Mitogenomes from Avar nomadic elite show Inner Asian origin

ring-pommel-swords

Inner Asian maternal genetic origin of the Avar period nomadic elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2018).

Abstract (emphasis mine):

After 568 AD the nomadic Avars settled in the Carpathian Basin and founded their empire, which was an important force in Central Europe until the beginning of the 9th century AD. The Avar elite was probably of Inner Asian origin; its identification with the Rourans (who ruled the region of today’s Mongolia and North China in the 4th-6th centuries AD) is widely accepted in the historical research.

Here, we study the whole mitochondrial genomes of twenty-three 7th century and two 8th century AD individuals from a well-characterised Avar elite group of burials excavated in Hungary. Most of them were buried with high value prestige artefacts and their skulls showed Mongoloid morphological traits.

The majority (64%) of the studied samples’ mitochondrial DNA variability belongs to Asian haplogroups (C, D, F, M, R, Y and Z). This Avar elite group shows affinities to several ancient and modern Inner Asian populations.

The genetic results verify the historical thesis on the Inner Asian origin of the Avar elite, as not only a military retinue consisting of armed men, but an endogamous group of families migrated. This correlates well with records on historical nomadic societies where maternal lineages were as important as paternal descent.

mds-ancient-avar-elite
MDS with 23 ancient populations. The Multidimensional Scaling plot is based on linearised Slatkin FST values that were calculated based on whole mitochondrial sequences (stress value is 0.1581). The MDS plot shows the connection of the Avars (AVAR) to the Central-Asian populations of the Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval) along coordinate 1 and coordinate 2, which is caused by non-significant genetic distances between these populations. The European ancient populations are situated on the left part of the plot, where the Iberian (IB_EBRAge), Central-European (C-EU_BRAge) and British (BRIT_BRAge) populations from Early Bronze Age and Bronze Age are clustered along coordinate 2, while the Neolithic populations from Germany (GER_Neo), Hungary (HUN_Neo), Near-East (TUR_ _Neo) and Baltic region (BALT_Neo) are located on the skirt of the plot along coordinate 1. The linearised Slatkin FST values, abbreviations and references are presented in Table S4.

Interesting excerpts:

The mitochondrial genome sequences can be assigned to a wide range of the Eurasian haplogroups with dominance of the Asian lineages, which represent 64% of the variability: four samples belong to Asian macrohaplogroup C (two C4a1a4, one C4a1a4a and one C4b6); five samples to macrohaplogroup D (one by one D4i2, D4j, D4j12, D4j5a, D5b1), and three individuals to F (two F1b1b and one F1b1f). Each haplogroup M7c1b2b, R2, Y1a1 and Z1a1 is represented by one individual. One further haplogroup, M7 (probably M7c1b2b), was detected (sample AC20); however, the poor quality of its sequence data (2.19x average coverage) did not allow further analysis of this sample.

European lineages (occurring mainly among females) are represented by the following haplogroups: H (one H5a2 and one H8a1), one J1b1a1, three T1a (two T1a1 and one T1a1b), one U5a1 and one U5b1b (Table S1).

We detected two identical F1b1f haplotypes (AC11 female and AC12 male) and two identical C4a1a4 haplotypes (AC13 and AC15 males) from the same cemetery of Kunszállás; these matches indicate the maternal kinship of these individuals. There is no chronological difference between the female and the male from Grave 30 and 32 (AC11 and AC12), but the two males buried in Grave 28 and 52 (AC13 and AC15) are not contemporaries; they lived at least 2-3 generations apart.

ward-clustering-ancient-populations
Ward type clustering of 44 ancient populations. The Ward type clustering shows separation of Asian and European populations. The Avar elite group (AVAR) is situated on an Asian branch and clustered together with Central Asian populations from Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval), furthermore with Xiongnu period population from Mongolia (MON_Xiongnu) and Scythians from the Altai region (E-EU_IAge_Scyth). P values are given in percent as red numbers on the dendogram, where red rectangles indicate clusters with significant p values. The abbreviations and references are presented in Table S2.

The Avar period elite shows the lowest and non-significant genetic distances to ancient Central Asian populations dated to the Late Iron Age (Hunnic) and to the Medieval period, which is displayed on the ancient MDS plot (Fig. 4); these connections are also reflected on the haplogroup based Ward-type clustering tree (Fig. 3). Building of these large Central Asian sample pools is enabled by the small number of samples per cultural/ethnic group. Further mitogenomic data from Inner Asia are needed to specify the ancient genetic connections; however, genomic analyses are also set back by the state of archaeological research, i.e. the lack of human remains from the 4th-5th century Mongolia, which would be a particularly important region in the study of the Avar elite’s origin.

The investigated elite group from the Avar period elite also shows low genetic distances and phylogenetic connections to several Central and Inner Asian modern populations. Our results indicate that the source population of the elite group of the Avar Qaganate might have existed in Inner Asia (region of today’s Mongolia and North China) and the studied stratum of the Avars moved from there westwards towards Europe. Further genetic connections of the Avars to modern populations living to East and North of Inner Asia (Yakuts, Buryats, Tungus) probably indicate common source populations.

mds-eurasian-avar-elite-group
MDS with the 44 modern populations and the Avar elite group. The Multidimensional Scaling plot is displayed based on linearised Slatkin FST values calculated based on whole mitochondrial sequences (stress value is 0.0677). The MDS plot shows differentiation of European, Near-Eastern, Central- and East-Asian populations along coordinates 1 and 2. The Avar elite (AVAR) is located on the Asian part of plot and clustered with Uyghurs from Northwest-China (NW-CHIN_UYG) and Han Chinese (CHIN), as well as with Burusho and Hazara populations from the Central-Asian Highland (Pakistan). The linearised Slatkin FST values, abbreviations and references are presented in Table S5.

Sadly, no Y-DNA is available from this paper, although haplogroups Q, C2, or R1b (xM269) are probably to be expected, given the reported mtDNA. A replacement of the male population with subsequent migrations is obvious from the current distribution of Y-DNA haplogroups in the Carpathian Basin.

Hungarians and Corded Ware

Ancient Hungarians are important to understand the evolution, not only of Ugric, but also of Finno-Ugric peoples and their origin, since they show a genetic picture before more recent population expansions, genetic drift, and bottlenecks in eastern Europe.

By now it is evident that the migration of Magyar clans from their homeland in the Cis-Urals region (from the 4th century AD on) happened after the first waves of late and gradual expansion of N1c subclades among Finno-Ugric peoples, but before the bottlenecks seen in modern populations of eastern Europe.

In Ob-Ugric peoples, from the scarce data found in Pimenoff et al. (2018), we can see how Siberian N subclades expanded further after the separation of Magyars, evidenced by the inverted proportion of haplogroups R1a and N in modern Khantys and Mansis compared to Hungarians, and the diversity of N subclades compared to modern Fennic peoples.

Similarly to Hungarians, the situation of modern Estonians (where R1a and N subclades show approximately the same proportion, ca. 33%) is probably closer to Fennic peoples in Antiquity, not having undergone the latest strong founder effect evident in modern Finns after their expansion to the north.

middle-age-hungarian
Hungarian expansion from the 4th to the 10th century AD.

Modern Hungary

This is data from recent papers, summed up in Wikipedia:

  • In Semino et al. (2001) they found among 45 Palóc from Budapest and northern Hungary: 60% R1a, 13% R1b, 11% I, 9% E, 2% G, 2% J2.
  • In Csányi et al. (2008) Among 100 Hungarian men, 90 of whom from the Great Hungarian Plain: 30% R1a, 15% R1b, 13% I2a1, 13% J2, 9% E1b1b1a, 8% I1, 3% G2, 3% J1, 3% I*, 1% E*, 1% F*, 1% K*. Among 97 Székelys, in Romania: 20% R1b, 19% R1a, 17% I1, 11% J2, 10% J1, 8% E1b1b1a, 5% I2a1, 5% G2, 3% P*, 1% E*, 1% N.
  • In Pamjav et al. (2011), among 230 samples expected to include 6-8% Gypsy peoples: 26% R1a, 20% I2a, 19% R1b, 7% I, 6% J2, 5% H, 5% G2a, 5% E1b1b1a1, 3% J1, <1% N, <1% R2.
  • In Pamjav et al. (2017), from the Bodrogköz population: R1a-M458 (20.4%), I2a1-P37 (19%), R1b-M343 (15%), R1a-Z280 (14.3%), E1b-M78 (10.2%), and N1c-Tat (6.2%).

NOTE. The N1c-Tat found in Bodrogköz belongs to the N1c-VL29 subgroup, more frequent among Balto-Slavic peoples, which may suggest (yet again) an initial stage of the expansion of N subclades among Finno-Ugric peoples by the time of the Hungarian migration.

This is the data from FTDNA group on Hungary (copied from a Wikipedia summary of 2017 data):

  • 26.1% R1a (15% Z280, 6.5% M458, 0.9% Z93=>S23201, 3.7% unknown)
  • 19.2% R1b (6% L11-P312/U106, 5.3% P312, 4.2% L23/Z2103, 3.7% U106)
  • 16.9% I2 (15.2% CTS10228, 1.4% M223, 0.5% L38)
  • 8.3% I1
  • 8.1% J2 (5.3% M410, 2.8% M102)
  • 6.9% E1b1b1 (6% V13, 0.3% V22, 0.3% M123, 0.3% M81)
  • 6.9% G2a
  • 3.2% N (1.4% Z9136, 0.5% M2019/VL67, 0.5% Y7310, 0.9% Z16981)- note: only unrelated males are sampled
  • 2.3% Q (1.2% YP789, 0.9% M346, 0.2% M242)
  • 0.9% T
  • 0.5% J1
  • 0.2% L
  • 0.2% C

R1a-Z280 stands out in FDNA (which we have to assume has no geographic preference among modern Hungarians), while R1a-M458 is prevalent in the north, which probably points to its relationship with (at least West) Slavic populations.

Ancient Hungarians

We already knew that Hungarians show similarities with Srubna and Hunnic peoples, and this paper shows a good reason for the similarities with the Huns.

Also, recent population movements in the region (before the Avars) probably increased the proportion of R1b-L23 and I1 subclades (related to Roman and Germanic peoples) as well as possibly R1a-Z283 (mainly M458, related to the expansion of Slavs). From Understanding 6th-century barbarian social organization and migration through paleogenomics, by Amorim et al. (2018):

szolad-collegno
Y-chromosome haplogroup attribution for 37 medieval and 1 Bronze age individuals.

NOTE. The sample SZ15, of haplogroup R1a1a1b1a3a (S200), belongs to the Germanic branch Z284, which has a completely different history with its integration into the Nordic Bronze Age community.

Interesting is the Szólád Bronze Age sample of R1a1a1b2a2a (Z2123) subclade (ca. 2100-1700 BC), which is possibly the same haplogroup found in King Béla III [Z93+ (80.6%), Z2123+ (10.8%)]*. Nevertheless, Z2123 refers to an upper clade, found also in East Andronovo sites in Narasimhan et al. (2018), as well as in the modern population of the Tarim Basin.

NOTE. For more on the analysis of probability of the actual subclade, see here.

Bronze Age R1a-Z93 samples of central-east Europe – like the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, of R1a1a1b2 subclade – correspond most likely to the expansion of Iranian-speaking peoples in the early 2nd millennium BC, probably to the westward expansion of the Srubna culture.

The specific subclade of King Béla III, on the other hand, probably corresponds to the more recent expansion of Magyar tribes settled in the region during the 9th century AD, so the specific subclade must have separated from those found in central-east Europe and in Andronovo during the Corded Ware expansion.

r1a-z282-z93-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the potential Finno-Ugric-associated distribution of Z282 (including M558, a Z280 subclade) according to ancient maps; the northern Eurasian finds of Z2125 (upper clade of Z2123); and the potential of M458 subclades representing a west-east expansion of Balto-Slavic as a western outgroup of an original Fenno-Ugric population, equivalent to Z284 in Scandinavia.

The study by Csányi et al. (2008), where the Tat C allele was found in 2 of 4 ancient samples, showed thus a potential 50:50 relationship of N1c in ancient Magyars, which is striking given the modern 1-3% a mere 1,000 years later, without any relevant population movement in between. This result remains to be reproduced with the current technology.

In fact, recent studies of ancient Magyars, from the 10th to the 12th century, have not shown any N1c sample, and have confirmed instead the ancient presence of R1a (two other samples, interred near Béla III), R1b (four samples), I2a (two samples) J1, and E1b, a mixed genetic picture which is more in line with what is expected.

So the question that I recently posed about east Corded Ware groups remains open: were Proto-Ugric peoples mainly of R1a-Z282 or R1a-Z93 subclades? Without ancient DNA from Middle Dnieper, Fatyanovo, Afanasevo, and the succeeding cultures (like Netted Ware) in north-eastern Europe, it is difficult to say.

It is very likely that they are going to show mainly a mixture of both R1a-Z282 and R1a-Z93 lineages, with later populations showing a higher proportion of R1a-Z280 subclades. Whether this mixture happened already during the Corded Ware period, or is the result of later developments, is still unknown. What is certain is that Hungarian N1a1a1a-L708 subclades belong to more recent additions of Siberian haplogroups to the Ugric stock, probably during the Iron Age, just centuries before the Magyar expansion.

Related

Mitogenomes show likely origin of elevated steppe ancestry in neighbouring Corded Ware groups

west-yamna-corded-ware

Open Access Mitochondrial genomes reveal an east to west cline of steppe ancestry in Corded Ware populations, by Juras et al., Scientific Reports (2018) 8:11603.

Interesting excerpts (emphasis mine, references have been deleted for clarity):

Ancient DNA was extracted from the Corded Ware culture individuals excavated in southeastern Poland (N = 12) and Moravia (N = 3). Late Eneolithic (N = 5) and Bronze Age human remains (N = 25) originated from western Ukraine and came from the Yampil barrow cemetery complex located in the north–western region of the Black Sea. Bronze Age individuals were associated with different archaeological cultures, including Yamnaya (N = 14), Catacomb (N = 2), Babyno (N = 4) and Noua (N = 5).

The PCA results described 50.62% of the variability and were combined with the k-means clustering (with the k value of 5 as the best representation of the data, at the average silhouette of 0.2608). Based on these results individuals associated with the western and eastern Yamnaya horizon (YAE and YAW in Fig. 2) were grouped within a cluster consisting of populations from central Eurasia and Europe (blue cluster) including people associated with eastern Corded Ware culture (CWPlM) and Baltic Corded Ware culture (CWBal). This cluster did not contain any populations linked with early Neolithic farmers (red), or hunter-gatherers (green and yellow). On the other hand, k-means clustering linked the western Corded Ware culture-associated population (CWW) with Near East and Neolithic farmer ancestry groups from western and central Europe.

pca-cwc-yamna
Modified image, from the paper. PCA based on mitochondrial DNA haplogroup frequencies with k-means clustering. The two principal components explained 50.62% of the total variance. Loading vectors, representing mitochondrial haplogroup contributions, are highlighted as grey arrows. Populations are grouped into four clusters according to k-means. Population abbreviations are as follows: BABA – Bronze Age Balkans; CAT – Catacomb Culture; CWPlM – Corded Ware Culture from Poland and Moravia; CWBal – Baltic Corded Ware Culture; IAK – Iron Age Kazakchstan; IASI – Iron Age Syberia – Aldy Bel Culture; SCA – Scytho-Siberian Pazyryk (Altai); SCR – Rostov-Scythians, Samara; SCU – Scythians from Moldova and Ukraine; TAG – Tagar Culture; GAC – Globular Amphora Culture; YAW – western Yamnaya horizon population from Ukraine and Bulgaria; YAE – eastern Yamnaya horizon population; BAC – Baalberge Culture; BANE – Bronze Age Near East; BEC – Bernburg Culture; CHAHu – Chalcolithic Hungary; CWW – Corded Ware Culture west; CHABA – Chalcolitic Balkans; EBAG – Early Bronze Age Germany; FBC – Funnel Beaker Culture; IAG – Iron Age Germany; MNG – Middle Neolithic Germany; LBK – Linear Pottery Culture; LDN – Late Danubian Neolithic; MIC – Minoans; NEBA – Neolithic Balkans; PPNE – Pre-Pottery Near East; SCG – Schöningen group; SMC – Salzmünde Culture; AND – Andronovo Culture; BASI – Bronze Age Siberia; PWC – Pitted Ware Culture; HGE – eastern hunter-gatherers; NEUk- Neolithic Ukraine; HGS – southern hunter-gatherers; HGBal – Baltic hunter-gatheres; HGC – central huther-gatherers.

Pairwise mtDNA-based FST values, visualized on MDS using the raw non-linearized FST (stress value = 0.099) (Fig. 4), also supported the PCA results and indicated that western and eastern Yamnaya horizon groups (YAW and YAE) were closer to people associated with the eastern Corded Ware culture (CWPlM) (FST = 0.00; FST = 0.01, respectively; both p > 0.05) and Baltic Corded Ware culture (CWBal) (FST = 0.00; FST = 0.00, respectively; both p > 0.05), than to populations associated with the western Corded Ware culture (CWW) (FST = 0.047 and FST = 0.059, respectively; both statistically significant p < 0.05). Western and eastern Yamnaya horizon groups also showed close genetic affinity to the Iron Age western Scythians (SCU) (FST = 0.0022 and FST = 0.006, respectively, both p > 0.05). The most distant populations to the Yamnaya horizon groups were western hunter-gatherers (HGW) (FST = 0.23 and FST = 0.15, p < 0.001).The FST-based MDS reflected the general European population history in the post-LGM period as the three highest FST scores were detected between western hunter-gatherers (HGW) and people associated with Linear Pottery culture (LBK) (FST = 0.33, p < 0.001), between eastern hunter-gatherers (HGE) and Baltic hunter-gatherers (HGBal) (FST = 0.35, p < 0.05), and between western (HGW) and eastern hunter-gatherers (HGE) (FST = 0.36, p < 0.05). The Yamnaya horizon groups (YAE and YAW) were placed centrally between northern hunter-gatherers (HGN) and Neolithic farmers (LDN), in direct proximity to the Bronze and Iron Age populations from Eastern Europe (SCU, BARu, SRU) and close to individuals associated with eastern and Baltic Corded Ware culture.

yamna-corded-ware-pca
Modified image, from the paper. In circles, relevant European groups for the question of ‘steppe ancestry’. MDS plot based on FST values calculated from mitochondrial genomes. Population abbreviations: BBC – Bell Beaker Culture; BAHu – Bronze Age Hungary; BARu – Bronze Age Russia; CWPlM – Corded Ware Culture from Poland and Moravia; CWW – western Corded Ware Culture; CWBal – Baltic Corded Ware Culture; EBAG – Early Bronze Age Germany; GAC – Globular Amphora Culture; HGE – eastern hunter-gatherers; HGN – northern hunter-gatherers; HGW – western hunter-gatherers; HGBal – Baltic hunter-gatherers; LBK – Linear Pottery Culture; LDN – Late Danubian Neolithic; MNE – Middle Neolithic; NENE – Near Eastern Neolithic; SCU – Scythians from Moldova and Ukraine; SRU – Rostov-Scythians, Samara.

Among the analyzed samples, we identified two Catacomb culture-associated individuals (poz220 and poz221) belonging to hg X4. They are the first ancient individuals assigned to this particular lineage. Haplogroup X4 is rare among present day populations and has been found only in one individual each from Central Europe, Balkans, Anatolia and Armenia.

Moreover, we have reported mtDNA haplotypes that might be associated with the migration from the steppe and point to genetic continuity in the north Pontic region from Bronze Age until the Iron Age. These haplotypes were assigned to hgs U5, U4, U2 and W3. MtDNA hgs U5a and U4, identified in this study among Yamnaya, Late Eneolithic and Corded Ware culture-associated individuals, have previously been found in high frequencies among northern and eastern hunter-gatherers. Moreover, they appeared in the north Pontic region in populations associated with Mesolithic (hg U5a), Eneolithic (Post-Stog) (hg U4), Yamnaya (hgs U5, U5a), Catacomb (hgs U5 and U5a) and Iron Age Scythians (hg U5a), suggesting genetic continuity of these particular mtDNA lineages in the Pontic region from, at least, the Bronze Age. Hgs U5a and U4-carrying populations were also present in the eastern steppe, along with individuals from the Yamnaya culture from Samara region, the Srubnaya and the Andronovo from Russia. Interestingly, hg U4c1 found in the Yamnaya individual (poz224) has so-far been found only in two Bell Beaker- associated individuals and one Late Bronze Age individual from Armenia, which might suggest a steppe origin for hg U4c1. A steppe origin can possibly also be assigned to hg U4a2f, found in one individual (poz282) but not reported in any other ancient populations to date, and to U5a1- the ancestral lineage of U5a1b, reported for individual poz232, which was identified not only in Corded Ware culture-associated population from central and eastern Europe, but also in representatives of Catacomb culture from the north Pontic region, Yamnaya from Bulgaria and Russia, Srubnaya and Andronovo-associated groups. Hg U2e, reported for Late Eneolithic individual (poz090), was also identified in western Corded Ware culture-associated individual and in succeeding Sintashta, Potapovka and Andronovo groups, suggesting possible genetic continuity of U2e1 in the western part of the north Pontic region.

Hgs W3a1 and W3a1a, found in two Yamnaya individuals from this study (poz208 and poz222), were also identified in Yamnaya-associated individuals from the Russia Samara region and later in Únětice and Bell Beaker groups from Germany, supporting the idea of an eastern European steppe origin of these haplotypes and their contribution to the Yamnaya migration toward the central Europe. The W3a1 lineage was not identified in Neolithic times and, thus, we assume that it appeared in the steppe region for the first time during the Bronze Age. Notably, hgs W1 and W5, which predate the Bronze Age in Europe, were found only in individuals associated with the early Neolithic farmers from Starčevo in Hungary (hg W5), early Neolithic farmers from Anatolia (hg W1-T119C), and from the Schöningen group (hg W1c) and Globular Amphora culture from Poland (hg W5).

west-yamna-west-corded-ware

Some comments

The most recent radiocarbon dates show that Early Yamna expanded to the west with Repin settlers of the Lower Don ca. 3350/3300 BC. At the end of the 4th millennium, then, these settlers dominated over groups whose population had in turn also elevated ‘steppe ancestry’ (at least from ca. 4000 BC, as shown by Ukraine Eneolithic samples from the forest-zone), and probably replaced the male population completely, as evidenced by other Yamna and Poltavka, and later Bell Beaker, Catacomb, and Sintashta samples.

The ‘second wave’ of expansion of Yamna settlers to the west, into east-central European steppes, began probably ca. 3100/3000 BC, and – based on material culture – stemmed mainly from the North Pontic area. The Yampil Barrow Complex on the Dnieper (which I recently wrote about) seems to be part of one of the groups of western Yamna migrants: those who migrated westward from the left bank of the Dniester to the west into the Prut-Siret region, and north along the Prut.

This region is the key for population movements that gave rise to the Corded Ware culture (see another recent post on Corded Ware origins). It is quite likely that we will see a dance of late Trypillia / Usatovo, GAC, (Proto-)Corded Ware, and Yamna samples in this area. Judging by the clear-cut Y-DNA bottlenecks we are seeing in Neolithic populations, especially among steppe pastoralists, the difference between groups in recovered ancient samples will not only be clear from their culture, but also from their male lineages.

Based on the number of burials studied from the different settlement regions for West Yamna migrants, the Prut-Siret group was one of the smallest new Yamna ‘provinces’ in south-eastern Europe, and was probably overrun early, although – since kurgan findings continued into the Catacomb culture in the Yampil complex – the Dnieper region was well-enough connected to the core North Pontic area to be kept into its retreating territory by 2500 BC, as was the Danube delta, in contrast with other east-central European areas.

steppe-chalcolithic-migrations
Steppe-related migrations ca. 3100-2600 BC with tentative linguistic identification.

Taking into account that the earliest Corded Ware burials are from ca. 2900 BC (in the Single Grave culture), and that the earliest A-horizon pottery expanded from Lesser Poland (a syncretic pottery based on the previous GAC-type) a century later, it is likely that what this paper shows for Corded Ware in eastern Europe and the Baltic is what I have suggested many times (see here, or here) as the most likely reason for elevated steppe ancestry (and close PCA cluster) of the Baltic LN ‘outliers’: the exogamy of Corded Ware groups with females from Yamna or a North Pontic steppe culture with similar ancestry.

If Proto-Corded Ware populations of the North Pontic region did not have an identical “steppe ancestry” to these eastern CW groups already during the Eneolithic (which is the other possibility), I might be right in their more recent exogamy, and this could be seen in this study by the close cluster of east Corded Ware (especially Baltic) mtDNA to GAC and Yamna West groups, and distant from previous hunter-gatherer populations of the area, which suggests that expanding males from the Volhynia/Podolia region practiced exogamy mainly with southern groups.

I think this is probably related to demographic pressure imposed on other populations by the explosive expansion of pastoralists with their new subsistence economy (part of the “Secondary Products Revolution”), which the hunter-gatherer and farmer population of Europe could not keep up with (as seen later in the admixture of expanding East Bell Beakers), although studies on European prehistoric demography are scarce and too general to tell us anything relevant for this precise period and region.

Related

Mitogenomes show continuity of Neolithic populations in Southern India

New paper (behind paywall) Neolithic phylogenetic continuity inferred from complete mitochondrial DNA sequences in a tribal population of Southern India, by Sylvester et al. Genetica (2018).

This paper used a complete mtDNA genome study of 113 unrelated individuals from the Melakudiya tribal population, a Dravidian speaking tribe from the Kodagu district of Karnataka, Southern India.

Some interesting excerpts (emphasis mine):

Autosomal genetic evidence indicates that most of the ethnolinguistic groups in India have descended from a mixture of two divergent ancestral populations: Ancestral North Indians (ANI) related to People of West Eurasia, the Caucasus, Central Asia and the Middle East, and Ancestral South Indians (ASI) distantly related to indigenous Andaman Islanders (Reich et al. 2009). It is presumed that proto-Dravidian language, most likely originated in Elam province of South Western Iran, and later spread eastwards with the movement of people to the Indus Valley and later the subcontinent India (McAlpin et al. 1975; Cavalli-Sforza et al. 1988; Renfrew 1996; Derenko et al. 2013). West Eurasian haplogroups are found across India and harbor many deep-branching lineages of Indian mtDNA pool, and most of the mtDNA lineages of Western Eurasian ancestry must have a recent entry date less than 10 Kya (Kivisild et al. 1999a). The frequency of these lineages is specifically found among the higher caste groups of India (Bamshad et al. 1998, 2001; Basu et al. 2003) and many caste groups are direct descendants of Indo-Aryan immigrants (Cordaux et al. 2004). These waves of various invasions and subsequent migrations resulted in major demographic expansions in the region, which added new languages and cultures to the already colonized populations of India. Although previous genetic studies of the maternal gene pools of Indians had revealed a genetic connection between Iranian populations and the Arabian Peninsula, likely the result of both ancient and recent gene flow (Metspalu et al. 2004; Terreros et al. 2011).

mtdna-dravidian-south

Haplogroup HV14

mtDNA haplogroup HV14 has prominence in North/Western Europe, West Eurasia, Iran, and South Caucasus to Central Asia (Malyarchuk et al. 2008; Schonberg et al. 2011; Derenko et al. 2013; De Fanti et al. 2015). Although Palanichamy identified haplogroup HV14a1 in three Indian samples (Palanichamy et al. 2015), it is restricted to limited unknown distribution. In the present study, by the addition of considerable sequences from the Melakudiya population, a unique novel subclade designated as HV14a1b was found with a high frequency (43%) allowed us to reveal the earliest diverging sequences in the HV14 tree prior to the emergence of HV14a1b in Melakudiya. (…) The coalescence age for haplogroup HV14 in this study is dated ~ 16.1 ± 4.2 kya and the founder age of haplogroup HV14 in Melakudiya tribe, which is represented by a novel clade HV14a1b is ~ 8.5 ± 5.6 kya

hv14-mtdna-haplogroup
Maximum Parsimonious tree of complete mitogenomes constructed using 38 sequences from Melakudiya tribe and 11 previously published sequences belonging to haplogroup HV14 [Supplementary file Table S2] Suffixes @ indicate back mutation, a plus sign (+) an insertion. Control region mutations are underlined, and synonymous transitions are shown in normal font and non-synonymous mutations are shown in bold font. Coalescence ages (Kya) for complete coding region are shown in normal font and synonymous transitions are shown in Italics

Haplogroup U7a3a1a2

The coalescence age of haplogroup U7a3a1a2 dates to ~ 13.3 ± 4.0 kya. (…)

Although, haplogroup U7 has its origin from the Near East and is widespread from Europe to India, the phylogeny of Melakudiya tribe with subclade U7a3a1a2 clusters with populations of India (caste and tribe) and neighboring populations (Irwin et al. 2010; Ranaweera et al. 2014; Sahakyan et al. 2017), hint about the in-situ origin of the subclade in India from Indo-Aryan immigrants.

I am not a native English speaker, but this paper looks like it needs a revision by one.

Also – without comparison with ancient DNA – it is not enough to show coalescence age to prove an origin of haplogroup expansion in the Neolithic instead of later bottlenecks. However, since we are talking about mtDNA, it is likely that their analysis is mostly right.

Finally, one thing is to prove that the origin of the Indus Valley Civilization lies (in part) in peoples from the Iranian plateau, and to show with ASI ancestry that they are probably the origin of Proto-Dravidian expansion, and another completely different thing is to prove an Elamo-Dravidian connection.

Since that group is not really accepted in linguistics, it is like talking about proving – through that Iran Neolithic ancestry – a Sumero-Dravidian, or a Hurro-Dravidian connection…

Related

North Asian mitogenomes hint at the arrival of pastoralists from West to East ca. 2800-1000 BC

north-asia-mitogenomes

Open access Investigating Holocene human population history in North Asia using ancient mitogenomes, by Kılınç et al., Scientific Reports (2018) 8: 8969.

Abstract (emphasis mine):

Archaeogenomic studies have largely elucidated human population history in West Eurasia during the Stone Age. However, despite being a broad geographical region of significant cultural and linguistic diversity, little is known about the population history in North Asia. We present complete mitochondrial genome sequences together with stable isotope data for 41 serially sampled ancient individuals from North Asia, dated between c.13,790 BP and c.1,380 BP extending from the Palaeolithic to the Iron Age. Analyses of mitochondrial DNA sequences and haplogroup data of these individuals revealed the highest genetic affinity to present-day North Asian populations of the same geographical region suggesting a possible long-term maternal genetic continuity in the region. We observed a decrease in genetic diversity over time and a reduction of maternal effective population size (Ne) approximately seven thousand years before present. Coalescent simulations were consistent with genetic continuity between present day individuals and individuals dating to 7,000 BP, 4,800 BP or 3,000 BP. Meanwhile, genetic differences observed between 7,000 BP and 3,000 BP as well as between 4,800 BP and 3,000 BP were inconsistent with genetic drift alone, suggesting gene flow into the region from distant gene pools or structure within the population. These results indicate that despite some level of continuity between ancient groups and present-day populations, the region exhibits a complex demographic history during the Holocene.

north-asians-mtdna-haplogroup-frequency
Relationship between ancient North Asians and other populations based on haplogroup frequencies. Ancient North Asians as a single group (SIB, n = 41) and as divided into three different regional groups including Cis-Baikal (CISB, n = 23), Trans-Baikal (TRAB, n = 7) and Yakutia (YAK, n = 9) or as divided into three temporal groups including Early (7,000 BP, n = 11), Middle (4800 BP, n = 16) and Late (3000 BP, n = 11). Two individuals from Krasnoyarsk and Blagoveshensk are not included in regional groups due to their distinct geographical locations. (a) Barplot showing haplogroup frequencies on a dataset of 1,780 individuals. PCA plot based on haplogroup frequencies calculated using (b) 291 individuals with full mitochondrial sequences. Ancient North Asians are included as a single population. (c) 1,780 individuals. Ancient North Asians are included as three different regional groups in the analysis. See also Supplementary Tables S1, S4–S12 and Fig. S3a and b in Supplementary Information.

Interesting excerpts:

Although highly dependent on sample size and thus prone to generalization, haplotype sharing analysis between three spatial groups and other modern and ancient populations (Supplementary Table S15) revealed that the TRAB group shared most lineages with ancient Kazakh Altai (KA) and modern Nganasan (NGN)39,40,41,42. The CISB group shared most lineages with Tubalar39,42, KA43 and Early Bronze Age groups of Russia (BO)12, which might reflect the Siberian roots of BO, consistent with MDS based on Fst (Fig. 3b). The YAK group shared most lineages with the CISB, BO and Tubalar groups. These results showed that despite being from different sides of the Lake Baikal, the CISB and YAK groups shared most lineages with the Tubalar and also both of them were to a certain degree affiliated to the BO of the Cis-Baikal region, thus, reflecting a shared common ancestry. Furthermore, the CISB and YAK groups share lineages supporting the hypothesis of a lasting continuity in this large geographical territory. However, the TRAB group may have different legacy with affinities to ancient Kazakh Altai and modern Nganasan groups (that, actually, may have relocated from the Trans-Baikal region in times post-dating our sample).

north-asian-mtdna-plot
Relationship between ancient North Asians and other ancient and present-day populations based on Slatkin’s linearized pairwise FST. MDS plot based on Slatkin’s linearized pairwise FST calculated using (a) full mitochondrial DNA sequences. (b) HVRI sequences. See also Fig. S3c and d in Supplementary Information, Supplementary Tables S13–S15.

Two findings, however, were intriguing. One was the discovery of only weak support for a single regional population in comparisons between Early vs. Late as well as Middle vs. Late groups in the region. This may be explained by population structure, as the Late group comprised geographically very distant individuals, such as individuals from Krasnoyarsk Krai and Amur Oblast, not represented in the other diachronic groups (Table S9). Another explanation for rejecting the null hypothesis of continuity between the Middle and Late (4,800–3,000 BP) groups might be due to an interruption and the arrival of pastoralists at the beginning of the Iron Age between 3,670 to 2,760  BP as suggested by the archaeological record32. Thus, the introduction of the new lifeways, technologies and material culture expressions might also here be associated to an increased mobility into the area.

The second point was the estimated reduction in maternal effective population size and haplotype diversity around 7,000 BP. Intriguingly, climate modelling and radiocarbon dating studies53 suggest that climatic change and a collapse of the riverine ecosystems might have affected the human populations in Cis Baikal between 7,000–6,000 BP in line with our results. This finding was further supported by archaeological studies pointing to a possible hiatus38,54,55.

Although our results provide a first glimpse into population structure and diversity in North Asia during the Holocene which link to trend in the archaeological record, complete genome sequences will provide a higher resolution of more complex demographic events in the region.

Yet another hint at the west-east (and not east-west) population movement in Eurasia after the Corded Ware and Yamna expansions, without any significant change in the other direction until the Iron Age (as we know from Fennoscandian samples), which leaves still less space to propose incoming Uralic-speaking groups from Asia…

Related:

Hungarian mitogenomes similar to East and West Slavs, but genetic substratum predates their historic contacts

middle-age-hungarian

Whole mitochondrial genome diversity in two Hungarian populations, Malyarchuk et al. Mol Genet Genomics (2018).

Abstract:

Complete mitochondrial genomics is an effective tool for studying the demographic history of human populations, but there is still a deficit of mitogenomic data in European populations. In this paper, we present results of study of variability of 80 complete mitochondrial genomes in two Hungarian populations from eastern part of Hungary (Szeged and Debrecen areas). The genetic diversity of Hungarian mitogenomes is remarkably high, reaching 99.9% in a combined sample. According to the analysis of molecular variance (AMOVA), European populations showed a low, but statistically significant level of between-population differentiation (Fst = 0.61%, p = 0), and two Hungarian populations demonstrate lack of between-population differences. Phylogeographic analysis allowed us to identify 71 different mtDNA sub-clades in Hungarians, sixteen of which are novel. Analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Eurasia, though the contribution from European populations is the most pronounced. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East and West Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c), while the influence of Siberian populations is not so noticeable (sub-clades A12a, C4a1a, and probably U4b1a4).

Interesting excerpt:

Our analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Europe. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East (Russians and Ukrainians) and West (Poles and Slovaks) Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c). This observation is consistent with the results of mtDNA studies of medieval populations living in the Hungarian-Slavic contact zone of the Carpathian Basin in the 9th–12th centuries AD (Csákyová et al. 2016). Taken together, these data confirm earlier historical and archaeological reports on mixed populations of medieval Slavs and Magyars, based on the research into cemeteries discovered in Central Europe (Csősz et al. 2016; Csákyová et al. 2016). On the other hand, we cannot confirm the Hungarian-Slavic contacts using molecular dating of the identified mtDNA sub-clades, since their age exceeds the estimated time of the contact period and varies from 1.3 kya (for K1c1j) to 5.2 kya (for T2b25a1) (Figure S1). One of an issue may be sample size problem, because some haplotypes may be missed in the sampling, and this can lead to an overestimate of the age of the mtDNA sub-clade (Richards et al. 2000).

hungarian-mtdna-haplogroup-j
Figure S1. MDS plot based on Fst values calculated from complete mtDNA sequences for population samples from Europe. Stress value = 0.00078

However, it is known that the evolutionary ages of most mtDNA lineages specific to Eastern and Central Europeans correspond to approximately 4 kya (from 2.3 to 5.9 kya) (Malyarchuk et al. 2008, 2017; Mielnik-Sikorska et al. 2013; Översti et al. 2017), thus coinciding with the time of the Bronze Age expansion of Eastern Europeans in accordance with the Kurgan model established by archaeologists and paleogeneticists (Gimbutas 1971; Allentoft et al. 2015; Haak et al. 2015). Thus, similar haplotypes among Hungarians and Slavs and other European ethnic groups can be a reflection of the common genetic substratum which predates the formation of the most modern European populations. Therefore, mtDNA sub-clades H5a1m, T2a1c, and W3a1d1 (with the ages varying from 2.6 to 3.9 kya, based on complete mtDNA mutation rate), which are shared by Hungarians and Finno-Ugric peoples, such as Estonians and Finns, may testify these pan-European relationships (Figure S1). Another example is the sub-clade J2b1a6, which unites the mtDNA haplotypes of the ancient and modern population of Eastern and Central Europe from the Iron Age to the present (Figure S1).

Related:

Pre-Roman and Roman mitogenomes from Southern Italy

vagnari-cemetery-haplogroups-superimposed

Ph.D. thesis Assessing Migration and Demographic Change in pre-Roman and Roman Period Southern Italy Using Whole-Mitochondrial DNA and Stable Isotope Analysis, or The Biogeographic Origins of Iron Age Peucetians and Working-Class Romans From Southern Italy, by Matthew Emery, McMaster University (2018).

Abstract (emphasis mine):

Assessing population diversity in southern Italy has traditionally relied on archaeological and historic evidence. Although informative, these lines of evidence do not establish specific instances of within lifetime mobility, nor track population diversity over time. In order to investigate the population structure of ancient South Italy I sequenced the mitochondrial DNA (mtDNA) from 15 Iron Age (7th – 4th c. BCE) and 30 Roman period (1st – 4th c. BCE) individuals buried at Iron Age Botromagno and Roman period Vagnari, in southern Italy, and analyzed δ18O and 87Sr/86Sr values from a subset of the Vagnari skeletal assemblage.

Phylogenetic analysis of 15 Iron Age mtDNAs together with 231 mtDNAs spanning European prehistory suggest that southern Italian Iapygians share close genetic affinities to Neolithic populations from eastern Europe and the Near East. Population pairwise analysis of Iron Age, Roman, and mtDNA datasets spanning the pan-Mediterranean region (n=357), indicate that Roman maternal genetic diversity is more similar to Neolithic and Bronze Age populations from central Europe and the eastern Mediterranean, respectively, than to Iron Age Italians. Genetic distance between population age categories imply moderate mtDNA turnover and constant population size during the Roman conquest of South Italy in the 3rd century BCE.

In order to determine the local versus non-local demographic at Vagnari, I measured the 87Sr/86Sr and 18O/16O of composition of 43 molars, and the 87Sr/86Sr composition of an additional 13 molars, and constructed a preliminary 87Sr/86Sr variation map of the Italian peninsula using disparate 87Sr/86Sr datasets. The relationship between 87Sr/86Sr and previously published δ18O data suggest a relatively low proportion of migrants lived at Vagnari (7%).

This research is the first to generate whole-mitochondrial DNA sequences from Iron Age and Roman period necropoleis, and demonstrates the ability to gain valuable information from the integration of aDNA, stable isotope, archaeological and historic evidence.

italy-iron-age-mtdna
mtDNA haplogroup composition between Botromagno (7th – 4th century BCE; n=15) and Vagnari (1st – 4th century CE; n=30) skeletal assemblages.

Interesting excerpts:

Taken together, population pairwise ΦST, and the distribution of mtDNA haplotypes in relation to the comparative mtDNA data set show that the Iron Age southern Italians likely descended from early to late Neolithic farmers from Anatolia and possibly as far East as the Caucasus, and from migrants arriving from eastern Europe around the late Neolithic/early Bronze Age. These findings support previous hypotheses that the ancestors of the Iapygians may have originated in the eastern Balkan region, or derive shared ancestry with a common source population from eastern Europe. Alternatively, southern Italian Iron Age mtDNA variation might also reflect LGM gene flow between southwestern European, Mediterranean, and Carpathian basin refugia, which was suggested for haplogroup subclusters of U5 and J (Malyarchuk et al., 2010; Pala et al., 2012). Future mtDNA (and nuclear DNA) analysis comprised of a larger Iron Age data set from southern Italy is necessary to answer Theodor Mommsen’s initial hypothesis that the Iapygians were the oldest immigrants to the southern Italian region.

Our investigation provides the first mtDNA evidence for the maternal ancestral affiliations of a subset of the Iapygian individuals recovered from southern Italy, and suggests a closer genetic link to European Neolithic and Iron Age Armenians, than to Bronze Age Aegeans. Future comparative ancient DNA data using whole-genome SNP, mtDNA, and NRY-chromosome analysis of pre-Roman populations will provide complementary evidence for the ancestral roots of understudied Iron Age individuals from Italy.

Illyrian_colonies_in_Italy_550_BC
Simplistic map of Illyrian colonies in Italy 550 BCE, from Wikipedia

Archaeological evidence indicates that the Iapygians traded and incorporated Hellenistic elements into their material and cultural traditions (Small, 1992; Peruzzi, 2016). These changes are most apparent in burial custom and ceramic production, and become increasingly prominent by 2400 BP (Peruzzi, 2016). Further evidence shows that Iron Age communities across South Italy retracted in size amidst ongoing conflict between colonies in Magna Graecia, and Rome and Carthage (Small, 1992). This apparent change was interpreted as a decline in local populations throughout the region. However, Bayesian Skygrid analysis using the mtDNA profiles of 15 Iapygians and 30 Roman period individuals suggest that female effective population size was comparable between the two populations. In Chapter 4, population distance (measured as population pairwise ΦST values) across a range of mtDNAs obtained from the pan-Mediterranean, European, and western Asian regions suggest closer maternal affinities to Neolithic and Bronze Age populations from the eastern Mediterranean as a cohort, than with Iron Age Italians. This finding points to moderate mtDNA turnover, and is likely the consequence of Roman gene flow stemming from central and northern Italy via the migration and subsequent occupation by Roman colonies after 2250 BP.

Roman Imperial pursuits peaked by ~2050 BP. This extension of power, coupled with an increase in food and materials procurement, was driven by a substantial labour force comprised of both low status Romans and slaves (Harris, 1980; Bradley, 1987, 1994, 2000). Although several attempts have been made to quantify the number of slaves required to maintain the Roman economy, it is unknown what fraction of the Roman population was slave-owned (~approximately 1 to 3 million by 2050 BP) (Scheidel, 2005). Rome’s slave acquisition during the early centuries of the Republic was likely maintained through military campaigns and conquest, a trend that is well documented in Italy (Scheidel, 1997, 1999, 2005; Harris, 1999; Small, 2002). However, once territory was secured, local slave populations were likely maintained through one or a combination of the following: i) the importation of slaves from non-local regions, ii) were born to slave-owned parents, or iii) were voluntarily self-enslaved to acquire subsistence (Harris, 1999). The importation of foreign slaves was likely more costly than maintaining a self-reproducing slave population, especially in rural areas. As such, rural Roman necropoleis, such Vagnari, provide an opportune case to determine the local versus non-local demographic. Archaeological evidence suggests that Vagnari was involved in agriculture and industrial procurement, and was likely staffed by low-class individuals possibly including slaves (Small et al., 2000). However, without direct archaeological or epigraphic evidence, it is impossible to identify the proportion of slaves at rural sites.

italy-iron-age-roman-plot
Multi-dimensional scaling plots showing pairwise ΦST values by a) age and b) country. We removed age and geographic categories with less than 5 mtDNA sequence representation to reduce scaling stress, which decreased the sample size from 402 mtDNAs to n = 378 by age, and n= 382 by country. a) MDS plot of the mtDNA categorized by country of origin; b) MDS of mtDNA dataset by age spanning the Upper Paleolithic (pre-LGM) to the Roman period. IronAge 1 = Italian Iron Age samples; IronAge 2 = Armenian Iron Age samples; Roman 1 = Italian Roman samples; Roman 2 = Egyptian Roman samples; TIP = Third Intermediary Period (Egypt); LP = Late Period (Egypt); PP = Ptolemaic Period (Egypt).

(…) The isotope values presented in Chapter 3 obtained from 56 Roman individuals buried at Vagnari suggest that over half (58%) were born directly at Vagnari, with a further 34% originating from South Italy. Only 7% (3/43 with both δ18O and 87Sr/86Sr values) of the individuals sampled resulted in isotope values non-local to the southern peninsula. Two of these individuals originated from either northern Italy or, more broadly, from central Europe, while one individual likely originated from North Africa. Overall, the isotope data suggest a low number of immigrants at Vagnari, which conforms with the population pairwise (ΦST) data for the Iron Age and Roman mtDNAs, and suggests that as the Romans occupied the region, they populated their Imperial properties with people from central Italy (possible the region of Latium, and the surrounding environs of Rome). These results also integrate with the historical evidence concerning the Roman slave economy during the Imperial period. Future research using a larger comparative dataset comprised of pre-Roman and Roman period mtDNAs, δ18O and, 87Sr/86Sr results will refine the interpretations outlined here.

A paper from this thesis is already published in a peer-review journal, Mapping the origins of Imperial Roman workers (1st–4th century CE) at Vagnari, Southern Italy, using 87Sr/86Sr and δ18O variability, Am J Phys Anthropol (2018).

Related:

Modern Hungarian mtDNA more similar to ancient Europeans than to Hungarian conquerors

middle-ages-europe

New preprint at BioRxiv, MITOMIX, an Algorithm to Reconstruct Population Admixture Histories Indicates Ancient European Ancestry of Modern Hungarians, by Maroti et al. (2018).

hungarian-shared-mtDNA
The estimated age distribution of the shared mt Hgs between Hungarians (Hun), the best hypothetical admix (mixFreq) and the populations contributing to this admix: Belgian/Dutch (BeN), Danish (Dan), Basque (Bsq), Croatian/Serbian (CrS), Baltic Late Bronze Age culture (BalBA), Bell Beaker culture (BellB), Slovakian (Slo). The numbers in parentheses indicate the contributions to the best hypothetical admix.

Abstract (emphasis mine)

By making use of the increasing number of available mitogenomes we propose a novel population genetic distance metric, named Shared Haplogroup Distance (SHD). Unlike FST, SHD is a true mathematical distance that complies with all metric axioms, which enables our new algorithm (MITOMIX) to detect population-level admixture based on SHD minimum optimization. In order to demonstrate the effectiveness of our methodology we analyzed the relation of 62 modern and 25 ancient Eurasian human populations, and compared our results with the most widely used FST calculation. We also sequenced and performed an in-depth analysis of 272 modern Hungarian mtDNA genomes to shed light on the genetic composition of modern Hungarians. MITOMIX analysis showed that in general admixture occurred between neighboring populations, but in some cases it also indicated admixture with migrating populations. SHD and MITOMIX analysis comply with known genetic data and shows that in case of closely related and/or admixing populations, SHD gives more realistic results and provides better resolution than FST. Our results suggest that the majority of modern Hungarian maternal lineages have Late Neolith/Bronze Age European origins (partially shared also with modern Danish, Belgian/Dutch and Basque populations), and a smaller fraction originates from surrounding (Serbian, Croatian, Slovakian, Romanian) populations. However only a minor genetic contribution (<3%) was identified from the IXth Hungarian Conquerors whom are deemed to have brought Hungarians to the Carpathian Basin. Our analysis shows that SHD and MITOMIX can augment previous methods by providing novel insights into past population processes.

hungarian-hierarchic-cluster
Unrooted hierarchic cluster of modern and archaic populations based on the SHD matrix.

It is interesting to keep receiving data as to how language does not correlate well with Genomics, whether admixture or haplogroups, even though it is already known to happen in regions such as Anatolia, the Baltic, South-Eastern or Northern Europe.

Thorough anthropological models of migration or cultural diffusion are necessary for a proper interpretation of genetic data. There is no shortcut to that.

hungarian-mtdna
Co-occurrence of Hungarian Bronze Age mt Hgs Distribution of mt Hgs found in Hungarian Bronze Age archaic samples in the analyzed populations. The fixation dates are based on Behar et al [6].

Images made available under a CC-BY-NC-ND 4.0 International license.
See also: