R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

The traditional multilingualism of Siberian populations

uralic-languages

New paper (behind paywall) A case-study in historical sociolinguistics beyond Europe: Reconstructing patterns of multilingualism in a linguistic community in Siberia, by Khanina and Meyerhoff, Journal of Historical Sociolinguistics (2018) 4(2).

The Nganasans have been eastern neighbours of the Enets for at least several centuries, or even longer, as indicated in Figures 2 and 3.10 They often dwelled on the same grounds and had common households with the Enets. Nganasans and Enets could intermarry (Dolgikh 1962a), while the Nganasans did not marry representatives of any other ethnic groups. As a result, it was not unusual for Enets and Nganasans to live in the same tent and/or to have common relatives. Such close contact must clearly have favoured acquisition of Nganasan by Enets children and of Enets by Nganasan children from an early age.

The Nenets have been close neighbours of all the Enets groups more recently (Figures 2 and 3). In the seventeenth century, there were only warlike contacts between the Nenets and the Enets, while in the eighteenth century the Nenets started to live on the traditional Enets lands, on the western bank of the Yenisey river, with more peaceful interactions reported. (…) Since then the same situation of intermarriages and common households has been attested for these western Enets neighbours as with the Nganasans (Dolgikh 1962a), and this has also created conditions favouring early acquisition of both languages by children.

enets-nganasan-early
The Enets and neighbouring peoples in the middle of the seventeenth century; map by Yuri Koryakov (http://lingvarium.org), adapted from Dolgikh (1960).

As for the Evenkis and the Selkups, the Enets had regular contact with these peoples (Figures 2 and 3), though they were not their close neighbours: in fact, geographically, the Selkups were not neighbours at all by the end of the nineteenth century. The Evenkis had always been direct south-eastern neighbours (…) Contacts with Selkups could be trade based, or they could simply be occasional encounters on adjacent lands. (…) [With Evenkis] some sporadic contacts were similar in nature to those with the Selkups, however many other contacts were war-like. Traditionally, the Enets considered the Evenkis to have a martial spirit, and the Evenkis were known as being accustomed to stealing Enets women. A number of stories in Dolgikh (1961) concern Evenkis stealing Enets women and Enets men going to Evenki lands to find and return them. It is clear, therefore, that if Evenki or Selkup were acquired by the Enets, this happened later in life, and this acquisition required particular conditions for it, i. e. it was not readily acquired through regular or harmonious contact (as with Nganasan).

In a pattern similar to the situation with Nganasan, in the second half of the twentieth century most Enets elders could speak Nenets (Vasil’jev 1963; Eugen Helimski p.c., the lead author’s fieldwork experience).

enets-nganasan-late
The Enets and neighbouring indigenous peoples: end of the nineteenth century – beginning of the twentieth century; map by Yuri Koryakov (http://lingvarium.org), adapted from
Bruk (1961).

At the start of the period studied, in the 1850s, the Enets linguistic community could be characterized as multilingual in the following five languages: Enets, Nganasan, Nenets, Evenki, and Russian (Figure 4). The number of Enets individuals who were able to converse in each of the other four languages differed and generally was a property of the individuals who had regular social contact with speakers of the other four languages. (…) Note that in all cases of interethnic communication there could well be a lack of perfect proficiency in a language for which the multilingualism is ascribed to the Enets community or Enets individuals: as Braunmüller and Ferraresi (2003: 3) put it: “Nobody would ever have expected to know other languages ‘perfectly’ (whatever that may mean in detail). This expectation seems to be a quite modern idea when discussing issues of bilingualism or multilingualism in general”.

The complex interactions of Siberian populations during the 17th-19th centuries offer a reasonably good picture of the life in the centuries before these accounts, when Samoyedic peoples migrated northwards, and Palaeo-Siberian and Tungusic populations were gradually assimilated into their Uralic culture and language, through intermarriage and close contacts among naturally nomadic populations.

You can read more about the origin of Nganasans – and other modern Samoyedic-speaking peoples – as Palaeo-Siberian populations (hence probably speaking Palaeo-Siberian languages more or less related to each other) who adopted Samoyedic languages in Wikipedia, which offers a summary of Boris Dolgikh’s On the Origin of the Nganasans (1962). Dolgikh is one of the main sources of information for these Siberian groups, as is reflected in this paper, too.

samoyedic
Map of distribution of Samoyedic languages (red) in the XVII century (approximate; hatching) and in the end of XX century (continuous background). Notice late expansion to north and west into the typical territory where Nomadic peoples roamed. Modified from Wikipedia, with the Tuva region labelled (see a recent genetic study on the Tuva region, one of the most likely to be originally Samoyedic-speaking).

Why some geneticists are using Nganasans – in fact the latest Palaeo-Siberians to learn Samoyedic, already during historic times – as a model for the expansion of Uralic? I have never understood that. Among the many cases of circular reasoning based on modern populations that have been created since the start of population genomics, the use of Nganasans as a model of ‘true Uralians’ is probably the most clearly frontally opposed to what was well known in anthropology before geneticists started this new field.

If Kallio is right, most “eastern homeland” proposals are due to the interest of Russian nationalism, which is sadly quite likely to be influencing genetic research, too. It’s like letting Hindu nationalists influence publications on steppe-related migrations. As David Reich puts it in his book:

The tensest twenty-four hours of my scientific career came in October 2008, when my collaborator Nick Patterson and I traveled to Hyderabad to discuss these initial results with Singh and Thangaraj.

Our meeting on October 28 was challenging. Singh and Thangaraj seemed to be threatening to nix the whole project. Prior to the meeting, we had shown them a summary of our findings, which were that Indians today descend from a mixture of two highly divergent ancestral populations, one being “West Eurasians.” Singh and Thangaraj objected to this formulation because, they argued, it implied that West Eurasian people migrated en masse into India. They correctly pointed out that our data provided no direct evidence for this conclusion. They even reasoned that there could have been a migration in the other direction, of Indians to the Near East and Europe. (…) They also implied that the suggestion of a migration from West Eurasia would be politically explosive. They did not explicitly say this, but it had obvious overtones of the idea that migration from outside India had a transformative effect on the subcontinent.

If you add the nation-building myths in Eastern Europe (like the Russian Euro-Asian movements) to the now prevalent Indo-European—CWC idea, and a Siberian ancestry peaking in the Arctic, with little demographic or political relevance of modern Uralic-speaking peoples, you have clearly an explosive sociopolitical mix (based on a mythical Pan-Eurasian Indo-Slavonic) in the making…

euro-asian-empire-dugin
Russia as the Euro-Asian Empire. Source: A. Dugin (1999), p. 415. From Eberhardt (2018).

Related

Corded Ware—Uralic (I): Differences and similarities with Yamna

indo-european-uralic-migrations-corded-ware

This is the first of four posts on the Corded Ware—Uralic identification:

I was reading The Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (2016), and I was really surprised to find the following excerpt by David W. Anthony:

The Samara Valley links the central steppes with the western steppes and is a north-south ecotone between the pastoral steppes to the south and the forest-steppe zone to the north [see figure below]. The economic contrast between pastoral steppe subsistence, with its associated social organizations, and forest-zone hunting and fishing economies probably explains the shifting but persistent linguistic border between forest-zone Uralic languages to the north (today largely displaced by Russian) and a sequence of steppe languages to the south, recently Turkic, before that Iranian, and before that probably an eastern dialect of Proto-Indo-European (Anthony 2007). The Samara Valley represents several kinds of borders, linguistic, cultural, and ecological, and it is centrally located in the Eurasian steppes, making it a critical place to examine the development of Eurasian steppe pastoralism.

uralic-languages-forest-zone-volga
Language map of the middle Volga-Ural region. After “Geographical Distribution of the Uralic Languages” by Finno-Ugrian Society, Helsinki, 1993.

Khokhlov (translated by Anthony) further insists on the racial and ethnic divide between both populations, Abashevo to the north, and Poltavka to the south, during the formation of the Abashevo – Sintashta-Potapovka community that gave rise to Proto-Indo-Iranians:

Among all cranial series in the Volga-Ural region, the Potapovka population represents the clearest example of race mixing and probably ethnic mixing as well. The cultural advancements seen in this period might perhaps have been the result of the mixing of heterogeneous groups. Such a craniometric observation is to some extent consistent with the view of some archaeologists that the Sintashta monuments represent a combination of various cultures (principally Abashevo and Poltavka, but with other influences) and therefore do not correspond to the basic concept of an archaeological culture (Kuzmina 2003:76). Under this option, the Potapovka-Sintashta burial rite may be considered, first, a combination of traits to guarantee the afterlife of a selected part of a heterogeneous population. Second, it reflected a kind of social “caste” rather than a single population. In our view, the decisive element in shaping the ethnic structure of the Potapovka-Sintashta monuments was their extensive mobility over a fairly large geographic area. They obtained knowledge of various cultures from the populations with whom they interacted.

steppe-lmba-sintashta-potapovka-filatovka
Late Middle Bronze Age cultures with the Proto-Indo-Iranian Sintashta-Potapovka-Filatovka group (shaded). After Anthony (2007 Figure 15.5), from Anthony (2016).

Interesting is also this excerpt about the predominant population in the Abashevo – Sintashta-Potapovka admixture (which supports what Chetan said recently, although this does not seemed backed by Y-DNA haplogroups found in the richest burials), coupled with the sign of incoming “Uraloid” peoples from the east, found in both Sintashta and eastern Abashevo:

The socially dominant anthropological component was Europeoid, possibly the descendants of Yamnaya. The association of craniofacial types with archaeological cultures in this period is difficult, primarily because of the small amount of published anthropological material of the cultures of steppe and forest belt (Balanbash, Vol’sko-Lbishche) and the eastern and southern steppes (Botai-Tersek). The crania associated with late MBA western Abashevo groups in the Don-Volga forest zone were different from eastern Abashevo in the Urals, where the expression of the Old Uraloid craniological complex was increased. Old Uraloid is found also on a single skull of Vol’sko-Lbishche culture (Tamar Utkul VII, Kurgan 4). Potentially related variants, including Mongoloid features, could be found among the Seima-Turbino tribes of the forest-steppe zone, who mixed with Sintashta and Abashevo. In the Sintashta Bulanova cemetery from the western Urals, some individuals were buried with implements of Seima-Turbino type (Khalyapin 2001; Khokhlov 2009; Khokhlov and Kitov 2009). Previously, similarities were noted between some individual skulls from Potapovka I and burials of the much older Botai culture in northern Kazakhstan (Khokhlov 2000a). Botai-Tersek is, in fact, a growing contender for the source of some “eastern” cranial features.

khvalynsk-yamna-srubna-facial-reconstruction
Facial reconstructions based on skulls from (a) Khvalynsk II Grave 24, a young adult male; (b) Poludin Grave 6, Yamnaya culture, a mature male (both by A. I. Nechvaloda); and (c) Luzanovsky cemetery, Srubnaya culture (by L. T. Yablonsky). In Khokhlov (2016).

The wave of peoples associated with “eastern” features can be seen in genetics in the Sintashta outliers from Narasimhan et al. (2018), and it probably will be eventually seen in Abashevo, too. These may be related to the Seima-Turbino international network – but most likely it is directly connected to Sintashta through the starting Andronovo and Seima-Turbino horizons, by admixing of prospective groups and small-scale back-migrations.

Corded Ware – Yamna similarities?

So, if peoples of north-eastern Europe have been assumed for a long time to be Uralic speakers, what is happening with the Corded Ware = IE obsession? Is it Gimbutas’ ghost possessing old archaeologists? Probably not.

It is about certain cultural similarities evident at first sight, which have been traditionally interpreted as a sign of cultural diffusion or migration. Not dissimilar to the many Bell Beaker models available, where each archaeologist is pushing certain differences, mixing what seemed reasonable, what still might seem reasonable, and what certainly isn’t anymore after the latest ancient DNA data.

kurgan-expansion
“European dialect” expansion of Proto-Indo-European according to Gimbutas (1963)

The initial models of Gimbutas, Kristiansen, or Anthony – which are known to many today – were enunciated in the infancy of archaeological studies in the regions, during and just after the fall of the USSR, and before many radiocarbon dates that we have today were published (with radiocarbon dating being still today in need of refinement), so it is only logical that gross mistakes were made.

We have similar gross mistakes related to the origins of Bell Beakers, and studying them was certainly easier than studying eastern data.

  • Gimbutas believed – based mainly on Kurgan-like burials – that Bell Beaker formed from a combination of Yamna settlers with the Vučedol culture, so she was not that far from the truth.
  • The expansion of Corded Ware from peoples of the North Pontic forest-steppe area, proposed by Gimbutas and later supported also by Kristiansen (1989) as the main Indo-European expansion – , is probably also right about the approximate origins of the culture. Only its ‘Indo-European’ nature is in question, given the differences with Khvalynsk and Yamna evolution.
  • Anthony only claimed that Yamna migrants settled in the Balkans and along the Danube into the Hungarian steppes. He never said that Corded Ware was a Yamna offshoot until after the first genetic papers of 2015 (read about his newest proposal). He initially claimed that only certain neighbouring Corded Ware groups “adopted” Indo-European (through cultural diffusion) because of ‘patron-client’ relationships, and was never preoccupied with the fate of Corded Ware and related cultures in the east European forest zone and Finland.

So none of them was really that far from the true picture; we might say a lot people are more way off the real picture today than the picture these three researchers helped create in the 1990s and 2000s. Genetics is just putting the last nail in the coffin of Corded Ware as a Yamna offshoot, instead of – as we believed in the 2000s – to Vučedol and Bell Beaker.

So let’s revise some of these traditional links between Corded Ware and Yamna with today’s data:

Archaeology

Even more than genetics – at least until we have an adequate regional and temporary sampling – , archaeological findings lead what we have to know about both cultures.

It is essential to remember that Corded Ware, starting ca. 3000/2900 BC in east-central Europe, has been proposed to be derived from Early Yamna, which appeared suddenly in the Pontic-Caspian steppes ca. 3300 BC (probably from the late Repin expansion), and expanded to the west ca. 3000.

Early Yamna is in turn identified as the expanding Late Proto-Indo-European community, which has been confirmed with the recent data on Afanasevo, Bell Beaker, and Sintashta-Potapovka and derived cultures.

The question at hand, therefore, is if Corded Ware can be considered an offshoot of the Late PIE community, and thus whether the CWC ethnolinguistic community – proven in genetics to be quite homogeneous – spoke a Late PIE dialect, or if – alternatively – it is derived from other neighbouring cultures of the North Pontic region.

NOTE. The interpretation of an Indo-Slavonic group represented by a previous branching off of the group is untenable with today’s data, since Indo-Slavonic – for those who support it – would itself be a branch of Graeco-Aryan, and Palaeo-Balkan languages expanded most likely with West Yamna (i.e. R1b-L23, mainly R1b-Z2103) to the south.

The convoluted alternative explanation would be that Corded Ware represents an earlier, Middle PIE branch (somehow carrying R1a??) which influences expanding Late PIE dialects; this has been recently supported by Kortlandt, although this simplistic picture also fails to explain the Uralic problem.

Kurgans: The Yamna tradition was inherited from late Repin, in turn inherited from Khvalynsk-Novodanilovka proto-Kurgans. As for the CWC tradition, it is unclear if the tumuli were built as a tradition inherited from North and West Pontic cultures (in turn inherited or copied from Khvalynsk-Novodanilovka), such as late Trypillia, late Kvityana, late Dereivka, late Sredni Stog; or if they were built because of the spread of the ‘Transformation of Europe’, set in motion by the Early Yamna expansion ca. 3300-3000 BC (as found in east-central European cultures like Coţofeni, Lizevile, Șoimuș, or the Adriatic Vučedol). My guess is that it inherits an older tradition than Yamna, with an origin in east-central Europe, because of the mound-building distribution in the North Pontic area before the Yamna expansion, but we may never really know.

pit-graves-central-europe-cwc
Distribution of Pit-Grave burials west of the Black Sea likely dating to the 2nd half of the IVth millennium BC (triangles: side-crouched burials; filled circles: supine extended burials; open circles: suspected). Frînculeasa, Preda, and Heyd (2015)

Burial rite: Yamna features (with regional differences) single burials with body on its back, flexed upright knees, poor grave goods, common orientation east-west (heads to the west) inherited from Repin, in turn inherited from Khvalynsk-Novodanilovka. CWC tradition – partially connected to Złota and surrounding east-central European territories (in turn from the Khvalynsk-Novodanilovka expansion) – features single graves, body in fetal position, strict gender differentiation – men on the right, women on the left -, looking to the south, graves with standardized assemblages (objects representing affirmation of battle, hunting, and feasting). The burial rites clearly represent different ideologies.

pit-grave-burial-schemes
Left: Pit-Grave burial types expanded with Khvalynsk-Novodanilovka. Right: Pit-Grave burial types associated with the Yamna expansion and influence. Frînculeasa, Preda, and Heyd (2015)

Corded decoration: Corded ware decoration appears in the Balkans during the 5th millennium, and represents a simple technique whereby a cord is twisted, or wrapped around a stick, and then pressed directly onto the fresh surface of a vessel leaving a characteristic decoration. It appears in many groups of the 5th and 4th millennium BC, but it was Globular Amphorae the culture which popularized the drinking vessels and their corded ornamentation. It appears thus in some regional groups of Yamna, but it becomes the standard pottery only in Corded Ware (especially with the A-horizon), which shows continuity with GAC pottery.

corded-ware-first-horizon
Origins of the first Corded Ware horizon (5th millennium BC) after the Khvalynsk-Novodanilovka expansion. Corded Ware (circles) and horse-head scepters (rectangles) and other steppe elements (triangles). Image from Bulatović (2014).

Economy: Yamna expands from Repin (and Repin from Khvalynsk-Novodanilovka) as a nomadic or semi-nomadic purely pastoralist society (with occasional gathering of wild seeds), which naturally thrives in the grasslands of the Pontic-Caspian, lower Danube and Hungarian steppes. Corded Ware shows agropastoralism (as late Eneolithic forest-steppe and steppe groups of eastern Europe, such as late Trypillian, TRB, and GAC groups), inhabits territories north of the loess line, with heavy reliance of hunter-gathering depending on the specific region.

Cattle herding: Interestingly, both west Yamna and Corded Ware show more reliance on cattle herding than other pastoralist groups, which – contrasted with the previous Eneolithic herding traditions of the Pontic-Caspian steppe, where sheep-goats predominate – make them look alike. However, the cattle-herding economy of Yamna is essential for its development from late Repin and its expansion through the steppes (over western territories practising more hunter-gathering and sheep-goat herding economy), and it does not reach equally the Volga-Ural region, whose groups keep some of the old subsistence economy (read more about the late Repin expansion). Corded Ware, on the other hand, inherits its economic strategy from east European groups like TRB, GAC, and especially late Trypillian communities, showing a predominance of cattle herding within an agropastoral community in the forest-steppe and forest zones of Volhynia, Podolia, and surrounding forest-steppe and forest regions.

yamna-scheme
Scheme of interlinked socio-economic-ideological innovations forming the Yamnaya. Frînculeasa, Preda, and Heyd (2015)

Horse riding: Horse riding and horse transport is proven in Yamna (and succeeding Bell Beaker and Sintashta), assumed for late Repin (essential for cattle herding in the seas of grasslands that are the steppes, without nearby water sources), quite likely during the Khvalynsk expansion (read more here), and potentially also for Samara, where the predominant horse symbolism of early Khvalynsk starts. Corded Ware – like the north Pontic forest-steppe and forest areas during the Eneolithic – , on the other hand, does not show a strong reliance on horse riding. The high mobility and short-term settlements characteristic of Corded Ware, that are often associated with horse riding by association with Yamna, may or may not be correct, but there is no need for horses to explain their herding economy or their mobility, and the north-eastern European areas – the one which survived after Bell Beaker expansion – did certainly not rely on horses as an essential part of their economy.

NOTE: I cannot think of more supposed similarities right now. If you have more ideas, please share in the comments and I will add them here.

Genetic similarities

EHG: This is the clearest link between both communities. We thought it was related to the expansion of ANE-related ancestry to the west into WHG territory, but now it seems that it will be rather WHG expanding into ANE territory from the Pontic-Caspian region to the east (read more on recent Caucasus Neolithic, on , and on Caucasus HG).

NOTE. Given how much each paper changes what we know about the Palaeolithic, the origin and expansion of the (always developing) known ancestral components and specific subclades (see below) is not clear at all.

CHG: This is the key link between both cultures, which will delimit their interaction in terms of time and space. CHG is intermediate between EHG and Iran N (ca. 8000 BC). The ancestry is thus linked to the Caucasus south of the steppe before the emergence of North Pontic (western) and Don-Volga-Ural (eastern) communities during the Mesolithic. The real question is: when we have more samples from the steppe and the Caucasus during the Neolithic, how many CHG groups are we going to find? Will the new specific ancestral components (say CHG1, CHG2, CHG3, etc.) found in Yamna (from Khvalynsk, in the east) and Corded Ware (probably from the North Pontic forest-steppe) be the same? My guess is, most likely not, unless they are mediated by the Khvalynsk-Novodanilovka expansion (read more on CHG in the Caucasus).

yamnaya-chg-ancestry
Formation of Yamna and CHG contribution, in Damgaard et al. (Science 2018). A 10-leaf model based on combining the models in Fig. S16 and Fig. S19 and re-estimating the model parameters.

WHG/EEF: This is the obvious major difference – known today – in the formation of both communities in the steppe, and shows the different contacts that both groups had at least since the Eneolithic, i.e. since the expansion of Repin with its renewed Y-DNA bottleneck, and probably since before the early Khvalynsk expansion (read more on Yamna-Corded Ware differences contrasting with Yamna-Afanasevo, Yamna-Bell Beaker, and Yamna-Sintashta similarities).

NOTE 1. Some similarities between groups can be seen depending on the sampled region; e.g. Baltic groups show more similarities with southern Pontic-Caspian steppe populations, probably due to exogamy.

yamna-corded-ware-diff-qpgraph
Tested qpGraph model in Tambets et al. (2018). The qpGraph model fitting the data for the tested populations. “Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel.”

NOTE 2. We have this information on the differences in “steppe ancestry” between Yamna and Corded Ware, compared to previous studies, because now we have more samples of neighbouring, roughly contemporaneous Eneolithic groups, to analyse the real admixture processes. This kind of fine scale studies is what is going to show more and more differences between Khvalynsk-Yamna and Sredni Stog-Corded Ware as more data pours in. The evolution of both communities in archaeology and in PCA (see below) is probably witness to those differences yet to be published.

R1: Even though some people try very hard to think in terms of “R1” vs. (Caucasus) J or G or any other upper clade, this is plainly wrong. It is possible, given what we know now, that Q1a2-M242 expanded ANE ancestry to the west ca. 13000 BC, while R1b-P279 expanded WHG ancestry to the east with the expansion of post-Swiderian cultures, creating EHG as a WHG:ANE cline. The role of R1a-M459 is unknown, but it might be related to any of these migrations, or others (plural) along northern Eurasia (read more on the expansion of R1b-P279, on Palaeolithic Q1a2, and on R1a-M417).

NOTE. I am inclined to believe in a speculative Mesolithic-Early Neolithic community involving Eurasiatic movements accross North Eurasia, and Indo-Uralic movements in its western part, with the last intense early Uralic-PIE contacts represented by the forming west (Mariupol culture) and east (Don-Volga-Ural cultures, including Samara) communities developing side by side. Before their known Eneolithic expansions, no large-scale Y-DNA bottleneck is going to be seen in the Pontic-Caspian steppe, with different (especially R1a and R1b subclades) mixed among them, as shown in North Pontic Neolithic, Samara HG, and Khvalynsk samples.

PCA-trypillia-greece-neolithic-outlier-anatolian
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Corded Ware and ‘steppe ancestry’

If we take a look at the evolution of Corded Ware cultures, the expansion of Bell Beakers – dominated over most previous European cultures from west to east Europe – influenced the development of the whole European Bronze Age, up to Mierzanowice and Trzciniec in the east.

The only relevant unscathed CWC-derived groups, after the expansion of Sintashta-Potapovka as the Srubna-Andronovo horizon in the Eurasian steppes, were those of the north-eastern European forest zone: between Belarus to the west, Finland to the north, the Urals to the east, and the forest-steppe region to the south. That is, precisely the region supposed to represent Uralic speakers during the Bronze Age.

This inconsistency of steppe ancestry and its relation with Uralic (and Balto-Slavic) peoples was observed shortly after the publication of the first famous 2015 papers by Paul Heggarty, of the Max-Planck Institute for Evolutionary Anthropology (read more):

Haak et al. (2015) make much of the high Yamnaya ancestry scores for (only some!) Indo-European languages. What they do not mention is that those same results also include speakers of other languages among those with the highest of all scores for Yamnaya ancestry. Only these are languages of the Uralic family, not Indo-European at all; and their Yamnaya-ancestry signals are far higher than in many branches of Indo-European in (southern) Europe. Estonian ranks very high, while speakers of the very closely related Finnish are curiously not shown, and nor are the Saami. Hungarian is relevant less directly since this language arrived only c. 900 AD, but also high.

uralic-steppe-ancestry

These data imply that Uralic-speakers too would have been part of the Yamnaya > Corded Ware movement, which was thus not exclusively Indo-European in any case. And as well as the genetics, the geography, chronology and language contact evidence also all fit with a Yamnaya > Corded Ware movement including Uralic as well as Balto-Slavic.

Both papers fail to address properly the question of the Uralic languages. And this despite — or because? — the only Uralic speakers they report rank so high among modern populations with Yamnaya ancestry. Their linguistic ancestors also have a good claim to have been involved in the Corded Ware and Yamnaya cultures, and of course the other members of the Uralic family are scattered across European Russia up to the Urals.

NOTE. Although the author was trying to support the Anatolian hypothesis – proper of glottochronological studies often published from the Max Planck Institute – , the question remains equally valid: “if Proto-Indo-European expands with Corded Ware and steppe ancestry, what is happening with Uralic peoples?”

For my part, I claimed in my draft that ancestral components were not the only relevant data to take into account, and that Y-DNA haplogroups R1a and R1b (appearing separately in CWC and Yamna-Bell Beaker-Afanasevo), together with their calculated timeframes of formation – and therefore likely expansion – did not fit with the archaeological and linguistic description of the spread of Proto-Indo-European and its dialects.

In fact, it seemed that only one haplogroup (R1b-M269) was constantly and consistenly associated with the proposed routes of Late PIE dialectal expansions – like Anthony’s second (Afanasevo) and third (Lower Danube, Balkan) waves. What genetics shows fits seamlessly with Mallory’s association of the North-West Indo-European expansion with Bell Beakers (read here how archaeologists were right).

balanovksy-yamnaya-ancestry
Map of the much beloved steppe (or “Yamnaya”) ancestry in modern populations, by Balanovsky. Modified from Klejn (2017).

More precise inconsistencies were observed after the publication of Olalde et al. (2017) and Mathieson et al. (2017), by Volker Heyd in Kossinna’s smile (2017). Letting aside the many details enumerated (you can read a summary in my latest draft), this interesting excerpt is from the conclusion:

NOTE. An open access ealier draft version of the paper is offered for download by the author.

Simple solutions to complex problems are never the best choice, even when favoured by politicians and the media. Kossinna also offered a simple solution to a complex prehistoric problem, and failed therein. Prehistoric archaeology has been aware of this for a century, and has responded by becoming more differentiated and nuanced, working anthropologically, scientifically and across disciplines (cf. Müller 2013; Kristiansen 2014), and rejecting monocausal explanations. The two aDNA papers in Nature, powerful and promising as they are for our future understanding, also offer rather straightforward messages, heavily pulled by culture-history and the equation of people with culture. This admittedly is due partly to the restrictions of the medium that conveys them (and despite the often relevant additional detail given as supplementary information, which is unfortunately not always given full consideration).

While I have no doubt that both papers are essentially right, they do not reflect the complexity of the past. It is here that archaeology and archaeologists contributing to aDNA studies find their role; rather than simply handing over samples and advising on chronology, and instead of letting the geneticists determine the agenda and set the messages, we should teach them about complexity in past human actions and interactions. If accepted, this could be the beginning of a marriage made in heaven, with the blessing smile of Gustaf Kossinna, and no doubt Vere Gordon Childe, were they still alive, in a reconciliation of twentieth- and twenty-first-century approaches. For us as archaeologists, it could also be the starting point for the next level of a new archaeology.

heyd-yamnaya-expansion
Main distribution of Yamnaya kurgans in the Pontic-Caspian steppe of modern day Russia, Ukraine, and Kazakhstan, and its western branch in modern south-east European countries of Romania, Bulgaria, Serbia, and Hungary, with numbers of excavated kurgans and graves given. Picture: Volker Heyd (2018).

The question was made painfully clear with the publication of Olalde et al. (2018) & Mathieson et al. (2018), where the real route of Yamna expansion into Europe was now clearly set through the steppes into the Carpathian basin, later expanded as Bell Beakers.

This has been further confirmed in more recent papers, such as Narasimhan et al. (2018), Damgaard et al. (2018), or Wang et al. (2018), among others.

However, the discussion is still dominated by political agendas based on prevalent Y-DNA haplogroups in modern countries and ethnic groups.

Related

Origins of equine dentistry in Mongolia in the early first millennium BC

New paper (behind paywall) Origins of equine dentistry, by Taylor et al. PNAS (2018).

Interesting excerpts (emphasis mine):

The practice of horse dentistry by contemporary nomadic peoples in Mongolia, coupled with the centrality of horse transport to Mongolian life, both now and in antiquity, raises the possibility that dental care played an important role in the development of nomadic life and domestic horse use in the past. To investigate, we conducted a detailed archaeozoological study of horse remains from tombs and ritual horse inhumations across the Mongolian Steppe, assessing evidence for anthropogenic dental modifications and comparing our findings with broader patterns in horse use and nomadic material culture.

We conducted a detailed study of archaeological horse collections spanning the past 3,200 y, including those from the Late Bronze Age DSK complex (ca. 1200–700 BCE, n = 70), Early Iron Age Slab Burial culture (ca. 700–300 BCE, n = 4), Pazyryk culture (ca. 600–200 BCE, n = 2), Late Iron Age Xiongnu Empire (ca. 200 BCE–200 CE, n = 3), Early Middle Ages post-Xiongnu period (ca. 100–550 CE, n = 3), and Turkic Khaganate (ca. 600–800 CE, n = 3).

horse-riding-mongolia
A (top): Contemporary Mongolian herder engaged in horseback riding, using left-handed rein position causing asymmetric pressures to the horse’s skull. Photo by Orsoo Bayarsaikhan. B(center) contemporary Mongolian horse skulls, showing asymmetric and skewed thinning to the nasal bones caused by bridle pressure. C(bottom) Asymmetric deformation to the cranial bones of a Deer Stone-Khirigsuur horse (left), alongside an early Middle Ages horse with a similar feature (right). Modified from Taylor and Tuvshinjargal (2018).

Discussion

This Late Bronze Age dental modification counts among the earliest documented instances of equine veterinary care, and the oldest known evidence for horse dentistry. At first glance, the detailed historical record of early equine veterinary care in places such as China, Greece, Rome, and Syria, which spans the late second millennium BCE through the early centuries CE (11, 15, 16), might imply that equine dentistry emerged in the sedentary civilizations of the Old World. However, the earliest textual references describe only nonsurgical medicinal treatments and make few mentions of oral health (11). Recent archaeological discoveries suggest that human care of domestic animals was practiced by hunter-gatherers as far back as the Paleolithic (46), and that pastoralists may have occasionally practiced surgical procedures on domestic animals as early as the Neolithic in Europe (47). The evidence presented here indicates that horse dentistry was developed by nomadic pastoralists living on the steppes of Mongolia and northeast Asia during the Late Bronze Age, concurrent with the local adoption of the metal bit and many centuries before the first mention of dental practices in historical accounts from sedentary Old World civilizations.

Our results reveal a fundamental link between equine dentistry and the emergence of horsemanship in the steppes of Eurasia. At the turn of the first millennium BCE, militarized, horse-mounted peoples reshaped the social and economic landscape of many areas of the Eurasian continent. Conflagrations with equestrian peoples, such as those between the Persian Empire and the Pontic “Scythians,” plagued alluvial civilizations from the Near East to India and China, while large-scale movements of people linked East and West in never-before-seen ways (48). The archaeological and historical records indicate that the earliest horseback riding was accomplished without stirrups or saddles, and probably using only bitless or organic-mouthpiece bridles (49, 50). The bronze snaffle bit, and the improved control it provided, was a key technological development that enabled the use of horseback riding for more stressful and difficult activities, such as long-distance transportation and warfare (32). We argue that these technological improvements in horse control were preceded and sustained by innovations in veterinary dentistry by nomadic peoples living in the continental interior. By increasing herd survival and mitigating behavioral and health issues caused by horse equipment, innovations in equine dentistry improved the reliability of horseback riding for ancient nomads, enabling horses to be used for nonpastoral activities like warfare, high-speed riding, and distance travel.

damage-tooth-horse
Damage to the retained wolf tooth in a 4-5 year old mummified horse, dating to the 2-4th centuries CE from the site of Urd Ulaan-Uneet in western Mongolia

Conclusion

Archaeozoological data from Mongolian horses indicate that the nomadic practice of equine dentistry dates back more than 3,000 y to the DSK complex, a Late Bronze Age culture associated with the first mounted horseback riding and mobile pastoralism in eastern Eurasia. Attempted removal of deciduous incisors through sawing of the exterior suggests experimentation with dental extraction, but not the removal of wolf teeth. The appearance of extracted first premolars in the first millennium BCE coincides with the arrival of metal bits in the archaeological record and oral trauma linked with metal bit use, suggesting that innovations in dental practice were an adaptation to the mechanical changes in horse equipment. These bronze and metal bits provided greater control over the horse, facilitating the development of military uses for the horse, but also introduced new dental problems with the first premolar. Our results indicate that, coincident with the earliest evidence for metal bit use, wolf tooth extraction was practiced in Mongolia by ca. 750 BCE and continued through the early Middle Ages. These results push back the earliest dates for equine dentistry by more than a millennium and suggest that nomadic peoples developed key innovations in veterinary care that enabled more sophisticated horse control, ultimately changing the structure of communication, exchange, and military power in ancient Eurasia.

Related

Immigration and transhumance in the Early Bronze Age Carpathian Basin

Interesting excerpts about local Hungarian groups that had close contacts with Yamna settlers in the Carpathian Basin, from the paper Immigration and transhumance in the Early Bronze Age Carpathian Basin: the occupants of a kurgan, by Gerling, Bánffy, Dani, Köhler, Kulcsár, Pike, Szeverényi & Heyd, Antiquity (2012) 86(334):1097-1111.

The most interesting of the local people is the occupant of grave 12, which is the earliest grave in the kurgan and the main statistical range of its radiocarbon date clearly predates the arrival of the western Yamnaya groups c. 3000 BC. This is also confirmed by the burial rite, which is not typical for the Yamnaya (Dani 2011: 29–33; Heyd in press), although some heterogeneity may apply in Yamnaya communities too. The migrant group, graves nos. 4, 7, 9 and 11, all occupy late stratigraphic positions in the mound, and have radiocarbon dates in the second quarter of the third millennium BC. It is also noteworthy that they are all adult or mature men. The contextual data, their physical distribution over the space of the whole kurgan, and the variety of burial practices, indicate several generations of burials. The cultural attributes of this group are summarised in Figure 5. Overall, their closest match lies in the Livezile group from the eastern and southern Apuseni Mountains, which is also the likely place of origin of the buried persons.

yamna-settlements-hungary
Cultural geography of the Carpathian Basin in the first half of the third millennium BC (in black: archaeological cultures and groups dating roughly to the first quarter; in red: those dating to the second quarter). Indicated also are regions and sites mentioned in the text.

The key question is, what cultural process could be responsible for attracting these men from their homeland to the Great Hungarian Plain, over several generations? Their sex and age uniformity indicate they are a social sub-set within a larger group, implying that only a portion of their society was on the move. Exogamy can probably be excluded, since one would expect more women than men to move in prehistoric times; not to mention the distance of more than 200km between the places of potential origin and burial.

One hypothesis would see these men involved in the exchange of goods, with long-term relations between the mountain and steppe communities. Normally living in, or next to, the Apuseni, these men would journey for weeks into the plain, returning to the same places and people over many decades. Ethnographic examples of such travels to exchange objects and ideas, and perhaps people, are numerous (e.g. Helms 1988). However, the child’s (grave 7a) local isotopic signature would remain unexplained, and one has to wonder for how many generations an exchange continues for four men to die near the Őrhalom.

A second hypothesis is essentially an economic model of transhumance, with livestock passing the winter and spring in the milder regions of the Great Hungarian Plain, and returning to higher pastures in the warmer months (Arnold & Greenfield 2006). Such systems can endure for centuries, provided the social relations underpinning them are stable. This has the advantage of accounting for relatively long periods of time spent away from home, as herdsmen guarded their animals, and perhaps some women and their children came too, which would account for the child’s presence, and the pottery relations of the Livezile group. Furthermore, regular visits to a region would increase the likelihood of Livezile transhumant herders becoming integrated locally. The second quarter of the third millennium BC was a period when Yamnaya ideology, and thus its internal coherence, might have already diminished. This would likely have resulted in a weakened grip by Yamnaya people on pastures and territory, consequently allowing Livezile herders, and potentially others, to step in and take over locally, perhaps first on a seasonal basis and then permanently.

On West Yamna settlers in Hungary

yamnaya-hungary-globular-amphora
Modified table from Wang et al. (2018) Supplementary materials (in bold, Yamna and related samples; in red, newly reported samples). “Supplementary Table 18. P values of rank=1 and admixture coefficients of modelling the Steppe ancestry populations as a two-way admixture of the Eneolithic_steppe and Globular_Amphora using 14 outgroups. Left populations: Steppe cluster, Eneolithic_steppe, Globular Amphora Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

By disclosing very interesting information on (yet unpublished) Yamna samples from Hungary, the latest preprint from the Reich Lab has rendered irrelevant – in a rather surprising turn of events – (what I expected would be) future discussions on West Yamna settlers potentially sharing a similar ancestry with Baltic Late Neolithic / Corded Ware settlers (see here for more details).

Interesting excerpts regarding the tight cluster formed by all Yamna samples:

Individuals from the North Caucasian steppe associated with the Yamnaya cultural formation (5300-4400 BP, 3300-2400 calBCE) appear genetically almost identical to previously reported Yamnaya individuals from Kalmykia20 immediately to the north, the middle Volga region19, 27, Ukraine and Hungary, and to other Bronze Age individuals from the Eurasian steppes who share the characteristic ‘steppe ancestry’ profile as a mixture of EHG and CHG/Iranian ancestry23, 28. These individuals form a tight cluster in PCA space (Figure 2) and can be shown formally to be a mixture by significantly negative admixture f3-statistics of the form f3(EHG, CHG; target) (Supplementary Fig. 3).

Using qpAdm with Globular Amphora as a proximate surrogate population (assuming that a related group was the source of the Anatolian farmer-related ancestry), we estimated the contribution of Anatolian farmer-related ancestry into Yamnaya and other steppe groups. We find that Yamnaya individuals from the Volga region (Yamnaya Samara) have 13.2±2.7% and Yamnaya individuals in Hungary 17.1±4.1% Anatolian farmer-related ancestry (Fig.4; Supplementary Table 18)– statistically indistinguishable proportions.

yamna_bell_beaker
Yamna – Bell Beaker migration according to Heyd (2007, 2012)

Before this paper, we had the solidest anthropological models backed by Y-DNA against conflicting data from certain statistical tools applied to a few samples (which some used to contradict what was mainstream in Academia).

NOTE. I have discussed this extensively in this blog, and more than once. See for example my posts on R1a speaking IE (July 2017), on the Eneolithic Ukraine sample (September 2017), or on the “Yamnaya ancestral component” (November 2017).

Today, we have everything – including statistical tools – showing a genetically homogeneous, Late PIE-speaking late Khvalynsk/Yamna community expanding into its known branches, confirming what was described using traditional anthropological disciplines:

  • Late Khvalynsk expanding into Afanasevo ca. 3300-3000 BC with an archaic Late PIE dialect, which was attested much later as Tocharian;
  • East Yamna/Poltavka admixing with Uralic-speaking Abashevo migrants probably ca. 2600-2100 BC to form Proto-Indo-Iranian-speaking Sintashta-Petrovka and Potapovka;
  • and now also Yamna settlers: those in Hungary admixing (probably ca. 2800-2500 BC) with the local population to form North-West Indo-European-speaking East Bell Beakers; those from the Balkans forming other IE-speaking Balkan cultures, including the peoples that admixed in Greece, as seen in Mycenaeans.

If Volker Heyd is right with this and other papers – and he has been right until now in his predictions regarding Yamna, Bell Beaker, and Corded Ware cultures – , the change in ancestry will probably begin to be noticed in Yamna samples from Hungary and the Lower Danube during the second quarter of the 3rd millennium, a period defined by the addition of a more fashionable western Proto-Bell Beaker package to the fading traditional Yamna cultural package.

EDIT (19 MAY 2018): I corrected some sentences and added interesting information.

Related: