep 2018): I enjoyed re-reading it, and found this particular paragraph funny:

    Despite the documented history of the migration of Magyars [63] and their linguistic affinity to Khantys and Mansis, who today live east of the Ural Mountains, there is nothing in the present-day gene pool of the sampled Hungarians that we could tie specifically to other Uralic speakers.

    They are so obsessed with finding a link to Siberian ancestry and N1c, and so convinced of Kristiansen’s idea of CWC=Indo-European, that they forgot to examine their own data from a critical point of view, and see the clear link between all Uralic peoples with Corded Ware ancestry and R1a-Z645 subclades… Here is a reminder about Hungarians and R1a-Z282, and about the expansion of R1a-Z645 with Uralic peoples.

    Related

    The Iron Age expansion of Southern Siberian groups and ancestry with Scythians

    iron_age-sarmatians

    Maternal genetic features of the Iron Age Tagar population from Southern Siberia (1st millennium BC), by Pilipenko et al. (2018).

    Interesting excerpts (emphasis mine):

    The positions of non-Tagar Iron Age groups in the MDS plot were correlated with their geographic position within the Eurasian steppe belt and with frequencies of Western and Eastern Eurasian mtDNA lineages in their gene pools. Series from chronological Tagar stages (similar to the overall Tagar series) were located within the genetic variability (in terms of mtDNA) of Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables). Specifically, the Early Tagar series was more similar to western nomads (North Pontic Scythians), while the Middle Tagar was more similar to the Southern Siberian populations of the Scythian period. The Late Tagar group (Tes`culture) belonging to the Early Xiongnu period had the “western-most” location on the MDS plot with the maximal genetic difference from Xiongnu and other eastern nomadic groups (but see Discussion concerning the low sample size for the Tes`series).

    In a comparison of our Tagar series with modern populations in Eurasia, we detected similarity between the Tagar group and some modern Turkic-speaking populations (with the exception of the Indo-Iranian Tajik population) (Fig 7; S2 Table). Among the modern Turkic-speaking groups, populations from the western part of the Eurasian steppe belt, such as Bashkirs from the Volga-Ural region and Siberian Tatars from the West Siberian forest-steppe zone, were more similar to the Tagar group than modern Turkic-speaking populations of the Altay-Sayan mountain system (including the Khakassians from the Minusinsk basin) (Fig 7).

    tagar-archaeology
    Location of Tagar archaeological sites from which samples for this study were obtained. Burial grounds: 1—Novaya Chernaya-1; 2—Podgornoe Ozero, Barsuchiha-1, Barsuchiha-6, Barsuchiha-7; 3—Perevozinskiy; 4—Ulug-Kyuzyur, Kichik-Kyuzyur, Sovetskaya Khakassiya; 5—Tepsey-3, Tepsey-8, Tepsey-9; 6—Dolgiy Kurgan. https://doi.org/10.1371/journal.pone.0204062.g001

    Mitochondrial DNA diversity and genetic relationships of the Tagar population

    Our results are not inconsistent with the assumption of a probable role of gene flow due to the migration from Western Eurasia to the Minusinsk basin in the Bronze Age in the formation of the genetic composition of the Tagar population. Particularly, we detected many mtDNA lineages/clusters with probable West Eurasian origin that were dominant in modern populations of different parts of Europe, Caucasus, and the Near East (such as K and HV6) in our Tagar series based on a phylogeographic analysis.

    We detected relatively low genetic distances between our Tagar population and two Bronze Age populations from the Minusinsk basin—the Okunevo culture population (pre-Andronovo Bronze Age) and Andronovo culture population, followed by Afanasievo population from the Minusinsk Basin and Middle Bronze Age population from the Mongolian Altai Mountains (the region adjacent to the Minusinsk basin) (Figs 3 and 6; S3 and S5 Tables). Among West Eurasian part of our Tagar series we also observed haplogroups/sub-haplogroups and haplotypes shared with Early and Middle Bronze Age populations from Minusinsk Basin and western part of Eurasian steppe belt (Fig 4; S5 Table). Thus, our results suggested a potentially significant role of the genetic components, introduced by migrants from Western Eurasia during the Bronze Age, in the formation of the genetic composition of the Tagar population. It is necessary to note the relatively small size of available mtDNA samples from the Bronze Age populations of Minusinsk basin; accordingly, additional mtDNA data for these populations are required to further confirm our inference.

    tagar-mtdna-tree
    Phylogenetic tree of mtDNA lineages from the Tagar population. Color coding of the Tagar stages: orange—the Early Tagar stage; blue—the Middle Tagar Stage; green—the Late Tagar stage. Color of haplogroup labels: yellow—for Western Eurasian haplogroups; red—for Eastern Eurasian haplogroups. https://doi.org/10.1371/journal.pone.0204062.g002

    Another substantial part of the mtDNA pool of the Tagar and other eastern populations of the Scythian World is typical of populations in Southern Siberia and adjacent regions of Central Asia (autochthonous Central Asian mtDNA clusters). Most of these components belong to the East Eurasian cluster of mtDNA haplogroups. Moreover, the role of each of these components in the formation of the genetic composition of subsequent (to the present) populations in South Siberia and Central Asia could be very different. In this regard, cluster C4a2a (and its subcluster C4a2a1), and haplogroup A8 are of particular interest.

    Genetic features of successive Tagar groups

    We compared successive Tagar groups (Early, Middle, and Late Tagar) with each other and with other Iron Age nomadic populations to evaluate changes in the mtDNA pool structure. Despite the genetic similarity between the Early and Middle Tagar series and Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables), there were some peculiarities. For example, the Early Tagar series was more similar to North Pontic Classic Scythians, while the Middle Tagar samples were more similar to the Southern Siberian populations of the Scythian period (i.e., completely synchronous populations of regions neighboring the Minusinsk basin, such as the Pazyryk population from the Altay Mountains and Aldy-Bel population from Tuva).

    We observed differences in the mtDNA pool structure between the Early and the Middle chronological stages of the Tagar culture population, as evidenced by the change in the ratio of Western to Eastern Eurasian mtDNA components. The contribution of Eastern Eurasian lineages increased from about one-third (34.8%) in the Early Tagar group to almost one-half (45.8%) in the Middle Tagar group.

    tagar-mtdna-fst
    Results of multidimensional scaling based on matrix of Slatkin population differentiation (FST) according to frequencies of mtDNA haplogroup in Tagar populations and modern populations of Eurasia. Populations: Tagar (red pentagon) (this study); Mongolian-speaking populations: Khamnigans (Buryat Republic, Russia) [43]; Barghuts (Inner Mongolia, China) [44]; Buryats (Buryat Republic, Southern Siberia, Russia) [43]; Mongols (Mongolia) [45]. Turkic-speaking populations: Tuvinians (Tuva Republic, Russia) [43]; Tofalars (Irkutsk region, Russia) [46]; Altai-Kizhi ((Altai Republic, Russia) [43, 47]; Telenghits (Altai Republic, Russia) [43,47]; Tubalars (Altai Republic) [48]; Shors (Kemerovo region, Russia) [43, 47]; Khakassians (Khakassian Rupublic, Russia) [43, 46]; Altaian Kazakhs (Altai Republic) [49]; Kazakhs (Kazakhstan, Uzbekistan) [50, 51]; Kirghiz (Kyrgyzstan) [50, 51]; Uighurs (Kazakhstan and Xinjiang) [50, 52]; Siberian Tatars (Tyumen and Omsk regions, Russia) [53]; Tatars (Volga-Ural rigion, Russia) [54]; Bashkirs (Volga-Ural region, Russia) [55]; Uzbeks (Uzbekistan) [51, 56]; Turkmens (Turkmenistan) [51, 56]; Nogays [57]; Turkeys [58]; other populations: Evenks [43, 46]; Ulchi [59]; Koreans (South Korea) [43]; Han Chinese [60]; Zhuang (Guangxi, China) [61]; Tadjiks (Tadjikistan) [43, 51]; Iranians [60]; Russians [62]. https://doi.org/10.1371/journal.pone.0204062.g007

    At the level of mtDNA haplogroups, we detected a decrease in the diversity of phylogenetic clusters during the transition from the Early Tagar to the Middle Tagar. This decline in diversity equally affected the West Eurasian and East Eurasian components of the Tagar mtDNA pool. It should be noted that this decrease can be partially explained by the smaller number of Middle Tagar than Early Tagar samples. Under a simple binomial approximation the mtDNA clusters, observed at frequencies of 6.3% and 11.7%, could be lost by chance in our Early (N = 46) and Middle (N = 24) Tagar samples, respectively. However, the simultaneous lack of several such clusters, with a total frequency in the gene pool of the Early group of 34.8%, is unlikely.

    The observed reduction in the genetic distance between the Middle Tagar population and other Scythian-like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains. We did not obtain strong evidence for an intensification of genetic contact between the population of the Minusinsk basin and the Altai Mountains in the Middle Tagar period compared with the Early Tagar period. Although, several archaeologists have found evidence for the intensification of contact at the level of material culture, namely, a cultural influence of the population of the Altai Mountains (represented by the Pazyryk population) on the population of the Minusinsk basin (the Saragash Tagar group) [6, 71, 72].

    Another important issue is the change in the genetic structure of the Tagar population during the transition from the Middle (Saragash) to the Late (Tes`) stage. The Late Tagar stage refers to the Xiongnu period. Many archaeologists suggest that the formation of the Tes`stage involved the direct cultural influence of the Xiongnu and/or related groups of nomads from more eastern regions of Central Asia [71, 73]. Some archaeologists have even suggested renaming the Tes`stage in the Tes`culture [71], emphasizing the role of new eastern cultural elements. If this influence also existed at the genetic level, then we would expect to observe new genetic elements in the Tes`gene pool, particularly those of East Eurasian origin.

    Siberian ancestry

    Just a reminder of the recent session in ISBA 8 on expanding Scythians (and also Mongolians and Turks) spreading Siberian ancestry, usually (wrongly) identified as “Uralic-Yeniseian” based on modern populations (similar to how steppe ancestry is wrongly identified as “Indo-European”), see the following graphic including the Tagar population:

    siberian-genetic-component-chronology
    Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

    And also the poster by Alexander M. Kim et al. Yeniseian hypotheses in light of genome-wide ancient DNA from historical Siberia:

    The relevance of ancient DNA data to debates in historical linguistics is an emphatic strand in much recent work on the archaeogenetics of Eurasia, where the discussion has focused heavily on Indo-European (Haak et al. 2015; Narasimhan et al. 2018; de Barros Damgaard et al. 2018a,b). We present new genome-wide ancient DNA data from a historical Siberian individual in relation to Yeniseian, an isolated language “microfamily” (Vajda 2014) that nonetheless sits at the center of numerous controversial proposals in historical linguistics and cultural interaction. Yeniseian’s sole surviving representative is Ket, a critically endangered language fluently spoken by only a few dozen individuals near the Middle Yenisei River of Central Siberia.

    In strong contrast to the present-day picture, river names and argued substrate influences and loanwords in languages outside the current range of Yeniseian, as well as direct records from the Russian colonial period, indicate that speakers of extinct Yeniseian languages had a formerly much broader presence in the taiga of Central Siberia as well as further south in the mountainous Altai-Sayan region – and perhaps even further afield in Inner Asia (Vajda 2010; Gorbachov 2017; Blažek 2016). The consilience of these proposals with genetic data is not straightforward (Flegontov et al. 2015, 2017) and faces a major obstacle in the lack of genetic information from verifiable speakers of Yeniseian languages other than the Kets, who have had complex ongoing interactions with speakers of non-Yeniseian languages such as the Samoyedic Selkups. We attempt to remedy this with new historical Siberian aDNA data, orienting our search for common denominators and systematic difference in a broader landscape of concordance, discordance, and uncertainty at the interface of diachronic linguistics and genetics.

    Related

    Neolithic and Bronze Age Anatolia, Urals, Fennoscandia, Italy, and Hungary (ISBA 8, 20th Sep)

    jena-isba8

    I will post information on ISBA 8 sesions today as I see them on Twitter (see programme in PDF, and sessions from yesterday).

    Official abstracts are listed first (emphasis mine), then reports and images and/or link to tweets. Here is the list for quick access:

    Russian colonization in Yakutia

    Exploring the genomic impact of colonization in north-eastern Siberia, by Seguin-Orlando et al.

    Yakutia is the coldest region in the northern hemisphere, with winter record temperatures below minus 70°C. The ability of Yakut people to adapt both culturally and biologically to extremely cold temperatures has been key to their subsistence. They are believed to descend from an ancestral population, which left its original homeland in the Lake Baykal area following the Mongol expansion between the 13th and 15th centuries AD. They originally developed a semi-nomadic lifestyle, based on horse and cattle breeding, providing transportation, primary clothing material, meat, and milk. The early colonization by Russians in the first half of the 17th century AD, and their further expansion, have massively impacted indigenous populations. It led not only to massive epidemiological outbreaks, but also to an important dietary shift increasingly relying on carbohydrate-rich resources, and a profound lifestyle transition with the gradual conversion from Shamanism to Christianity and the establishment of new marriage customs. Leveraging an exceptional archaeological collection of more than a hundred of bodies excavated by MAFSO (Mission Archéologique Française en Sibérie Orientale) over the last 15 years and naturally kept frozen by the extreme cold temperatures of Yakutia, we have started to characterize the (epi)genome of indigenous individuals who lived from the 16th to the 20th century AD. Current data include the genome sequence of approximately 50 individuals that lived prior to and after Russian contact, at a coverage from 2 to 40 fold. Combined with data from archaeology and physical anthropology, as well as microbial DNA preserved in the specimens, our unique dataset is aimed at assessing the biological consequences of the social and biological changes undergone by the Yakut people following their neolithisation by Russian colons.

    NOTE: For another interesting study on Yakutian tribes, see Relationships between clans and genetic kin explain cultural similarities over vast distances.

    Ancient DNA from a Medieval trading centre in Northern Finland

    Using ancient DNA to identify the ancestry of individuals from a Medieval trading centre in Northern Finland, by Simoes et al.

    Analyzing genomic information from archaeological human remains has proved to be a powerful approach to understand human history. For the archaeological site of Ii Hamina, ancient DNA can be used to infer the ancestries of individuals buried there. Situated approximately 30 km from Oulu, in Northern Finland, Ii Hamina was an important trade place since Medieval times. The historical context indicates that the site could have been a melting pot for different cultures and people of diversified genetic backgrounds. Archaeological and osteological evidence from different individuals suggest a rich diversity. For example, stable isotope analyses indicate that freshwater and marine fish was the dominant protein source for this population. However, one individual proved to be an outlier, with a diet containing relatively more terrestrial meat or vegetables. The variety of artefacts that was found associated with several human remains also points to potential differences in religious beliefs or social status. In this study, we aimed to investigate if such variation could be attributed to different genetic ancestries. Ten of the individuals buried in Ii Hamina’s churchyard, dating to between the 15th and 17th century AD, were screened for presence of authentic ancient DNA. We retrieved genome-wide data for six of the individuals and performed downstream analysis. Data authenticity was confirmed by DNA damage patterns and low estimates of mitochondrial contamination. The relatively recent age of these human remains allows for a direct comparison to modern populations. A combination of population genetics methods was undertaken to characterize their genetic structure, and identify potential familiar relationships. We found a high diversity of mitochondrial lineages at the site. In spite of the putatively distant origin of some of the artifacts, most individuals shared a higher affinity to the present-day Finnish or Late Settlement Finnish populations. Interestingly, different methods consistently suggested that the individual with outlier isotopic values had a different genetic origin, being more closely related to reindeer herding Saami. Here we show how data from different sources, such as stable isotopes, can be intersected with ancient DNA in order to get a more comprehensive understanding of the human past.

    A closer look at the bottom left corner of the poster (the left columns are probably the new samples):

    finland-medieval-admixture

    Plant resources processed in HG pottery from the Upper Volga

    Multiple criteria for the detection of plant resources processed in hunter-gatherer pottery vessels from the Upper Volga, Russia, by Bondetti et al.

    In Northern Eurasia, the Neolithic is marked by the adoption of pottery by hunter-gatherer communities. The degree to which this is related to wider social and lifestyle changes is subject to ongoing debate and the focus of a new research programme. The use and function of early pottery by pre-agricultural societies during the 7th-5th millennia BC is of central interest to this debate. Organic residue analysis provides important information about pottery use. This approach relies on the identification and isotopic characteristics of lipid biomarkers, absorbed into the pores of the ceramic or charred deposits adhering to pottery vessel surfaces, using a combined methodology, namely GC-MS, GC-c-IRMS and EA-IRMS. However, while animal products (e.g., marine, freshwater, ruminant, porcine) have the benefit of being lipid-rich and well-characterised at the molecular and isotopic level, the identification of plant resources still suffers from a lack of specific criteria for identification. In huntergatherer contexts this problem is exacerbated by the wide range of wild, foraged plant resources that may have been potentially exploited. Here we evaluate approaches for the characterisation of terrestrial plant food in pottery through the study of pottery assemblages from Zamostje 2 and Sakhtysh 2a, two hunter-gatherer settlements located in the Upper Volga region of Russia.

    GC-MS analysis of the lipids, extracted from the ceramics and charred residues by acidified methanol, suggests that pottery use was primarily oriented towards terrestrial and aquatic animal products. However, while many of the Early Neolithic vessels contain lipids distinctive of freshwater resources, triterpenoids are also present in high abundance suggesting mixing with plant products. When considering the isotopic criteria, we suggest that plants were a major commodity processed in pottery at this time. This is supported by the microscopic identification of Viburnum (Viburnum Opulus L.) berries in the charred deposits on several vessels from Zamostje.

    The study of Upper Volga pottery demonstrated the importance of using a multidisciplinary approach to determine the presence of plant resources in vessels. Furthermore, this informs the selection of samples, often subject to freshwater reservoir effects, for 14C dating.

    Studies on hunter-gatherer pottery – appearing in eastern Europe before Middle Eastern Neolithic pottery – may be important to understand the arrival of R1a-M17 lineages to the region before ca. 7000 BC. Or not, right now it is not very clear what happened with R1b-P297 and R1a-M17, and with WHG—EHG—ANE ancestry

    Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe

    Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Warinner et al.

    Recent paleogenomic studies have shown that migrations of Western steppe herders (WSH), beginning in the Eneolithic (ca. 3300-2700 BCE), profoundly transformed the genes and cultures of Europe and Central Asia. Compared to Europe, the eastern extent of this WSH expansion is not well defined. Here we present genomic and proteomic data from 22 directly dated Bronze Age khirigsuur burials from Khövsgöl, Mongolia (ca. 1380-975 BCE). Only one individual showed evidence of WSH ancestry, despite the presence of WSH populations in the nearby Altai-Sayan region for more than a millennium. At the same time, LCMS/ MS analysis of dental calculus provides direct protein evidence of milk consumption from Western domesticated livestock in 7 of 9 individuals. Our results show that dairy pastoralism was adopted by Bronze Age Mongolians despite minimal genetic exchange with Western steppe herders.

    Detail of the images:

    mongol-bronze-age-pca

    mongol-bronze-age-f4-ancestry

    Evolution of Steppe, Neolithic, and Siberian ancestry in Eurasia (ISBA 8, 19th Sep)

    jena-isba8

    Some information is already available from ISBA 8 (see programme in PDF), thanks to the tweets from Alexander M. Kim.

    Official abstracts are listed first (emphasis mine), then reports and images with link to Kim’s tweets. Here is the list for quick access:

    Updates (17:00 CET):

    Turkic and Hunnic expansions

    Tracing the origin and expansion of the Turkic and Hunnic confederations, by Flegontov et al.

    Turkic-speaking populations, now spread over a vast area in Asia, are highly heterogeneous genetically. The first confederation unequivocally attributed to them was established by the Göktürks in the 6th c. CE. Notwithstanding written resources from neighboring sedentary societies such as Chinese, Persian, Indian and Eastern Roman, earlier history of the Turkic speakers remains debatable, including their potential connections to the Xiongnu and Huns, which dominated the Eurasian steppe in the first half of the 1st millennium CE. To answer these questions, we co-analyzed newly generated human genome-wide data from Central Asia (the 1240K panel), spanning the period from ca. 3000 to 500 YBP, and the data published by de Barros Damgaard et al. (137 ancient human genomes from across the Eurasian steppes, Nature, 2018). Firstly, we generated a PCA projection to understand genetic affinities of ancient individuals with respect to present-day Tungusic, Mongolic, Turkic, Uralic, and Yeniseian-speaking groups. Secondly, we modeled hundreds of present-day and few ancient Turkic individuals using the qpAdm tool, testing various modern/ancient Siberian and ancient West Eurasian proxies for ancestry sources.

    A majority of Turkic speakers in Central Asia, Siberia and further to the west share the same ancestry profile, being a mixture of Tungusic or Mongolic speakers and genetically West Eurasian populations of Central Asia in the early 1st millennium CE. The latter are themselves modelled as a mixture of Iron Age nomads (western Scythians or Sarmatians) and ancient Caucasians or Iranian farmers. For some Turkic groups in the Urals and the Altai regions and in the Volga basin, a different admixture model fits the data: the same West Eurasian source + Uralic- or Yeniseian-speaking Siberians. Thus, we have revealed an admixture cline between Scythians and the Iranian farmer genetic cluster, and two further clines connecting the former cline to distinct ancestry sources in Siberia. Interestingly, few Wusun-period individuals harbor substantial Uralic/Yeniseian-related Siberian ancestry, in contrast to preceding Scythians and later Turkic groups characterized by the Tungusic/Mongolic-related ancestry. It remains to be elucidated whether this genetic influx reflects contacts with the Xiongnu confederacy. We are currently assembling a collection of samples across the Eurasian steppe for a detailed genetic investigation of the Hunnic confederacies.

    jeong-population-clines
    Three distinct East/West Eurasian clines across the continent with some interesting linguistic correlates, as earlier reported by Jeong et al. (2018). Alexander M. Kim.
    siberian-genetic-component-chronology
    Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

    New interesting information on the gradual arrival of the “Uralic-Yeniseian” (Siberian) ancestry in eastern Europe with Iranian and Turkic-speaking peoples. We already knew that Siberian ancestry shows no original relationship with Uralic-speaking peoples, so to keep finding groups who expanded this ancestry eastwards in North Eurasia should be no surprise for anyone at this point.

    Central Asia and Indo-Iranian

    The session The Genomic Formation of South and Central Asia, by David Reich, on the recent paper by Narasimhan et al. (2018).

    bmac-reich
    One important upside of dense genomic sampling at single localities – greater visibility of outliers and better constraints on particular incoming ancestries’ arrival times. Gonur Tepe as a great case study of this. Alexander M. Kim
    ani-asi-steppe-cline
    – Tale of three clines, with clear indication that “Indus Periphery” samples drawn from an already-cosmopolitan and heterogeneous world of variable ASI & Iranian ancestry. (I know how some people like to pore over these pictures – so note red dots = just dummy data for illustration.)
    – Some more certainty about primary window of steppe ancestry injection into S. Asia: 2000-1500 BC
    Alexander M. Kim

    British Isles

    Ancient DNA and the peopling of the British Isles – pattern and process of the Neolithic transition, by Brace et al.

    Over recent years, DNA projects on ancient humans have flourished and large genomic-scale datasets have been generated from across the globe. Here, the focus will be on the British Isles and applying aDNA to address the relative roles of migration, admixture and acculturation, with a specific focus on the transition from a Mesolithic hunter-gatherer society to the Neolithic and farming. Neolithic cultures first appear in Britain ca. 6000 years ago (kBP), a millennium after they appear in adjacent areas of northwestern continental Europe. However, in Britain, at the margins of the expansion the pattern and process of the British Neolithic transition remains unclear. To examine this we present genome-wide data from British Mesolithic and Neolithic individuals spanning the Neolithic transition. These data indicate population continuity through the British Mesolithic but discontinuity after the Neolithic transition, c.6000 BP. These results provide overwhelming support for agriculture being introduced to Britain primarily by incoming continental farmers, with surprisingly little evidence for local admixture. We find genetic affinity between British and Iberian Neolithic populations indicating that British Neolithic people derived much of their ancestry from Anatolian farmers who originally followed the Mediterranean route of dispersal and likely entered Britain from northwestern mainland Europe.

    british-isles
    Millennium of lag between farming establishment in NW mainland Europe & British Isles. Only 25 Mesolithic human finds from Britain. Alexander M. Kim.
    british-admixture
    – Evidently no resurgence of hunter-gatherer ancestry across Neolithic
    – Argument for at least two geographically distinct entries of Neolithic farmers
    Alexander M. Kim.

    MN Atlantic / Megalithic cultures

    Genomics of Middle Neolithic farmers at the fringe of Europe, by Sánchez Quinto et al.

    Agriculture emerged in the Fertile Crescent around 11,000 years before present (BP) and then spread, reaching central Europe some 7,500 years ago (ya.) and eventually Scandinavia by 6,000 ya. Recent paleogenomic studies have shown that the spread of agriculture from the Fertile Crescent into Europe was due mainly to a demic process. Such event reshaped the genetic makeup of European populations since incoming farmers displaced and admixed with local hunter-gatherers. The Middle Neolithic period in Europe is characterized by such interaction, and this is a time where a resurgence of hunter-gatherer ancestry has been documented. While most research has been focused on the genetic origin and admixture dynamics with hunter-gatherers of farmers from Central Europe, the Iberian Peninsula, and Anatolia, data from farmers at the North-Western edges of Europe remains scarce. Here, we investigate genetic data from the Middle Neolithic from Ireland, Scotland, and Scandinavia and compare it to genomic data from hunter-gatherers, Early and Middle Neolithic farmers across Europe. We note affinities between the British Isles and Iberia, confirming previous reports. However, we add on to this subject by suggesting a regional origin for the Iberian farmers that putatively migrated to the British Isles. Moreover, we note some indications of particular interactions between Middle Neolithic Farmers of the British Isles and Scandinavia. Finally, our data together with that of previous publications allow us to achieve a better understanding of the interactions between farmers and hunter-gatherers at the northwestern fringe of Europe.

    megalithic-europe
    -Novel genomic data from 21 individuals from 6 sites.
    – “Megalithic” individuals not systematically diff. from geographically proximate “non-megalithic” burials
    – Mild evidence for over-representation of males in some British Isles megalithic tombs
    – Megalithic tombs in W & N Neolithic Europe may have link to kindred structures
    Alexander M. Kim

    Central European Bronze Age

    Ancient genomes from the Lech Valley, Bavaria, suggest socially stratified households in the European Bronze Age, by Mittnik et al.

    Archaeogenetic research has so far focused on supra-regional and long-term genetic developments in Central Europe, especially during the third millennium BC. However, detailed high-resolution studies of population dynamics in a microregional context can provide valuable insights into the social structure of prehistoric societies and the modes of cultural transition.

    Here, we present the genomic analysis of 102 individuals from the Lech valley in southern Bavaria, Germany, which offers ideal conditions for such a study. Several burial sites containing rich archaeological material were directly dated to the second half of the 3rd and first half of the 2nd millennium BCE and were associated with the Final Neolithic Bell Beaker Complex and the Early and Middle Bronze Age. Strontium isotope data show that the inhabitants followed a strictly patrilocal residential system. We demonstrate the impact of the population movement that originated in the Pontic-Caspian steppe in the 3rd millennium BCE and subsequent local developments. Utilising relatedness inference methods developed for low-coverage modern DNA we reconstruct farmstead related pedigrees and find a strong association between relatedness and grave goods suggesting that social status is passed down within families. The co-presence of biologically related and unrelated individuals in every farmstead implies a socially stratified complex household in the Central European Bronze Age.

    lech-bavaria
    Diminishing steppe ancestry and resurgent Neolithic ancestry over time. Alexander M. Kim

    Notice how the arrival of Bell Beakers, obviously derived from Yamna settlers in Hungary, and thus clearly identified as expanding North-West Indo-Europeans all over Europe, marks a decrease in steppe ancestry compared to Corded Ware groups, in a site quite close to the most likely East BBC homeland. Copenhagen’s steppe ancestry = Indo-European going down the toilet, step by step…

    UPDATES

    Russian Far East populations

    Gene geography of the Russian Far East populations – faces, genome-wide profiles, and Y-chromosomes, by Balanovsky et al.

    Russian Far East is not only a remote area of Eurasia but also a link of the chain of Pacific coast regions, spanning from East Asia to Americas, and many prehistoric migrations are known along this chain. The Russian Far East is populated by numerous indigenous groups, speaking Tungusic, Turkic, Chukotko-Kamchatka, Eskimo-Aleut, and isolated languages. This linguistic and geographic variation opens question about the patterns of genetic variation in the region, which was significantly undersampled and received minor attention in the genetic literature to date. To fill in this gap we sampled Aleuts, Evenks, Evens, Itelmens, Kamchadals, Koryaks, Nanais, Negidals, Nivkhs, Orochi, Udegeis, Ulchi, and Yakuts. We also collected the demographic information of local populations, took physical anthropological photos, and measured the skin color. The photos resulted in the “synthetic portraits” of many studied groups, visualizing the main features of their faces.

    north-eurasia

    far-east-pca
    Impressive North Eurasian biobank including 30,500 individual samples with broad consent, some genealogical info, phenotypic data. Alexander M. Kim

    Finland AD 5th-8th c.

    Sadly, no information will be shared on the session A 1400-year transect of ancient DNA reveals recent genetic changes in the Finnish population, by Salmela et al. We will have to stick to the abstract:

    Objectives: Our objective was to use aDNA to study the population history of Finland. For this aim, we sampled and sequenced 35 individuals from ten archaeological sites across southern Finland, representing a time transect from 5th to 18th century.

    Methods: Following genomic DNA extraction and preparation of indexed libraries, the samples were enriched for 1,2 million genomewide SNPs using in-solution capture and sequenced on an Illumina HighSeq 4000 instrument. The sequence data were then compared to other ancient populations as well as modern Finns, their geographical neighbors and worldwide populations. Authenticity testing of the data as well as population history inference were based on standard computational methods for aDNA, such as principal component analysis and F statistics.

    Results: Despite the relatively limited temporal depth of our sample set, we are able to see major genetic changes in the area, from the earliest sampled individuals – who closely resemble the present-day Saami population residing markedly further north – to the more recent ancient individuals who show increased affinity to the neighboring Circum-Baltic populations. Furthermore, the transition to the present-day population seems to involve yet another perturbation of the gene pool.

    So, most likely then, in my opinion – although possibly Y-DNA will not be reported – Finns were in the Classical Antiquity period mostly R1a with secondary N1c in the Circum-Baltic region (similar to modern Estonians, as I wrote recently), while Saami were probably mostly a mix of R1a-Z282 and I1 in southern Finland. That’s what the first transition after the 5th c. probably reflects, the spread of Finns (with mainly N1c lineages) to the north, while the more recent transition shows probably the introduction of North Germanic ancestry (and thus also R1b-U106, R1a-Z284, and I1 lineages) in the west.

    Dairying in ancient Mongolia

    The History of Dairying in ancient Mongolia, by Wilkin et al.

    The use of mass spectrometry based proteomics presents a novel method for investigating human dietary intake and subsistence strategies from archaeological materials. Studies of ancient proteins extracted from dental calculus, as well as other archaeological material, have robustly identified both animal and plant-based dietary components. Here we present a recent case study using shotgun proteomics to explore the range and diversity of dairying in the ancient eastern Eurasian steppe. Contemporary and prehistoric Mongolian populations are highly mobile and the ephemerality of temporarily occupied sites, combined with the severe wind deflation common across the steppes, means detecting evidence of subsistence can be challenging. To examine the time depth and geographic range of dairy use in Mongolia, proteins were extracted from ancient dental calculus from 32 individuals spanning burial sites across the country between the Neolithic and Mongol Empire. Our results provide direct evidence of early ruminant milk consumption across multiple time periods, as well as a dramatic increase in the consumption of horse milk in the late Bronze Age. These data provide evidence that dairy foods from multiple species were a key part of subsistence strategies in prehistoric Mongolia and add to our understanding of the importance of early pastoralism across the steppe.

    The confirmation of the date 3000-2700 BC for dairying in the eastern steppe further supports what was already known thanks to archaeological remains, that the pastoralist subsistence economy was brought for the first time to the Altai region by expanding late Khvalynsk/Repin – Early Yamna pastoralists that gave rise to the Afanasevo culture.

    Neolithic transition in Northeast Asia

    Genomic insight into the Neolithic transition peopling of Northeast Asia, by C. Ning

    East Asian representing a large geographic region where around one fifth of the world populations live, has been an interesting place for population genetic studies. In contrast to Western Eurasia, East Asia has so far received little attention despite agriculture here evolved differently from elsewhere around the globe. To date, only very limited genomic studies from East Asia had been published, the genetic history of East Asia is still largely unknown. In this study, we shotgun sequenced six hunter-gatherer individuals from Houtaomuga site in Jilin, Northeast China, dated from 12000 to 2300 BP and, 3 farming individuals from Banlashan site in Liaoning, Northeast China, dated around 5300 BP. We find a high level of genetic continuity within northeast Asia Amur River Basin as far back to 12000 BP, a region where populations are speaking Tungusic languages. We also find our Compared with Houtaomuga hunter-gatherers, the Neolithic farming population harbors a larger proportion of ancestry from Houtaomuga related hunter-gathers as well as genetic ancestry from central or perhaps southern China. Our finding further suggests that the introduction of farming technology into Northeast Asia was probably introduced through demic diffusion.

    A detail of the reported haplogroups of the Houtaomuga site:

    houtaomuga-site-y-dna-mtdna

    Y-DNA in Northeast Asia shows thus haplogroup N1b1 ~5000 BC, probably representative of the Baikal region, with a change to C2b-448del lineages before the Xiongnu period, which were later expanded by Mongols.

    Common pitfalls in human genomics and bioinformatics: ADMIXTURE, PCA, and the ‘Yamnaya’ ancestral component

    invasion-from-the-steppe-yamnaya

    Good timing for the publication of two interesting papers, that a lot of people should read very carefully:

    ADMIXTURE

    Open access A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots, by Daniel J. Lawson, Lucy van Dorp & Daniel Falush, Nature Communications (2018).

    Interesting excerpts (emphasis mine):

    Experienced researchers, particularly those interested in population structure and historical inference, typically present STRUCTURE results alongside other methods that make different modelling assumptions. These include TreeMix, ADMIXTUREGRAPH, fineSTRUCTURE, GLOBETROTTER, f3 and D statistics, amongst many others. These models can be used both to probe whether assumptions of the model are likely to hold and to validate specific features of the results. Each also comes with its own pitfalls and difficulties of interpretation. It is not obvious that any single approach represents a direct replacement as a data summary tool. Here we build more directly on the results of STRUCTURE/ADMIXTURE by developing a new approach, badMIXTURE, to examine which features of the data are poorly fit by the model. Rather than intending to replace more specific or sophisticated analyses, we hope to encourage their use by making the limitations of the initial analysis clearer.

    The default interpretation protocol

    Most researchers are cautious but literal in their interpretation of STRUCTURE and ADMIXTURE results, as caricatured in Fig. 1, as it is difficult to interpret the results at all without making several of these assumptions. Here we use simulated and real data to illustrate how following this protocol can lead to inference of false histories, and how badMIXTURE can be used to examine model fit and avoid common pitfalls.

    admixture-protocol
    A protocol for interpreting admixture estimates, based on the assumption that the model underlying the inference is correct. If these assumptions are not validated, there is substantial danger of over-interpretation. The “Core protocol” describes the assumptions that are made by the admixture model itself (Protocol 1, 3, 4), and inference for estimating K (Protocol 2). The “Algorithm input” protocol describes choices that can further bias results, while the “Interpretation” protocol describes assumptions that can be made in interpreting the output that are not directly supported by model inference

    Discussion

    STRUCTURE and ADMIXTURE are popular because they give the user a broad-brush view of variation in genetic data, while allowing the possibility of zooming down on details about specific individuals or labelled groups. Unfortunately it is rarely the case that sampled data follows a simple history comprising a differentiation phase followed by a mixture phase, as assumed in an ADMIXTURE model and highlighted by case study 1. Naïve inferences based on this model (the Protocol of Fig. 1) can be misleading if sampling strategy or the inferred value of the number of populations K is inappropriate, or if recent bottlenecks or unobserved ancient structure appear in the data. It is therefore useful when interpreting the results obtained from real data to think of STRUCTURE and ADMIXTURE as algorithms that parsimoniously explain variation between individuals rather than as parametric models of divergence and admixture.

    For example, if admixture events or genetic drift affect all members of the sample equally, then there is no variation between individuals for the model to explain. Non-African humans have a few percent Neanderthal ancestry, but this is invisible to STRUCTURE or ADMIXTURE since it does not result in differences in ancestry profiles between individuals. The same reasoning helps to explain why for most data sets—even in species such as humans where mixing is commonplace—each of the K populations is inferred by STRUCTURE/ADMIXTURE to have non-admixed representatives in the sample. If every individual in a group is in fact admixed, then (with some exceptions) the model simply shifts the allele frequencies of the inferred ancestral population to reflect the fraction of admixture that is shared by all individuals.

    Several methods have been developed to estimate K, but for real data, the assumption that there is a true value is always incorrect; the question rather being whether the model is a good enough approximation to be practically useful. First, there may be close relatives in the sample which violates model assumptions. Second, there might be “isolation by distance”, meaning that there are no discrete populations at all. Third, population structure may be hierarchical, with subtle subdivisions nested within diverged groups. This kind of structure can be hard for the algorithms to detect and can lead to underestimation of K. Fourth, population structure may be fluid between historical epochs, with multiple events and structures leaving signals in the data. Many users examine the results of multiple K simultaneously but this makes interpretation more complex, especially because it makes it easier for users to find support for preconceptions about the data somewhere in the results.

    In practice, the best that can be expected is that the algorithms choose the smallest number of ancestral populations that can explain the most salient variation in the data. Unless the demographic history of the sample is particularly simple, the value of K inferred according to any statistically sensible criterion is likely to be smaller than the number of distinct drift events that have practically impacted the sample. The algorithm uses variation in admixture proportions between individuals to approximately mimic the effect of more than K distinct drift events without estimating ancestral populations corresponding to each one. In other words, an admixture model is almost always “wrong” (Assumption 2 of the Core protocol, Fig. 1) and should not be interpreted without examining whether this lack of fit matters for a given question.

    admixture-pitfalls
    Three scenarios that give indistinguishable ADMIXTURE results. a Simplified schematic of each simulation scenario. b Inferred ADMIXTURE plots at K= 11. c CHROMOPAINTER inferred painting palettes.

    Because STRUCTURE/ADMIXTURE accounts for the most salient variation, results are greatly affected by sample size in common with other methods. Specifically, groups that contain fewer samples or have undergone little population-specific drift of their own are likely to be fit as mixes of multiple drifted groups, rather than assigned to their own ancestral population. Indeed, if an ancient sample is put into a data set of modern individuals, the ancient sample is typically represented as an admixture of the modern populations (e.g., ref. 28,29), which can happen even if the individual sample is older than the split date of the modern populations and thus cannot be admixed.

    This paper was already available as a preprint in bioRxiv (first published in 2016) and it is incredible that it needed to wait all this time to be published. I found it weird how reviewers focused on the “tone” of the paper. I think it is great to see files from the peer review process published, but we need to know who these reviewers were, to understand their whiny remarks… A lot of geneticists out there need to develop a thick skin, or else we are going to see more and more delays based on a perceived incorrect tone towards the field, which seems a rather subjective reason to force researchers to correct a paper.

    PCA of SNP data

    Open access Effective principal components analysis of SNP data, by Gauch, Qian, Piepho, Zhou, & Chen, bioRxiv (2018).

    Interesting excerpts:

    A potential hindrance to our advice to upgrade from PCA graphs to PCA biplots is that the SNPs are often so numerous that they would obscure the Items if both were graphed together. One way to reduce clutter, which is used in several figures in this article, is to present a biplot in two side-by-side panels, one for Items and one for SNPs. Another stratagem is to focus on a manageable subset of SNPs of particular interest and show only them in a biplot in order to avoid obscuring the Items. A later section on causal exploration by current methods mentions several procedures for identifying particularly relevant SNPs.

    One of several data transformations is ordinarily applied to SNP data prior to PCA computations, such as centering by SNPs. These transformations make a huge difference in the appearance of PCA graphs or biplots. A SNPs-by-Items data matrix constitutes a two-way factorial design, so analysis of variance (ANOVA) recognizes three sources of variation: SNP main effects, Item main effects, and SNP-by-Item (S×I) interaction effects. Double-Centered PCA (DC-PCA) removes both main effects in order to focus on the remaining S×I interaction effects. The resulting PCs are called interaction principal components (IPCs), and are denoted by IPC1, IPC2, and so on. By way of preview, a later section on PCA variants argues that DC-PCA is best for SNP data. Surprisingly, our literature survey did not encounter even a single analysis identified as DC-PCA.

    The axes in PCA graphs or biplots are often scaled to obtain a convenient shape, but actually the axes should have the same scale for many reasons emphasized recently by Malik and Piepho [3]. However, our literature survey found a correct ratio of 1 in only 10% of the articles, a slightly faulty ratio of the larger scale over the shorter scale within 1.1 in 12%, and a substantially faulty ratio above 2 in 16% with the worst cases being ratios of 31 and 44. Especially when the scale along one PCA axis is stretched by a factor of 2 or more relative to the other axis, the relationships among various points or clusters of points are distorted and easily misinterpreted. Also, 7% of the articles failed to show the scale on one or both PCA axes, which leaves readers with an impressionistic graph that cannot be reproduced without effort. The contemporary literature on PCA of SNP data mostly violates the prohibition against stretching axes.

    pca-how-to
    DC-PCA biplot for oat data. The gradient in the CA-arranged matrix in Fig 13 is shown here for both lines and SNPs by the color scheme red, pink, black, light green, dark green.

    The percentage of variation captured by each PC is often included in the axis labels of PCA graphs or biplots. In general this information is worth including, but there are two qualifications. First, these percentages need to be interpreted relative to the size of the data matrix because large datasets can capture a small percentage and yet still be effective. For example, for a large dataset with over 107,000 SNPs for over 6,000 persons, the first two components capture only 0.3693% and 0.117% of the variation, and yet the PCA graph shows clear structure (Fig 1A in [4]). Contrariwise, a PCA graph could capture a large percentage of the total variation, even 50% or more, but that would not guarantee that it will show evident structure in the data. Second, the interpretation of these percentages depends on exactly how the PCA analysis was conducted, as explained in a later section on PCA variants. Readers cannot meaningfully interpret the percentages of variation captured by PCA axes when authors fail to communicate which variant of PCA was used.

    Conclusion

    Five simple recommendations for effective PCA analysis of SNP data emerge from this investigation.

    1. Use the SNP coding 1 for the rare or minor allele and 0 for the common or major allele.
    2. Use DC-PCA; for any other PCA variant, examine its augmented ANOVA table.
    3. Report which SNP coding and PCA variant were selected, as required by contemporary standards in science for transparency and reproducibility, so that readers can interpret PCA results properly and reproduce PCA analyses reliably.
    4. Produce PCA biplots of both Items and SNPs, rather than merely PCA graphs of only Items, in order to display the joint structure of Items and SNPs and thereby to facilitate causal explanations. Be aware of the arch distortion when interpreting PCA graphs or biplots.
    5. Produce PCA biplots and graphs that have the same scale on every axis.

    I read the referenced paper Biplots: Do Not Stretch Them!, by Malik and Piepho (2018), and even though it is not directly applicable to the most commonly available PCA graphs out there, it is a good reminder of the distorting effects of stretching. So for example quite recently in Krause-Kyora et al. (2018), where you can see Corded Ware and BBC samples from Central Europe clustering with samples from Yamna:

    NOTE. This is related to a vertical distorsion (i.e. horizontal stretching), but possibly also to the addition of some distant outlier sample/s.

    pca-cwc-yamna-bbc
    Principal Component Analysis (PCA) of the human Karsdorf and Sorsum samples together with previously published ancient populations projected on 27 modern day West Eurasian populations (not shown) based on a set of 1.23 million SNPs (Mathieson et al., 2015). https://doi.org/10.7554/eLife.36666.006

    The so-called ‘Yamnaya’ ancestry

    Every time I read papers like these, I remember commenters who kept swearing that genetics was the ultimate science that would solve anthropological problems, where unscientific archaeology and linguistics could not. Well, it seems that, like radiocarbon analysis, these promising developing methods need still a lot of refinement to achieve something meaningful, and that they mean nothing without traditional linguistics and archaeology… But we already knew that.

    Also, if this is happening in most peer-reviewed publications, made by professional geneticists, in journals of high impact factor, you can only wonder how many more errors and misinterpretations can be found in the obscure market of so many amateur geneticists out there. Because amateur geneticist is a commonly used misnomer for people who are not geneticists (since they don’t have the most basic education in genetics), and some of them are not even ‘amateurs’ (because they are selling the outputs of bioinformatic tools)… It’s like calling healers ‘amateur doctors’.

    NOTE. While everyone involved in population genetics is interested in knowing the truth, and we all have our confirmation (and other kinds of) biases, for those who get paid to tell people what they want to hear, and who have sold lots of wrong interpretations already, the incentives of ‘being right’ – and thus getting involved in crooked and paranoid behaviour regarding different interpretations – are as strong as the money they can win or loose by promoting themselves and selling more ‘product’.

    As a reminder of how badly these wrong interpretations of genetic results – and the influence of the so-called ‘amateurs’ – can reflect on research groups, yet another turn of the screw by the Copenhagen group, in the oral presentations at Languages and migrations in pre-historic Europe (7-12 Aug 2018), organized by the Copenhagen University. The common theme seems to be that Bell Beaker and thus R1b-L23 subclades do represent a direct expansion from Yamna now, as opposed to being derived from Corded Ware migrants, as they supported before.

    NOTE. Yes, the “Yamna → Corded Ware → Únětice / Bell Beaker” migration model is still commonplace in the Copenhagen workgroup. Yes, in 2018. Guus Kroonen had already admitted they were wrong, and it was already changed in the graphic representation accompanying a recent interview to Willerslev. However, since there is still no official retraction by anyone, it seems that each member has to reject the previous model in their own way, and at their own pace. I don’t think we can expect anyone at this point to accept responsibility for their wrong statements.

    So their lead archaeologist, Kristian Kristiansen, in The Indo-Europeanization of Europé (sic):

    kristiansen-migrations
    Kristiansen’s (2018) map of Indo-European migrations

    I love the newly invented arrows of migration from Yamna to the north to distinguish among dialects attributed by them to CWC groups, and the intensive use of materials from Heyd’s publications in the presentation, which means they understand he was right – except for the fact that they are used to support a completely different theory, radically opposed to those defended in Heyd’s model

    Now added to the Copenhagen’s unending proposals of language expansions, some pearls from the oral presentation:

    • Corded Ware north of the Carpathians of R1a lineages developed Germanic;
    • R1b borugh [?] Italo-Celtic;
    • the increase in steppe ancestry on north European Bell Beakers mean that they “were a continuation of the Yamnaya/Corded Ware expansion”;
    • Corded Ware groups [] stopped their expansion and took over the Bell Beaker package before migrating to England” [yep, it literally says that];
    • Italo-Celtic expanded to the UK and Iberia with Bell Beakers [I guess that included Lusitanian in Iberia, but not Messapian in Italy; or the opposite; or nothing like that, who knows];
    • 2nd millennium BC Bronze Age Atlantic trade systems expanded Proto-Celtic [yep, trade systems expanded the language]
    • 1st millennium BC expanded Gaulish with La Tène, including a “Gaulish version of Celtic to Ireland/UK” [hmmm, dat British Gaulish indeed].

    You know, because, why the hell not? A logical, stable, consequential, no-nonsense approach to Indo-European migrations, as always.

    Also, compare still more invented arrows of migrations, from Mikkel Nørtoft’s Introducing the Homeland Timeline Map, going against Kristiansen’s multiple arrows, and even against the own recent fantasy map series in showing Bell Beakers stem from Yamna instead of CWC (or not, you never truly know what arrows actually mean):

    corded-ware-migrations
    Nørtoft’s (2018) maps of Indo-European migrations.

    I really, really loved that perennial arrow of migration from Volosovo, ca. 4000-800 BC (3000+ years, no less!), representing Uralic?, like that, without specifics – which is like saying, “somebody from the eastern forest zone, somehow, at some time, expanded something that was not Indo-European to Finland, and we couldn’t care less, except for the fact that they were certainly not R1a“.

    This and Kristiansen’s arrows are the most comical invented migration routes of 2018; and that is saying something, given the dozens of similar maps that people publish in forums and blogs each week.

    NOTE. You can read a more reasonable account of how haplogroup R1b-L51 and how R1-Z645 subclades expanded, and which dialects most likely expanded with them.

    We don’t know where these scholars of the Danish workgroup stand at this moment, or if they ever had (or intended to have) a common position – beyond their persistent ideas of Yamnaya™ ancestral component = Indo-European and R1a must be Indo-European – , because each new publication changes some essential aspects without expressly stating so, and makes thus everything still messier.

    It’s hard to accept that this is a series of presentations made by professional linguists, archaeologists, and geneticists, as stated by the official website, and still harder to imagine that they collaborate within the same professional workgroup, which includes experienced geneticists and academics.

    I propose the following video to close future presentations introducing innovative ideas like those above, to help the audience find the appropriate mood:

    Related