Yamna the likely source of modern horse domesticates; the closest lineage, from East Bell Beakers

Open access Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series, by Fages et al. Cell (2019).

Interesting excerpts (emphasis mine):

The earliest archaeological evidence of horse milking, harnessing, and corralling is found in the ∼5,500-year-old Botai culture of Central Asian steppes (Gaunitz et al., 2018, Outram et al., 2009; see Kosintsev and Kuznetsov, 2013 for discussion). Botai-like horses are, however, not the direct ancestors of modern domesticates but of Przewalski’s horses (Gaunitz et al., 2018). The genetic origin of modern domesticates thus remains contentious, with suggested candidates in the Pontic-Caspian steppes (Anthony, 2007), Anatolia (Arbuckle, 2012, Benecke, 2006), and Iberia (Uerpmann, 1990, Warmuth et al., 2011). Irrespective of the origins of domestication, the horse genome is known to have been reshaped significantly within the last ∼2,300 years (Librado et al., 2017, Wallner et al., 2017, Wutke et al., 2018). However, when and in which context(s) such changes occurred remains largely unknown.

To clarify the origins of domestic horses and reveal their subsequent transformation by past equestrian civilizations, we generated DNA data from 278 equine subfossils with ages mostly spanning the last six millennia (n = 265, 95%) (Figures 1A and 1B; Table S1; STAR Methods). Endogenous DNA content was compatible with economical sequencing of 87 new horse genomes to an average depth-of-coverage of 1.0- to 9.3-fold (median = 3.3-fold; Table S2). This more than doubles the number of ancient horse genomes hitherto characterized. With a total of 129 ancient genomes, 30 modern genomes, and new genome-scale data from 132 ancient individuals (0.01- to 0.9-fold, median = 0.08-fold), our dataset represents the largest genome-scale time series published for a non-human organism (Tables S2, S3, and S4; STAR Methods).

genetic-affinities-horse-domesticates-pca
Genetic Affinities.
(A)
Principal Component Analysis (PCA) of 159 ancient and modern horse genomes showing at least 1-fold average depth-of-coverage. The overall genetic structure is shown for the first three principal components, which summarize 11.6%, 10.4% and 8.2% of the total genetic variation, respectively. The two specimens MerzlyYar_Rus45_23789 and Dunaujvaros_Duk2_4077 discussed in the main text are highlighted. See also Figure S7 and Table S5 for further information.
(B) Visualization of the genetic affinities among individuals, as revealed by the struct-f4 algorithm and 878,475 f4 permutations. The f4 calculation was conditioned on nucleotide transversions present in all groups, with samples were grouped as in TreeMix analyses (Figure 3). In contrast to PCA, f4 permutations measure genetic drift along internal branches. They are thus more likely to reveal ancient population substructure.

Discovering Two Divergent and Extinct Lineages of Horses

Domestic and Przewalski’s horses are the only two extant horse lineages (Der Sarkissian et al., 2015). Another lineage was genetically identified from three bones dated to ∼43,000–5,000 years ago (Librado et al., 2015, Schubert et al., 2014a). It showed morphological affinities to an extinct horse species described as Equus lenensis (Boeskorov et al., 2018). We now find that this extinct lineage also extended to Southern Siberia, following the principal component analysis (PCA), phylogenetic, and f3-outgroup clustering of an ∼24,000-year-old specimen from the Tuva Republic within this group (Figures 3, 5A and S7A). This new specimen (MerzlyYar_Rus45_23789) carries an extremely divergent mtDNA only found in the New Siberian Islands some ∼33,200 years ago (Orlando et al., 2013) (Figure 6A; STAR Methods) and absent from the three bones previously sequenced. This suggests that a divergent ghost lineage of horses contributed to the genetic ancestry of MerzlyYar_Rus45_23789. However, both the timing and location of the genetic contact between E. lenensis and this ghost lineage remain unknown.

modern-horse-domesticates-przewalski-hungary
Population modeling of the demographic changes and admixture events in extant and extinct horse lineages. The two models presented show best fitting to the observed multi-dimensional SFS in momi2. The width of each branch scales with effective size variation, while colored dashed lines indicate admixture proportions and their directionality. The robustness of each model was inferred from 100 bootstrap pseudo-replicates. Time is shown in a linear scale up to 120,000 years ago and in a logarithmic scale above.

Modeling Demography and Admixture of Extinct and Extant Horse Lineages

Phylogenetic reconstructions without gene flow indicated that IBE differentiated prior to the divergence between DOM2 and Przewalski’s horses (Figure 3; STAR Methods). However, allowing for one migration edge in TreeMix suggested closer affinities with one single Hungarian DOM2 specimen from the 3rd mill. BCE (Dunaujvaros_Duk2_4077), with extensive genetic contribution (38.6%) from the branch ancestral to all horses (Figure S7B).This, and the extremely divergent IBE Y chromosome (Figure 6B), suggest that a divergent but yet unidentified ghost population could have contributed to the IBE genetic makeup.

Rejecting Iberian Contribution to Modern Domesticates

The genome sequences of four ∼4,800- to 3,900-year-old IBE specimens characterized here allowed us to clarify ongoing debates about the possible contribution of Iberia to horse domestication (Benecke, 2006, Uerpmann, 1990, Warmuth et al., 2011). Calculating the so-called fG ratio (Martin et al., 2015) provided a minimal boundary for the IBE contribution to DOM2 members (Cahill et al., 2013) (Figure 7A). The maximum of such estimate was found in the Hungarian Dunaujvaros_Duk2_4077 specimen (∼11.7%–12.2%), consistent with its TreeMix clustering with IBE when allowing for one migration edge (Figure S7B). This specimen was previously suggested to share ancestry with a yet-unidentified population (Gaunitz et al., 2018). Calculation of f4-statistics indicates that this population is not related to E. lenensis but to IBE (Figure 7B; STAR Methods). Therefore, IBE or horses closely related to IBE, contributed ancestry to animals found at an Early Bronze Age trade center in Hungary from the late 3rd mill. BCE. This could indicate that there was long-distance exchange of horses during the Bell Beaker phenomenon (Olalde et al., 2018). The fG minimal boundary for the IBE contribution into an Iron Age Spanish horse (ElsVilars_UE4618_2672) was still important (~9.6%–10.1%), suggesting that an IBE genetic influence persisted in Iberia until at least the 7th century BCE in a domestic context. However, fG estimates were more limited for almost all ancient and modern horses investigated (median = ~4.9%–5.4%; Figure 7A).

horse-lineages-domesticates-przewalski-dom2-botai
TreeMix Phylogenetic Relationships. The tree topology was inferred using a total of ∼16.8 million transversion sites and disregarding migration. The name of each sample provides the archaeological site as a prefix, and the age of the specimen as a suffix (years ago). Name suffixes (E) and (A) denote European and Asian ancient horses, respectively. See Table S5 for dataset information. Image modified to include the likely ancestor of domesticates in a red circle, represented by Yamna, the most likely direct ancestor of the Dunaujvarus specimen.

Iron Age horses

Y chromosome nucleotide diversity (π) decreased steadily in both continents during the last ∼2,000 years but dropped to present-day levels only after 850–1,350 CE (Figures 2B and S2E; STAR Methods). This is consistent with the dominance of an ∼1,000- to 700-year-old oriental haplogroup in most modern studs (Felkel et al., 2018, Wallner et al., 2017). Our data also indicate that the growing influence of specific stallion lines post-Renaissance (Wallner et al., 2017) was responsible for as much as a 3.8- to 10.0-fold drop in Y chromosome diversity.

We then calculated Y chromosome π estimates within past cultures represented by a minimum of three males to clarify the historical contexts that most impacted Y chromosome diversity. This confirmed the temporal trajectory observed above as Byzantine horses (287–861 CE) and horses from the Great Mongolian Empire (1,206–1,368 CE) showed limited yet larger-than-modern diversity. Bronze Age Deer Stone horses from Mongolia, medieval Aukštaičiai horses from Lithuania (C9th–C10th [ninth through the tenth centuries of the Common Era]), and Iron Age Pazyryk Scythian horses showed similar diversity levels (0.000256–0.000267) (Figure 2A). However, diversity was larger in La Tène, Roman, and Gallo-Roman horses, where Y-to-autosomal π ratios were close to 0.25. This contrasts to modern horses, where marked selection of specific patrilines drives Y-to-autosomal π ratios substantially below 0.25 (0.0193–0.0396) (Figure 2A). The close-to-0.25 Y-to-autosomal π ratios found in La Tène, Roman, and Gallo-Roman horses suggest breeding strategies involving an even reproductive success among stallions or equally biased reproductive success in both sexes (Wilson Sayres et al., 2014).

Lineage is used in this paper, as in many others in genetics, as defined by a specific ancestry. I keep that nomenclature below. It should not be confused with the “lineages” or “lines” referring to Y-chromosome (or mtDNA) haplogroups.

Supporting the “archaic” nature of the Hungarian BBC horses expanding from the Pontic-Caspian steppes are:

  • Among Y-chromosome lines, the common group formed by Botai-Borly4 (closely related to DOM2), Scythian horses from Aldy Bel (Arzhani), Iron Age horses from Estonia (Ridala), horses from the Xiongnu culture (Uushgiin Uvur), and Roman horses from Autricum (Chartres).
  • Among mtDNA lines, the common group formed by Botai samples, LebyazhinkaIV NB35, and different Eurasian domesticates, including many ancient Western European ones, which reveals a likely expansion of certain subclades east and west with the Repin culture.
  • (…) DOM2 contributed 22% to the ancestor of Przewalski’s horses ca. 9.47 kya, suggesting the Holocene optimum, rather than the Eneolithic Botai culture (∼5.5 kya), as a period of population contact. This pre-Botai introgression could explain the Y chromosome topology, where Botai horses were reported to carry two different segregating haplogroups: one occupied a basal position in the phylogeny while the other was closely related to DOM2. Multiple admixture pulses, however, are known to have occurred along the divergence of DOM2 and the Botai-Borly4 lineage, including 2.3% post-Borly4 contribution to DOM2, and a more recent 6.8% DOM2 intogression into Przewalski’s horses (Gaunitz et al., 2018). Model C2 parameters accommodate all these as a single admixture pulse, likely averaging the contributions of all these multiple events.

    horse-domesticate-y-dna-mtdna
    Tip labels are respectively composed of individual sample names, their reference number as well as their age (years ago, from 2017). Red, orange, light green, green, dark green and blue refer to modern horses, ancient DOM2, Botai horses, Borly4 horses, Przewalski’s horses and E. lenensis, respectively. Black refers to wild horses not yet identified to belong to any particular cluster in absence of sufficient genome-scale data. Clades composed of only Przewalski’s horses or ancient DOM2 horses were collapsed to increase readability.

    (A) Best maximum likelihood tree retracing the phylogenetic relationships between 270 mitochondrial genomes.

    B) Best Y chromosome maximum likelihood tree (GTRGAMMA substitution model) excluding outgroup. Node supports are indicated as fractions of 100 bootstrap pseudoreplicates. Bootstrap supports inferior to 90% are not shown. The root was placed on the tree midpoint. See also Table S5 for dataset information.

    Image modified from the paper, including a red square in archaic groups that contain the Hungarian sample, and a red circle around the most likely common ancestral stallion and mare from the Pontic-Caspian steppes.

    The paper cannot offer a detailed picture of ancient horse domestication, but it is yet another step in showing how Repin/Yamna is the most likely source of expansion of horse domesticates in Eurasia. Even more interestingly, Yamna settlers in Hungary probably expanded an ancient lineage of that horse at the same time as they spread with the Classical Bell Beaker culture. Remarkable parallels are thus found between:

    The expansion of an ancient line of horse domesticates related to Yamna Hungary/East Bell Beakers seems to be confirmed by the pre-Iberian sample from Vilars I, Els Vilars4618 2672 (ca. 700-550 BC), likely of Iberian Beaker descent, showing a lineage older than the Indo-Iranian ones, which later replaced most European lines.

    NOTE. For known contacts between Yamna and Proto-Beakers just before the expansion of East Bell Beakers, see a recent post on Vanguard Yamna groups.

    The findings of the paper confirm the expansion of the horse firstly (and mainly) through the steppe biome, mimicking the expansion of Proto-Indo-Europeans first, and then replaced gradually (or not so gradually) by lines brought to Europe during westward expansions of Bronze Age, Iron Age, and later specialized horse-riding steppe cultures. The expansion also correlates well with the known spread of animal traction and pastoralism before 2000 BC:

    animal-traction-europe
    Top image: Map with evidence of animal traction before ca. 2000 BC. Bottom image: frequency of finds of evidence for animal traction (orange), cylinder seals (purple) and potter’s wheels (green) in the 4th and 3rd millennium BC (query from the Digital Atlas of Innovations). The data points to an early peak in the expansion of this innovation at the turn of the 4th–3rd millennium BC, while direct evidence supports a radical increase from around the mid–3th millennium BC until the early 2nd millennium, coinciding with the expansion of East Bell Beakers and related European Early Bronze Age cultures. Data and image modified from Klimscha (2017).

    EDIT (3 MAY 2019): A recent reminder of these parallel developments by David Reich in Insights into language expansions from ancient DNA:

    • Yamna expansion to the west “with horses and wagons”, with a more homogeneous ancestry in modern Europeans due to later migrations from the east (and north):
    • “Descendants” of Yamna (once the culture was already “dead”), expanding to the east mainly with Corded Ware ancestry:

    Another recent open access paper on horse domestication is The horse Y chromosome as an informative marker for tracing sire lines, by Felkel et al. Scientific Reports (2019).

    Related

Uralic speakers formed clines of Corded Ware ancestry with WHG:ANE populations

steppe-forest-tundra-biomes-uralic

The preprint by Jeong et al. (2018) has been published: The genetic history of admixture across inner Eurasia Nature Ecol. Evol. (2019).

Interesting excerpts, referring mainly to Uralic peoples (emphasis mine):

A model-based clustering analysis using ADMIXTURE shows a similar pattern (Fig. 2b and Supplementary Fig. 3). Overall, the proportions of ancestry components associated with Eastern or Western Eurasians are well correlated with longitude in inner Eurasians (Fig. 3). Notable outliers include known historical migrants such as Kalmyks, Nogais and Dungans. The Uralic- and Yeniseian-speaking populations, as well as Russians from multiple locations, derive most of their Eastern Eurasian ancestry from a component most enriched in Nganasans, while Turkic/Mongolic speakers have this component together with another component most enriched in populations from the Russian Far East, such as Ulchi and Nivkh (Supplementary Fig. 3). Turkic/Mongolic speakers comprising the bottom-most cline have a distinct Western Eurasian ancestry profile: they have a high proportion of a component most enriched in Mesolithic Caucasus hunter-gatherers and Neolithic Iranians and frequently harbour another component enriched in present-day South Asians (Supplementary Fig. 4). Based on the PCA and ADMIXTURE results, we heuristically assigned inner Eurasians to three clines: the ‘forest-tundra’ cline includes Russians and all Uralic and Yeniseian speakers; the ‘steppe-forest’ cline includes Turkic- and Mongolic-speaking populations from the Volga and Altai–Sayan regions and Southern Siberia; and the ‘southern steppe’ cline includes the rest of the populations.

eurasian-clines-uralic-altaic
The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the northsouth cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

For the forest-tundra populations, the Nganasan + Srubnaya model is adequate only for the two Volga region populations, Udmurts and Besermyans (Fig. 5 and Supplementary Table 8).

For the other populations west of the Urals, six from the northeastern corner of Europe are modelled with additional Mesolithic Western European hunter-gatherer (WHG) contribution (8.2–11.4%; Supplementary Table 8), while the rest need both WHG and early Neolithic European farmers (LBK_EN; Supplementary Table 2). Nganasan-related ancestry substantially contributes to their gene pools and cannot be removed from the model without a significant decrease in the model fit (4.1–29.0% contribution; χ2 P ≤ 1.68 × 10−5; Supplementary Table 8).

west-urals-finno-ugrians-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the 13 populations west of the Urals, we present a four-way admixture model, Nganasan+Srubnaya+WHG+LBK_EN, or its minimal adequate subset. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

NOTE. It doesn’t seem like Hungarians can be easily modelled with Nganasan ancestry, though…

For the 4 populations east of the Urals (Enets, Selkups, Kets and Mansi), for which the above models are not adequate, Nganasan + Srubnaya + AG3 provides a good fit (χ2 P ≥ 0.018; Fig. 5 and Supplementary Table 8). Using early Bronze Age populations from the Baikal Lake region (‘Baikal_EBA’; Supplementary Table 2) as a reference instead of Nganasan, the two-way model of Baikal_EBA + Srubnaya provides a reasonable fit (χ2 P ≥ 0.016; Supplementary Table 8) and the three-way model of Baikal_EBA + Srubnaya + AG3 is adequate but with negative AG3 contribution for Enets and Mansi (χ2 P ≥ 0.460; Supplementary Table 8).

east-urals-ugric-samoyedic-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the four populations east of the Urals, we present three admixture models: Baikal_EBA+Srubnaya, Baikal_EBA+Srubnaya+AG3 and Nganasan+Srubnaya+AG3. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Bronze/Iron Age populations from Southern Siberia also show a similar ancestry composition with high ANE affinity (Supplementary Table 9). The additional ANE contribution beyond the Nganasan + Srubnaya model suggests a legacy from ANE-ancestry-rich clines before the Late Bronze Age.

bronze-age-iron-age-karasuk-mezhovska-tagar-qpadm
Supplementary Table 9. QpAdm-based admixture modeling of Bronze and Iron Age populations of southern Siberia. For ancieint individuals associated with Karasuk and Tagar cultures, Nganasan+Srubnaya model is insufficient. For all five groups, adding AG3 as the third ancestry or substituting Nganasan with Baikal_EBA with higher ANE affinity provides an adequate model. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Models with p-value ≥ 0.05 are highlighted in bold face. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Lara M. Cassidy comments the results of the study in A steppe in the right direction (you can read it here):

Even among the earliest available inner Eurasian genomes, east–west connectivity is evident. These, too, form a longitudinal cline, characterized by the easterly increase of a distinct ancestry, labelled Ancient North Eurasian (ANE), lowest in western European hunter-gatherers (WHG) and highest in Palaeolithic Siberians from the Baikal region. Flow-through from this ANE cline is seen in steppe populations until at least the Bronze Age, including the world’s earliest known horse herders — the Botai. However, this is eroded over time by migration from west and east, following agricultural adoption on the continental peripheries (Fig. 1b,c).

Strikingly, Jeong et al. model the modern upper steppe cline as a simple two-way mixture between western Late Bronze Age herders and Northeast Asians (Fig. 1c), with no detectable residue from the older ANE cline. They propose modern steppe peoples were established mainly through migrations post-dating the Bronze Age, a sequence for which has been recently outlined using ancient genomes. In contrast, they confirm a substantial ANE legacy in modern Siberians of the northernmost cline, a pattern mirrored in excesses of WHG ancestry west of the Urals (Fig. 1b). This marks the inhospitable biome as a reservoir for older lineages, an indication that longstanding barriers to latitudinal movement may indeed be at work, reducing the penetrance of gene flows further south along the steppe.

eurasian-clines-uralic-turkic-mongol-altaic
The genomic formation of inner Eurasians. b–d, Depiction of the three main clines of ancestry identified among Inner Eurasians. Sources of admixture for each cline are represented using proxy ancient populations, both sampled and hypothesised, based on the study’s modelling results. The major eastern and western ancestries used to model each cline are shown in bold; the peripheral admixtures that gave rise to these are also shown. Additional contributions to subsections of each cline are marked with dashed lines. b, The northernmost cline, illustrating the legacy of WHG and ANE-related populations. c,d, The upper (c) and lower (d) steppe clines are shown, both of which have substantial eastern contributions related to modern Tungusic speakers. The authors propose these populations are themselves the result of an admixture between groups related to the Nganasan, whose ancestors potentially occupied a wider range, and hunter-gatherers (HGs) from the Amur River Basin. While the upper steppe cline in c can be described as a mixture between this eastern ancestry and western steppe herders, the current model for the southern steppe cline as shown in d is not adequate and is likely confounded by interactions with diverse bordering ancestries. Credit: Ecoregions 2017, Resolve https://ecoregions2017.appspot.com/

Given the findings as reported in the paper, I think it should be much easier to describe different subclines in the “northernmost cline” than in the much more recent “Turkic/Mongolic cline”, which is nevertheless subdivided in this paper in two clines. As an example, there are at least two obvious clines with “Nganasan-related meta-populations” among Uralians, which converge in a common Steppe MLBA (i.e. Corded Ware) ancestry – one with Palaeo-Laplandic peoples, and another one with different Palaeo-Siberian populations:

siberian-clines-uralic-altaic
PCA of ancient and modern Eurasian samples. Ancient Palaeo-Laplandic, Palaeosiberian, and Altai clines drawn, with modern populations labelled. See a version with higher resolution.

The inclusion of certain Eurasian groups (or lack thereof) in the PCA doesn’t help to distinguish these subclines visually, and I guess the tiny “Naganasan-related” ancestral components found in some western populations (e.g. the famous ~5% among Estonians) probably don’t lend themselves easily to further subdivisions. Notice, nevertheless, the different components of the Eastern Eurasian source populations among Finno-Ugrians:

uralic-admixture-qpadm
Characterization of the Western and Eastern Eurasian source ancestries in inner Eurasian populations. [Modified from the paper, includes only Uralic populations]. a, Admixture f3 values are compared for different Eastern Eurasian (Mixe, Nganasan and Ulchi; green) and Western Eurasian references (Srubnaya and Chalcolithic Iranians (Iran_ChL); red). For each target group, darker shades mark more negative f3 values. b, Weights of donor populations in two sources characterizing the main admixture signal (date 1 and PC1) in the GLOBETROTTER analysis. We merged 167 donor populations into 12 groups (top right). Target populations were split into five groups (from top to bottom): Aleuts; the forest-tundra cline populations; the steppe-forest cline populations; the southern steppe cline populations; and ‘others’.

Also remarkable is the lack of comparison of Uralic populations with other neighbouring ones, since the described Uralic-like ancestry of Russians was already known, and is most likely due to the recent acculturation of Uralic-speaking peoples in the cradle of Russians, right before their eastward expansions.

west-eurasian-east-eurasian-ancestry
Supplementary Fig. 4. ADMIXTURE results qualitatively support PCA-based grouping of inner Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”). Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”).

A comparison of Estonians and Finns with Balts, Scandinavians, and Eastern Europeans would have been more informative for the division of the different so-called “Nganasan-like meta-populations”, and to ascertain which one of these ancestral peoples along the ancient WHG:ANE cline could actually be connected (if at all) to the Cis-Urals.

Because, after all, based on linguistics and archaeology, geneticists are not supposed to be looking for populations from the North Asian Arctic region, for “Siberian ancestry”, or for haplogroup N1c – despite previous works by their peers – , but for the Bronze Age Volga-Kama region…

Related

Aquitanians and Iberians of haplogroup R1b are exactly like Indo-Iranians and Balto-Slavs of haplogroup R1a

eba-indo-iranian-balto-slavs

The final paper on Indo-Iranian peoples, by Narasimhan and Patterson (see preprint), is soon to be published, according to the first author’s Twitter account.

One of the interesting details of the development of Bronze Age Iberian ethnolinguistic landscape was the making of Proto-Iberian and Proto-Basque communities, which we already knew were going to show R1b-P312 lineages, a haplogroup clearly associated during the Bell Beaker period with expanding North-West Indo-Europeans:

From the Bronze Age (~2200–900 BCE), we increase the available dataset from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (Steppe ancestry) appeared throughout Iberia in this period, albeit with less impact in the south. The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who coexisted with local people without Steppe ancestry. These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups. Y-chromosome turnover was even more pronounced, as the lineages common in Copper Age Iberia (I2, G2, and H) were almost completely replaced by one lineage, R1b-M269.

iberia-admixture-y-dna
Proportion of ancestry derived from central European Beaker/Bronze Age populations in Iberians from the Middle Neolithic to the Iron Age (table S15). Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The arrival of East Bell Beakers speaking Indo-European languages involved, nevertheless, the survival of the two non-IE communities isolated from each other – likely stemming from south-western France and south-eastern Iberia – thanks to a long-lasting process of migration and admixture. There are some common misconceptions about ancient languages in Iberia which may have caused some wrong interpretations of the data in the paper and elsewhere:

NOTE. A simple reading of Iberian prehistory would be enough to correct these. Two recent books on this subject are Villar’s Indoeuropeos, iberos, vascos y otros parientes and Vascos, celtas e indoeuropeos. Genes y lenguas.

Iberian languages were spoken at least in the Mediterranean and the south (ca. “1/3 of Iberia“) during the Bronze Age.

Nope, we only know the approximate location of Iberian culture and inscriptions from the Late Iron Age, and they occupy the south-eastern and eastern coastal areas, but before that it is unclear where they were spoken. In fact, it seems evident now that the arrival of Urnfield groups from the north marks the arrival of Celtic-speaking peoples, as we can infer from the increase in Central European admixture, while the expansion of anthropomorphic stelae from the north-west must have marked the expansion of Lusitanian.

Vasconic was spoken in both sides of the Pyrenees, as it was in the Middle Ages.

Wrong. One of the worst mistakes I am seeing in many comments since the paper was published, although admittedly the paper goes around this problem talking about “Modern Basques”. Vasconic toponyms appear south of the Pyrenees only after the Roman conquests, and tribes of the south-western Pyrenees and Cantabrian regions were likely Celtic-speaking peoples. Aquitanians (north of the western Pyrenees) are the only known ancient Vasconic-speaking population in proto-historic times, ergo the arrival of Bell Beakers in Iberia was most likely accompanied by Indo-European languages which were later replaced by Celtic expanding from Central Europe, and Iberian expanding from south-east Iberia, and only later with Latin and Vasconic.

Ligurian is non-Indo-European, and Lusitanian is Celtic-like, so Iberia must have been mostly non-Indo-European-speaking.

The fragmentary material available on Ligurian is enough to show that phonetically it is a NWIE dialect of non-Celtic, non-Italic nature, much like Lusitanian; that is, unless you follow laryngeals up to Celtic or Italic, in which case you can argue anything about this or any other IE language, as people who reconstruct laryngeals for Baltic in the common era do.

EDIT (19 Mar 2019): It was not clear enough from this paragraph, because Ligurian-like languages in NE Iberia is just a hypothesis based on the archaeological connection of the whole southern France Bell Beaker region. My aim was to repeat the idea that Old European topo-hydronymy is older in NE Iberia (as almost anywhere in Iberia) than Iberian toponymy, so the initial hypothesis is that:

  1. a Palaeo-European language (as Villar puts it) expanded into most regions of Iberia in ancient times (he considered at some point the Mesolithic, but that is obviously wrong, as we know now); then
  2. Celts expanded at least to the Ebro River Basin; then
  3. Iberians expanded to the north and replaced these in NE Iberia; and only then
  4. after the Roman invasion, around the start of the Common Era, appear Vasconic toponyms south of the Pyrenees.

Lusitanian obviously does not qualify as Celtic, lacking the most essential traits that define Celticness…Unless you define “(Para-)Celtic” as Pre-Proto-Celtic-like, or anything of the sort to support some Atlantic continuity, in which case you can also argue that Pre-Italic or Pre-Germanic are Celtic, because you would be essentially describing North-West Indo-European

If Basques have R1b, it’s because of a culture of “matrilocality” as opposed to the “patrilocality” of Indo-Europeans

So wrong it hurts my eyes every time I read this. Not only does matrilocality in a regional group have few known effects in genetics, but there are many well-documented cases of population replacement (with either ancestry or Y-DNA haplogroups, or both) without language replacement, without a need to resort to “matrilineality” or “matrilocality” or any other cultural difference in any of these cases.

In fact, it seems quite likely now that isolated ancient peoples north of the Pyrenees will show a gradual replacement of surviving I2a lineages by neighbouring R1b, while early Iberian R1b-DF27 lineages are associated with Lusitanians, and later incoming R1b-DF27 lineages (apart from other haplogroups) are most likely associated with incoming Celts, which must have remained in north-central and central-east European groups.

NOTE. Notice how R1a is fully absent from all known early Indo-European peoples to date, whether Iberian IE, British IE, Italic, or Greek. The absence of R1a in Iberia after the arrival of Celts is even more telling of the origin of expanding Celts in Central Europe.

I haven’t had enough time to add Iberian samples to my spreadsheet, and hence neither to the ASoSaH texts nor maps/PCAs (and I don’t plan to, because it’s more efficient for me to add both, Asian and Iberian samples, at the same time), but luckily Maciamo has summed it up on Eupedia. Or, graphically depicted in the paper for the southeast:

iberia-haplogroups
Y chromosome haplogroup composition of individuals from southeast Iberia during the past 2000 years. The general Iberian Bronze and Iron Age population is included for comparison. Modified from Olalde et al. (2019).

Does this continued influx of Y-DNA haplogroups in Iberia with different cultures represent permanent changes in language? Are, therefore, modern Iberian languages derived from Lusitanian, Sorothaptic/Celtic, Greek, Phoenician, East or West Germanic, Hebrew, Berber, or Arabic languages? Obviously not. Same with Italy (see the recent preprint on modern Italians by Raveane et al. 2018), with France, with Germany, or with Greece.

If that happens in European regions with a known ancient history, why would the recent expansions and bottlenecks of R1b in modern Basques (or N1c around the Baltic, or R1a in Slavs) in the Middle Ages represent an ancestral language surviving into modern times?

Indo-Iranians

If something is clear from Narasimhan, Patterson, et al. (2018), is that we know finally the timing of the introduction and expansion of R1a-Z645 lineages among Indo-Iranians.

We could already propose since 2015 that a slow admixture happened in the steppes, based on archaeological finds, due to settlement elites dominating over common peoples, coupled with the known Uralic linguistic traits of Indo-Iranian (and known Indo-Iranian influence on Finno-Ugric) – as I did in the first version of the Indo-European demic diffusion model.

The new huge sampling of Sintashta – combined with that of Catacomb, Poltavka, Potapovka, Andronovo, and Srubna – shows quite clearly how this long-term admixture process between Uralic peoples and Indo-Iranians happened between forest-steppe CWC (mainly Abashevo) and steppe groups. The situation is not different from that of Iberia ca. 2500-2000 BC; from Narasimhan, Patterson, et al. (2018):

We combined the newly reported data from Kamennyi Ambar 5 with previously reported data from the Sintashta 5 individuals (10). We observed a main cluster of Sintashta individuals that was similar to Srubnaya, Potapovka, and Andronovo in being well modeled as a mixture of Yamnaya-related and Anatolian Neolithic (European agriculturalist-related) ancestry.

Even with such few words referring to one of the most important data in the paper about what happened in the steppes, Wang et al. (2018) help us understand what really happened with this simplistic concept of “steppe ancestry” regarding Yamna vs. Corded Ware differences:

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

As with Iberia (or any prehistoric region), the details of how exactly this language change happened are not evident, but we only need a plausible explanation coupled with archaeology and linguistics. Poltavka, Potapovka, and Sintashta samples – like the few available Iberian ones ca. 2500-2000 BC – offer a good picture of the cohabitation of R1b-L23 (mainly Z2103) and R1a-Z645 (mainly Z93+): a glimpse at the likely presence of R1a-Z93 within settlements – which must have evolved as the dominant elites – in a society where the majority of the population was initially formed by nomad herders (probably most R1b-Z2103), who were usually buried outside of the main settlements.

Will the upcoming Narasimhan, Patterson et al. (2019) deal with this problem of how R1a-M417 replaced R1b-M269, and how the so-called “Steppe_MLBA” (i.e. Corded Ware) ancestry admixed with “Steppe_EMBA” (i.e. Yamnaya) ancestry in the steppes, and which one of their languages survived in the region (that is, the same the Reich Lab has done with Iberia)? Not likely. The ‘genetic wars’ in Iberia deal with haplogroup R1b-P312, and how it was neither ‘native’ nor associated with Basques and non-Indo-European peoples in general. The ‘genetic wars’ in South Asia are concerned with the steppe origin of R1a, to prove that it is not a ‘native’ haplogroup to India, and thus neither are Indo-Aryan languages. To each region a politically correct account of genetic finds, with enough care not to fully dismiss national myths, it seems.

NOTE. Funnily enough, these ‘genetic wars’ are the making of geneticists since the 1990s and 2000s, so we are still in the midst of mostly internal wars caused by what they write. Just as genetic papers of the 2020s will most likely be a reaction to what they are writing right now about “steppe ancestry” and R1a. You won’t find much change to the linguistic reconstruction in this whole period, except for the most multicolored glottochronological proposals…

The first author of the paper has engaged, as far as I could see in Twitter, in dialogue with Hindu nationalists who try to dismiss the arrival of steppe ancestry and R1a into South Asia as inconclusive (to support the potential origin of Sanskrit millennia ago in the Indus Valley Civilization). How can geneticists deal with the real problem here (the original ethnolinguistic group expanding with Corded Ware), when they have to fend off anti-steppists from Europe and Asia? How can they do it, when they themselves are part of the same societies that demand a politically correct presentation of data?

This is how the data on the most likely Indo-Iranian-speaking region should be presented in an ideal world, where – as in the Iberia paper – geneticists would look closely to the Volga-Ural region to discover what happened with Proto-Indo-Iranians from their earliest to their latest stage, instead of constantly looking for sites close to the Indus Valley to demonstrate who knows what about modern Indian culture:

indo-iranian-admixture-similar-iberians
Tentative map of the Late PIE and Indo-Iranian community in the Volga-Ural steppes since the Eneolithic. Proportion of ancestry derived from central European Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

Now try and tell Hindu nationalists that Sanskrit expanded from an Early Bronze Age steppe community of R1b-rich nomadic herders that spoke Pre-Indo-Iranian, which was dominated and eventually (genetically) mostly replaced by elite Uralic-speaking R1a peoples from the Russian forest, hence the known phonetic (and some morphological) traits that remained. Good luck with the Europhobic shitstorm ahead..

Balto-Slavic

Iberian cultures, already with a majority of R1b lineages, show a clear northward expansion over previously Urnfield-like groups of north-east Iberia and Mediterranean France (which we now know probably represent the migration of Celts from central Europe). Similarly, Eastern Balts already under a majority of R1a lineages expanded likely into the Baltic region at the same time as the outlier from Turlojiškė (ca. 1075 BC), which represents the first obvious contacts of central-east Europe with the Baltic.

Iberia shows a more recent influx of central and eastern Mediterranean peoples, one of which eventually succeeded in imposing their language in Western Europe: Romans were possibly associated mainly with R1b-U152, apart from many other lineages. Proto-Slavs probably expanded later than Celts, too, connected to the disintegration of the Lusatian culture, and they were at some point associated with R1a-M458 and R1a-Z280(xZ92) lineages, apart from others already found in Early Slavs.

pca-balto-slavs-tollense-valley
PCA of central-eastern European groups which may have formed the Balto-Slavic-speaking community derived from Bell Beaker, evident from the position ‘westwards’ of CWC in the PCA, and surrounding cultures. Left: Early Bronze Age. Right: Tollense Valley samples.

This parallel between Iberia and eastern Europe is no coincidence: as Europe entered the Bronze Age, chiefdom-based systems became common, and thus the connection of ancestry or haplogroups with ethnolinguistic groups became weaker.

What happened earlier (and who may represent the Pre-Balto-Slavic community) will be clearer when we have enough eastern European samples, but basically we will be able to depict this admixture of NWIE-speaking BBC-derived peoples with Uralic-speaking CWC-derived groups (since Uralic is known to have strongly influenced Balto-Slavic), similar to the admixture found in Indo-Iranians, more or less like this:

iberian-admixture-balto-slavic
Tentative map of the North-West Indo-European and Balto-Slavic community in central-eastern Europe since the East Bell Beaker expansion. Proportion of ancestry derived from Corded Ware peoples. Colors indicate the Y-chromosome haplogroup for each male. Red lines represent period of admixture. Modified from Olalde et al. (2019).

The Early Scythian period marked a still stronger chiefdom-based system which promoted the creation of alliances and federation-like groups, with an earlier representation of the system expanding from north-eastern Europe around the Baltic Sea, precisely during the spread of Akozino warrior-traders (in turn related to the Scythian influence in the forest-steppes), who are the most likely ancestors of most N1c-V29 lineages among modern Germanic, Balto-Slavic, and Volga-Finnic peoples.

Modern haplogroup+language = ancient ones?

It is not difficult to realize, then, that the complex modern genetic picture in Eastern Europe and around the Urals, and also in South Asia (like that of the Aegean or Anatolia) is similar to the Iron Age / medieval Iberian one, and that following modern R1a as an Indo-European marker just because some modern Indo-European-speaking groups showed it was always a flawed methodology; as flawed as following R1b for ancient Vasconic groups, or N1c for ancient Uralic groups.

Why people would argue that haplogroups mean continuity (e.g. R1b with Basques, N1c with Finns, R1a with Slavs, etc.) may be understood, if one lives still in the 2000s. Just like why one would argue that Corded Ware is Indo-European, because of Gimbutas’ huge influence since the 1960s with her myth of “Kurgan peoples”. Not many denied these haplogroup associations, because there was no reason to do it, and those who did usually aligned with a defense of descriptive archaeology.

However, it is a growing paradox that some people interested in genetics today would now, after the Iberian paper, need to:

  • accept that ancient Iberians and probably Aquitanians (each from different regions, and probably from different “Basque-Iberian dialects” in the Chalcolithic, if both were actually related) show eventually expansions with R1b-L23, the haplogroup most obviously associated with expanding Indo-Europeans;
  • acknowledge that modern Iberians have many different lineages derived from prehistoric or historic peoples (Celts, Phoenicians, Greeks, Romans, Jews, Goths, Berbers, Arabs), which have undergone different bottlenecks, the last ones during the Reconquista, but none of their languages have survived;
  • realize that a similar picture is to be found everywhere in central and western Europe since the first proto-historic records, with language replacement in spite of genetic continuity, such as the British Isles (and R1b-L21 continuity) after the arrival of Celts, Romans, Anglo-Saxons, Vikings, or Normans;
  • but, at the same time, continue blindly asserting that haplogroup R1a + “steppe ancestry” represent some kind of supernatural combination which must show continuity with their modern Indo-Iranian or Balto-Slavic language from time immemorial.
sintashta-y-dna
Replacement of R1b-L23 lineages during the Early Bronze Age in eastern Europe and in the Eurasian steppes: emergence of R1a in previous Yamnaya and Bell Beaker territories. Modified from EBA Y-DNA map.

Behave, pretty please

The ‘conservative’ message espoused by some geneticists and amateur genealogists here is basically as follows:

  • Let’s not rush to new theories that contradict the 2000s, lest some people get offended by granddaddy not being these pure whatever wherever as they believed, and let’s wait some 5, 10, or 20 years, as long as necessary – to see if some corner of the Yamna culture shows R1a, or some region in north-eastern Europe shows N1c, or some Atlantic Chalcolithic sample shows R1b – to challenge our preferred theories, if we actually need to challenge anything at all, because it hurts too much.
  • Just don’t let many of these genetic genealogists or academics of our time be unhappy, pretty please with sugar on top, and let them slowly adapt to reality with more and more pet theories to fit everything together (past theories + present data), so maybe when all of them are gone, within 50 or 70 years, society can smoothly begin to move on and propose something closer to reality, but always as politically correct as possible for the next generations.
  • For starters, let’s discuss now (yet again) that Bell Beakers may not have been Indo-European at all, despite showing (unlike Corded Ware) clearly Yamna male lineages and ancestry, because then Corded Ware and R1a could not have been Indo-European and that’s terrible, so maybe Bell Beakers are too brachycephalic to speak Indo-European or something, or they were stopped by the Fearsome Tisza River, or they are not pure Dutch Single Grave in The South hence not Indo-European, or whatever, and that’s why Iron Age Iberians or Etruscans show non-Indo-European languages. That’s not disrespectful to the history of certain peoples, of course not, but talking about the evident R1a-Uralic connection is, because this is The South, not The North, and respect works differently there.
  • Just don’t talk about how Slavs and Balts enter history more than 1,500 years later than Indo-European peoples in Western and Southern Europe, including Iberia, and assume a heroic continuity of Balts and Slavs as pure R1a ‘steppe-like’ peoples dominating over thousands of kms. in the Baltic, Fennoscandia, eastern Europe, and northern Asia for 5,000 years, with multiple Balto-Slavs-over-Balto-Slavs migrations, because these absolute units of Indo-European peoples were a trip and a half. They are the Asterix and Obelix of white Indo-European prehistory.
  • Perhaps in the meantime we can also invent some new glottochronological dialectal scheme that fits the expansion of Sredni Stog/Corded Ware with (Germano-?)Indo-Slavonic separated earlier than any other Late PIE dialect; and Finno-Volgaic later than any other Uralic dialect, in the Middle Ages, with N1c.
balto-slavic-pca
Genetic structure of the Balto-Slavic populations within a European context according to the three genetic systems, from Kushniarevich et al. (2015). Pure Balto-Slavs from…hmm…yeah this…ancient…region…or people…cluster…Whatever, very very steppe-like peoples, the True Indo-Europeans™, so close to Yamna…almost as close as Finno-Ugrians.

To sum up: Iberia, Italy, France, the British Isles, central Europe, the Balkans, the Aegean, or Anatolia, all these territories can have a complex history of periodic admixture and language replacement everywhere, but some peoples appearing later than all others in the historical record (viz. Basques or Slavs) apparently cannot, because that would be shameful for their national or ethnic myths, and these should be respected.

Ignorance of the own past as a blank canvas to be filled in with stupid ethnolinguistic continuity, turned into something valuable that should not be challenged. Ethnonationalist-like reasoning proper of the 19th century. How can our times be called ‘modern’ when this kind of magical thinking is still prevalent, even among supposedly well-educated people?

Related

Minimal gene flow from western pastoralists in the Bronze Age eastern steppes

jeong-steppes-mongolia

Open access paper Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Jeong et al. PNAS (2018).

Interesting excerpts (emphasis mine):

To understand the population history and context of dairy pastoralism in the eastern Eurasian steppe, we applied genomic and proteomic analyses to individuals buried in Late Bronze Age (LBA) burial mounds associated with the Deer Stone-Khirigsuur Complex (DSKC) in northern Mongolia. To date, DSKC sites contain the clearest and most direct evidence for animal pastoralism in the Eastern steppe before ca. 1200 BCE.

Most LBA Khövsgöls are projected on top of modern Tuvinians or Altaians, who reside in neighboring regions. In comparison with other ancient individuals, they are also close to but slightly displaced from temporally earlier Neolithic and Early Bronze Age (EBA) populations from the Shamanka II cemetry (Shamanka_EN and Shamanka_EBA, respectively) from the Lake Baikal region. However, when Native Americans are added to PC calculation, we observe that LBA Khövsgöls are displaced from modern neighbors toward Native Americans along PC2, occupying a space not overlapping with any contemporary population. Such an upward shift on PC2 is also observed in the ancient Baikal populations from the Neolithic to EBA and in the Bronze Age individuals from the Altai associated with Okunevo and Karasuk cultures.

pca-eurasians-karasuk-khovsgol
Image modified from the article. Karasuk cluster in green, closely related to sample ARS026 in red. Principal Component Analysis (PCA) of selected 2,077 contemporary Eurasians belonging to 149 groups. Contemporary individuals are plotted using three-letter abbreviations for operational group IDs. Group IDs color coded by geographic region. Ancient Khövsgöl individuals and other selected ancient groups are represented on the plot by filled shapes. Ancient individuals are projected onto the PC space using the “lsqproject: YES” option in the smartpca program to minimize the impact of high genotype missing rate.

(…) two individuals fall on the PC space markedly separated from the others: ARS017 is placed close to ancient and modern northeast Asians, such as early Neolithic individuals from the Devil’s Gate archaeological site (22) and present-day Nivhs from the Russian far east, while ARS026 falls midway between the main cluster and western Eurasians.

Upper Paleolithic Siberians from nearby Afontova Gora and Mal’ta archaeological sites (AG3 and MA-1, respectively) (25, 26) have the highest extra affinity with the main cluster compared with other groups, including the eastern outlier ARS017, the early Neolithic Shamanka_EN, and present-day Nganasans and Tuvinians (Z > 6.7 SE for AG3). Main cluster Khövsgöl individuals mostly belong to Siberian mitochondrial (A, B, C, D, and G) and Y (all Q1a but one N1c1a) haplogroups.

mongolia-botai-ehg-ane-cline
The genetic affinity of the Khövsgöl clusters measured by outgroup-f3 and -f4 statistics. (A) The top 20 populations sharing the highest amount of >genetic drift with the Khövsgöl main cluster measured by f3(Mbuti; Khövsgöl, X). (B) The top 15 populations with the most extra affinity with each of the three Khövsgöl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f4(Mbuti, X; Tuvinian/Khövsgöl, Khövsgöl/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f4 statistic.

Previous studies show a close genetic relationship between WSH populations and ANE ancestry, as Yamnaya and Afanasievo are modeled as a roughly equal mixture of early Holocene Iranian/ Caucasus ancestry (IRC) and Mesolithic Eastern European hunter-gatherers, the latter of which derive a large fraction of their ancestry from ANE. It is therefore important to pinpoint the source of ANE-related ancestry in the Khövsgöl gene pool: that is, whether it derives from a pre-Bronze Age ANE population (such as the one represented by AG3) or from a Bronze Age WSH population that has both ANE and IRC ancestry.

The amount of WSH contribution remains small (e.g., 6.4 ± 1.0% from Sintashta). Assuming that the early Neolithic populations of the Khövsgöl region resembled those of the nearby Baikal region, we conclude that the Khövsgöl main cluster obtained ∼11% of their ancestry from an ANE source during the Neolithic period and a much smaller contribution of WSH ancestry (4–7%) beginning in the early Bronze Age.

khovsgol-shamanka-sintashta
Admixture modeling of Altai populations and the Khövsgöl main cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA and (B and C) Khövsgöl, each colored block represents the proportion of ancestry derived from a corresponding ancestry source in the legend. Error bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN and AG3. The Khövsgöl main cluster is modeled as (B) a two-way admixture of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+AG3+Sintashta.

Apparently, then, the first individual with substantial WSH ancestry in the Khövsgöl population (ARS026, of haplogroup R1a-Z2123), directly dated to 1130–900 BC, is consistent with the first appearance of admixed forest-steppe-related populations like Karasuk (ca. 1200-800 BC) in the Altai. Interestingly, haplogroup N1a1a-M178 pops up (with mtDNA U5a2d1) among the earlier Khövsgöl samples.

I will repeat what I wrote recently here: Samoyedic arrived in the Altai with Karasuk and hg R1a-Z645 + Steppe_MLBA-like ancestry, admixed with Altai populations, clustering thus within an Ancient Altai cline. Only later did N1a1a subclades infiltrate Samoyedic (and Ugric) populations, bringing them closer to their modern Palaeo-Siberian cline. The shared mtDNA may support an ancestral EHG-“Siberian” cline, or else a more recent Afanasevo-related origin.

east-uralic-clines
Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals. Read more.

Also interesting, Q1a2 subclades and ANE ancestry making its appearance everywhere among ancestral Eurasian peoples, as Chetan recently pointed out.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

See also

Related

Eurasian steppe chariots and social complexity during the Bronze Age

ba-eurasia-abashevo-sintashta

New paper (behind paywall), Eurasian Steppe Chariots and Social Complexity During the Bronze Age, by Chechushkov and Epimakhov, Journal of World Prehistory (2018).

Interesting excerpts (emphasis mine):

Nowadays, archaeologists distinguish at least three Bronze Age pictorial traditions on the basis of style, and demonstrate some parallels in the material culture. The earliest is the Yamna–Afanasievo tradition, which is characterized by the symbolic depiction of sun-headed men and animals. Another tradition is a record of the Andronovo people (Kuzmina 1994; Novozhenov 2012), who depicted in it their everyday life and the importance of wheeled transport (Novozhenov 2014a, b). Although petroglyphs on open-air natural rock surfaces are obviously hard to date, the occurrence of similar carvings on stone grave stelae within some Andronovo culture cemeteries (such as the Tamgaly Cemetery and the Samara Cemetery in Sary Arka, Kazakhstan) provide a level of chronological control. Finally, the finds of petroglyphs depicting chariots in the burials of the Karasuk culture (c. 1400–800 BC) in southern Siberia and Kazakhstan allow us to distinguish the latest tradition (Novozhenov 2014b).

petroglyphs-chariot
“Depictions of a chariot on the petroglyphs, the Koksu River valley, Kazakhstan (redrawn after Novozhenov 2012, p. 45, with the author’s permission)”

The site of Sintashta in the steppe zone of the Southern Trans-Urals (the eastern side of the Ural Mountains) was excavated in the 1970s and yielded abundant Bronze Age material, including unparalleled evidence of six vehicles buried in graves, each with two spoked wheels accompanied by cheekpieces and sacrificial horses (Gening 1977; Gening et al. 1992). (…) Chariot remains from the Middle and Late Bronze Age in the southern Urals are quite abundant compared with early chariot remains from other parts of the world, and allow statistical analysis.

In contrast, only two wagons and one sledge were found in the Royal Cemetery of Ur (Woolley 1965), and only ten actual chariots and their parts are known from tombs of the New Kingdom of Egypt (1550–1069 BC) (Littauer and Crouwel 1985; James 1974; Herold 2006), with the rest of the information on the Near Eastern chariots coming in other forms. Two chariots and the wheels of a third were also found in the Lchashen Cemetery in Armenia (Yesayan 1960), dated to 1400–1300 BC (Pogrebova 2003, p. 397), and bronze models of chariots were found in the burial sites of neighboring Transcaucasia (Brileva 2012). Over one hundred chariots have been discovered in Shang period tombs in China, but none dates before 1200 BC (Wu 2013).

Sintashta–Petrovka chariots were functional and used for carrying passengers and, probably, for warfare. Otherwise, one would not expect to see consistency in the measurements and technological solutions (…)

(1) The technological solutions used to construct a wheel and its dimensions are derived from the measurements of the ‘wheel pits’. They allow such analysis because some had the actual imprints of felloes and spokes. (…) Due to the imprints of spokes and felloes left in the soil, it is clear that the Bronze Age people knew of and utilized the spoked wheel.

(2) Wheel track is the distance between the centerlines of two wheels on an axle. It can be estimated on the basis of the distance between the central axes of all known wheel pits, in addition to direct measurement of the eight known cases of wheel imprints.(…) the majority of findings with a mean wheel track of 136 ± 12 cm might represent either a single-driver chariot or a vehicle with two passengers who accessed the vehicle from the rear, since one extreme of this wheel-track provides enough space for a standing person, while another is suitable for a driver and passenger.

(3) The means of traction is the element that connects the vehicle to the yoke of the draft animals (Littauer et al. 2002, p. xvii). It is needed for a vehicle to be pulled by harnessed animals and is constructed as a central draft pole located between the animals, or shafts located on the external sides of the animals, called thills. (…) Using burial chamber size as a proxy, chariots had a maximum estimated length of 327 ± 20 cm, and a maximum estimated width of 205 ± 21 cm. These dimensions suggest a great similarity to six chariots of Tutankhamun that have maximum dimensions of 260 × 236 cm (Crouwel 2013).

bridle-chariot-horses
Elements of Bronze Age chariots. Image from Chechushkov (2007).

Associated individuals

suggest that this person was a chief, and that the burial context illustrates his significance in the social life of the local community (Logvin and Shevnina 2008, p. 193). However, it also suggests the diverse role of the Sintashta–Petrovka elites, who were likely engaged in a number of different activities, such as warfare, craft production, food production, and a broad social life.

(…) while weapons are not universally present with chariots, they are present much more often than in non-chariot burials: more than 50% of the chariot burials are accompanied by weapons, with a clear predominance of projectile arms.

The creation, utilization, and maintenance of the chariots would have required a number of important skills, and some degree of standardization in manufacturing chariots might be related to a very small number of chariot makers. This means that the Sintashta–Petrovka craftsmen were ‘attached specialists’ and made their products following the orders and desires of those who were interested in the competitive use of chariots. Hence, the social group interested in producing and maintaining chariots sponsored all of those processes. While the nature of this social group is unclear, it is reasonable to hypothesize that it could be a group of military elites characterized by aggrandizing behavior. These people shared military identities and values, but also belonged to bigger collectives, presumably diverse kin groups. The competition between these collectives for resources, power, and prestige created the chariot complex.

Evolution

Analyzing horse-headed knobs, Kovalevskaya demonstrates the evolution of horse tack from a simple muzzle to a bridle with bits during the 5th and 4th millennia BC (Kovalevskaya 2014). Her analysis correlates well with a study of pathologies in horse teeth conducted by Brown and Anthony, who suggest the appearance of bits and horseback riding at Botai and Tersek (Anthony et al. 2006). Cheekpieces became the next necessary and logical step in the evolution of means of horse control. Their appearance together with the wheeled vehicles is not a coincidence, but the development of preceding tools. After the year 2000 BC, cheekpieces often occur together with sacrificed horses—13 out of 15 Sintashta burials with cheekpieces also contain horse bones (Epimakhov and Berseneva 2012)—showing evolution in the role of horses.

The whole paper offers an interesting summary of cultural and population events in the Pontic-Caspian steppes since the Early Yamna period. Also, horse-headed knobs!

NOTE. You can find similar information in other (free) papers from Chechushkov in his account in Academia.edu.

Related

R1a-Z280 lineages in Srubna; and first Palaeo-Balkan R1b-Z2103?

herodotus-world-map

Scythian samples from the North Pontic area are far more complex than what could be seen at first glance. From the new Y-SNP calls we have now thanks to the publications at Molgen (see the spreadsheet) and in Anthrogenica threads, I think this is the basis to work with:

NOTE. I understand that writing a paper requires a lot of work, and probably statistical methods are the main interest of authors, editors, and reviewers. But it is difficult to comprehend how any user of open source tools can instantly offer a more complex assessment of the samples’ Y-SNP calls than professionals working on these samples for months. I think that, by now, it should be clear to everyone that Y-DNA is often as important (sometimes even more) than statistical tools to infer certain population movements, since admixture can change within few generations of male-biased migrations, whereas haplogroups can’t…

Srubna

Srubna-Andronovo samples are as homogeneous as they always were, dominated by R1a-Z645 subclades and CWC-related (steppe_MLBA) ancestry.

The appearance of one (possibly two) R-Z280 lineages in this mixed Srubna-Alakul region of the southern Urals and this early (1880-1690 BC, hence rather Pokrovka-Alakul) points to the admixture of R1a-Z93 and R1a-Z280 already in Abashevo, which also explains the wide distribution of both subclades in the forest zones of Central Asia.

If Abashevo is the cornerstone of the Indo-Iranian / Uralic community, as it seems, the genetic admixture would initially be quite similar, undergoing in the steppes a reduction to haplogroup R1a-Z93 (obviously not complete), at the same time as it expanded to the west with Pokrovka and Srubna, and to the east with Petrovka and Andronovo. To the north, similar reductions will probably be seen following the Seima-Turbino phenomenon.

NOTE. Another R1a-Z280 has been found in the recent sample from Bronze Age Poland (see spreadsheet). As it appears right now in ancient and modern DNA, there seems to be a different distribution between subclades:

  • R1a-Z280 (formed ca. 2900 BC, TMRCA ca. 2600 BC) appears mainly distributed today to the east, in the forest and steppe regions, with the most ‘successful’ expansions possibly related to the spread of Abashevo- and Battle Axe-related cultures (Indo-Iranian and Uralic alike).
  • R1a-M458 (formed ca. 2700, TMRCA ca. 2700 BC) appears mainly distributed to the north, from central Europe to the east – but not in the steppe in aDNA, with the most ‘successful’ expansions to the west.

M458 lineages seem thus to have expanded in the steppe in sizeable numbers only after the Iranian expansions (see a map of modern R1a distributions) i.e. possibly with the expansion of Slavs, which supports the model whereby cultures from central-east Europe (like Trzciniec and Lusatian), accompanied mainly by M458 lineages, were responsible for the expansion of Proto-Balto-Slavic (and later Proto-Slavic).

The finding of haplogroup R1a-Z93, among them one Z2123, is no surprise at this point after other similar Srubna samples. As I said, the early Srubna expansion is most likely responsible for the Szólád Bronze Age sample (ca. 2100-1700 BC), and for the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, due to incursions along the central-east European steppe.

cheek-pieces
Map of decorated bone/antler bridle cheek-pieces and whip handle equivalents. They are often local translations that remained faithful to the originals (from data in Piggott, 1965; Kristiansen & Larsson, 2005; David, 2007). Image from Vandkilde (2014).

Cimmerians

Cimmerian samples from the west show signs of continuity with R1a-Z93 lineages. Nevertheless, the sample of haplogroup Q1a-Y558, together with the ‘Pre-Scythian’ sample of haplogroup N (of the Mezőcsát Culture) in Hungary ca. 980-830 BC, as well as their PCA, seem to depict an origin of these Pre-Scythian peoples in populations related to the eastern Central Asian steppes, too.

NOTE. I will write more on different movements (unrelated to Uralic expansions) from Central and East Asia to the west accompanied by Siberian ancestry and haplogroup N with the post of Ugric-Samoyedic expansions.

Scythians

The Scythian of Z2123 lineage ca. 375-203 BC from the Volga (in Mathieson et al. 2015), together with the sample scy193 from Glinoe (probably also R1a-Z2123), without a date, as well as their common Steppe_MLBA cluster, suggest that Scythians, too, were at first probably quite homogeneous as is common among pastoralist nomads, and came thus from the Central Asian steppes.

The reduction in haplogroup variability among East Iranian peoples seems supported by the three new Late Sarmatian samples of haplogroup R1a-Z2124.

Approximate location of Glinoe and Glinoe Sad (with Starosilya to the south, in Ukrainian territory):

This initial expansion of Scythians does not mean that one can dismiss the western samples as non-Scythians, though, because ‘Scythian’ is a cultural attribution, based on materials. Confirming the diversity among western Scythians, a session at the recent ISBA 8:

Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths), by Järve et al.

The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

(…) Our results (…) support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

Detail of the slide with admixture of Scythian groups in Ukraine:

scythians-admixture

The findings of those 31 samples seem to support what Krzewińska et al. (2018) found in a tiny region of Moldavia-south-western Ukraine (Glinoi, Glinoi Sad, and Starosilya).

The question, then, is as follows: if Scythian dominance was “cultural rather than achieved through population replacement”…Where are the R1b-Z2103 from? One possibility, as I said in the previous post, is that they represent pockets of Iranian R1b lineages in the steppes descended from eastern Yamna, given that this haplogroup appears in modern populations from a wide region surrounding the steppes.

The other possibility, which is what some have proposed since the publication of the paper, is that they are related to Thracians, and thus to Palaeo-Balkan populations. About the previously published Thracian individuals in Sikora et al. (2014):

thracian-samples
Geographic origin of ancient samples and ADMIXTURE results. (A) Map of Europe indicating the discovery sites for each of the ancient samples used in this study. (B) Ancestral population clusters inferred using ADMIXTURE on the HGDP dataset, for k = 6 ancestral clusters. The width of the bars of the ancient samples was increased to aid visualization. https://doi.org/10.1371/journal.pgen.1004353.g001

For the Thracian individuals from Bulgaria, no clear pattern emerges. While P192-1 still shows the highest proportion of Sardinian ancestry, K8 more resembles the HG individuals, with a high fraction of Russian ancestry.

Despite their different geographic origins, both the Swedish farmer gok4 and the Thracian P192-1 closely resemble the Iceman in their relationship with Sardinians, making it unlikely that all three individuals were recent migrants from Sardinia. Furthermore, P192-1 is an Iron Age individual from well after the arrival of the first farmers in Southeastern Europe (more than 2,000 years after the Iceman and gok4), perhaps indicating genetic continuity with the early farmers in this region. The only non-HG individual not following this pattern is K8 from Bulgaria. Interestingly, this individual was excavated from an aristocratic inhumation burial containing rich grave goods, indicating a high social standing, as opposed to the other individual, who was found in a pit.

pca-thracians

The following are excerpts from A Companion to Ancient Thrace (2015), by Valeva, Nankov, and Graninger (emphasis mine):

Thracian settlements from the 6th c. BC on:

(…) urban centers were established in northeastern Thrace, whose development was linked to the growth of road and communication networks along with related economic and distributive functions. The early establishment of markets/emporia along the Danube took place toward the middle of the first millennium BCE (Irimia 2006, 250–253; Stoyanov in press). The abundant data for intensive trade discovered at the Getic village in Satu Nou on the right bank of the Danube provides another example of an emporion that developed along the main artery of communication toward the interior of Thrace (Conovici 2000, 75–76).

Undoubtedly the most prominent manifestation of centralization processes and stratification in the settlement system of Thrace arrives with the emergence of political capitals – the leading urban centers of various Thracian political formations.

getic-thracian
Image from Volf at Vol_Vlad LiveJournal.

Their relationships with Scythians and Greeks

The Scythian presence south of the Danube must be balanced with a Thracian presence north of the river. We have observed Getae there in Alexander’s day, settled and raising grain. For Strabo the coastlands from the Danube delta north as far as the river and Greek city of Tyras were the Desert of the Getae (7.3.14), notable for its poverty and tracklessness beyond the great river. He seems to suggest also that it was here that Lysimachus was taken alive by Dromichaetes, king of the Getae, whose famous homily on poverty and imperialism only makes sense on the steppe beyond the river (7.3.8; cf. Diod. 21.12; further on Getic possessions above the Danube, Paus. 1.9 with Delev 2000, 393, who seems rather too skeptical; on poverty, cf. Ballesteros Pastor 2003). This was the kind of discourse more familiarly found among Scythians, proud and blunt in the strength of their poverty. However, as Herodotus makes clear, simple pastoralism was not the whole story as one advanced round into Scythia. For he observes the agriculture practiced north and west of Olbia. These were the lands of the Alizones and the people he calls the Scythian Ploughmen, not least to distinguish them from the Royal Scythians east of Olbia, in whose outlook, he says, these agriculturalist Scythians were their inferiors, their slaves (Hdt. 4.20). The key point here is that, as we began to see with the Getan grain-fields of Alexander’s day, there was scope for Thracian agriculturalists to maintain their lifestyles if they moved north of the Danube, the steppe notwithstanding. It is true that it is movement in the other direction that tends to catch the eye, but there are indications in the literary tradition and, especially, in the archaeological record that there was also significant movement northward from Thrace across the Danube and the Desert of the Getae beyond it.

Greek literary sources were not much concerned with Thracian migration into Scythia, but we should observe the occasional indications of that process in very different texts and contexts. At the level of myth, it is to be remembered that Amazons were regularly considered to be of Thracian ethnicity from Archaic times onward and so are often depicted in Thracian dress in Greek art (Bothmer 1957; cf. Sparkes 1997): while they are most familiar on the south coast of the Black Sea, east of Sinope, they were also located on the north coast, especially east of the Don (the ancient Tanais). Herodotus reports an origin-story of the Sauromatians there, according to which this people had been created by the union of some Scythian warriors with Amazons captured on the south coast and then washed up on the coast of Scythia (4.110). While the story is unhistorical, it is not without importance. First, it reminds us that passage north from the Danube was not the only way that Thracians, Thracian influence, and Thracian culture might find their way into Scythia. There were many more and less circuitous routes, especially by sea, that could bring Thrace into Scythia. Secondly, the myth offered some ideological basis for the Sauromatian settlement in Thrace that Strabo records, for Sauromatians might claim a Thracian origin through their Amazon forebears. Finally, rather as we saw that Heracles could bring together some of the peoples of the region, we should also observe that Ares, whose earthly home was located in Thrace by a strong Greek and Roman tradition, seems also to have been a deity of special significance and special cult among the Scythians. So much was appropriate, especially from a Classical perspective, in associations between these two peoples, whose fame resided especially in their capacity for war.

skythen
Scythians: cultures and findings (ca. 7th-4th/3rd c. BC). Greek colonies marked with concentric circles.

This broad picture of cultural contact, interaction, and osmosis, beyond simple conflict, provides the context for a range of archaeological discoveries, which – if examined separately – may seem to offer no more than a scatter of peculiarities. Here we must acknowledge especially the pioneering work of Melyukova, who has done most to develop thinking on Thracian–Scythian interaction. As she pointed out, we have a good example of Thracian–Scythian osmosis as early as the mid-seventh century bce at Tsarev Brod in northeastern Bulgaria, where a warrior’s burial combines elements of Scythian and Thracian culture (Melyukova 1965). For, while the manner of his burial and many of the grave goods find parallels in Scythia and not Thrace, there are also goods which would be odd in a Scythian burial and more at home in a Thracian one of this period (notably a Hallstatt vessel, an iron knife, and a gold diadem). Also interesting in this regard are several stone figures found in the Dobrudja which resemble very closely figures of this kind (baby) known from Scythia (Melyukova 1965, 37–38). They range in date from perhaps the sixth to the third centuries bce, and presumably were used there – as in Scythia – to mark the burials of leading Scythians deposited in the area. Is this cultural osmosis? We should probably expect osmosis to occur in tandem with the movement of artefacts, so that only good contexts can really answer such questions from case to case. However, the broad pattern is indicated by a range of factors. Particularly notable in this regard is the observable development of a Thraco-Scythian form of what is more familiar as “Scythian animal style,” a term which – it must be understood – already embraces a range of types as we examine the different examples of the style across the great expanse from Siberia to the western Ukraine. As Melyukova observes, Thrace shows both items made in this style among Scythians and, more numerous and more interesting, a Thracian tendency to adapt that style to local tastes, with observable regional distinctions within Thrace itself. Among the Getae and Odrysians the adaptation seems to have been at its height from the later fifth century to the mid-third century (Melyukova 1965, 38; 1979).

The absence of local animal style in Bulgaria before the fifth century bce confirms that we have cultural influences and osmosis at work here, though that is not to say that Scythian tradition somehow dominated its Thracian counterpart, as has been claimed (pace Melyukova 1965, 39; contrast Kitov 1980 and 1984). Of particular interest here is the horse-gear (forehead-covers, cheek-pieces, bridle fittings, and so on) which is found extensively in Romania and Bulgaria as well as in Scythia, both in hoarded deposits and in burials. This exemplifies the development of a regional animal style, not least in silver and bronze, which problematizes the whole issue of the place(s) of its production. Accordingly, the regular designation as “Thracian” of horse-gear from the rich fourth century Scythian burial of Oguz in the Ukraine becomes at least awkward and questionable (further, Fialko 1995). And let us be clear that this is no minor matter, nor even part of a broader debate about the shared development of toreutics among Thracians and Scythians (e.g., Kitov 1980 and 1984). A finely equipped horse of fine quality was a strong statement and striking display of wealth and the power it implied

(…) while Thracian pottery appears at Olbia, Scythian pottery among Thracians is largely confined to the eastern limits of what should probably be regarded as Getic territory, namely the area close to the west of the Dniester, from the sixth century bce. Rather exceptional then is the Scythian pottery noted at Istros, which has been explained as a consequence of the Scythian pursuit of the withdrawing army of Darius and, possibly, a continued Scythian grip on the southern Danube in its aftermath (Melyukova 1965, 34). The archaeology seems to show us, therefore, that the elite Thracians and Scythians were more open to adaptation and acculturation than were their lesser brethren.

palaeo-balkan-languages
Paleo-Balkan languages in Eastern Europe between 5th and 1st century BC. From Wikipedia.

Conclusion

(…) we see distinct peoples and organizations, for example as Sitalces’ forces line up against the Scythians. Much more striking, however, against that general background, are the various ways in which the two peoples and their elites are seen to interact, connect, and share a cultural interface. We see also in Scyles’ story how the Greek cities on the coast of Thrace and Scythia played a significant role in the workings of relationships between the two peoples. It is not simply that these cities straddled the Danube, but also that they could collaborate – witness the honors for Autocles, ca. 300 bce (SEG 49.1051; Ochotnikov 2006) – and were implicated with the interactions of the much greater non-Greek powers around them. At the same time, we have seen the limited reality of familiar distinctions between settled Thracians and nomadic Scythians and the limited role of the Danube too in dividing Thrace and Scythia. The interactions of the two were not simply matters of dynastic politics and the occasional shared taste for artefacts like horse-gear, but were more profoundly rooted in the economic matrix across the region, so that “Scythian” nomadism might flourish in the Dobrudja and “Thracian-style” agriculture and settlement can be traced from Thrace across the Danube as far as Olbia. All of that offers scant justification for the Greek tendency to run together Thracians and Scythians as much the same phenomenon, not least as irrational, ferocious, and rather vulgar barbarians (e.g., Plato, Rep. 435b), because such notions were the result of ignorance and chauvinism. However, Herodotus did not share those faults to any degree, so that we may take his ready movement from Scythians to Thracians to be an indication of the importance of interaction between the two peoples whom he had encountered not only as slaves in the Aegean world, but as powerful forces in their own lands (e.g., Hdt. 4.74, where Thracian usage is suddenly brought into his account of Scythian hemp). Similarly, Thucydides, who quite without need breaks off his disquisition on the Odrysians to remark upon political disunity among the Scythians (Thuc. 2.97, a favorite theme: cf. Hdt. 4.81; Xen., Cyr. 1.1.4). As we have seen throughout this discussion, there were many reasons why Thracians might turn the thoughts of serious writers to Scythians and vice versa.

It seems, following Sikora et al. (2014), that Thracian ‘common’ populations would have more Anatolian Neolithic ancestry compared to more ‘steppe-like’ samples. But there were important differences even between the two nearby samples published from Bulgaria, which may account for the close interaction between Scythians and Thracians we see in Krzewińska et al. (2018), potentially reflected in the differences between the Central, Southern and the South-Central clusters (possibly related to different periods rather than peoples??).

If these R1b-Z2103 were descended from Thracian elites, this would be the first proof of Palaeo-Balkan populations showing mainly R1b-Z2103, as I expect. Their appearance together with haplogroup I2a2a1b1 (also found in Ukraine Neolithic and in the Yamna outlier from Bulgaria) seem to support this regional continuity, and thus a long-lasting cultural and ethnic border roughly around the Danube, similar to the one found in the northern Caucasus.

However, since these samples are some 2,500 years younger than the Yamna expansion to the south, and they are archaeologically Scythians, it is impossible to say. In any case, it would seem that the main expansion of R1a-Z645 lineages to the south of the Danube – and therefore those found among modern Greeks – was mediated by the Slavic expansions centuries later.

krzewinska-scythians-pca
Modified image from Krzewińska et al. (2018), with added Y-DNA haplogroups to each defined Scythian cluster and Sarmatians. Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals in relation to modern reference panel from the Human Origins data set. See image with population references.

On the Northern cluster there is a sample of haplogroup R1b-P312 which, given its position on the PCA (apparently even more ‘modern Celtic’-like than the Hallstatt_Bylany sample from Damgaard et al. 2018), it seems that it could be the product of the previous eastward Hallstatt expansion…although potentially also from a recent one?:

Especially important in the archaeology of this interior is the large settlement at Nemirov in the wooded steppe of the western Ukraine, where there has been considerable excavation. This settlement’s origins evidently owe nothing significant to Greek influence, though the early east Greek pottery there (from ca. 650 bce onward: Vakhtina 2007) and what seems to be a Greek graffito hint at its connections with the Greeks of the coast, especially at Olbia, which lay at the estuary of the River Bug on whose middle course the site was located (Braund 2008). The main interest of the site for the present discussion, however, is its demonstrable participation in the broader Hallstatt culture to its west and south (especially Smirnova 2001). Once we consider Nemirov and the forest steppe in connection with Olbia and the other locations across the forest steppe and coastal zone, together with the less obvious movements across the steppe itself, we have a large picture of multiple connectivities in which Thrace bulks large.

scythian-peoples-balkans
Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe-related groups. Ďurkovič et al. (2018).

While the above description of clear-cut R1a-Steppe and R1b-Balkans is attractive (and probably more reliable than admixture found in scattered samples of unclear dates), the true ancient genetic picture is more complicated than that:

  • There is nothing in the material culture of the published western Scythians to distinguish the supposed Thracian elites.
  • We have the sample I0575, an Early Sarmatian from the southern Urals (one of the few available) of haplogroup R1b-Z2106, which supports the presence of R1b-Z2103 lineages among Eastern Iranian-speaking peoples.
  • We also have DA30, a Sarmatian of I2b lineage from the central steppes in Kazakhstan (ca. 47 BC – 24 AD).
  • Other Sarmatian samples of haplogroup R remain undefined.
  • There is R1a-Z93 in a late Sarmatian-Hun sample, which complicates the picture of late pastoralist nomads further.

Therefore, the possibility of hidden pockets of Iranian peoples of R1b-Z2103 (maybe also R1b-P312) lineages remains the best explanation, and should not be discarded simply because of the prevalent haplogroups among modern populations, or because of the different clusters found, or else we risk an obvious circular reasoning: “this sample is not (autosomically or in prevalent haplogroups) like those we already had from the steppe, ergo it is not from this or that steppe culture.” Hopefully, the upcoming paper by Järve et al. will help develop a clearer genetic transect of Iranian populations from the steppes.

All in all, the diversity among western Scythians represents probably one of the earliest difficult cases of acculturation to be studied with ancient DNA (obviously not the only one), since Scythians combine unclear archaeological data with limited and conflicting proto-historical accounts (also difficult to contrast with the wide confidence intervals of radiocarbon dates) with different evolving clusters and haplogroups – especially in border regions with strong and continued interactions of cultures and peoples.

With emerging complex cases like these during the Iron Age, I am happy to see that at least earlier expansions show clearer Y-DNA bottlenecks, or else genetics would only add more data to argue about potential cultural diffusion events, instead of solving questions about proto-language expansions once and for all…

Related

The origin of social complexity in the development of the Sintashta culture

kamenni-ambar

Very interesting PhD thesis by Igor Chechushkov, Bronze Age human communities in the Southern Urals steppe: Sintashta-Petrovka social and subsistence organization (2018).

Abstract:

Why and how exactly social complexity develops through time from small-scale groups to the level of large and complex institutions is an essential social science question. Through studying the Late Bronze Age Sintashta-Petrovka chiefdoms of the southern Urals (cal. 2050–1750 BC), this research aims to contribute to an understanding of variation in the organization of local communities in chiefdoms. It set out to document a segment of the Sintashta-Petrovka population not previously recognized in the archaeological record and learn about how this segment of the population related to the rest of the society. The Sintashta-Petrovka development provides a comparative case study of a pastoral society divided into sedentary and mobile segments.

Subsurface testing on the peripheries of three Sintashta-Petrovka communities suggests that a group of mobile herders lived outside the walls of the nucleated villages on a seasonal basis. During the summer, this group moved away from the village to pasture livestock farther off in the valley, and during the winter returned to shelter adjacent to the settlement. This finding illuminates the functioning of the year-round settlements as centers of production during the summer so as to provide for herd maintenance and breeding and winter shelter against harsh environmental conditions.

The question of why individuals chose in this context to form mutually dependent relationships with other families and thus give up some of their independence can be answered with a combination of two necessities: to remain a community in a newly settled ecological niche and to protect animals from environmental risk and theft. Those who were skillful at managing communal construction of walled villages and protecting people from military threats became the most prominent members of the society. These people formed the core of the chiefdoms but were not able to accumulate much wealth and other possessions. Instead, they acquired high social prestige that could even be transferred to their children. However, this set of relationships did not last longer than 300 years. Once occupation of the region was well established the need for functions served by elites disappeared, and centralized chiefly communities disintegrated into smaller unfortified villages.

sintashta-petrovka-archaeological
Research area: map of the Sintashta-Petrovka archaeological sites. Settlements: 101 – Stepnoye; 102 – Shibaeyvo 1; 103 – Chernorechye 3; 104 – Bakhta; 105 – Paris; 106 – Isiney; 107 – Kuisak; 108 – Ust’ye; 109 – Rodniki; 110 – Konoplyanka; 111 – Zhurumbay; 112 – Arkaim; 113 – Sintashta; 114 – Sintashta 2; 115 – Kamennyi Ambar; 116 – Alandskoye; 117 – Chekatay; 118 – Selek; 119 – Sarym- Sakly; 120 – Kamysty; 121 – Kizilskoye; 122 – Bersuat; 123 – Andreyevskoe; 124 – Ulak; 125 – Streletskoye; 126 – Zarechnoye 4; 127 – Kamennyi Brod. Cemeteries: 201 – Ozernoye 1; 202 – Krivoe Ozero; 203 – Stepnoye M; 204 – Kamennyi Ambar-5; 205 – Stepnoye 1; 206 – Tsarev Kurgan; 207 – Ubagan 2; 208 – Solntse 2; 209 – Bolshekaraganskyi; 210 – Aleksandrovsky 4; 211 – Sintashta; 212 – Solonchanka 1a; 213 – Knyazhenskyi; 214 – Bestamak; 215 – Ishkinovka 1; 216 – Ishkinovka 2; 217 – Novo–Kumakskyi; 218 – Zhaman–Kargala 1; 219 – Tanabergen 2; 220 – Novo-Petrovka; 221 – Semiozernoye 2; 222 – Khalvayi 3

Some interesting excerpts (emphasis mine):

The quintessential archaeological evidence of Sintashta-Petrovka communities takes the form of highly nucleated and fortified settlements paired with easily-recognized kurgan (burial mound) cemeteries. This pattern spread across Northern Central Eurasia in a relatively short period of about 300 years (cal. 2050–1750 BC), and the period consists of two chronological phases (Hanks et al. 2007). The earlier Sintashta phase (cal. 2050–1850 BC) is distinguished from the later Petrovka phase (cal. 1850–1750 BC) by some differences in ceramic styles and some techniques of bronze metallurgy (Degtyareva et al. 2001; Vinogradov 2013). Bronze Age subsistence patterns apparently relied on a wide variety of resources, among which meat and milk production played a major role (…). The most outstanding graves are individual male burials accompanied by weaponry (projectile weapons and chariots), the insignia of power (stone mace heads), craft tools, and a specific set of sacrificed animals (horses, cows, and dogs). (…) there were at least two adults buried with chariots and one with sacrificed horses (Epimakhov 1996b). Chariots – the most famous and spectacular material component of Sintashta-Petrovka society – are known exclusively from burial contexts. Two-wheeled vehicles represent complex technology, incorporating some crucial innovations and the investment of substantial resources. Highly developed craft and military skills were required for their production and use. Burials with chariots probably represent military elites who used them (Anthony 2009; Chechushkov 2011; Frachetti 2012:17) and played especially important social roles in Sintashta-Petrovka societies. This pattern strongly suggests that military leadership extended into the realm of ideology and general social prestige (Earle 2011:32–33).

The following sequence of archaeological cultures – based on the sample of radiocarbon dates (Epimakhov 2007a; 2010a), – is adopted: (1) the Sintashta-Petrovka phase 1 dated to cal. 2050–1750 BC and (2) the Srubnaya-Alakul’ phase 2 dated to cal. 1750–1350 BC.

(…) control of craft might have provided a source of power for elites in the fortified settlements (Steponaitis 1991). Some bronze tools, such as chisels, adzes, and handsaws seem more abundantly represented at some fortified settlements than at others, raising the possibility of a stronger focus on different craft products and some degree of exchange and interdependence between fortified settlements. (…) Zdanovich (1995:35) estimates 2500 people within the walls at Arkaim. He bases his conclusion an average house size of 140 m2 and the idea that Arkaim households consisted of an extended family of several generations, similar to Iroquois longhouse inhabitants. He also suggests that the entire population did not live in the “town” all the time, but moved around. The fully permanent residents were shamans, warriors, and craftsmen, i.e., elites and attached specialists.

Summarizing, excavated households represent very strongly similar architectural patterns, similar levels of wealth and prestige, little productive differentiation, and no evidence of elites amassing wealth through control of craft or subsistence production or any other mechanism (Earle 1987). These observations sharply contradict the burial record, where strong social differentiation is visible. The description above recalls the Regional Classic period elites of the Alto Magdalena whose standard of living differed little if at all from anyone else’s. Their elaborate tombs and sculptures suggest supernatural powers and ritual roles were much more important bases of their social prominence than economic control or accumulation of wealth (Drennan 1995:96–97). On the other hand, craft activities (especially metal production) are highly obvious in the Sintashta-Petrovka settlements. Defensive functions could also have played some role for the entire population. This benefit might attract people in an unstable or wild environment to spend much of their time in or near such settlements (Earle 2011:32–33). Since the construction of ditches and outer walls, as well as dwellings with shared walls, requires planning and organization, purposeful collective effort must have been a key feature of Sintashta-Petrovka communities (Vinogradov 2013; Zdanovich 1995). Sintashta-Petrovka communities thus evidence substantial investment of effort in non-subsistence activities, potentially resulting in a subsistence deficit in an economy with a heavy emphasis on herding. Altogether, this makes it plausible to think of the known Sintashta-Petrovka communities as special places where elites for whom military activities were important resided, and where metal production and possibly other crafts were carried out. It remains unclear just how a subsistence economy relying heavily on herding was managed from these substantial sedentary communities. Moving herds around the landscape seasonally is generally thought to be a part of subsistence strategy in Inner Eurasia (Frachetti 2008; Bachura 2013). In this area migration to exploit seasonal pastures is the best strategy for maintaining a regular supply of food for livestock due to shortages of capital or of labor pool to produce, harvest, and store fodder (Dyson-Hudson and Dyson-Hudson 1980:17). The recent stable isotope studies support this notion showing high likelihood that during the Bronze Age livestock was raised locally (Kiseleva et al. 2017).

The above raises the possibility that the residential remains that have been excavated within the fortifications of Sintashta-Petrovka communities represent only a portion of the population (Hanks and Doonan 2009, Johnson and Hanks 2012). It could be (along with the general lines suggested by D. Zdanovich [1997]) that the archaeological remains of the ordinary people who made up the majority of the population, built the impressive fortifications and stoked the subsistence economy have gone largely undetected. In global comparative perspective, many societies with the features known for Sintashta-Petrovka organization consisted of elite central-place settlements and hinterland populations. In such a scenario, the “missing” portion of the Sintashta population would reside in smaller unfortified settlements scattered around in the vicinity of the fortified ones.

kamenni-ambar-cultural-layer

In terms of wealth and productive differentiation, the inside assemblage of Kamennyi Ambar demonstrates a higher degree of richness and diversity in its material assemblage, leading to the conclusion that the outside materials may represent a semi-mobile group of people who used significantly less durable materials and accumulated less possessions. As for the diversity within the inside artifact assemblage, some households at Kamennyi Ambar demonstrate more diverse artifact assemblages than others, as well as bigger sizes, that could be related to differences in productive activities and/or wealth differentiation between families. A focus on specific objects of ceramic production in House 1 suggests some degree of productive specialization, while the elite goods in House 5 clearly point out the presence of elite members of the society.

There are two possible social scenarios that explain the settlement situation during the Sintashta-Petrovka phase. The first scenario considers all three communities as simultaneous and the second scenario suggests seeing the three sites as the same community that moved around the landscape during the Late Bronze Age in order to keep the pasture grounds from degradation.

Since no remains of permanent structures were found and any people living outside the walls must have stayed in temporary shelters. If this was the case, then the outside part of the population consisted of a semi-mobile group of people who moved to live near the fortified settlement during the winter. The pattern of animal slaughtering supports this conclusion. Animal teeth found near Kamennyi Ambar and Konoplyanka demonstrate a tendency for animal butchering during the fall, throughout the winter and spring, with less evidence of summer meat consumption. Moreover, since the Bronze Age subsistence strategy relied heavily on pastoralism, herds had to be grazed during the summer and kept safe during the winter. This strongly suggests that the part of the population responsible for management of animals spent their time in the summer pastures with the livestock. During the winter the animals had to be kept in the warm and safe environment of the walled settlements (as suggested by the highest level of phosphorus on the house floors) while the herders stayed in portable shelters in close to the walls.

(…) the outsiders used a less diverse set of tools, as well as less durable materials (for example, wooden instead of metal) in their everyday life and did not accumulate much in the way of archaeologically visible possessions. On the other hand, a few stone and lithic artifacts demonstrate that craft activities were carried out using cheap and abundant raw materials. The artefact assemblages also point out that the people inside accumulated wealth in the form of material belongings and luxury goods, especially, things like metal artifacts and symbolic or military-related stone artifacts, while people outside did not do that. However, the presence of semi-precious stones could signify some kind of wealth accumulation by the segment of population outside the walls. Since there are limits to our ability to assess social relationships from material remains, it is difficult to say if the people who lived outside the walls were oppressed or less respected. Their possible concentration on herding-related activities and livestock keeping might suggest less prestigious social status. The most prominent members of the society were, nonetheless, buried with the attributes of warriors or craft specialists, not those of shepherds, suggesting that those involved in livestock management had less social prestige.

Furthermore, Kuzmina (1994:72) cites linguistic studies demonstrating that the Sanskrit word for a permanent village earlier meant a circle of mobile wagon homes, situated together for defensive purposes for an overnight camp (Kuzmina 1994:72).

The likely population of semi-mobile herders represented some 30%–60% of the entire local community, while the other of 40%–70% were inhabitants of the walled settlement. The almost completely excavated kurgan cemetery of Kamennyi Ambar-5 (only two kurgans remain unstudied) yielded about 100 individuals, or about 2%–5% of the total of 4,896±1,960 individuals in four generations who lived at the nearby settlement for 100 years. In other words, no more than 10% of the population was entitled to be buried under the kurgan mound and this proportion can be taken as an estimate of those with elevated social status. Perhaps, these elites were kin, since analysis of the burial patterns suggests sex/age rather than wealth/prestige differentiation between buried individuals within this elite group (Epimakhov and Berseneva 2011; Ventresca Miller 2013). The remaining non-elite members of the permanently resident community, then, represented some 30%–60% of the complete local community, but did not show evidence of standards of living particularly lower than the elites eventually interred in the kurgan.

(…) The buried population in the Sintashta Cemetery is about 80 individuals or only about 2%–3% of the total estimated population. However, these few individuals were buried with extremely rich offerings, like complete chariots, decorations made of precious metals or sacrifices of six horses (equal to about 900 kg of meat), etc. With such a low proportion of the population assigned such high prestige, the Sintashta local community can easily be labeled a local chiefdom. In Pitman and Doonan’s view (2018) the social structure of the chifedom consisted of a chief and his kin at the highest level; warriors, religious specialists, and craftsmen in the middle; and the pastoral community at the bottom level.

kamenni-ambar-excavations

In the Bronze Age, the people who comprised the majority of the permanent population were involved in craft activities, including extraction of copper ores, metallurgy, bone, leather, and woodwork. The most important and labor-intensive part of the economy, however, was haymaking. The evidence of hay found in the cultural layer near Kamennyi Ambar supports the idea that animals were fed during the winter. Nowadays, hay cutting is typically done in July-August, the period of most intensive grazing for animals. Thus, the part of the collective that remained in the settlement had to provide the labor force for haymaking.

In the wintertime, the herders returned to the settlements with the herds, and animals were kept inside the walls––a practice which is known archaeologically (Zakh 1995) and ethnographically (Shahack-Gross et al. 2004)––while herders stayed outside in their tents.

In sum, the Sintashta-Petrovka chiefdoms demonstrate a three-part social order. In Kuzmina’s (1994) view, this is similar to the Varna system of ancient India, that consisted of priests (Sansk. Brahmanis), rulers and warriors (Sansk. Kshatriyas), free producers (Sansk. Vaishyas) and laborers and service providers (Sansk. Shudras). In the Sintashta-Petrovka chiefdom, the elite 2%–5% of the population would have consisted of priests and warriors; 48%–55% would have been dependent producers; and 50%–60% would have been herders of lower social rank.

sintashta-petrovka-settlements
The map of the Bronze Age sites in the Karagaily-Ayat Valley Sites of Phase 1: 101 – Konoplyanka; 102 – Zhurumbay; 103 – Kamennyi Ambar; 104 – Kamennyi Ambar-5 Sites of Phase 2: 201 – Konoplyanka 1; 202 – Varshavskoye-1; 203 – Zhurumbay-1; 204 – Varshavskoye-3; 205 – Varshavskoye-5; 206 – Varshavskoye-9; 207 – Kamennyi Ambar-8; 208 – Kamennyi Ambar; 209 – Elizavetpolskoye-3; 210 – Elizavetpolskoye-2; 211 – Karagayli-26; 212 – Elizavetpolskoye-7; 213 – Elizavetpolskoye- 9; 214 – Yuzhno-Stepnoyi (1); 215 – Yuzhno-Stepnoyi (2)

Conclusions

In the case of the Sintashta-Petrovka chiefdoms, the questions of why and how exactly social complexity developed through time and why individuals choose to integrate and give up their independence can be answered as some combination of two necessities: to persist as a larger community in the ecological niche of the newly settled region, and to protect herds from theft.

There is general agreement among researchers that the Sintashta phenomenon had no local roots and originated with a large-scale migration of pastoral communities from Eastern Europe to the marginal area of the Southern Urals. This process forced families to stay together and fueled the necessity in the walled villages for ensuring the reproduction of herds in the extreme climatic conditions of the southern Urals that are colder and dryer than the eastern Black Sea region from which the Sintashta populations are thought to have migrated (Kuzmina 1994, 2007; Anthony 2007; Vinogradov 2011, etc.). At the same time, the herds needed protection from animal and human predators. Probably, the risk of losing animals was a threat to survival that created tensions between neighboring communities, and the Neolithic hunter-gatherers who had populated the Urals before the arrival of Sintashta people could have hunted the domestic animals. Apparently, those who were talented in managing the construction of closely-packed villages surrounded by ditches and walls to protect people and livestock from threats from neighbors, and who otherwise served the community in the newly colonized zone became the most prominent members of society. Theses people formed the core of the Sintashta-Petrovka chiefdom but were not able to accumulate much personal wealth in the form of material possessions. Instead, they acquired high social prestige that could even be transferred to their children (since up to 65% of the buried elite population consists of infants [Razhev and Epimakhov 2005). In this sense, the Sintashta-Petrovka elites were simmilar to their counterparts in the Alto Magdalena of Colombia (Drennan 1995; Gonzalez Fernandez 2007; Drennan and Peterson 2008).

However, this situation did not last longer than 300 years, since after the initial phase of colonization of the Southern Urals was over, the need for social services provided by an elite disappeared and centralized chiefly communities disintegrated into the smaller unfortified villages of the Srubnaya-Alakul’ period.

As I have said many times already (see e.g. here) the outsider pastoralists, forming originally the vast majority of the population, were most likely Pre-Proto-Indo-Iranian speakers of haplogroup R1b-Z2103, and their elite groups (whose inheritance system was based on kinship) probably incorporated gradually Uralic-speaking families of haplogroup R1a-Z93, whose relative importance increased gradually, and then eventually expanded massively with the migrations of Andronovo and Srubna, creating a second Y-chromosome bottleneck that favoured again Z93 subclades. The adaptation of Pre-Proto-Indo-Iranian to the Uralic pronunciation, and the adoption of PII vocabulary in neighbouring Proto-Finno-Ugric bear witness to this process.

Related