Yekaterinovsky Cape, a link between the Samara culture and early Khvalynsk

ekaterinovsky-cape

We already had conflicting information about the elite individual from the Yekaterinovsky Cape and the materials of his grave, which seemed quite old:

For the burial of 45 in the laboratory of the University of Pennsylvania, a 14C date was obtained: PSUAMS-2880 (Sample ID 16068)> 30 kDa gelatin Russia. 12, Ekaterinovka Grave 45 14C age (BP) 6325 ± 25 δ 13C (‰) –23.6 δ15 N (‰) 14.5. The results of dating suggest chronological proximity with typologically close materials from Yasinovatsky and Nikolsky burial grounds (Telegini et al. 2001: 126). The date obtained also precedes the existing dates for the Khvalynsk culture (Morgunova 2009: 14–15), which, given the dominance of Mariupol traits of the burial rite and inventory, confirms its validity. However, the date obtained for human bones does not exclude the possibility of a “reservoir effect” when the age can increase three or more centuries (Shishlin et al. 2006: 135–140).

Now the same date is being confirmed by the latest study published on the site, by Korolev, Kochkina, and Stachenkov (2019) and it seems it is really going to be old. Abstract (in part the official one, in part newly translated for clarity):

For the first time, pottery of the Early Eneolithic burial ground Ekaterinovsky Cape is published. Ceramics were predominantly located on the sacrificial sites in the form of compact clusters of fragments. As a rule, such clusters were located above the burials, sometimes over the burials, some were sprinkled with ocher. The authors have identified more than 70 vessels, some of which have been partially reconstructed. Ceramic was made with inclusion of the crushed shell into molding mass. The rims of vessels had the thickened «collar»; the bottoms had a rounded shape. The ornament was located on the rims and the upper part of the potteries. Fully decorated vessels are rare. The vessels are ornamented with prints of comb and rope stamps, with small pits. A particularity of ceramics ornamentation is presented by the imprints of soft stamps (leather?) or traces of leather form for the making of vessels. The ornamentation, made up of «walking comb» and incised lines, was used rarely as well as the belts of pits made decoration under «collar» of a rim. Some features of the ceramics decoration under study relate it with ceramics of the Khvalynsk culture. The ceramics of Ekaterinovsky Cape burial ground is attributed by the authors to the Samara culture. The ceramic complex under study has proximity to the ceramics from Syezzhe burial ground and the ceramics of the second phase of Samara culture. The chronological position is determined by the authors as a later period than the ceramics from the Syezzhe burial ground, and earlier than the chronological position of ceramics of the Ivanovka stage of the Samara culture and the Khvalynsk culture.

ekaterinovsky-cape-pottery
Ceramics from Ekaterinovsky Cape burial ground. 1–2, 4–5, 7–11 – ceramics from aggregations; 3, 6 – ceramics from the cultural layer.

More specifically:

Based on ceramic fragments from a large vessel from a cluster of sq.m. 14, the date received was: SPb-2251–5673 ± 120 BP. The second date was obtained in fragments from the aggregation [see picture above] from the cluster of sq.m. 45–46: SPb-2252–6372 ± 100 BP. The difference in dating indicates that the process of determining the chronology of the burial ground is far from complete, although we note that the earlier date almost coincided with the date obtained from the human bone from individual 45 (Korolev, Kochkina, Stashenkov, 2018, p. 300).

Therefore, the ceramics of the burial ground Ekaterinovsky Cape possess an originality that determines the chronological position of the burial ground between the earliest materials of the burial type in Syezzhe and the Khvalynsk culture. Techno-typological features of dishes make it possible to attribute it to the Samara culture at the stage preceding the appearance of Ivanovska-Khvalynsk ceramics.

It seems that this site showed cultural influences from the upstream region near the Kama-Vyatka interfluve, too, according to Korolev, Kochkina, Stashenkov, and Khokhlov (2018):

In 2017, excavation of burial ground Ekaterinovsky Cape were continued, located in the area of the confl uence of the Bezenchuk River in the Volga River. During the new excavations, 14 burials were studied. The skeleton of the buried were in a position elongated on the back, less often – crooked on the back with knees bent at the knees. In one burial (No. 90), a special position of the skeleton was recorded. In the burial number 90 in the anatomical order, parts of the male skeleton. This gave grounds for the reconstruction of his original position in a semi-sitting position with the support of elbows on the bottom of the pit. Noteworthy inventory: on the pelvic bones on the left lay a bone spoon, near the right humerus, the pommel of a cruciform club was found. A conclusion is made about the high social status of the buried. The results of the analysis of the burial allow us to outline the closest circle of analogies in the materials of Khvalynsky I and Murzikhinsky burial grounds.

Important sites mentioned in both papers and in this text:

To sum up, it seems that the relative dates we have used until now have to be corrected: older Khvalynsk I Khvalynsk II individuals, supposedly dated ca. 5200-4000 BC (most likely after 4700 BC), and younger Yekaterinovsky individuals, supposedly of the fourth quarter of the 5th millennium (ca. 4250-4000 BC), are possibly to be considered, in fact, roughly reversed, if not chronologically, at least culturally speaking.

Interestingly, this gives a new perspective to the presence of a rare fish- or reptile-headed pommel-scepter, which would be natural in a variable period of expansion of the horse and horse-related symbolism, a cultural trait rooted in the Samara culture attested in Syezzhe before the unification of the symbol of power under the ubiquitous Khvalynsk-Suvorovo horse-headed scepters and related materials.

ekaterinovsky-cape-pommel-mace
Ekaterinovsky Cape Burial Ground. Inventory of the burial no 90: 1, 2 – stone pommel of the mace; 3, 4 – bone article.

The Khvalynsk chieftain

If the reported lineages from Yekaterinovsky Cape are within the R1b-P297 tree, but without further clades, as Yleaf comparisons may suggest, there is not much change to what we have, and R1b-M269 could actually represent a part of the local population, but also incomers from the south (e.g. the north Caspian steppe hunter-gatherers like Kairshak), the east (with hunter-gatherer pottery), or the west near the Don River (in contact with Mariupol-related cultures, as the authors inferred initially from material culture).

Just like R1a-M417 became incorporated into the Sredni Stog groups after the Novodanilovka-Suvorovo expansion, probably as incoming hunter-gatherer pottery groups from the north admixing with peoples of “Steppe ancestry”, R1b-M269 lineages might have expanded explosively only during the Repin expansion, and maybe (like R1b-L51 later) they formed just a tiny part of the clans that dominated the steppe during the Khvalynsk-Novodanilovka community.

On the other hand, the potential finding of various R1b-M269/L23 samples in Yekaterinovsky Cape (including an elite individual) would suggest now, as it was supported in the original report by Mathieson et al. (2015), that these ancient R1b lineages found in the Volga – Ural region are in fact most likely all R1b-M269 without enough coverage to obtain proper SNP calls, which would simplify the picture of Neolithic expansions (yet again). From the supplementary materials:

10122 / SVP35 (grave 12). Male (confirmed genetically), age 20-30, positioned on his back with raised knees, with 293 copper artifacts, mostly beads, amounting to 80% of the copper objects in the combined cemeteries of Khvalynsk I and II. Probably a high-status individual, his Y-chromosome haplotype, R1b1, also characterized the high-status individuals buried under kurgans in later Yamnaya graves in this region, so he could be regarded as a founder of an elite group of patrilineally related families. His MtDNA haplotype H2a1 is unique in the Samara series.

khvalynsk-cemetery
Khvalynsk cemetery and grave gifts. Grave 90 contained copper beads and rings, a harpoon, flint blades, and a bird-bone tube. Both graves (90 and 91) were partly covered by Sacrificial Deposit 4 with the bones from a horse, a sheep, and a cow. Center: grave goods from the Khvalynsk cemetery-copper rings and bracelets, polished stone mace heads, polished stone bracelet, Cardium shell ornaments, boars tusk chest ornaments, flint blades, and bifiacial projectile points. Bottom: shell-tempered pottery from the Khvalynsk cemetery. After Agapov, Vasiliev, and Pestrikova 1990; and Ryndina 1998, Figure 31. Modified from Anthony (2007).

This remarkable Khvalynsk chieftain, whose rich assemblage may correspond to the period of domination of the culture all over the Pontic-Caspian steppes, has been consistently reported as of hg. R1b-L754 in all publications, including Wang et al. (2018/2019) tentative SNP calls in the supplementary materials (obtained with Yleaf, as the infamous Narasimhan et al. 2018 samples), but has been variously reported by amateurs as within the R1b-M73, R1b-V88, or (lately) R1b-V1636 trees, which makes it unlikely that quality of the sample is allowing for a proper SNP call.

The fact that Mathieson et al. (2015) considered it a member of the R1b-M269 clans appearing later in Yamna seems on point right now, especially if samples from Yekaterinovka are all within this tree. The relevance of R1b-L23 in the expansion of Repin and Yamna is reminiscent of the influence of successful clans among Yamna offshoots, such as Bell Beakers, and among Bell Beaker offshoots during the Bronze Age all over Europe.

Taking these younger expansions as example, it seems quite likely based on cultural links that (at least part of) the main clans of Khvalynsk were of R1b-M269 lineage, stemming from a R1b-dominated Samara culture, in line with the known succeeding expansions and the expected strictly patriarcal and patrilineal society of Proto-Indo-Europeans, which would have exacerbated the usual reduction in Y-chromosome haplogroup variability that happens during population expansions, and the aversion towards foreign groups while the culture lasted.

pontic-steppe-neolithic
Cultures of the Pontic-Caspian steppes and forest-steppes and surrounding areas during the Neolithic.

The finding of R1b-L23 in Yekaterinovka, associated with the Samara culture, before or during the Khvalynsk expansion, and close to the Khvalynsk site, would make this Khvalynsk chieftain most likely a member of the M269 tree (paradoxically, the only R1b-L754 branch amateurs have not yet reported for it). Similarly, the sample of a “Samara hunter-gatherer” of Lebyazhinka, of hg. R1b-P297, could also be under this tree, just like most R1b-M269 from Yamna are downstream from R1b-L23, and most reported R1b-M269 or R1b-L23 from Bell Beakers are under R1b-L151.

On the other hand, we know of the shortcomings of attributing a haplogroup expansion to the best known rulers, such as the famous lineages previously wrongly attributed to Niall of the Nine Hostages or Genghis Khan. The known presence of R1b-V1636 up to modern Greeks would be in line with an ancient steppe expansion that we know will show up during the Neolithic, although it could also be a sign of a more recent migration from the Caucasus. The presence of a sister clade of R1b-L23, R1b-PF7562, among modern Balkan populations, may also be attributed to a pre-Yamna steppe expansion.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

On SNP calls

I reckon that even informal reports on SNP calls, like any other analyses, should be offered in full: not only with a personal or automatic estimation of the result, but with a detailed explanation of the good, dubious, and bad calls, alternatives to that SNP estimation, and a motivated reasoning of why one branch should be preferred over others. Downloading a sample and giving an instruction using a free software tool is never enough, as it became crystal clear recently for the hilariously biased and flawed qpAdm reports on Dutch Bell Beakers as the ‘missing link’ between Corded Ware and Bell Beakers…

Another example I can recall is the report of a R1a-Z93 subclade in the R1a-M417 sample ca. 4000 BC from Alexandria, which seems rather unlikely, seeing how this subclade must have split and expanded explosively with R1a-Z645 to the east with eastern Corded Ware groups, i.e. 1,000 years later, just like Z282 lineages expanded mainly to the north-east. But then again, as with the Khvalynsk chieftain, I have only seen indirect reports of that supposed SNP (including Y26+!), so we should just stick with its officially reported R1a-M417 lineage. This upstream haplogroup was, in fact, repeated with Yleaf’s tentative estimates in Wang et al. (2019) supplementary materials…

The combination of inexperienced, biased, or simply careless design, analyses, and reports, including SNP calls and qpAdm analyses (whether in forums or publications), however well-intentioned (or not) they might be, are hindering a proper analysis of data, adding to the difficulties we already have due to the scarcity of samples, their limited coverage, and the lack of proper context.

Some people like to repeat ad nauseam that archaeology and/or linguistics are ‘not science’ whenever they don’t fit their beliefs and myths based on haplogroup and/or ancestry. But it’s becoming harder and harder to rely on certain genetic data, too, and on their infinite changing interpretations, much more than it is to rely on linguistic and archaeological research, including data, assessments, and discussions that are open for anyone to review…if one is truly interested in them.

Wang et al. (2018) Suppl. data: R1b-M269 in Baltic Neolithic?

eneolithic-forest-zone

Looking for information on Novosvobodnaya samples from Wang et al. (2018) for my latest post, I stumbled upon this from the Supplementary Data 2 (download the Excel table):

Latvia_MN1.SG (ZVEJ26)

Skeletal element: petrous
Sample: Latvia_MN_dup.I4627.SG
Date: 4251-3976 calBCE
Location: Zvejnieki
mtDNA: U4a1
Y-DNA: R1b1a1a2
Coverage: 0.15
SNPs hit on autosomes: 167445

The data on Mathieson et al. (2018) is as follows:

I4627 (ZVEJ26)

Skeletal element: petrous
Origin: ThisStudy (New data; Individual first published in JonesNatureCommunications2017)
Sample: Latvia_MN
Date:4251-3976 calBCE (5280±55 BP, Ua-3639)
Location:Zvejnieki
mtDNA: U4a1
Y-DNA: R1b1a1a(xR1b1a1a2)
Coverage: 1.77
SNPs hit on autosomes: 686273

Y-Chromosome derived SNPs: R1b1a1a:PF6475:17986687C->A; R1b1a1a:CTS3876:15239181G->C; R1b1a1a:CTS5577:16376495A->C; R1b1a1a:CTS9018:18617596C->T; R1b1a1a:FGC57:7759944G->A; R1b1a1a:L502:19020340G->C; R1b1a1a:PF6463:16183412C->A; R1b1a1a:PF6524:23452965T->C; R1b1a:A702:10038192G->A; R1b1a:FGC35:18407611C->T; R1b1a:FGC36:13822833G->T; R1b1a:L754:22889018G->A; R1b1a:L1345:21558298G->T; R1b1a:PF6249:8214827C->T; R1b1a:PF6263:21159055C->A; R1b1:CTS2134:14193384G->A; R1b1:CTS2229:14226692T->A; R1b1:L506:21995972T->A; R1b1:L822:7960019G->A; R1b1:L1349:22722580T->C; R1b:M343:2887824C->A; R1:CTS2565:14366723C->T; R1:CTS3123:14674176A->C; R1:CTS3321:14829196C->T; R1:CTS5611:16394489T->G; R1:L875:16742224A->G; R1:P238:7771131G->A; R1:P286:17716251C->T; R1:P294:7570822G->C; R:CTS207:2810583A->G; R:CTS2913:14561760A->G; R:CTS3622:15078469C->G; R:CTS7876:17722802G->A; R:CTS8311:17930099C->A; R:F33:6701239G->A; R:F63:7177189G->A; R:F82:7548900G->A; R:F154:8558505T->C; R:F370:16856357T->C; R:F459:18017528G->T; R:F652:23631629C->A; R:FGC1168:15667208G->C; R:L1225:22733758C->G; R:L1347:22818334C->T; R:M613:7133986G->C; R:M734:18066156C->T; R:P224:17285993C->T; R:P227:21409706G->C

Context of Latvia_MN1

The Middle Neolithic is known to mark the westward expansion of Comb Ware and related cultures in North-Eastern Europe.

Mathieson et al. (2017 and 2018) had this to say about the Middle Neolithic in the Baltic:

At Zvejnieki in Latvia, using 17 newly reported individuals and additional data for 5 previously reported34 individuals, we observe a transition in hunter-gatherer-related ancestry that is opposite to that seen in Ukraine. We find that Mesolithic and Early Neolithic individuals (labelled ‘Latvia_HG’) associated with the Kunda and Narva cultures have ancestry that is intermediate between WHG (approximately 70%) and EHG (approximately 30%), consistent with previous reports34–36(Supplementary Table 3). We also detect a shift in ancestry between Early Neolithic individuals and those associated with the Middle Neolithic Comb Ware complex (labelled ‘Latvia_MN’), who have more EHG-related ancestry; we estimate that the ancestry of Latvia_MN individuals comprises 65% EHG-related ancestry, but two of the four individuals appear to be 100% EHG in principal component space (Fig. 1b).

mathieson-2018-pca
From Mathieson et al. (2018). Ancient individuals projected onto principal components defined by 777 presentday west Eurasians (shown in Extended Data Fig. 1); data include selected published individuals (faded circles, labelled) and newly reported individuals (other symbols, outliers enclosed in black circles). Coloured polygons cover individuals that had cluster memberships fixed at 100% for supervised ADMIXTURE analysis.

Other samples and errors on Y-SNP calls

The truth is, this is another sample (Latvia_MN_dup.I4627.SG) from the same individual ZVEJ26.

There is another sample used for the analysis of ZVEJ26, with the same data as in Mathieson et al. (2018), i.e. better coverage, and Y-DNA R1b1a1a(xR1b1a1a2).

Most samples in the tables from Wang et al. (2018) seem to be classified correctly, as in previous papers, but for:

  • Blätterhöhle Cave sample from Lipson et al. (2017), wrongly classified (again) as R1b1a1a2a1a2a1b2 (I am surprised no R1b-autochtonous-continuity-fan rushed to proclaim something based on this);
  • Mal’ta 1 sample from Raghavan et al. (2013) as R1b1a1a2;
  • Iron Gates HG, Schela Cladovey from Gonzalez Fortes (2017) as R1b1a1a2;
  • Oase1 from Fu (2015) as N1c1a;
  • samples from Skoglund et al. (2017) from Africa also wrongly classified as R1b1a1a2 and subclades.

It seems therefore that the poor coverage / SNPs hit on autosomes is the key common factor here for these Y-SNP calls, and so it is in the Zvejnieki MN1 duplicated sample. Anyway, if all Y-SNP calls come from the same software applied to all data, and this is going to be used in future papers, this seems to be a great improvement compared to Narasimhan et al. (2018)

EDIT (25 JUN 2018): I have been reviewing some more papers apart from Mathieson et al. (2018) and Olalde et al. (2018) to compare the reported haplogroups, and there seems to be many potential errors (or updated data, difficult to say sometimes, especially when the newly reported haplogroup is just one or two subclades below the reported one in ‘old’ papers), not only those listed above.

The sample accession number in the European Nucleotide Archive (ENA) is SAMEA45565168 (Latvia_MN1/ZVEJ26) (see here), in case anyone used to this kind of analysis wishes to repeat the Y-SNP calls on both samples.

EDIT (25 JUN 2018): Added that it is another sample with lesser coverage from the same ZVEJ26 individual.

Related:

Sahara’s rather pale-green and discontinuous Sahelo-Sudanian steppe corridor, and the R1b – Afroasiatic connection

palaeolakes-world

Interesting new paper (behind paywall) Megalakes in the Sahara? A Review, by Quade et al. (2018).

Abstract (emphasis mine):

The Sahara was wetter and greener during multiple interglacial periods of the Quaternary, when some have suggested it featured very large (mega) lakes, ranging in surface area from 30,000 to 350,000 km2. In this paper, we review the physical and biological evidence for these large lakes, especially during the African Humid Period (AHP) 11–5 ka. Megalake systems from around the world provide a checklist of diagnostic features, such as multiple well-defined shoreline benches, wave-rounded beach gravels where coarse material is present, landscape smoothing by lacustrine sediment, large-scale deltaic deposits, and in places, tufas encrusting shorelines. Our survey reveals no clear evidence of these features in the Sahara, except in the Chad basin. Hydrologic modeling of the proposed megalakes requires mean annual rainfall ≥1.2 m/yr and a northward displacement of tropical rainfall belts by ≥1000 km. Such a profound displacement is not supported by other paleo-climate proxies and comprehensive climate models, challenging the existence of megalakes in the Sahara. Rather than megalakes, isolated wetlands and small lakes are more consistent with the Sahelo-Sudanian paleoenvironment that prevailed in the Sahara during the AHP. A pale-green and discontinuously wet Sahara is the likelier context for human migrations out of Africa during the late Quaternary.

The whole review is an interesting read, but here are some relevant excerpts:

Various researchers have suggested that megalakes coevally covered portions of the Sahara during the AHP and previous periods, such as paleolakes Chad, Darfur, Fezzan, Ahnet-Mouydir, and Chotts (Fig. 2, Table 2). These proposed paleolakes range in size by an order of magnitude in surface area from the Caspian Sea–scale paleo-Lake Chad at 350,000 km2 to Lake Chotts at 30,000 km2. At their maximum, megalakes would have covered ~ 10% of the central and western Sahara, similar to the coverage by megalakes Victoria, Malawi, and Tanganyika in the equatorial tropics of the African Rift today. This observation alone should raise questions of the existence of megalakes in the Sahara, and especially if they developed coevally. Megalakes, because of their significant depth and area, generate large waves that become powerful modifiers of the land surface and leave conspicuous and extensive traces in the geologic record.

megalakes-sahara
ETOPO1 digital elevation model (1 arc-minute; Amante and Eakins, 2009) of proposed megalakes in the Sahara Desert during the late Quaternary. Colors denote Köppen-Geiger climate zones: blue, Aw, Af, Am (tropical); light tan, Bwk, BSh, BSk, Csa, Csb, Cwb, Cfa, Cfb (temperate); red-brown, Bwh (arid, hot desert and steppe climate). Lake area at proposed megalake high stands and present Lake Victoria are in blue, and contributing catchment areas are shown as thin solid black lines. The main tributaries of Lake Chad are denoted by blue lines (from west to east: the Komadougou-Yobe, Logone, and Chari Rivers; source: Global Runoff Data Center, Koblenz, Germany). Rainfall isohyets (50, 200, 800, 1200, and 1600) are marked in dashed gray-scale lines. Physical parameters of each basin are shown in white boxes: Abt, total basin area; AW, lake area; Vw, lake volume; and aW= AW/Abt. Black dots mark the location of the paleohydrological records from Lezine et al. (2011), also compiled in Supplementary Table S5.

Lakes, megalakes, and wetlands

Active ground-water discharge systems abound in the Sahara today, although they were much more widespread in the AHP. They range from isolated springs and wet ground in many oases scattered across the Sahara (e.g., Haynes et al., 1989) to wetlands and small lakes (Kröpelin et al., 2008). Ground water feeding these systems is dominated by fossil AHP-age and older water (e.g., Edmunds and Wright 1979; Sonntag et al., 1980), although recently recharged water (<50 yr) has been locally identified in Saharan ground water (e.g., Sultan et al., 2000; Maduapuchi et al., 2006).

Megalake Chad

In our view, Lake Chad is the only former megalake in the Sahara firmly documented by sedimentologic and geomorphic evidence. Mega-Lake Chad is thought to have covered ~ 345,000 km2, stretching for nearly 8° (10–18°N) of latitude (Ghienne et al., 2002) (Fig. 2). The presence of paleo- Lake Chad was at one point challenged, but several—and in our view very robust—lines of evidence have been presented to support its development during the AHP. These include: (1) clear paleo-shorelines at various elevations, visible on the ground (Abafoni et al., 2014) and in radar and satellite images (Schuster et al., 2005; Drake and Bristow, 2006; Bouchette et al., 2010); (2) sand spits and shoreline berms (Thiemeyer, 2000; Abafoni et al., 2014); and (3) evaporites and aquatic fauna such as fresh-water mollusks and diatoms in basin deposits (e.g., Servant, 1973; Servant and Servant, 1983). Age determinations for all but the Holocene history of mega- Lake Chad are sparse, but there is evidence for Mio-Pliocene lake (s) (Lebatard et al., 2010) and major expansion of paleo- Lake Chad during the AHP (LeBlanc et al., 2006; Schuster et al., 2005; Abafoni et al., 2014; summarized in Armitage et al., 2015) up to the basin overflow level at ~ 329m asl.

Insights from hydrologic mass balance of megalakes

sahara-annaul-rainfall
Graph of mean annual rainfall (mm/yr) versus aw (area lake/area basin, AW/AL); their modeled relationship using our Sahelo-Sudanian hydrologic model for the different lake basins are shown as solid colored lines. Superimposed on this (dashed lines) are the aw values for individual megalake basins and the mean annual rainfall required to sustain them. Mean annual paleo-rainfall estimates of 200– 400 mm/yr during the AHP from fossil pollen and mollusk evidence is shown as a tan box. The intersection of this box with the solid colored lines describes the resulting aw for Saharan paleolakes on the y-axis. The low predicted values for aw suggest that very large lakes would not form under Sahelo-Sudanian conditions where sustained by purely local rainfall and runoff. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Using these conservative conditions (i.e., erring in the direction that will support megalake formation), our hydrologic models for the two biggest central Saharan megalakes (Darfur and Fezzan) require minimum annual average rainfall amounts of ~ 1.1 m/yr to balance moisture losses from their respective basins (Supplementary Table S1). Lake Chad required a similar amount (~1 m/yr; Supplementary Table S1) during the AHP according to our calculations, but this is plausible, because even today the southern third of the Chad basin receives ≥1.2 m/yr (Fig. 2) and experiences a climate similar to Lake Victoria. A modest 5° shift in the rainfall belt would bring this moist zone northward to cover a much larger portion of the Chad basin, which spans N13° ±7°. Estimated rainfall rates for Darfur and Fezzan are slightly less than the average of ~ 1.3 m/yr for the Lake Victoria basin, because of the lower aw values, that is, smaller areas of Saharan megalakes compared with their respective drainage basins (Fig. 15).

Estimates of paleo-rainfall during the AHP

Here major contradictions develop between the model outcomes and paleo-vegetation evidence, because our Sahelo-Sudanian hydrologic model predicts wetter conditions and therefore more tropical vegetation assemblages than found around Lake Victoria today. In fact, none of the very wet rainfall scenarios required by all our model runs can be reconciled with the relatively dry conditions implied by the fossil plant and animal evidence. In short, megalakes cannot be produced in Sahelo-Sudanian conditions past or present; to form, they require a tropical or subtropical setting, and major displacements of the African monsoon or extra-desert moisture sources.

sahara-palaeoclimate
Change in mean annual precipitation over northern Africa between mid-Holocene (6 ka) and pre-industrial conditions in PMIP3 models (affiliations are provided in Supplementary Table S4). Lakes Victoria and Chad outlined in blue. (a) Ensemble mean change in mean annual precipitation and positions of the African summer (July–September) ensemble mean ITCZ during mid-Holocene (solid red line) and pre-industrial conditions (solid blue line). (b) Zonal average of change in mean annual precipitation over land (20°W–30°E) for the ensemble mean (thick black) and individual models are listed on right). The range of minimal estimated change in mean annual precipitation required to sustain steppe is shown in shaded green (Jolly et al., 1998).

Conclusions

If not megalakes, what size lakes, marshes, discharging springs, and flowing rivers in the Sahara were sustainable in Sahelo-Sudanian climatic conditions? For lakes and perennial rivers to be created and sustained, net rainfall in the basin has to exceed loss to evapotranspiration, evaporation, and infiltration, yielding runoff that then supplies a local lake or river. Our hydrologic models (see Supplementary Material) and empirical observations (Gash et al., 1991; Monteith, 1991) for the Sahel suggest that this limit is in the 200–300 mm/yr range, meaning that most of the Sahara during the AHP was probably too dry to support very large lakes or perennial rivers by means of local runoff. This does not preclude creation of local wetlands supplied by ground-water recharge focused from a very large recharge area or forced to the surface by hydrologic barriers such as faults, nor megalakes like Chad supplied by moisture from the subtropics and tropics outside the Sahel. But it does raise a key question concerning the size of paleolakes, if not megalakes, in the Sahara during the AHP. Our analysis suggests that Sahelo-Sudanian climate could perhaps support a paleolake approximately ≤5000 km2 in area in the Darfur basin and ≤10,000–20,000 km2 in the Fezzan basin. These are more than an order of magnitude smaller than the megalakes envisioned for these basins, but they are still sizable, and if enclosed in a single body of water, should have been large enough to generate clear shorelines (Enzel et al., 2015, 2017). On the other hand, if surface water was dispersed across a series of shallow and extensive but partly disconnected wetlands, as also implied by previous research (e.g., Pachur and Hoelzmann, 1991), then shorelines may not have developed.

One of the underdeveloped ideas of my Indo-European demic diffusion model was that R1b-V88 had migrated through South Italy to Northern Africa, and from it using the Sahara Green Corridor to the south, from where the “upside-down” view of Bender (2007) could have occurred, i.e. Afroasiatic expanding westwards within the Green Sahara, precisely at this time, and from a homeland near the Megalake Chad region (see here).

Whether or not R1b-V88 brought the ‘original’ lineage that expanded Afroasiatic languages may be contended, but after D’Atanasio et al. (2018) it seems that only two lineages, E-M2 and R1b-V88, fit the ‘star-like’ structure suggesting an appropriate haplogroup expansion and necessary regional distribution that could explain the spread of Afroasiatic languages within a reasonable time frame.

palaeolithic
Palaeolithic migrations

This review shows that the hypothesized Green Sahara corridor full of megalakes that some proposed had fully connected Africa from west to east was actually a strip of Sahelo-Sudanian steppe spread to the north of its current distribution, including the Chad megalake, East Africa and Arabia, apart from other discontinuous local wetlands further to the north in Africa. This greenish belt would have probably allowed for the initial spread of early Afroasiatic proto-languages only through the southern part of the current Sahara Desert. This and the R1b-V88 haplogroup distribution in Central and North Africa (with a prevalence among Chadic speakers probably due to later bottlenecks), and the Near East, leaves still fewer possibilities for an expansion of Afroasiatic from anywhere else.

If my proposal turns out to be correct, this Afroasiatic-like language would be the one suggested by some in the vocabulary of Old European and North European local groups (viz. Kroonen for the Agricultural Substrate Hypothesis), and not Anatolian farmer ancestry or haplogroup G2, which would have been rather confined to Southern Europe, mainly south of the Loess line, where incoming Middle East farmers encountered the main difficulties spreading agriculture and herding, and where they eventually admixed with local hunter-gatherers.

NOTE. If related to attested languages before the Roman expansion, Tyrsenian would be a good candidate for a descendant of the language of Anatolian farmers, given the more recent expansion of Anatolian ancestry to the Tuscan region (even if already influenced by Iran farmer ancestry), which reinforces its direct connection to the Aegean.

The fiercest opposition to this R1b-V88 – Afroasiatic connection may come from:

  • Traditional Hamito-Semitic scholars, who try to look for any parent language almost invariably in or around the Near East – the typical “here it was first attested, ergo here must be the origin, too”-assumption (coupled with the cradle of civilization memes) akin to the original reasons behind Anatolian or Out-of-India hypotheses; and of course
  • autochthonous continuity theories based on modern subclades, of (mainly Semitic) peoples of haplogroup E or J, who will root for either one or the other as the Afroasiatic source no matter what. As we have seen with the R1a – Indo-European hypothesis (see here for its history), this is never the right way to look at prehistoric migrations, though.

I proposed that it was R1a-M417 the lineage marking an expansion of Indo-Uralic from the east near Lake Baikal, then obviously connected to Yukaghir and Altaic languages marked by R1a-M17, and that haplogroup R could then be the source of a hypothetic Nostratic expansion (where R2 could mark the Dravidian expansion), with upper clades being maybe responsible for Borean.

nostratic-tree
Simple Nostratic tree by Bomhard (2008)

However, recent studies have shown early expansions of R1b-297 to East Europe (Mathieson et al. 2017 & 2018), and of R1b-M73 to East Eurasia probably up to Siberia, and possibly reaching the Pacific (Jeong et al. 2018). Also, the Steppe Eneolithic and Caucasus Eneolithic clusters seen in Wang et al. (2018) would be able to explain the WHG – EHG – ANE ancestry cline seen in Mesolithic and Neolithic Eurasia without a need for westward migrations.

Dravidian is now after Narasimhan et al. (2018) and Damgaard et al. (Science 2018) more and more likely to be linked to the expansion of the Indus Valley civilization and haplogroup J, in turn strongly linked to Iranian farmer ancestry, thus giving support to an Elamo-Dravidian group stemming from Iran Neolithic.

NOTE. This Dravidian-IVC and Iran connection has been supported for years by knowledgeable bloggers and commenters alike, see e.g. one of Razib Khan’s posts on the subject. This rather early support for what is obvious today is probably behind the reactionary views by some nationalist Hindus, who probably saw in this a potential reason for a strengthened Indo-Aryan/Dravidian divide adding to the religious patchwork that is modern India.

I am not in a good position to judge Nostratic, and I don’t think Glottochronology, Swadesh lists, or any statistical methods applied to a bunch of words are of any use, here or anywhere. The work of pioneers like Illich-Svitych or Starostin, on the other hand, seem to me solid attempts to obtain a faithful reconstruction, if rather outdated today.

NOTE. I am still struggling to learn more about Uralic and Indo-Uralic; not because it is more difficult than Indo-European, but because – in comparison to PIE comparative grammar – material about them is scarce, and the few available sources are sometimes contradictory. My knowledge of Afroasiatic is limited to Semitic (Arabic and Akkadian), and the field is not much more developed here than for Uralic…

y-haplogroup-r1b-p343
Spread of Y-haplogroup R1b(xM269) in Eurasia, according to Jeong et al. (2018).

If one wanted to support a Nostratic proto-language, though, and not being able to take into account genome-wide autosomal admixture, the only haplogroup right now which can connect the expansion of all its branches is R1b-M343:

  • R1b-L278 expanded from Asia to Europe through the Iranian Plateau, since early subclades are found in Iran and the Caucasus region, thus supporting the separation of Elamo-Dravidian and Kartvelian branches;
  • From the Danube or another European region ‘near’ the Villabruna 1 sample (of haplogroup R1b-L754):
    • R1b-V88 expanding everywhere in Europe, and especially the branch expanding to the south into Africa, may be linked to the initial Afroasiatic expansion through the Pale-Green Sahara corridor (and even a hypothetic expansion with E-M2 subclades and/or from the Middle East would also leave open the influence of V88 and previous R1b subclades from the Middle East in the emergence of the language);
    • R1b-297 subclades expanding to the east may be linked to Eurasiatic, giving rise to both Indo-Uralic (M269) and Macro- or Micro-Altaic (M73) expansions.

This is shameless, simplistic speculation, of course, but not more than the Nostratic hypothesis, and it has the main advantage of offering ‘small and late’ language expansions relative to other proposals spanning thousands (or even tens of thousands) of years more of language separation. On the other hand, that would leave Borean out of the question, unless the initial expansion of R1b subclades happened from a community close to lake Baikal (and Mal’ta) that was also at the origin of the other supposedly related Borean branches, whether linked to haplogroup R or to any other…

NOTE. If Afroasiatic and Indo-Uralic (or Eurasiatic) are not genetically related, my previous simplistic model, R1b-Afroasiatic vs. R1a-Eurasiatic, may still be supported, with R1a-M17 potentially marking the latest meaningful westward population expansion from which EHG ancestry might have developed (see here). Without detailed works on Nostratic comparative grammar and dialectalization, and especially without a lot more Palaeolithic and Mesolithic samples, all this will remain highly speculative, like proposals of the 2000s about Y-DNA-haplogroup – language relationships.

Related:

Genetic history of admixture across inner Eurasia; Botai shows R1b-M73

y-haplogroup-r1b-p343

Open access Characterizing the genetic history of admixture across inner Eurasia, by Jeong et al. (2018).

Abstract (emphasis mine):

The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report genome-wide data of two Eneolithic individuals (~5,400 years before present) associated with the Botai culture in northern Kazakhstan. We find that inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries. This genetic separation is well mirrored by geography. The ancient Botai genomes suggest yet another layer of admixture in inner Eurasia that involves Mesolithic hunter-gatherers in Europe, the Upper Paleolithic southern Siberians and East Asians. Admixture modeling of ancient and modern populations suggests an overwriting of this ancient structure in the Altai-Sayan region by migrations of western steppe herders, but partial retaining of this ancient North Eurasian-related cline further to the North. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.

Interesting excerpts:

On North Eurasians

In a PCA of Eurasian individuals, we find that PC1 separates eastern and western Eurasian populations, PC2 splits eastern Eurasians along a north-south cline, and PC3 captures variation in western Eurasians with Caucasus and northeastern European populations at opposite ends (Figure 2A and Figures S1-S2). Inner Eurasians are scattered across PC1 in between, largely reflecting their geographic locations. Strikingly, inner Eurasian populations seem to be structured into three distinct west-east genetic clines running between different western and eastern Eurasian groups, instead of being evenly spaced in PC space. Individuals from northern Eurasia, speaking Uralic or Yeniseian languages, form a cline connecting northeast Europeans and the Uralic (Samoyedic) speaking Nganasans from northern Siberia (“forest-tundra” cline). Individuals from the Eurasian steppe, mostly speaking Turkic and Mongolic languages, are scattered along two clines below the forest-tundra cline. Both clines run into Turkic- and Mongolic-speaking populations in southern Siberia and Mongolia, and further into Tungusic-speaking populations in Manchuria and the Russian Far East in the East; however, they diverge in the west, oneheading to the Caucasus and the other heading to populations of the Volga-308 Ural area (the “southern steppe” and “steppe-forest” clines, respectively; Figure 2 and Figure S2).
(…)
The forest-tundra cline populations derive most of their eastern Eurasian ancestry from a component most enriched in Nganasans, while those on the steppe-forest and southern steppe clines have this component together with another component most enriched in populations from the Russian Far East, such as Ulchi and Nivkh. The southern steppe cline groups are distinct from the others in their western Eurasian ancestry profile, in the sense that they have a high proportion of a component most enriched in Mesolithic Caucasus hunter-gatherers (“CHG”) and Neolithic Iranians (“Iran_N”) and frequently harbor another component enriched in South Asians (Figure S4).

north-eurasian-uralic
qpAdm-based admixture models for the forest-tundra cline populations. For populations to the east of the Urals (Enets, Selkups, Kets, and Mansi), EHG+Yamnaya+Nganasan provides a good fit, except for Mansi, for which adding WHG significantly increases the model fit. For the rest of the groups, WHG+LBK_EN+Yamnaya+Nganasan in general provides a good fit. 5 cM jackknifing standard errors are marked by the horizontal bar.

For the forest-tundra cline populations, for which currently no relevant Holocene ancient genomes are available, we took a more generalized approach of using proxies for contemporary Europeans: WHG, WSH (represented by “Yamnaya_Samara”), and early Neolithic European farmers (EEF; represented by “LBK_EN”; Table S2). Adding Nganasans as the fourth reference, we find that most Uralic-speaking populations in Europe (i.e. west of the Urals) and Russians are well modeled by this four-way admixture model (χ 2 p ≥ 0.05 for all but three groups; Figure 5 and Table S8). Nganasan-related ancestry substantially contributes to their gene pools and cannot be removed from the model without a significant decrease in model fit (4.7% to 29.1% contribution; χ 2 p ≤ 1.12×10-8; Table S8). The ratio of contributions from three European references varies from group to group, probably reflecting genetic exchange with neighboring non-Uralic groups. For example, Saami from northern Fennoscandia contain a higher WHG and lower WSH contribution (16.1% and 41.3%, respectively) than Udmurts or Besermyans from the Volga river region do (4.9-6.6% and 50.7-53.2%, respectively), while the three groups have similar amounts of Nganasan-related ancestry (25.5-29.1%).

The Caucasus Mountains form a barrier to gene flow

By applying EEMS to the Caucasus region, we identify a strong barrier to gene flow separating North and South Caucasus populations. This genetic barrier coincides with the Greater Caucasus mountain ridge even to small scale: a weaker barrier in the middle, overlapping with Ossetia, matches well with the region where the ridge also becomes narrow. We also observe weak barriers running in the north-south direction that separate northeastern populations from northwestern ones. Together with PCA, EEMS results suggest that the Caucasus Mountains have posed a strong barrier to human migration.

caucasus-genetic-barrier
The Greater Caucasus mountain ridge as a barrier to 856 genetic exchange. Barriers (brown) and conduits (green) of gene flow around the Caucasus region are estimated by the EEMS program. Red diamonds show the location of vertices to which groups are assigned. A strong barrier to gene flow overlaps with the Greater Caucasus mountain ridge reflecting the genetic differentiation between populations of the north and south of the Caucasus. The barrier becomes considerably weaker in the middle where present-day Ossetians live.

On the Botai individuals

The Y-chromosome of the male Botai individual (TU45) belongs to the haplogroup R1b (Table 411 S6). However, it falls into neither a predominant European branch R1b-L5165 nor into a R1b-GG400 branch found in Yamnaya individuals. Thus, phylogenetically this Botai individual should belong to the R1b-M73 branch which is frequent in the Eurasian steppe (Figure S9). This branch was also found in Mesolithic samples from Latvia as well as in numerous modern southern Siberian and Central Asian groups.

The Botai genomes provide a critical snapshot of the genetic profile of pre-Bronze Age steppe populations. Our admixture modeling positions Botai primarily on an ancient genetic cline of the pre-Neolithic western Eurasian hunter-gatherers: stretching from the post-Ice Age western European hunter-gatherers (e.g. WHG) to EHG in Karelia and Samara to the Upper Paleolithic southern Siberians (e.g. AG3). Botai’s position on this cline, between EHG and AG3, fits well with their geographic location and suggests that ANE-related ancestry in the East did have a lingering genetic impact on Holocene Siberian and Central Asian populations at least till the time of Botai.
(…)
The most recent clear connection with the Botai ancestry can be found in the Middle Bronze Age Okunevo individuals (Figure S6C). In contrast, additional EHG-related ancestry is required to explain the forest-tundra populations to the east of the Urals (Figure 5 and Table S8). Their multi-way mixture model may in fact portrait a prehistoric two-way mixture of a WSH population and a hypothetical eastern Eurasian one that has an ANE-related contribution higher than that in Nganasans. Botai and Okunevo individuals prove the existence of such ANE ancestry-rich populations. Pre-Bronze Age genomes from Siberia will be critical for testing this hypothesis.

botai-pca
The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

So, to sum up:

  • Northern Eurasia forms a Uralic – Yeniseian cline from east to west, with contribution from Steppe, WHG, and Siberian ancestry. Siberian ancestry is represented by Palaeo-Siberian Nganasans, who adopted Samoyedic quite late. It was already known that the different waves of Siberian ancestry are too late and do not represent the spread of Uralic languages, so that leaves us with Steppe and WHG.
  • The Caucasus Mountains were a long-lasting prehistoric barrier to gene flow (as recently shown in Y-DNA, too).
  • The Botai sample (ca. 3632-3100 BC) represents thus the furthest east that R1b-P297 subclades had expanded (we did know that, and that they didn’t have close genetic links with Khvalynsk, so the haplogroup spread there probably much earlier). It expanded R1b-M269’s sister clade R1b-M73 (also found in the Baltic region), and the Botai are on the ‘eastern’ end of an ancient genetic cline stretching from WHG to EHG to Afontova Gora.

EDIT (23 MAY 2018) Both samples share mtDNA, and the male one shares Y-DNA, with those reported in Damgaard et al. (Nature 2018); although dates are slightly different (3371-3354 calBC for BOT 14), it is within the range given for this one; for the female, the dates are similar (3521-3377 calBC for BOT2016, 3517-3367 cal. BCE for this one). The lack of data on their origin may point to the fact that we only have different bone samples from the same two Botai individuals. So probably still 50% R1b-M73 (with the other 50% being N2* from BOT15)…

It seems therefore not only that R1b-M269 is bound to split from the parent haplogroup in or around the steppe or forest-steppe: the Mesolithic spread of haplogroup R1b in North Eurasia is wider and its relevance thus greater than previously thought.

We may need to rethink the role of haplogroup R1a in spreading EHG and Indo-Uralic from east to west…

Featured image, from the supplementary materials: Frequency distribution map of the Y-chromosomal haplogroup R1b-P343(xM269) identified in the Eneolithic Botai individual. All modern Eurasian samples with this haplogroup tested to date for the downstream markers fall into R1b-M73 branch, suggesting Botai sample be one of its earliest representatives.

Related: