Fulani from Cameroon show ancestry similar to Afroasiatic speakers from East Africa

sahel-region-fulani

Open access African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations, by Fan et al. Genome Biology (2019) 20:82.

Interesting excerpts (emphasis mine):

Introduction

To extend our knowledge of patterns of genomic diversity in Africa, we generated high coverage (> 30×) genome sequencing data from 43 geographically diverse Africans originating from 22 ethnic groups, representing a broad array of ethnic, linguistic, cultural, and geographic diversity (Additional file 1: Table S1). These include a number of populations of anthropological interest that have never previously been characterized for high-coverage genome sequence diversity such as Afroasiatic-speaking El Molo fishermen and Nilo-Saharan-speaking Ogiek hunter-gatherers (Kenya); Afroasiatic-speaking Aari, Agaw, and Amhara agro-pastoralists (Ethiopia); Niger-Congo-speaking Fulani pastoralists (Cameroon); Nilo-Saharan-speaking Kaba (Central African Republic, CAR); and Laka and Bulala (Chad) among others. We integrated this data with 49 whole genome sequences generated as part of the Simons Genome Diversity Project (SGDP) [14] (…)

afroasiatic-samples
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification

Results and discussion

We found that the CRHG populations from central Africa, including the Mbuti from the Demographic Republic of Congo (DRC), Biaka from the CAR, and Baka, Bakola, and Bedzan from Cameroon, also form a basal lineage in the phylogeny. The other two hunter-gatherer populations, Hadza and Sandawe, living in Tanzania, group with populations from eastern Africa (Fig. 2). The two Nilo-Saharan-speaking populations, the Mursi from southern Ethiopia and the Dinka from southern Sudan, group into a single cluster, which is consistent with archeological data indicating that the migration of Nilo-Saharan populations to eastern Africa originated from a source population in southern Sudan in the last 3000 years [4, 23, 24, 25].

phylogenetic-relationship-africans
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles

The Fulani people are traditionally nomadic pastoralists living across a broad geographic range spanning Sudan, the Sahel, Central, and Western Africa. The Fulani in our study, sampled from Cameroon, clustered with the Afroasiatic-speaking populations in East Africa in the phylogenetic analysis, indicating a potential language replacement from Afroasiatic to Niger-Congo in this population (Fig. 2). Prior studies suggest a complex history of the Fulani; analyses of Y chromosome variation suggest a shared ancestry with Nilo-Saharan and Afroasiatic populations [24], whereas mtDNA indicates a West African origin [26]. An analysis based on autosomal markers found traces of West Eurasian-related ancestry in this population [4], which suggests a North African or East African origin (as North and East Africans also have such ancestry likely related to expansions of farmers and herders from the Near East) and is consistent with the presence at moderate frequency of the −13,910T variant associated with lactose tolerance in European populations [15, 16].

Phylogenetic reconstruction of the relationship of African individuals under a model allowing for migration using TREEMIX [27] largely recapitulates the NJ phylogeny with the exception of the Fulani who cluster near neighboring Niger-Congo-speaking populations with whom they have admixed (Additional file 2: Figure S1). Interestingly, TREEMIX analysis indicates evidence for gene flow between the Hadza and the ancestors of the Ju|‘hoan and Khomani San, supporting genetic, linguistic, and archeological evidence that Khoesan-speaking populations may have originated in Eastern Africa [28, 29, 30].

afroasiatic-niger-congo-admixture
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. With the increasing of K, the populations are largely grouped by their current language usage

About the Fulani, this is what the referenced study of Y‐chromosome variation among 15 Sudanese populations by Hassan et al. (2008), had to say:

  • Haplogroups A-M13 and B-M60 are present at high frequencies in Nilo-Saharan groups except Nubians, with low frequencies in Afro-Asiatic groups although notable frequencies of B-M60 were found in Hausa (15.6%) and Copts (15.2%).
  • Haplogroup E (four different haplotypes) accounts for the majority (34.4%) of the chromosome and is widespread in the Sudan. E-M78 represents 74.5% of haplogroup E, the highest frequencies observed in Masalit and Fur populations. E-M33 (5.2%) is largely confined to Fulani and Hausa, whereas E-M2 is restricted to Hausa. E-M215 was found to occur more in Nilo-Saharan rather than Afro-Asiatic speaking groups.
  • In contrast, haplogroups F-M89, I-M170, J-12f2, and JM172 were found to be more frequent in the Afro-Asiatic speaking groups. J-12f2 and J-M172 represents 94% and 6%, respectively, of haplogroup J with high frequencies among Nubians, Copts, and Arabs.
  • Haplogroup K-M9 is restricted to Hausa and Gaalien with low frequencies and is absent in Nilo-Saharan and Niger-Congo.
  • Haplogroup R-M173 appears to be the most frequent haplogroup in Fulani, and haplogroup R-P25 has the highest frequency in Hausa and Copts and is present at lower frequencies in north, east, and western Sudan.
  • Haplogroups A-M51, A-M23, D-M174, H-M52, L-M11, OM175, and P-M74 were completely absent from the populations analyzed.
fulfulde-fulani-language
Image modified from “Fulfulde Language Family Report” Author: Annette Harrison; Cartographer: Irene Tucker; SIL International 2003.

This is what David Reich will talk about in the seminar Insights into language expansions from ancient DNA:

In this talk, I will describe how the new science of genome-wide ancient DNA can provide insights into past spreads of language and culture. I will discuss five examples: (1) the spread of Indo-European languages to Europe and South Asia in association with Steppe pastoralist ancestry, (2) the spread of Austronesian languages to the open Pacific islands in association with Taiwanese aboriginal-associated ancestry, (3) the spread of Austroasiatic languages through southeast Asia in association with the characteristic ancestry type that is also represented in western Indonesia suggesting that these languages were once widespread there, (4) the spread of Afroasiastic languages through in East Africa as part of the Pastoral Neolithic farming expansion, and (5) the spread of Na-Dene languages in North America in association with Proto-Paleoeskimo ancestry. I will highlight the ways that ancient DNA can meaningfully contribute to our understanding of language expansions—increasing the plausibility of some scenarios while decreasing the plausibility of others—while emphasizing that with genetic data by itself we can never definitively determine what languages ancient people spoke.

EDIT (3 MAY 2019): Apparently, there was not much to take from the talk:

neolithic-pastoralist-africa
Pastoralist Neolithic in Africa, through a pale-green Sahelo-Sudanian steppe corridor. See full map.

This seminar (and maybe some new paper on the Neolithic expansion in Africa) could shed light on population movements that may be related to the spread of Afroasiatic dialects. Until now, it seems that Bantu peoples have been more interesting for linguistics and archaeology, and South and East Africans for anthropology.

Archaeology in Africa appears to be in its infancy, as is population genomics. From the latest publication by Carina Schlebusch, Population migration and adaptation during the African Holocene: A genetic perspective, a chapter from Modern Human Origins and Dispersal (2019):

The process behind the introduction and development of farming in Africa is still unclear. It is not known how many independent invention events there were in the continent and to which extent the various first instances of farming in northern Africa are linked. Based on the archeological record, it was proposed that at least three regions in Africa may have developed agriculture independently: the Sahara/Sahel (around 7 ka), the Ethiopian highlands (7-4 ka), and western Africa (5-3 ka). In addition to these developments, the Nile River Valley is thought to have adopted agriculture (around 7.2 ka), from the Neolithic Revolution in the Middle East (Chapter 12 – Jobling et al. 2014; Chapter 35, 37 – Mitchell and Lane 2013). From these diverse centers of origin, farmers or farming practices spread to the rest of Africa, with domesticate animals reaching the southern tip of Africa ~2 ka and crop farming ~1,8 ka (Mitchell 2002; Huffman 2007)

african-popularion-movements
Schematic representation of possible migration routes related to the expansion of herders and crop farmers during Holocene times. Arrow color indicate source populations; Brown-Eurasian, Green-western African, Blue-eastern African.

Similar to the case in Europe and the 1990s-2000s wrong haplogroup history based on the modern distribution of R1b, R1a, N, or I2, it is possible that neither of the most often mentioned haplogroups linked to the Afroasiatic expansion, E and J, were responsible for its early spread within Africa, despite their widespread distribution in certain modern Afroasiatic-speaking areas. The fact that such assessments include implausible glottochronological dates spanning up to 20,000 years for the parent language, combined with regional language continuities despite archaeological changes, makes them even more suspicious.

Similar to the case with Indo-Europeans and the “steppe ancestry” concept of the 2010s, it may be that the often-looked-for West Eurasian ancestry among Africans is the effect of recent migrations, unrelated to the Afroasiatic expansion. The results of this paper could be offering another sign of how this ancestry may have expanded only quite recently westwards from East Africa through the Sahel, after the Semitic expansion to the south:

1. From approximately 1000 BC, accompanying Nilo-Saharan peoples.

2. From approximately AD 1500, with the different population movements related to the nomadic Fulani:

sahel-nomadic-sedentary
Image from Sahel in West African History – Oxford Research Encyclopedia of African History.
  • Arguably, since the Fulani caste system wasn’t as elaborate in northern Nigeria, eastern Niger, and Cameroon, these specific groups would be a good example of the admixture with eastern populations, based on the (proportionally) huge amount of slaves they dealt with.
  • Similarly, it could be argued that the castes-based social stratification in most other territories (including Sudan) would have helped them keep a genetic make-up similar to their region of origin in terms of ancient lineages, hence similar to Chadic populations from west to east.

Reich’s assertion of the association of the language expansion with the spread of Pastoral Neolithic is still too vague, but – based on previous publications of ancient DNA in Africa and the Levant – I don’t have high hopes for a revolutionary paper in the near future. Without many samples and proper temporal transects, we are stuck with speculations based on modern distributions and scarce historical data.

fula-people-distribution
A distribution map of Fula people. Dark green: a major ethnic group; Medium: significant; Light: minor. Modified from image by Sarah Welch at Wikipedia.

About the potential genetic make-up of Cameroon before the arrival of the Neolithic, from the recent SAA 84th Annual Meeting (Abstracts in PDF):

Lipson, Mark (Harvard Medical School), Mary Prendergast (Harvard University), Isabelle Ribot (Université de Montréal), Carles Lalueza-Fox (Institute of Evolutionary Biology CSIC-UPF) and David Reich (Harvard Medical School)

[253] Ancient Human DNA from Shum Laka (Cameroon) in the Context of African Population History We generated genome-wide DNA data from four people buried at the site of Shum Laka in Cameroon between 8000–3000 years ago. One individual carried the deeply divergent Y chromosome haplogroup A00 found at low frequencies among some present-day Niger-Congo speakers, but the genome-wide ancestry profiles for all four individuals are very different from the majority of West Africans today and instead are more similar to West-Central African hunter-gatherers. Thus, despite the geographic proximity of Shum Laka to the hypothesized birthplace of Bantu languages and the temporal range of our samples bookending the initial Bantu expansion, these individuals are not representative of a Bantu source population. We present a phylogenetic model including Shum Laka that features three major radiations within Africa: one phase early in the history of modern humans, one close to the time of the migration giving rise to non-Africans, and one in the past several thousand years. Present-day West Africans and some East Africans, in addition to Central and Southern African hunter-gatherers, retain ancestry from the first phase, which is therefore still represented throughout the majority of human diversity in Africa today.

Related

A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP

indo-european-indo-iranian-migrations

New open access paper (in Chinese) A study of genetic diversity of three isolated populations in Xinjiang using Y-SNP, by liu et al. Acta Anthropologica Sinitica (2018)

Abstract:

The Keriyan, Lopnur and Dolan peoples are isolated populations with sparse numbers living in the western border desert of our country. By sequencing and typing the complete Y-chromosome of 179 individuals in these three isolated populations, all mutations and SNPs in the Y-chromosome and their corresponding haplotypes were obtained. Types and frequencies of each haplotype were analyzed to investigate genetic diversity and genetic structure in the three isolated populations. The results showed that 12 haplogroups were detected in the Keriyan with high frequencies of the J2a1b1 (25.64%), R1a1a1b2a (20.51%), R2a (17.95%) and R1a1a1b2a2 (15.38%) groups. Sixteen haplogroups were noted in the Lopnur with the following frequencies: J2a1 (43.75%), J2a2 (14.06%), R2 (9.38%) and L1c (7.81%). Forty haplogroups were found in the Dolan, noting the following frequencies: R1b1a1a1 (9.21%), R1a1a1b2a1a (7.89%), R1a1a1b2a2b (6.58%) and C3c1 (6.58%). These data show that these three isolated populations have a closer genetic relationship with the Uygur, Mongolian and Sala peoples. In particular, there are no significant differences in haplotype and frequency between the three isolated populations and Uygur (f=0.833, p=0.367). In addition, the genetic haplotypes and frequencies in the three isolated populations showed marked Eurasian mixing illustrating typical characteristics of Central Asian populations.

population-distribution-map
Figure 1. The populations distribution map. Left: Uluru. Center: Dali Yabuyi. Right: Kaerqu.

My knowledge of written Chinese is almost zero, so here are some excerpts with the help of Google Translate:

The source of 179 blood samples used in the study is shown in Figure 1. The Keriyan blood samples were collected from Dali Yabuyi Township, Yutian County (39 samples). The blood samples of the Lopnur people were collected from Kaerqu Township, Yuli County (64 cases); the blood samples of the Dolan people were collected from the town of Uluru, Awati County (76).

haplotype-frequency-uighur
Columns one and two are the Keriyan haplotypes and frequencies, respectively; the third and fourth columns are the Lopnur haplotypes and frequencies; the last four columns are the Daolang haplotypes and frequencies.

The composition and frequency of the Keriyan people’s haplogroup are closest to those of the Uighurs, and both Principal Component Analysis and Phylogenetic Tree Analysis show that their kinship is recent. We initially infer that the Keriyan are local desert indigenous people. They have a connection with the source of the Uighurs. Chen et al. [42] studied the patriarchal and maternal genetic analysis of the Keriyan people and found that they are not descendants of the Tibetan ethnic group in the West. The Keriyan people are a mixed group of Eastern and Western Europeans, which may originate from the local Vil group. Duan Ranhui [43] and other studies have shown that the nucleotide variability and average nucleotide differences in the Keriyan population are between the reported Eastern and Western populations. The phylogenetic tree also shows that the populations in Central Asia are between the continental lineage of the eastern population and the European lineage of the western population, and the genetic distance between the Keriyan and the Uighurs is the closest, indicating that they have a close relationship.

y-chromosome-pca

Regarding the origin of the Lopnur people, Purzhevski judged that it was a mixture of Mongolians and Aryans according to the physical characteristics of the Lopnur people. In 1934, the Sino-Swiss delegation discovered the famous burials of the ancient tombs in the Peacock River. After research, they were the indigenous people before the Loulan period; the researcher Yang Lan, a researcher at the Institute of Cultural Relics of the Chinese Academy of Social Sciences, said that the Lopnur people were descendants of the ancient “Landan survivors”. However, the Loulan people speaking an Indo-European language, and the Lopnur people speaking Uyghur languages contradict this; the historical materials of the Western Regions, “The Geography of the Western Regions” and “The Western Regions of the Ming Dynasty” record the Uighurs who lived in Cao Cao in the late 17th and early 18th centuries. Because of the occupation of the land by the Junggar nobles and their oppression, they fled. Some of them were forced to move to the Lop Nur area. There are many similar archaeological discoveries and historical records. We have no way to determine their accuracy, but they are at different times, and there is a great difference in what is heard in the same region. (…) The genetic characteristics of modern Lopnur people are the result of the long-term ethnic integration of Uyghurs, Mongols, and Europeans. This is also consistent with the similarity of the genetic structure of the Y chromosome of Lopnur in this study with the Uighurs and Mongolians. For example, the frequency of J haplogroup is as high as 59.37%, while J and its downstream sub-haplogroup are mainly distributed in western Europe, West Asia and Central Asia; the frequency of O, R haplogroup is close to that of Mongolians.

y-chromosome-frequency
1) KA: Keriya, LB: Rob, DL: Daolang, HTW: Hetian Uygur, HTWZ: and Uygur, TLFW: Turpan Uighur, HZ: Hui, HSKZ: Kazakh, WZBKZ: Wuhuan Others, TJKZ: Tajik, KEKZZ: Kirgiz, TTEZ: Tatar, ELSZ: Russian XBZ: Xibo, MGZ: Mongolian, SLZ: Salar, XJH: Xinjiang Han, GSH: Gansu Han, GDH: Guangdong Han SCH: Sichuan Han. 2) Reference population data source literature 19-22. After the population names in the table have been marked, all the shorthands in the text are referred to in this table. 3) Because the degree of haplotypes of each reference population is different to each sub-group branch, the sub-group branches under the same haplogroup are merged when the population haplogroup data is aggregated, for example: for haplogroup G Some people are divided into G1a and G2a levels, others are assigned to G1, G2, and G3, while some people can only determine G this time. Therefore, each subgroup is merged into a single group G.

According to Ming History·Western Biography, the Mongolians originated from the Mobei Plateau and later ruled Asia and Eastern Europe. Mongolia was established, and large areas of southern Xinjiang and Central Asia were included. Later, due to the Mongolian king’s struggle for power, it fell into a long-term conflict. People of the land fled to avoid the war, and the uninhabited plain of the lower reaches of the Yarkant River naturally became a good place to live. People from all over the world gathered together and called themselves “Dura” and changed to “Dang Lang”. The long-term local Uyghur exchanges that entered the southern Mongolian monks and “Dura” were gradually assimilated [44]. According to the report, locals wore Mongolian clothes, especially women who still maintained a Mongolian face [45]. In 1976, the robes and waistbands found in the ancient time of the Daolang people in Awati County were very similar to those of the ancients. Dalang Muqam is an important part of Daolang culture. It is also a part of the Uyghur Twelve Muqam, and it retains the ancient Western culture, but it also contains a larger Mongolian culture and relics. The above historical records show that the Daolang people should appear in the Chagatai Khanate and be formed by the integration of Mongolian and Uighur ethnic groups. Through our research, we also found that the paternal haplotype of the Daolang people is contained in both Uygur and Mongolian, and the main haplogroups are the same, whereas the frequencies are different (see Table 3). The principal component analysis and the NJ analysis are also the same. It is very close to the Uyghur and the Mongolian people, which establishes new evidence for the “mixed theory” in molecular genetics.

main-haplogroup-uighur
Genetic relationship between the three isolated populations: the Uygur and the Mongolian is the closest, and the main haplogroup can more intuitively compare the source composition of the genetic structure of each population. Haplogroups C, D, and O are mainly distributed in Asia as the East Asian characteristic haplogroup; haplogroups G, J, and R are mainly distributed in continental Europe, and the high frequency distribution is in Europe and Central Asia.

If the nomenclature follows a recent ISOGG standard, it appears that:

The presence of exclusively R1a-Z93 subclades and the lack of R1b-M269 samples is compatible with the expansion of R1a-Z93 into the area with Proto-Tocharians, at the turn of the 3rd-2nd millennium BC, as suggested by the Xiaohe samples, supposedly R1a(xZ93).

Now that it is obvious from ancient DNA (as it was clear from linguistics) that Pre-Tocharians separated earlier than other Late PIE peoples, with the expansion of late Khvalynsk/Repin into the Altai, at the end of the 4th millennium, these prevalent R1a (probably Z93) samples may be showing a replacement of Pre-Tocharian Y-DNA with the Andronovo expansion already by 2000 BC.

Lacking proper assessment of ancient DNA from Proto-Tocharians, this potential early Y-DNA replacement is still speculative*. However, if that is the case, I wonder what the Copenhagen group will say when supporting this, but rejecting at the same time the more obvious Y-DNA replacement in East Yamna / Poltavka in the mid-3rd millennium with incoming Corded Ware-related peoples. I guess the invention of an Indo-Tocharian group may be near…

*NOTE. The presence of R1b-M269 among Proto-Tocharians, as well as the presence of R1b-M269 among Tarim Basin peoples in modern and ancient times is not yet fully discarded. The prevalence of R1a-Z93 may also be the sign of a more recent replacement by Iranian peoples, before the Mongolian and Turkic expansions that probably brought R1b(xM269).

Also, the presence of R1b (xM269) samples in east Asia strengthens the hypothesis of a back-migration of R1b-P297 subclades, from Northern Europe to the east, into the Lake Baikal area, during the Early Mesolithic, as found in the Botai samples and later also in Turkic populations – which are the most likely source of these subclades (and probably also of Q1a2 and N1c) in the region.

Related

Migrations in the Levant region during the Chalcolithic, also marked by distinct Y-DNA

halaf-ubaid-migrations

Open access Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation, by Harney et al. Nature Communications (2018).

Interesting excerpts (emphasis mine, reference numbers deleted for clarity):

Introduction

The material culture of the Late Chalcolithic period in the southern Levant contrasts qualitatively with that of earlier and later periods in the same region. The Late Chalcolithic in the Levant is characterized by increases in the density of settlements, introduction of sanctuaries, utilization of ossuaries in secondary burials, and expansion of public ritual practices as well as an efflorescence of symbolic motifs sculpted and painted on artifacts made of pottery, basalt, copper, and ivory. The period’s impressive metal artifacts, which reflect the first known use of the “lost wax” technique for casting of copper, attest to the extraordinary technical skill of the people of this period.

The distinctive cultural characteristics of the Late Chalcolithic period in the Levant (often related to the Ghassulian culture, although this term is not in practice applied to the Galilee region where this study is based) have few stylistic links to the earlier or later material cultures of the region, which has led to extensive debate about the origins of the people who made this material culture. One hypothesis is that the Chalcolithic culture in the region was spread in part by immigrants from the north (i.e., northern Mesopotamia), based on similarities in artistic designs. Others have suggested that the local populations of the Levant were entirely responsible for developing this culture, and that any similarities to material cultures to the north are due to borrowing of ideas and not to movements of people.

Previous genome-wide ancient DNA studies from the Near East have revealed that at the time when agriculture developed, populations from Anatolia, Iran, and the Levant were approximately as genetically differentiated from each other as present-day Europeans and East Asians are today. By the Bronze Age, however, expansion of different Near Eastern agriculturalist populations — Anatolian, Iranian, and Levantine — in all directions and admixture with each other substantially homogenized populations across the region, thereby contributing to the relatively low genetic differentiation that prevails today. Showed that the Levant Bronze Age population from the site of ‘Ain Ghazal, Jordan (2490–2300 BCE) could be fit statistically as a mixture of around 56% ancestry from a group related to Levantine Pre-Pottery Neolithic agriculturalists (represented by ancient DNA from Motza, Israel and ‘Ain Ghazal, Jordan; 8300–6700 BCE) and 44% related to populations of the Iranian Chalcolithic (Seh Gabi, Iran; 4680–3662 calBCE). Suggested that the Canaanite Levant Bronze Age population from the site of Sidon, Lebanon (~1700 BCE) could be modeled as a mixture of the same two groups albeit in different proportions (48% Levant Neolithic-related and 52% Iran Chalcolithic-related). However, the Neolithic and Bronze Age sites analyzed so far in the Levant are separated in time by more than three thousand years, making the study of samples that fill in this gap, such as those from Peqi’in, of critical importance.

This procedure produced genome-wide data from 22 ancient individuals from Peqi’in Cave (4500–3900 calBCE) (…)

Discussion

We find that the individuals buried in Peqi’in Cave represent a relatively genetically homogenous population. This homogeneity is evident not only in the genome-wide analyses but also in the fact that most of the male individuals (nine out of ten) belong to the Y-chromosome haplogroup T, a lineage thought to have diversified in the Near East. This finding contrasts with both earlier (Neolithic and Epipaleolithic) Levantine populations, which were dominated by haplogroup E, and later Bronze Age individuals, all of whom belonged to haplogroup J.

levant-chalcolithic-bronze-age
Detailed sample background data for each of the 22 samples from which we successfully obtained ancient DNA. Additionally, background information for all samples from Peqi’in that were screened is included in Supplementary Data 1. *Indicates that Y-chromosome haplogroup call should be interpreted with caution, due to low coverage data.

Our finding that the Levant_ChL population can be well-modeled as a three-way admixture between Levant_N (57%), Anatolia_N (26%), and Iran_ChL (17%), while the Levant_BA_South can be modeled as a mixture of Levant_N (58%) and Iran_ChL (42%), but has little if any additional Anatolia_N-related ancestry, can only be explained by multiple episodes of population movement. The presence of Iran_ChL-related ancestry in both populations – but not in the earlier Levant_N – suggests a history of spread into the Levant of peoples related to Iranian agriculturalists, which must have occurred at least by the time of the Chalcolithic. The Anatolian_N component present in the Levant_ChL but not in the Levant_BA_South sample suggests that there was also a separate spread of Anatolian-related people into the region. The Levant_BA_South population may thus represent a remnant of a population that formed after an initial spread of Iran_ChL-related ancestry into the Levant that was not affected by the spread of an Anatolia_N-related population, or perhaps a reintroduction of a population without Anatolia_N-related ancestry to the region. We additionally find that the Levant_ChL population does not serve as a likely source of the Levantine-related ancestry in present-day East African populations.

These genetic results have striking correlates to material culture changes in the archaeological record. The archaeological finds at Peqi’in Cave share distinctive characteristics with other Chalcolithic sites, both to the north and south, including secondary burial in ossuaries with iconographic and geometric designs. It has been suggested that some Late Chalcolithic burial customs, artifacts and motifs may have had their origin in earlier Neolithic traditions in Anatolia and northern Mesopotamia. Some of the artistic expressions have been related to finds and ideas and to later religious concepts such as the gods Inanna and Dumuzi from these more northern regions. The knowledge and resources required to produce metallurgical artifacts in the Levant have also been hypothesized to come from the north.

Our finding of genetic discontinuity between the Chalcolithic and Early Bronze Age periods also resonates with aspects of the archeological record marked by dramatic changes in settlement patterns, large-scale abandonment of sites, many fewer items with symbolic meaning, and shifts in burial practices, including the disappearance of secondary burial in ossuaries. This supports the view that profound cultural upheaval, leading to the extinction of populations, was associated with the collapse of the Chalcolithic culture in this region.

levant-chalcolithic-pca
Genetic structure of analyzed individuals. a Principal component analysis of 984 present-day West Eurasians (shown in gray) with 306 ancient samples projected onto the first two principal component axes and labeled by culture. b ADMIXTURE analysis of 984 and 306 ancient samples with K = 11
ancestral components. Only ancient samples are shown

Comments

I think the most interesting aspect of this paper is – as usual – the expansion of peoples associated with a single Y-DNA haplogroup. Given that the expansion of Semitic languages in the Middle East – like that of Anatolian languages from the north – must have happened after ca. 3100 BC, coinciding with the collapse of the Uruk period, these Chalcolithic north Levant peoples are probably not related to the posterior Semitic expansion in the region. This can be said to be supported by their lack of relationship with posterior Levantine migrations into Africa. The replacement of haplogroup E before the arrival of haplogroup J suggests still more clearly that Natufians and their main haplogroup were not related to the Afroasiatic expansions.

semitic-languages
Distribution of Semitic languages. From Wikipedia.

On the other hand, while their ancestry points to neighbouring regional origins, their haplogroup T1a1a (probably T1a1a1b2) may be closely related to that of other Semitic peoples to the south, as found in east Africa and Arabia. This may be due either to a northern migration of these Chalcolithic Levantine peoples from southern regions in the 5th millennium BC, or maybe to a posterior migration of Semitic peoples from the Levant to the south, coupled with the expansion of this haplogroup, but associated with a distinct population. As we know, ancestry can change within certain generations of intense admixture, while Y-DNA haplogroups are not commonly admixed in prehistoric population expansions.

Without more data from ancient DNA, it is difficult to say. Haplogroup T1a1 is found in Morocco (ca. 3780-3650 calBC), which could point to a recent expansion of a Berbero-Semitic branch; but also in a sample from Balkans Neolithic ca. 5800-5400 calBCE, which could suggest an Anatolian origin of the specific subclades encountered here. In any case, a potential origin of Proto-Semitic anywhere near this wide Near Eastern region ca. 4500-3500 BC cannot be discarded, knowing that their ancestors came probably from Africa.

haplogroup-t-levant
Distribution of haplogroup T of Y-chromosome. From Wikipedia.

Interesting from this paper is also that we are yet to find a single prehistoric population expansion not associated with a reduction of variability and expansion of Y-DNA haplogroups. It seems that the supposedly mixed Yamna community remains the only (hypothetical) example in history where expanding patrilineal clans will not share Y-DNA haplogroup…

Related

Y-chromosome mixture in the modern Corsican population shows different migration layers

mesolithic-europe

Open access Prehistoric migrations through the Mediterranean basin shaped Corsican Y-chromosome diversity, by Di Cristofaro et al. PLOS One (2018).

Interesting excerpts:

This study included 321 samples from men throughout Corsica; samples from Provence and Tuscany were added to the cohort. All samples were typed for 92 Y-SNPs, and Y-STRs were also analyzed.

Haplogroup R represented approximately half of the lineages in both Corsican and Tuscan samples (respectively 51.8% and 45.3%) whereas it reached 90% in Provence. Sub-clade R1b1a1a2a1a2b-U152 predominated in North Corsica whereas R1b1a1a2a1a1-U106 was present in South Corsica. Both SNPs display clinal distributions of frequency variation in Europe, the U152 branch being most frequent in Switzerland, Italy, France and Western Poland. Calibrated branch lengths from whole Y chromosome sequencing [44,45] and ancient DNA studies [46] both indicated that R1a and R1b diversification began relatively recently, about 5 Kya, consistent with Bronze Age and Copper Age demographic expansion. TMRCA estimations are concordant with such expansion in Corsica.

corsica-haplogroups
Spatial frequency maps for haplogroups with frequencies above 3%, their Y-STR based phylogenetic networks in Corsican populations (Blue: North, Green: West, Orange: South, Black: Center and Purple: East) and their TMRCA (in years, +/- SE).

Haplogroup G reached 21.7% in Corsica and 13.3% in Tuscany. Sub-clade G2a2a1a2-L91 accounted for 11.3% of all haplogroups in Corsica yet was not present in Provence or in Tuscany. Thirty-four out of the 37 G2a2a1a2-L91 displayed a unique Y-STR profile, illustrated by the star-like profile of STR networks (Fig 1). G2a2a1a2-L91 and G2a2a-PF3147(xL91xM286) show their highest frequency in present day Sardinia and southern Corsica compared to low levels from Caucasus to Southern Europe, encompassing the Near and Middle East [21,47–50]. Ancient DNA results from Early and Middle Neolithic samples reported the presence of haplogroup G2a-P15 [51–53], consistent with gene flow from the Mediterranean region during the Neolithic transition. Td expansion time estimated by STR for P15-affiliated chromosomes was estimated to be 15,082+/-2217 years ago [49]. Ötzi, the 5,300-year-old Alpine mummy, was derived for the L91 SNP [21]. A genetic relationship between G haplogroups from Corsica and Sardinia is further supported by DYS19 duplication, reported in North Sardinia [14], and observed in the southern part of the Corsica in 9 out of 37 G2a2a1a2-L91 chromosomes and in 4 out of 5 G2a2a-PF3147(xL91xM286) chromosomes, 3 of which displayed an identical STR profile (S4 Table).

This lineage has a reported coalescent age estimated by whole sequencing in Sardinian samples of about 9,000 years ago. This could reflect common ancestors coming from the Caucasus and moving westward during the Neolithic period [48], whereas their continental counterparts would have been replaced by rapidly expanding populations associated with the Bronze Age [46,54,55]. Estimated TMRCA for L91 lineage in Corsica is 4529 +/- 853 years. G-L497 showed high frequencies in Corsica compared to Provence and Tuscany, and this haplogroup was common in Europe, but rare in Greece, Anatolia and the Middle East. Fifteen out of the 17 Corsican G2a2b2a1a1b-L497 displayed a unique Y-STR profile (S4 Table) with an estimated TMRCA of 6867 +/- 1294 years. Haplogroup G2a2b1-M406, associated with Impressed Ware Neolithic markers, along with J2a1-DYS445 = 6 and J2a1b1-M92 [22,49], had very low levels in Corsica. Conversely, G2a2b2a-P303was highly represented and seemed to be independent of the G2a2b1-M406 marker. The 7 G2a2b2a-P303(xL497xM527) Corsican chromosomes displayed a unique Y-STR profile (S4 Table).

pca-corsica
First and second axes of the PCA based on 12 Y-chromosome haplogroup frequencies in 83 west Mediterranean populations.

Haplogroup J, mainly represented by J2a1b-M67(xM92), displayed intermediate frequencies in Corsica compared to Tuscany and Provence. J2a1b-M67(xM92) derived STR network analysis displayed a quite homogeneous profile across the island with an estimated TMRCA of 2381 +/- 449 years (Fig 1) and individuals displaying M67 were peripheral compared to Northwestern Italians (S2 Fig). The haplogroup J2a1-Page55(xM67xM530), characteristic of non-Greek Anatolia [22], was found in the north-west of Corsica. Haplogroup J2a1-DYS445 = 6 was found in the north-west with DYS391 = 10 repeats, and in the far south with DYS391 = 9 repeats, the former was associated with Anatolian Greek samples, whereas the second was found in central Anatolia [22]. The 7 J2b2a-M241 displayed a unique Y-STR profile (S4 Table), they were only detected in the Cap Corse region, this sub-haplogroup shows frequency peaks in both the southern Balkans and northern-central Italy [56] and is associated with expansion from the Near East to the Balkans during Neolithic period [57].

Haplogroup E, mainly represented by E1b1b1a1b1a-V13, displayed intermediate frequencies in Corsica compared to Tuscany and Provence. E1b1b1a1b1a-V13 was thought to have initiated a pan-Mediterranean expansion 7,000 years ago starting from the Balkans [52] and its dispersal to the northern shore of the Mediterranean basin is consistent with the Greek Anatolian expansion to the western Mediterranean [22], characteristic of the region surrounding Alaria, and consistent with the TMRCA estimated in Corsica for this haplogroup. A few E1b1a-V38 chromosomes are also observed in the same regions as V13.

Related:

Haplogroup J spread in the Mediterranean due to Phoenician and Greek colonizations

iron_age_europe_mediterranean

Open access A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean, by Finocchio et al. Scientific Reports (2018) Nº 7465.

Abstract (emphasis mine):

In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.

greek-phoenician
J2-L397. The star indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

Interesting excerpts:

Two features of our tree are at odds with the simplistic idea of a dispersal of Hg J as a whole from the Middle East towards Greece and Italy and an accompanying radiation26. First, there is little evidence of sudden diversification between 15 and 5 kya, a period of likely population increase and pressure for range expansion, due to the Agricultural revolution in the Fertile Crescent. Second, within each subclade, lineages currently sampled in Turkey do not show up as preferentially ancestral. Both findings are replicated and reinforced by examining the previous landmark studies. Our Turkish samples do not coalesce preferentially to ancestral nodes when mapped onto these studies’ trees.

Additional relevant information on the entire Hg J comes from the discontinuous distribution of J2b-M12. The northern fringe of our sample is enriched in the J2b-M241 subclade, which reappears in the gulf of Bengal38,45, with low frequencies in the intervening Iraq46 and Iran47. No J2b-M12 carriers were found among 35 modern Lebanese, as contrasted to one of two ancient specimens from the same region35.

In summary, a first conclusion of our sequencing effort and merge with available data is that the phylogeography of Hg J is complex and hardly explained by the presence of a single population harbouring the major lineages at the onset of agriculture and spreading westward. A unifying explanation for all the above inconsistencies could be a centre of initial radiation outside the area here sampled more densely, i.e. the Caucasus and regions North of it, from which different Hg J subclades may have later reached mainland Italy, Greece and Turkey, possibly following different routes and times. Evidence in this direction comes from the distribution of J2a-M41045,48 and the early-49 or mid-Holocene50 southward spread of J1.

greek-colonization
Supplemental Figure 7. Maps of sampling locations for the carriers of the derived allele (white triangle point down) at the indicated SNP vs carriers of the ancestral allele (black triangle point-up), conditioned on identical genotype at the same most terminal marker. Coastlines were drawn with the R packages18 “map” and “mapproj” v. 3.1.3 (https://cran.r-project.org/web/packages/mapproj/index.html), and additional features added with default functions. The star triangle indicates the centroid of derived alleles. The solid square indicates the centroid of ancestral alleles, with its 95% C.I. (ellipse). In the insets: distributions of the pairwise sampling distances (in Km) for the carriers of the ancestral (black) and derived (white) allele, with solid and dashed lines indicating the respective averages. At right: median joining network of 7-STR haplotypes and SNPs in the same groups, with sectors coloured according to sampling location. Haplotype structure is detailed for some nodes, in the order YCA2a-YCA2b-DYS19-DYS390-DYS391-DYS392-DYS393 (in italics).

The lineage defined by rs779180992, belonging to J2b-M205, and dated at 4–4.5 kya, has a radically different distribution, with derived alleles in Continental Italy, Greece and Northern Turkey, and two instances in a Palestinian and a Jew. The interpretation of the spread of this lineage is not straightforward. Tentative hypotheses are linked to Southward movements that occurred in the Balkan Peninsula from the Bronze Age29,53, through the Roman occupation and later54.

The slightly older (5.6–6.3 kya) branch 98 lineage displays a similar trend of a Eastward positioning of derived alleles, with the notable difference of being present in Sardinia, Crete, Cyprus and Northern Egypt. This feature and the low frequency of the parental J2a-M92 lineage in the Balkans27 calls for an explanation different from the above.

Finally, we explored the distribution of J2a-L397 and three derived lineages within it. J2a-L397 is tightly associated with a typical DYS445 6-repeat allele. This has been hypothesized as a marker of the Greek colonizations in the Mediterranean55, based on its presence in Greek Anatolia and Provence (France), a region with attested Iron Age Greek contribution. All of our chromosomes in this clade were characterized also by DYS391(9), confirming their Anatolian Greek signature. We resolved the J2a-L397 clade to an unprecedented precision, with three internal markers which allow a finer discrimination than STRs. The ages of the three lineages (2.0–3.0 kya) are compatible with the beginning of the Greek colonial period, in the 8th century BCE. The three subclades have different distributions (Fig. 2B), with two (branches 57, 59) found both East and West to Greece, and one only in Italy (branch 58). As to Mediterranean Islands, J2a-L397 was found in Cyprus56 and Crete43. Its presence as one of the three branches 57–59 will represent an important test. In Italy all three variants were found mainly along the Western coast (18/25), which hosted the preferred Greek trade cities. The finding of all three differentiated lineages in Locri excludes a local founder effect of a single genealogy. Interestingly, an important Greek colony was established in this location, with continuity of human settlement until modern times. The sample composed of the same subjects displayed genetic affinities with Eastern Greece and the Aegean also at autosomal markers57. In summary, the distributions of branches 57–59 mirror the variety of the cities of origin and geographic ranges during the phases of the colonization process58.

So, there you have it, another proof that haplogroup J and CHG-related ancestry in the Mediterranean was mainly driven by different (and late) expansions of historic peoples.

Related:

Genetic origins of Minoans and Mycenaeans and their continuity into modern Greeks

mycenaean-minoan

A new article has appeared in Nature, Genetic origins of the Minoans and Mycenaeans, by Lazaridis et al. (2017), referenced by Science.

Abstract:

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus3 and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter–gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.

Samples are scarce, and there is only one Y-DNA haplogroup of Mycenaeans, J2a1 (in Galatas Apatheia, ca. 1700-1200), which shows continuity of haplogroups from Minoan samples, so it does not clarify the potential demic diffusion of Proto-Greeks marked by R1b subclades.

Regarding admixture analyses, it is explicitly or implicitly (according to the press release) stated that:

  • There is continuity between Mycenaeans and living people, so that the major components of the Greeks’ ancestry was in place already in the Bronze Age, after the migration of the earliest farmers from Anatolia.
  • Anatolians may have been the source of “eastern” Caucasian ancestry in Mycenaeans, and maybe of early Indo-European languages (i.e. earlier than Proto-Greek) in the region.
  • The “northern” steppe population (speaking a Late Indo-European dialect, then) had arrived only in mainland Greece, with a 13-18% admixture, by the time studied.
  • Samples before the Final Neolithic (ca. 4100 BC) do not possess either type of ancestry, suggesting that the admixture detected occurred during the fourth to second millennium BC.
  • Admixture from Levantine or African influence (i.e. Egyptian or Phoenician colonists) cannot be supported with admixture.

All in all, there is some new interesting information, and among them the possibility of obtaining ancient DNA from arid regions, which is promising for future developments in the field.

EDIT (20/8/2017): The article received widespread media attention, and two blog posts were linked to by the main author in his Twitter account: Who are you calling Mycenaean?, and On genetics and the Aegean Bronze Age. Apart from the obviously wrong reductio ad Hitlerum that pops up in any discussion on Indo-Europeans or genetics (even I do it regarding fans of admixture analysis), I don’t know why these created so much fuss (and hate) among geneticists. There seems to be a war brewing between Archaeology and Genetics.

Razib Khan writes The Revolution Which Came To Archaeology Without Archaeologists?, and I guess this is how many people feel in the field, but if they had studied some minimal archaeology of the samples they are studying they would know that their conclusions would come as no surprise, in any case. They can solve old archaeological questions, and they can help create new hypothesis. That’s it. Regarding the study Mr. Khan believes did come as a surprise to archaeologists, that on Bell Beakers, I would like to remind him of the predictions Volker Heyd did about genetics already in 2007, based only on Archaeology.

Related:

Featured map: samples studied, from the article.