Villabruna cluster in Late Epigravettian Sicily supports South Italian corridor for R1b-V88


New preprint Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: new archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily), by Catalano et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

Grotta d’Oriente is a small coastal cave located on the island of Favignana, the largest (~20 km2) of a group of small islands forming the Egadi Archipelago, ~5 km from the NW coast of Sicily.

The Oriente C funeral pit opens in the lower portion of layer 7, specifically sublayer 7D. Two radiocarbon dates on charcoal from the sublayers 7D (12149±65 uncal. BP) and 7E, 12132±80 uncal. BP are consistent with the associated Late Epigravettian lithic assemblages (Lo Vetro and Martini, 2012; Martini et al., 2012b) and refer the burial to a period between about 14200-13800 cal. BP, when Favignana was connected to the main island (Agnesi et al., 1993; Antonioli et al., 2002; Mannino et al. 2014).

A-B) Geographic location of Grotta d’Oriente.

The anatomical features of Oriente C are close to those of Late Upper Palaeolithic populations of the Mediterranean and show strong affinity with other Palaeolithic individuals of Sicily. As suggested by Henke (1989) and Fabbri (1995) the hunter-gatherer populations were morphologically rather uniform.

Genetic analysis

We confirmed the originally reported mitochondrial haplogroup assignment of U2’3’4’7’8’9. This haplogroup is present in both pre- and post-LGM populations, but is rare by the Mesolithic, when U5 dominates (Posth et al.2016).

Lipson et al. (2018) (their supplementary Figure S5.1) and Villalba-Mouco et al. (2019) (their Figure 2A) showed that European Late Palaeolithic and Mesolithic hunter-gatherers fall along two main axes of genetic variation. Multidimensional scaling (MDS) of f3-statistics shows that these axes form a “V” shape (Fig. 3). (…)

Focusing further on Oriente C, we find that it shares most drift with individuals from Northern Italy, Switzerland and Luxembourg, and less with individuals from Iberia, Scandinavia, and East and Southeast Europe (Fig. 4A-B). Shared drift decreases significantly with distance (Fig. 4C) and with time (Fig. 4D) although in a linear model of drift with distance and time as a covariate, only distance (p=1.3×10-6) and not time (p=0.11) is significant. Consistent with the overall E-W cline in hunter-gatherer ancestry, genetic distance to Oriente C increases more rapidly with longitude than latitude, although this may also be affected by geographic features. For example, Oriente C shares significantly more drift with the 8,000 year-old 1,400 km distant individual from Loschbour in Luxembourg (Lazaridis et al.,2014), than with the 9,000 year old individual from Vela Spila in Croatia (Mathieson et al.,2018) only 700 km away as shown by the D-statistic (Patterson et al.,2012) D (Mbuti, Oriente C, Vela Spila, Villabruna); Z=3.42. Oriente C’s heterozygosity was slightly lower than Villabruna (14% lower at 1240k transversion sites), but this difference is not significant (bootstrap P=0.12).

Multidimensional scaling of outgroup f3-statistics for Late 531 Upper Palaeolithic and Mesolithic hunter-gatherers.

Discussion and Conclusion

The robust record of radiocarbon dates proves that they reached Sicily not before 15-14 ka cal. BP, several millennia after the LGM peak. In our opinion, in fact, the hypothesis about an early colonization of Sicily by Aurignacians (Laplace, 1964; Chilardi et al., 1996) must be rejected, on the basis of a recent reinterpretation of the techno-typological features of the lithic industries from Riparo di Fontana Nuova (Martini et al., 2007; Lo Vetro and Martini, 2012; on this topic see also Di Maida et al., 2019).

These analyses have implications for understanding the origin and diffusion of the hunter-gatherers that inhabited Europe during the Late Upper Palaeolithic and Mesolithic. Our findings indicate that Oriente C shows a strong genetic relationship with Western European Late Upper Palaeolithic and Mesolithic hunter-gatherers, suggesting that the “Western hunter-gatherers” was a homogeneous population widely distributed in the Central Mediterranean, presumably as a consequence of continuous gene flow among different groups, or a range expansion following the LGM.

The same statistic as in A plotted with geographic position

The South Italian corridor

Once again, a hypothesis based on phylogeography – apart from scarce archaeological and palaeolinguistic data (“Semitic”-like topo-hydronymy and substrates in Europe) – seems to be confirmed step by step. Since the finding of the Villabruna individual of hg. R1b-L754 (likely R1b-V88, like south-eastern European lineages expanded with WHG ancestry), it was quite likely to find out that southern Europe was the origin of the expansion of R1b-V88 into Africa.

The most likely explanation for the presence of “archaic” R1b-V88 subclades among modern Sardinians was, therefore, that they represented a remnant from a Late Upper Palaeolithic/Early Mesolithic population that had not been replaced in subsequent migrations, and thus that the migration of these lineages into Northern Africa and the Green Sahara happened during a period when Italy was connected by a shallower Mediterranean (and more land connections) to Northern Africa.

Likely Late Epigravettian/Mesolithic expansion of R1b-V88 into Northern Africa. See full map.

Nevertheless, the arguments for a quite recent expansion of R1b-V88 through the Mediterranean and into Africa keep being repeated, probably based on ancestry from the few ancient (and many modern) populations that have been investigated to date, a simplistic approach prone to important errors that overarch whole migration models.

For example, in the recent paper by Marcus et al. (2019) the presence of these lineages among ancient Sardinians (from the late 4th millennium BC on) is interpreted as an expansion of R1b-V88 with the Cardial Neolithic based on their ancestry, disregarding the millennia-long gap between these samples and the presence of this haplogroup in Palaeolithic/Mesolithic Northern Iberia and Northern Italy, and the comparatively much earlier splits in the phylogenetic tree and dispersal among African populations.

Afroasiatic and Nostratic

I was asked recently if I really believed that we could reconstruct Proto-Nostratic and connect it with any ancestral population. My answer is simple: until the Chalcolithic – when the whole picture of Indo-Europeans, Uralians, Egyptians or Semites becomes quite clear – we have just very few (linguistic, archaeological, genetic) dots which we would like to connect, and we do so the best we can. The earlier the population and proto-language, the more difficult this task becomes.

NOTE. 1) I tentatively connected hg. R with Nostratic in a previous text – when it appeared that R1a expanded from around Lake Baikal, hence Eurasiatic; R1b from the south with AME-WHG ancestry, hence Afroasiatic; and R2 with Dravidian.

2) After that, I though it was more likely to be connected to AME ancestry and the Middle East, because of the apparent expansion of WHG from south-eastern Europe, and the potential association of Afroasiatic and (Elamo-?)Dravidian to Middle Eastern populations.

3) However, after finding more and more R1b samples expanding through northern Eurasia, spreading through the (then wider) steppe regions; and R1a essentially surviving among other groups in eastern Europe for thousands of years without being associated to significant migrations (like, say, hg. C after the Palaeolithic), it didn’t seem like this division was accurate, hence my most recent version.

But, in essence, it’s all about connecting the dots, and we have very few of them…

Phylogenetic tree from Pagel et al. (2013), partially in agreement with Kortlandt’s view on Eurasiatic. “Consensus phylogenetic tree of Eurasiatic superfamily (A) superimposed on Eurasia and (B) rooted tree with estimated dates of origin of families and of superfamily. (A) Unrooted consensus tree with branch lengths (solid lines) shown to scale and illustrating the correspondence between the tree and the contemporary north-south and east-west geographical positions of these language families. Abbreviations: P (proto) followed by initials of language family: PD, proto-Dravidian; PK, proto-Kartvelian; PU, proto-Uralic; PIE, proto–Indo-European; PA, proto-Altaic; PCK, proto–Chukchi-Kamchatkan; PIY, proto–Inuit-Yupik. The dotted line to PIY extends the inferred branch length into the area in which Inuit-Yupik languages are currently spoken: it is not a measure of divergence. The cross-hatched line to PK indicates that branch has been shortened (compare with B). The branch to proto-Dravidian ends in an area that Dravidian populations are thought to have occupied before the arrival of Indo-Europeans (see main text). (B) Consensus tree rooted using proto-Dravidian as the outgroup. The age at the root is 14.45 ± 1.75 kya (95% CI = 11.72–18.38 kya) or a slightly older 15.61 ± 2.29 kya (95% CI = 11.72–20.40 kya) if the tree is rooted with proto-Kartvelian. The age assumes midpoint rooting along the branch leading to proto-Dravidian (rooting closer to PD would produce an older root, and vice versa), and takes into account uncertainty around proto–Indo-European date of 8,700 ± 544 (SD) y following ref. 35 and the PCK date of 692 ± 67 (SD) y ago.”

In linguistics, I trust traditional linguists who tend to trust other more experimental linguists (like Hyllested or Kortlandt) who consider that – in their experience – an Indo-Uralic and a Eurasiatic phylum can be reconstructed. Similarly, linguists like Kortlandt are apparently (partially) supportive of attempts like that of Allan Bomhard with Nostratic – although almost everyone is critic of the Muscovite school‘s attachment to the Brugmannian reconstruction, stuck in pre-laryngeal Proto-Indo-Anatolian and similar archaisms.

I mostly use Nostratic as a way to give a simplistic ethnolinguistic label to the genetically related prehistoric peoples whose languages we will probably never know. I think it’s becoming clear that the strongest connection right now with the expansion of potential Eurasiatic dialects is offered by ANE-related populations (hence Y-chromosome bottlenecks under hg. R, Q, probably also N), however complicated the reconstruction of that hypothetic community (and its dialectalization) may be.

Therefore, the multiple expansions of lineages more or less closely associated to ANE-related peoples – like R1b-V88 in the case of Afrasian, or R2 in the case of Dravidians – are the easiest to link to the traditionally described Nostratic dialects and their highly hypothetic relationship.

Reconstruction of North African vegetation during past green Sahara periods. Estimated and reconstructed MAP for the Holocene GSP (6–10 kyr BP) projected onto a cross-section along the eastern Sahara (left panel) and map view of reconstructed MAP, vegetation and physiographic elements [7,8,11,45] (right panel). Image from Larrasoaña et al. (2013).

What should be clear to anyone is that the attempt of many modern Afroasiatic speakers to connect their language to their own (or their own community’s main) haplogroups, frequently E and/or J, is flawed for many reasons; it was simplistic in the 2000s, but it is absurd after the advent of ancient DNA investigation and more recent investigation on SNP mutation rates. R1b-V88 should have been on the table of discussions about the expansion of Afroasiatic communities through the Green Sahara long ago, whether one supports a Nostratic phylum or not.

The fact that the role of R1b bottlenecks and expansions in the spread of Afroasiatic is usually not even discussed despite their likely connection with the most recent population expansions through the Green Sahara fitting a reasonable time frame for Proto-Afroasiatic reconstruction, a reasonable geographical homeland, and a compatible dialectal division – unlike many other proposed (E or J) subclades – reveals (once again) a lot about the reasons behind amateur interest in genetics.

Just like seeing the fixation in (and immobility of) recent writings about the role of I1, I2, or (more recently) R1a in the Proto-Indo-European expansion, R1b with Vasconic, or N1c with Proto-Uralic.

NOTE. That evident interest notwithstanding, it is undeniable that we have a much better understanding of the expansions of R1b subclades than other haplogroups, probably due in great part to the easier recovery of ancient DNA from Eurasia (and Europe in particular), for many different – sociopolitical, geographical, technological – reasons. It is quite possible that a more thorough temporal transect of ancient DNA from the Middle East and Africa might radically change our understanding of population movements, especially those related to the Afroasiatic expansion. I am referring in this post to interpretations based on the data we currently have, despite that potential R1b-based bias.


Distribution of Southern Iberian haplogroup H indicates exchanges in the western Mediterranean

Recent open access paper The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean, by Hernández, Dugoujon, Novelletto, Rodríguez, Cuesta and Calderón, BMC Genetics (2017).

Abstract (emphasis mine):

The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature.

Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean.

Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.

a, b, c. Interpolated frequency surfaces of clade H and its main sub-clades (H1 and H3). Frequencies (%) are showed in a colour scale. See information about the populations used in Additional files 4 and 5. Map templates were taken from Natural Earth free map repository (

I usually find mtDNA data, especially studies like this one based on modern populations, very difficult to interpret for anthropological purposes. It is well-known that there are important differences in the pattern of Y-DNA and mtDNA expansion and distribution.

A paragraph in this respect caught my attention:

The patterns of variation in the Y-chromosome between western and eastern Andalusians, based on 416 males, have also been investigated for a set of Y-Short Tandem Repeats (Y-STRs) and Y-SNPs [53, 54, 55], Calderón et al., unpublished data] in combination to mtDNA analyses ([18, 19] and present study). In general, for both uniparental makers, Andalusians exhibit a typical western European genetic background, with peak frequencies of mtDNA Hg H and Y-chromosome Hg R1b1b2-M269 (45% and 60%, respectively). Interestingly, our results have further revealed that the influence of African female input is far more significant when compared to male influence in contemporary Andalusians. The lack of correspondence between the maternal and paternal genetic profiles of human populations reflects intrinsic differences in migratory behavior related to sex-biased processes and admixture, as well as differences in male and female effective population sizes related to the variance in reproductive success affected, for example, by polygyny [56, 57].

I think that the greater reduction in patrilineal lineages compared to maternal lineages we usually see during and after prehistoric or historic migrations have more to do with the renown Uí Néill family case and with war-related casualties (since combatants were usually men) than with other more popular explanations, such as enslavement of women or polygyny.

The most successful paternal lines (anywhere in the world) were probably those who remained in power for a long time (be it a patriarchal society based on families, clans, or more complex organizational units), who were richer and thus more capable of having healthy offspring, who in turn were able to survive longer and have more children who inherited power, etc.

In case of recent migrations or population movements that disrupt the previously established organization, after a certain number of generations, successful patrilocal families (usually from incoming lineages) might slowly dominate over a whole region, with poorer families (usually of ‘indigenous’ lineages) suffering a greater – especially perinatal and child – mortality, without any obvious (pre)historic event associated to these gradual changes.

This gradual replacement of paternal lineages is compatible with the adoption of the native language by newcomers. If the number of migrants is greater that the native population, and especially if their technology is more advanced, then a more radical change including ethnolinguistic identification is more likely.

I don’t deny the (pre)historic existence of radical replacement of male populations with continuity of female lineages due to massacres of men, female slavery, or polygyny, but they are probably not the main explanation for most regional differences seen in paternal lineages, and should thus be used with caution.

Gradual replacement and founder effects are also the most logical explanation for why autochthonous continuity myths (that the modern regional prevalence of few successful lineages tended to create in the 2000s) haven’t been corroborated by ancient DNA; e.g. R1b-DF27 in Basques, N1c-M178 in Finnic populations, R1a-Z283 in Slavs, etc. There is nothing different in those areas from other recent founder effects and internal migratory flows seen everywhere in Europe in the past millennia.

Paper discovered via a link by Alberto Gonzalez on Facebook group Iberia ADN


Ancestral heterogeneity of ancient Eurasians

Josif Lazaridis tweets about an interesting preprint at BioRxiv (eclipsed by today’s Nature papers), Ancestral heterogeneity of ancient Eurasians, by Daniel Shriner.


Supervised clustering or projection analysis is a staple technique in population genetic analysis. The utility of this technique depends critically on the reference panel. The most commonly used reference panel in the analysis of ancient DNA to date is based on the Human Origins array. We previously described a larger reference panel that captures more ancestries on the global level. Here, I reanalyzed DNA data from 279 ancient Eurasians using our reference panel, finding substantially more ancestral heterogeneity than has been reported. This reanalysis provides evidence against a resurgence of Western hunter-gatherer ancestry in the Middle to Late Neolithic and evidence for a common ancestor of farmers characterized by Western Asian ancestry, a transition of the spread of agriculture from demic to cultural diffusion, at least two migrations between the Pontic-Caspian steppes and Bronze Age Europe, and a sub-Saharan African component in Natufians that localizes to present-day southern Ethiopia.

Admixture bar plots showing projections of ancient Eurasians (Steppe peoples on the left, Bronze Age Europeans on the right) onto 21 ancestries. The 3 proportions are the raw output from ADMIXTURE. The 21 ancestral components are Southern 4 African (dark orchid), Central African (magenta), West-Central African (brown), Eastern 5 African (orange), Omotic (yellow), Northern African (purple), South Indian (slate blue), Kalash 6 (black), Japanese (red), Sino-Tibetan (green), Southeastern Asian (coral), Northern Asian 7 (aquamarine), Amerindian (gray), Oceanian (salmon), Southern European (dark olive green), 8 Northern European (blue), Western Asian (white), Arabian (light gray), Western African 9 (tomato), Circumpolar (pink), and Southern Asian (dark goldenrod).

Excerpt (emphasis mine)

Early to Middle Bronze Age Steppe Peoples
Third, we considered the Eurasian steppe peoples (See figure). The Eneolithic Samara sample had 64.4% Northern European, 18.2% Southern Asian, 8.8% Circumpolar, 4.3% Amerindian, and 4.3% Southern European ancestries. The 27 Early to Middle Bronze Age steppe individuals (Yamnaya from Kalmykia, Yamnaya from Samara, Afanasievo, Poltavka, and Potapovka) averaged 54.7% Northern European, 27.8% Southern Asian, 7.9% Southern European, 4.7% Kalash, 4.2% Amerindian, and 0.8% Western Asian ancestries. We included the Potapovka sample here because the sum of absolute differences in ancestry was greater post-Potapovka rather than post-Poltavka. The increases in Southern Asian and Southern European ancestries do not fit with a European hunter-gatherer source and more broadly do not fit with any of the samples, suggesting an unknown source population. Currently, Southern Asian ancestry co-localizes with Y DNA haplogroup L and correlates with Indo-Iranian languages.

Although there are no L haplogroups in any of these Early to Middle Bronze Age steppe individuals, the correlation with Indo-Iranian languages strengthens the connection between Early to Middle Bronze Age steppe peoples and the introduction of Indo-European languages into Europe. In the Early to Middle Bronze Age steppe peoples, 83.3% of Y DNA haplogroups were R1b and 85.2% of mitochondrial haplogroups were H, J, T, or U. Thus, Northern European ancestry was primarily associated with R1b in these peoples, rather than with I2 as in the European hunter-gatherers, while the mitochondrial lineages were more diverse than in the European hunter-gatherers but less diverse than in the Early Neolithic peoples.

It is an interesting new approach, in that it takes into account more than just adxmiture components and PCA to assess ancestral populations.

As simplistic and wrong some conclusions may seem from your point of view, you have to take into account what Iain Mathieson had to (sadly) expressly state recently:


Y chromosome C2*-star cluster traces back to ordinary Mongols, rather than Genghis Khan


Article behind paywall, Whole-sequence analysis indicates that the Y chromosome C2*-Star Cluster traces back to ordinary Mongols, rather than Genghis Khan, by Wei, Yan, Lu, et al. Eur J Hum Genet (2018); 26:230–237


The Y-chromosome haplogroup C3*-Star Cluster (revised to C2*-ST in this study) was proposed to be the Y-profile of Genghis Khan. Here, we re-examined the origin of C2*-ST and its associations with Genghis Khan and Mongol populations. We analyzed 34 Y-chromosome sequences of haplogroup C2*-ST and its most closely related lineage. We redefined this paternal lineage as C2b1a3a1-F3796 and generated a highly revised phylogenetic tree of the haplogroup, including 36 sub-lineages and 265 non-private Y-chromosome variants. We performed a comprehensive analysis and age estimation of this lineage in eastern Eurasia, including 18,210 individuals from 292 populations. We discovered that the origin of populations with high frequencies of C2*-ST can be traced to either an ancient Niru’un Mongol clan or ordinary Mongol tribes. Importantly, the age of the most recent common ancestor of C2*-ST (2576 years, 95% CI = 1975–3178) and its sub-lineages, and their expansion patterns, are consistent with the diffusion of all Mongolic-speaking populations, rather than Genghis Khan himself or his close male relatives. We concluded that haplogroup C2*-ST is one of the founder paternal lineages of all Mongolic-speaking populations, and direct evidence of an association between C2*-ST and Genghis Khan has yet to be discovered.

This is a great example of the potential mistake that one can make in assessing leading clans of population expansions from the perspective of the renown case of the Uí Néill clan’s expansion in Ireland.

Just some days ago I wrote about the first Hungarian dynasty’s haplogroup R1a, and the potential association of other Ugric-speaking clans with R1a subclades, so let’s wait and see if future papers on other ancient Hungarian clans and Hungarian settlers bring surprises…


We are all special, which also means that none of us is


Adam Rutherford writes You’re Descended from Royalty and So Is Everybody Else – Anybody you can name from ancient history is in your family tree, which I discovered via John Hawks’ new post The surprising connectedness of human genealogies over centuries.


One way to think of it is to accept that everyone of European descent should have billions of ancestors at a time in the 10th century, but there weren’t billions of people around then, so try to cram them into the number of people that actually were. The math that falls out of that apparent impasse is that all of the billions of lines of ancestry have coalesced into not just a small number of people, but effectively literally everyone who was alive at that time. So, by inference, if Charlemagne was alive in the ninth century, which we know he was, and he left descendants who are alive today, which we also know is true, then he is the ancestor of everyone of European descent alive in Europe today.

Since most of this blog’s posts support academic disciplines looking for answers to the Indo-European question, and gives constantly reasons against modern genetic (and phylogenetic) identification, I think it is worth at least a quick read for anyone interested in the field.

I recently referred to the interesting series of posts by Graham Coop on this matter.

Featured image: Europe around 800 – the map is public domain from from the Historical Atlas (New York, 1911)


Analysis of R1b-DF27 haplogroups in modern populations adds new information that contrasts with ‘steppe admixture’ results


New open access article published in Scientific Reports, Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ, by Solé-Morata et al. (2017).


Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.

Some people like to say that Y-DNA haplogroup analysis, or phylogeography in general, is of no use anymore (especially modern phylogeography), and they are content to see how ‘steppe admixture’ was (or even is) distributed in Europe to draw conclusions about ancient languages and their expansion. With each new paper, we are seeing the advantages of analysing ancient and modern haplogroups in ascertaining population movements.

Quite recently there was a suggestion based on steppe admixture that Basque-speaking Iberians resisted the invasion from the steppe. Observing the results of this article (dates of expansion and demographic data) we see a clear expansion of Y-DNA haplogroups precisely by the time of Bell Beaker expansion from the east. Y-DNA haplogroups of ancient samples from Portugal point exactly to the same conclusion.

The situation of R1b-DF27 in Basques, as I have pointed out elsewhere, is probably then similar to the genetic drift of Finns, mainly of N1c lineages, speaking today a Uralic language that expaned with Corded Ware and R1a subclades.

The recent article on Mycenaean and Minoan genetics also showed that, when it comes to Europe, most of the demographic patterns we see in admixture are reminiscent of the previous situation, only rarely can we see a clear change in admixture (which would mean an important, sudden replacement of the previous population).

Equating the so-called steppe admixture with Indo-European languages is wrong. Period.

The following are excerpts from the article (emphasis is mine):

Dates and expansions

The average STR variance of DF27 and each subhaplogroup is presented in Suppl. Table 2. As expected, internal diversity was higher in the deeper, older branches of the phylogeny. If the same diversity was divided by population, the most salient finding is that native Basques (Table 2) have a lower diversity than other populations, which contrasts with the fact that DF27 is notably more frequent in Basques than elsewhere in Iberia (Suppl. Table 1). Diversity can also be measured as pairwise differences distributions (Fig. 5). The distribution of mean pairwise differences within Z195 sits practically on top of that of DF27; L176.2 and Z220 have similar distributions, as M167 and Z278 have as well; finally, M153 shows the lowest pairwise distribution values. This pattern is likely to reflect the respective ages of the haplogroups, which we have estimated by a modified, weighted version of the ρ statistic (see Methods).

Z195 seems to have appeared almost simultaneously within DF27, since its estimated age is actually older (4570 ± 140 ya). Of the two branches stemming from Z195, L176.2 seems to be slightly younger than Z220 (2960 ± 230 ya vs. 3320 ± 200 ya), although the confidence intervals slightly overlap. M167 is clearly younger, at 2600 ± 250 ya, a similar age to that of Z278 (2740 ± 270 ya). Finally, M153 is estimated to have appeared just 1930 ± 470 ya.

Haplogroup ages can also be estimated within each population, although they should be interpreted with caution (see Discussion). For the whole of DF27, (Table 3), the highest estimate was in Aragon (4530 ± 700 ya), and the lowest in France (3430 ± 520 ya); it was 3930 ± 310 ya in Basques. Z195 was apparently oldest in Catalonia (4580 ± 240 ya), and with France (3450 ± 269 ya) and the Basques (3260 ± 198 ya) having lower estimates. On the contrary, in the Z220 branch, the oldest estimates appear in North-Central Spain (3720 ± 313 ya for Z220, 3420 ± 349 ya for Z278). The Basques always produce lower estimates, even for M153, which is almost absent elsewhere.

Simplified phylogenetic tree of the R1b-M269 haplogroup. SNPs in italics were not analyzed in this manuscript.


The median value for Tstart has been estimated at 103 generations (Table 4), with a 95% highest probability density (HPD) range of 50–287 generations; effective population size increased from 131 (95% HPD: 100–370) to 72,811 (95% HPD: 52,522–95,334). Considering patrilineal generation times of 30–35 years, our results indicate that R1b-DF27 started its expansion ~3,000–3,500 ya, shortly after its TMRCA.

As a reference, we applied the same analysis to the whole of R1b-S116, as well as to other common haplogroups such as G2a, I2, and J2a. Interestingly, all four haplogroups showed clear evidence of an expansion (p > 0.99 in all cases), all of them starting at the same time, ~50 generations ago (Table 4), and with similar estimated initial and final populations. Thus, these four haplogroups point to a common population expansion, even though I2 (TMRCA, weighted ρ, 7,800 ya) and J2a (TMRCA, 5,500 ya) are older than R1b-DF27. It is worth noting that the expansion of these haplogroups happened after the TMRCA of R1b-DF27.

Principal component analysis of STR haplotypes. (a) Colored by subhaplogroup, (b) colored by population. Larger squares represent subhaplogroup or population centroids.

Sum up and discussion

We have characterized the geographical distribution and phylogenetic structure of haplogroup R1b-DF27 in W. Europe, particularly in Iberia, where it reaches its highest frequencies (40–70%). The age of this haplogroup appears clear: with independent samples (our samples vs. the 1000 genome project dataset) and independent methods (variation in 15 STRs vs. whole Y-chromosome sequences), the age of R1b-DF27 is firmly grounded around 4000–4500 ya, which coincides with the population upheaval in W. Europe at the transition between the Neolithic and the Bronze Age. Before this period, R1b-M269 was rare in the ancient DNA record, and during it the current frequencies were rapidly reached. It is also one of the haplogroups (along with its daughter clades, R1b-U106 and R1b-S116) with a sequence structure that shows signs of a population explosion or burst. STR diversity in our dataset is much more compatible with population growth than with stationarity, as shown by the ABC results, but, contrary to other haplogroups such as the whole of R1b-S116, G2a, I2 or J2a, the start of this growth is closer to the TMRCA of the haplogroup. Although the median time for the start of the expansion is older in R1b-DF27 than in other haplogroups, and could suggest the action of a different demographic process, all HPD intervals broadly overlap, and thus, a common demographic history may have affected the whole of the Y chromosome diversity in Iberia. The HPD intervals encompass a broad timeframe, and could reflect the post-Neolithic population expansions from the Bronze Age to the Roman Empire.

While when R1b-DF27 appeared seems clear, where it originated may be more difficult to pinpoint. If we extrapolated directly from haplogroup frequencies, then R1b-DF27 would have originated in the Basque Country; however, for R1b-DF27 and most of its subhaplogroups, internal diversity measures and age estimates are lower in Basques than in any other population. Then, the high frequencies of R1b-DF27 among Basques could be better explained by drift rather than by a local origin (except for the case of M153; see below), which could also have decreased the internal diversity of R1b-DF27 among Basques. An origin of R1b-DF27 outside the Iberian Peninsula could also be contemplated, and could mirror the external origin of R1b-M269, even if it reaches there its highest frequencies. However, the search for an external origin would be limited to France and Great Britain; R1b-DF27 seems to be rare or absent elsewhere: Y-STR data are available only for France, and point to a lower diversity and more recent ages than in Iberia (Table 3). Unlike in Basques, drift in a traditionally closed population seems an unlikely explanation for this pattern, and therefore, it does not seem probable that R1b-DF27 originated in France. Then, a local origin in Iberia seems the most plausible hypothesis. Within Iberia, Aragon shows the highest diversity and age estimates for R1b-DF27, Z195, and the L176.2 branch, although, given the small sample size, any conclusion should be taken cautiously. On the contrary, Z220 and Z278 are estimated to be older in North Central Spain (N Castile, Cantabria and Asturias). Finally, M153 is almost restricted to the Basque Country: it is rarely present at frequencies >1% elsewhere in Spain (although see the cases of Alacant, Andalusia and Madrid, Suppl. Table 1), and it was found at higher frequencies (10–17%) in several Basque regions; a local origin seems plausible, but, given the scarcity of M153 chromosomes outside of the Basque Country, the diversity and age values cannot be compared.

Within its range, R1b-DF27 shows same geographical differentiation: Western Iberia (particularly, Asturias and Portugal), with low frequencies of R1b-Z195 derived chromosomes and relatively high values of R1b-DF27* (xZ195); North Central Spain is characterized by relatively high frequencies of the Z220 branch compared to the L176.2 branch; the latter is more abundant in Eastern Iberia. Taken together, these observations seem to match the East-West patterning that has occurred at least twice in the history of Iberia: i) in pre-Roman times, with Celtic-speaking peoples occupying the center and west of the Iberian Peninsula, while the non-Indoeuropean eponymous Iberians settled the Mediterranean coast and hinterland; and ii) in the Middle Ages, when Christian kingdoms in the North expanded gradually southwards and occupied territories held by Muslim fiefs.

Contour maps of the derived allele frequencies of the SNPs analyzed in this manuscript. Population abbreviations as in Table 1. Maps were drawn with SURFER v. 12 (Golden Software, Golden CO, USA).

I wouldn’t trust the absence of R1b-DF27 outside France as a proof that its origin must be in Western Europe – especially since we have ancient DNA, and that assertion might prove quite wrong – but aside from that the article seems solid in its analysis of modern populations.


Text and figures from the article, licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit

How to do modern phylogeography: Relationships between clans and genetic kin explain cultural similarities over vast distances


A preprint paper has been published in BioRxiv, Relationships between clans and genetic kin explain cultural similarities over vast distances: the case of Yakutia, by Zvenigorosky et al (2017).


Archaeological studies sample ancient human populations one site at a time, often limited to a fraction of the regions and periods occupied by a given group. While this bias is known and discussed in the literature, few model populations span areas as large and unforgiving as the Yakuts of Eastern Siberia. We systematically surveyed 31,000 square kilometres in the Sakha Republic (Yakutia) and completed the archaeological study of 174 frozen graves, assembled between the 15th and the 19th century. We analysed genetic data (autosomal genotypes, Y-chromosome haplotypes and mitochondrial haplotypes) for all ancient subjects and confronted it to the study of 190 modern subjects from the same area and the same population. Ancient familial links and paternal clan were identified between graves up to 1500 km apart and we provide new data concerning the origins of the contemporary Yakut population and demonstrate that cultural similarities in the past were linked to (i) the expansion of specific paternal clans, (ii) preferential marriage among the elites and (iii) funeral choices that could constitute a bias in any ancient population study.

Even if you are not interested in the cultural and anthropological evolution of this Turkic-speaking people of the Russian Far Eastern region, the method used is an excellent example of how to use archaeology and genetics (especially Y-DNA and mtDNA data) to obtain meaningful results when investigating ancient populations.

For quite some time, probably since the first renown admixture analyses of ancient DNA samples were published, we have been living under the impression that phylogeography, or simply archaeogenetics as it was called back in the day, is not needed.

Cavalli-Sforza’s assertion that the study of modern populations could offer a clear picture of past population movements is now considered wrong, and the study of Y-DNA and mtDNA haplogroups is today mostly disregarded as of secondary importance, even among geneticists. Whole genomic investigation (and especially admixture analyses) have been leading the new wave of overconfidence in genetic results, tightly joint with the ignorance of its shortcomings (and commercial interests based on desires of ethnic identification), and haplogroups are usually just reported with other, not entirely meaningful aspects of ancient DNA analyses.

While it is undeniable that admixture analyses are offering quite interesting results, they must be carefully balanced against known archaeological and linguistic knowledge. Phylogeography – and especially Y-DNA haplogroup assessment – is quite interesting in investigating kinship and clans in patrilocal communities – i.e. most communities in prehistoric and historic periods, unless proven otherwise.

Luckily enough, there are those researchers who still strive to obtain meaningful information from haplotypes. The article referenced in this post is quite interesting due to its phylogeographic method’s applicability to ancient cultures and peoples.

When some geneticists look at simplistic prehistoric maps, like those depicting Yamna, Afanasevo, Corded Ware, and Bell Beaker cultures together, they forget that 1) cultural regions are selected more or less arbitrarily (we only have certain scattered sites for each of these cultures); 2) economic or population contacts are difficult to ascertain and to represent graphically; and 3) time periods for archaeological sites are important – in fact, they are probably THE most important aspect in assessing how accurate a map (and its “arrows” of migration or exchange) represents reality.

A careful, detailed study like this one, if applied to the Pontic-Caspian steppe, would probably reveal how R1b subclades dominated steppe clans, beginning at least during the Suvorovo-Novodanilovka expansion to the west, and certainly representing the vast majority of lineages during the internal expansion in the Early Yamna period and its later expansion east and west of the steppe…

Featured image from the article, summing up Geography, Archaeology, and Genetics of Yakutia – including Y-DNA and mtDNA haplogroups from ancient populations.