Scytho-Siberians of Aldy-Bel and Sagly, of haplogroup R1a-Z93, Q1b-L54, and N

iron-age-sakas-aldy-bel-scythians

Recently, a paper described Eastern Scythian groups as “Uralic-Altaic” just because of the appearance of haplogroup N in two Pazyryk samples.

This simplistic identification is contested by the varied haplogroups found in early Altaic groups, by the early link of Cimmerians with the expansion of hg. N and Q, by the link of N1c-L392 in north-eastern Europe with Palaeo-Laplandic, and now (paradoxically) by the clear link between early Mongolic expansion and N1c-L392 subclades.

A new paper (behind paywall) offers insight into the prevalent presence of R1a-Z93 among eastern Scytho-Siberian groups (most likely including Samoyedic speakers in the forest-steppes), and a new hint to the westward expansion of haplogroups Q and N (probably coupled with the so-called “Siberian ancestry”) from the east with different groups of Iron Age steppe nomads:

Genetic kinship and admixture in Iron Age Scytho-Siberians, by Mary et al. Human Genetics (2019).

Interesting excerpts (emphasis mine):

From an archeological and historical point of view, the term “Scythians” refers to Iron Age nomadic or seminomadic populations characterized by the presence of three types of artifacts in male burials: typical weapons, specific horse harnesses and items decorated in the so-called “Animal Style”. This complex of goods has been termed the “Scythian triad” and was considered to be characteristic of nomadic groups belonging to the “Scythian World” (Yablonsky 2001). This “Scythian World” includes both the Classic (or European) Scythians from the North Pontic region (7th–3th century BC) and the Southern Siberian (or Asian) populations of the Scythian period (also called Scytho-Siberians). These include, among others, the Sakas from Kazakhstan, the Tagar population from the Minusinsk Basin (Republic of Khakassia), the Aldy-Bel population from Tuva (Russian Federation) and the Pazyryk and Sagly cultures from the Altai Mountains.

mtdna-scytho-siberians
Proportions of Scythian mtDNA haplogroups. Western (blue) and eastern (pink) Eurasian lineages are equally distributed in the Arzhan Scytho-Siberian sample. The U5a2a1 haplogroup shared between the two Scythian groups studied is in bold

In this work, we first aim to address the question of the familial and social organization of Scytho-Siberian groups by studying the genetic relationship of 29 individuals from the Aldy-Bel and Sagly cultures using autosomal STRs. (…) were obtained from 5 archeological sites located in the valley of the Eerbek river in Tuva Republic, Russia (Fig. 1). All the mounds of this archeological site were excavated but DNA samples were not collected from all of them. 14C dates mainly fall within the Hallstatt radiocarbon calibration plateau (ca. 800–400 cal BC) where the chronological resolution is poor. Only one date falls on an earlier segment of calibration curve: Le 9817–2650 ± 25 BP, i.e. 843–792 cal BC with a probability of 94.3% (using the OxCal v4.3.2 program). This sample (Bai-Dag 8, Kurgan 1, grave 10) is not from one of the graves studied but was used to date the kurgan as a whole.

Y-chromosome haplogroups were first assigned using the ISOGG 2018 nomenclature. In order to improve the precision of haplogroup definition, we also analyzed a set of Y-chromosome SNP (Supplementary Table 2). Nine samples belonged to the R1a-M513 haplogroup (defined by marker M513) and two of these nine samples were characterized as belonging to the R1a1a1b2-Z93 haplogroup or one of its subclades. Six samples belonged to the Q1b1a-L54 haplogroup and five of these six samples belonged to the Q1b1a3-L330 subclade. One sample belonged to the N-M231 haplogroup.

haplogroups-scythian-siberians

The distribution of these haplogroups in the population must be confronted with the prevalence of kinship among the samples. Although five individuals belonged to haplogroup Q1b1a3-L330, three of them (ARZ-T18, ARZ-T19 and ARZ-T20) were paternally related (Fig. 2). It must, therefore, be considered that haplogroup Q1b1a3-L330 is present in three independent instances (given that the remaining two instances exhibit no close familial relationship with other samples or one another). All five were buried on the Eki-Ottug 1 archaeological site (although in two different kurgans).

In the same way, although two groups, of two and three individuals, shared haplotypes belonging to the R1a-M513 haplogroup, these groups likely include a father/son pair (ARZ-T2 and ARZ-T12). Therefore, among nine R1a-M513 men, we found six independent haplotypes, one being present in two independent instances. All R1a-M513 haplotypes, however, including those attributed to the R1a1a1b2-Z93 subclade, only differed by one-step mutations, across 5 loci at most. All R1a-M513 individuals were buried on the same site, Eki-Ottug 2, in a single Kurgan.

y-haplogroups-r1a-n-q1b

Haplogroup R1a-M173 was previously reported for 6 Scytho-Siberian individuals from the Tagar culture (Keyser et al. 2009) and one Altaian Scytho-Siberian from the Sebÿstei site (Ricaut et al. 2004a), whereas haplogroup R1a1a1b2-Z93 (or R1a1a1b-S224) was described for one Scythian from Samara (Mathieson et al. 2015) and two Scytho-Siberians from Berel and the Tuva Republic (Unterländer et al. 2017). On the contrary, North Pontic Scythians were found to belong to the R1b1a1a2 haplogroup (Krzewińska et al. 2018), showing a distinction between the two groups of Scythians. (…) The absence of R1b lineages in the Scytho-Siberian individuals tested so far and their presence in the North Pontic Scythians suggest that these 2 groups had a completely different paternal lineage makeup with nearly no gene flow from male carriers between them.

The seven other male individuals studied in this work were found to carry Eastern Eurasian Y haplogroups Q1b1a and one of its subclades (n = 6) and N (n = 1). Haplogroup Q1b1a-L54 was previously described in four males from the Bronze Age in the Altai Mountains (Hollard et al. 2014, 2018) and was clearly associated with Siberian populations (Regueiro et al. 2013).

The N-M231 haplogroup emerged from haplogroup K in Southern Asia around 21,000 years BCE, maybe in Southern China (Shi et al. 2013; Ilumäe et al. 2016). Previous studies attested to its presence in samples from Neolithic and Bronze Age in China (Li et al. 2011; Cui et al. 2013). Waves of northwestern expansion of this haplogroup are described as beginning during the Paleolithic period (Derenko et al. 2006; Shi et al. 2013) but traces of this expansion in archeological samples were reported only in two Scytho-Siberian males from the Altai (Pilipenko et al. 2015).

The sample of haplogroup N comes from the Aldy-Bel culture (ARZ-T15), from the Eerbek site, but has no radiocarbon date. All Q1b-L330 samples come from the Sagly culture, and three are paternally related. The other Q1b-L54 sample is from other tombs in one kurgan at Aldy Bel.

It seems that – exactly as expected – different waves of steppe nomads brought different lineages at a time (the Iron Age) when many regions incorporated different eastern lineages without necessarily changing language. Just like the expansion of N among Ugrians and Samoyeds, and N1c among Finno-Permic peoples, and like many other lineages expanding with federation-like groups in eastern, central, and western Europe

Related

Admixture of Srubna and Huns in Hungarian conquerors

hungarian-conqueror-migrations

New preprint at BioRxiv, Mitogenomic data indicate admixture components of Asian Hun and Srubnaya origin in the Hungarian Conquerors, by Neparáczki et al. (2018), at BioRxiv.

Abstract (emphasis mine):

It has been widely accepted that the Finno-Ugric Hungarian language, originated from proto Uralic people, was brought into the Carpathian Basin by the Hungarian Conquerors. From the middle of the 19th century this view prevailed against the deep-rooted Hungarian Hun tradition, maintained in folk memory as well as in Hungarian and foreign written medieval sources, which claimed that Hungarians were kinsfolk of the Huns. In order to shed light on the genetic origin of the Conquerors we sequenced 102 mitogenomes from early Conqueror cemeteries and compared them to sequences of all available databases. We applied novel population genetic algorithms, named Shared Haplogroup Distance and MITOMIX, to reveal past admixture of maternal lineages. Phylogenetic and population genetic analysis indicated that more than one third of the Conqueror maternal lineages were derived from Central-Inner Asia and their most probable ultimate sources were the Asian Huns. The rest of the lineages most likely originated from the Bronze Age Potapovka-Poltavka-Srubnaya cultures of the Pontic-Caspian steppe, which area was part of the later European Hun empire. Our data give support to the Hungarian Hun tradition and provides indirect evidence for the genetic connection between Asian and European Huns. Available data imply that the Conquerors did not have a major contribution to the gene pool of the Carpathian Basin, raising doubts about the Conqueror origin of Hungarian language.

hungarian-conqueror-mtdna
“Comparison of major Hg distributions from modern and ancient populations. Asian main Hg-s are designated with brackets. Major Hg distribution of Conqueror samples from this study are very similar to that of other 91 Conquerors taken from previous studies [11,12]. Scythians and ancient Xiongnus show similar Hg composition to the bracketed Asian fraction of the Conqueror samples, but Hg B is present just in Xiongnus. Modern Hungarians have very small Asian components pointing at small contribution from the Conquerors. Of the 289 modern Hungarian mitogenomes 272 are published in [29]. Scythian Hg-s are from [48,49,55,59,71–74]. Xiongnu Hg-s are from [66–69].”

Just recently another article contributed to a similar idea. I already talked about the Bronze Age R1a-z93 sample with high steppe ancestry found in the Balkans, and its likely origin in an expansion of the Srubna or a related culture. No truce, therefore, for those looking for autochthonous continuity anywhere in Europe.

We are seeing how multiple migrations shaped the history of the Carpathian basin (and its complex genetic structure) – and of Europe in general -, often from the Pontic-Caspian steppe. That is clear from many different prehistorical and historical times, such as the expansions of Suvorovo-Novodanilovka, Yamna, Srubna, Thraco-Cimmerians, Sarmatians, Scythians, Huns,…

About the linguistic interpretations based on genetics contained in the paper (Hungarian language as a legacy of Huns), well, you know my stance regarding the Yamnaya ancestral concept (and the wrong linguistic interpretations derived from it, which many sadly keep to this day), and genetics in general to solve language questions

This is yet another example of how (what some people would call) “scientific data” is useless without sound anthropological models.

Featured image, from the article: “Hypothetic origin and migration route of different components of the Hungarian Conquerors. Bluish line frames the Eurasian steppe zone, within which all presumptive ancestors of the Conquerors were found. Yellow area designates the Xiongnu Empire at its zenith from which area the East Eurasian lineages originated. Phylogeographical distribution of modern East Eurasian sequence matches (Fig. 1) well correspond to this territory, especially considering that Yakuts, Evenks and Evens lived more south in the past [108], and European Tatars also originated from this area. Regions where Asian and European Scythian remains were found are labeled green, pink is the presumptive range of the Srubnaya culture. Migrants of Xiongnu origin most likely incorporated descendants of these groups. The map was created using QGIS 2.18.4[109]”.

Article available under a CC-BY-NC-ND 4.0 International license.

Discovered via Razib Khan.

See also: