“Dinaric I2a” and the expansion of Common Slavs from East-Central Europe


A recently published abstract for an upcoming chapter about Early Slavs shows the generalized view among modern researchers that Common Slavs did not spread explosively from the east, an idea proper of 19th-century Romantic views about ancestral tribes of pure peoples showing continuity since time immemorial.

Migrations and language shifts as components of the Slavic spread, by Lindstedt and Salmela, In: Language contact and the early Slavs, Eds. Tomáš Klír, Vít Boček, Universitätsverlag Winter (2019):

The rapid spread of the Proto-Slavic language in the second half of the first millennium CE was long explained by the migration of its speakers out of their small primary habitat in all directions. Starting from the 1980s, alternative theories have been proposed that present language shift as the main scenario of the Slavic spread, emphasizing the presumed role of Slavic as the lingua franca of the Avar Khaganate. Both the migration and the language shift scenarios in their extreme forms suffer from factual and chronological inaccuracy. On the basis of some key facts about human population genetics (the relatively recent common ancestry of the East European populations), palaeoclimatology (the Late Antique Little Ice Age from 536 to around 660 CE), and historical epidemiology (the Justinianic Plague), we propose a scenario that includes a primary rapid demographic spread of the Slavs followed by population mixing and language shifts to and from Slavic in different regions of Europe. There was no single reason for the Slavic spread that would apply to all of the area that became Slavic-speaking. The northern West Slavic area, the East Slavic area, and the Avar sphere and South-Eastern Europe exhibit different kinds of spread: mainly migration to a sparsely populated area in the northwest, migration and language shift in the east, and a more complicated scenario in the southeast. The remarkable homogeneity of Slavic up to the jer shift was not attributable to a lingua-franca function in a great area, as is often surmised. It was a founder effect: Proto-Slavic was originally a small Baltic dialect with little internal variation, and it took time for the individual Slavic languages to develop in different directions.

While I would need to read the whole chapter, in principle it seems easier to agree with this summary than with Curta’s (sort of diffuse) Danubian origin of Common Slavic, based on the likely origin of the Balto-Slavic expansion with the Trzciniec and/or Lusatian culture, close to the Baltic.

A multi-ethnic Chernyakhov culture

In a sneak peek to the expected Järve et al. (2019) paper in review, there are three Chernyakhov samples (ca. calAD 350-550) with different ancestry probably corresponding to the different regions where they stem from (see image below), which supports the idea that Iron Age eastern Europe was a true melting pot where the eventual language of the different cultures depended on many different factors:

Map of the samples from Järve et al. (2019).

From the paper:

The Chernyakhiv culture was likely an ethnically heterogeneous mix based on Goths (Germanic tribes) but also including Sarmatians, Alans, Slavs, late Scythians and Dacians – the entire ancient population of the northern coast of the Black Sea.

Contacts with neighbouring regions were active, and the Chernyakhiv culture is associated with a number of historical events that took place in Europe at that time. In particular, during the Scythian or Gothic wars of the 230s and 270s, barbarians living in the territory of the Chernyakhiv culture (Goths, Ferules, Carps, Bastarns, etc.) carried out regular raids across the Danube Limes of the Roman Empire. However, from the end of the 3rd century the relations of the barbarians with the Roman Empire gained a certain stability. From the reign of Constantine I the Goths, who were part of the Chernyakhiv culture, became federates (military allies) of the Empire.

The Goths also interacted with the inhabitants of the East European forest zone. The Roman historian Jordanes described the military campaigns of the Gothic king Ermanaric against northern peoples (the ancestors of Vends, Slavs, etc., and the inhabitants of the northern Volga region).

NOTE. As it has become traditional in writings about eastern Europe, ‘Slavs’ are assumed – for no particular reason – to be part of the ‘northern peoples of the forest’ since who knows when exactly, and thus appear mentioned in this very text simultaneously as part of Chernyakhov, but also part of peoples to the north of Chernyakhov warring against them…

Proportions of Eastern Hunter-Gatherer (EHG, blue), Natufian (red) and Altaian (green) ancestries in Scythian/Sarmatian groups and groups pre- and postdating them inferred using the a) qpAdm and b) ChromoPainter/NNLS method. c–e Correlation of qpAdm and CP/NNLS proportions for the three putative sources evaluated. Steppe populations predating the Scythians: Yamnaya_Ukraine [26], Yamnaya_Kalmykia [15], Ukr_BA (this study). Scythians and Sarmatians: Nomad_IA [15], Scythian_East and Sarmatian_SU [3], Hungarian Scythian, Sarmatian, Central Saka, Tian Shan Saka and Tagar [1], Scy_Ukr, ScySar_SU and Scy_Kaz (this study). Population postdating the Scythians: Chern (this study). See also Table S3.

Genetic variation

(…) the Chernyakhiv samples overlapped with modern Europeans, representing the most ‘western’ range of variation among the groups of this study.

After the end of the Scythian period in the western Eurasian Steppe, the Chernyakhiv culture samples have higher Near Eastern affinity compared to the Scythians preceding them, agreeing with the Gothic component in the multi-ethnic mix of the Chernyakhiv culture.

The higher proportion Near Eastern and (according to CP/NNLS) lower proportion of eastern ancestry in the Chernyakhiv culture samples were mirrored by f4 analyses where Chern showed lower affinity to Han (Z score –3.097) and EHG (Z score –3.643) than Ukrainian Scythian and Bronze Age samples, respectively, as well as higher Near Eastern (Levant_N and Anatolia_N) affinity than Ukrainian Scythians (Z scores 4.696 and 3.933, respectively). It is plausible to assume that this excess Near Eastern ancestry in Chern is related to European populations whose Near Eastern proportion has exceeded that in the steppe populations since the Neolithic expansion of early farmers. While the Chernyakhiv culture was likely ethnically heterogeneous, the three samples in our Chern group appear to represent its Gothic component.

PCA obtained by projecting the ancient samples of this study together with published Scythian/Sarmatian and related samples onto a plot based on 537,802 autosomal SNPs in 1,422 modern Eurasians. To improve readability, the modern populations have been plotted as population medians (after outlier removal). Image modified from the paper, including Sredni Stog, Corded Ware/Uralic (with Srubna outliers) and Chernyakhov clusters.Notice the two new Late Yamna and Catacomb samples from Ukraine clustering with other published samples, despite being from the same region as Sredni Stog individuals.

Early Slavs of hg. I2-L621

A post in Anthrogenica shows some subclades of the varied haplogroups that are expected from medieval Poland:

KO_55, Kowalewko (100-300 AD), I1a3a1a1-Y6626
KO_45, Kowalewko (100-300 AD), I2a2a1b2a-L801
KO_22, Kowalewko (100-300 AD), G2a2b-L30
KO_57, Kowalewko (100-300 AD), G2a2b-L30

ME_7, Markowice (1000-1200 AD), I1a2a2a5-Y5384
NA_13, Niemcza, (900-1000 AD), I2a1b2-L621
NA_18, Niemcza, (900-1000 AD), J2a1a-L26

Just because of these samples among Early Slavs, and looking again more carefully at the modern distribution of I2a-L621 subclades, I think now I was wrong in assuming that I2a-L621 in early Hungarian Conquerors would mean they would appear around the Urals as a lineage integrated in Eastern Corded Ware groups. It seems rather a haplogroup with an origin in Central Europe. Whether it was part of a Baltic community that expanded south, or was incorporated during the expansions to the south is unclear. Like hg. E-V13, it doesn’t seem to have been incorporated precisely along the Danube, but closer to the north-east Carpathians.

Especially interesting is the finding of I2a-L621 among Early Slavs from Silesia, a zone of close interaction among early West Slavs. From Curta (2019):

On Common Slavs

In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland.

On Great Moravia

Svatopluk’s remarkably strong position was immediately recognized by Pope John VIII, who ordered the immediate release of Methodius from his monastic prison in order to place him in 873 under Svatopluk’s protection. One year later (874), Louis the German himself was forced to recognize Svatopluk’s independence through the peace of Forchheim. By that time, the power of Svatopluk had extended into the upper Vistula Basin, over Bohemia, the lands between the Saale and the Elbe rivers, as well as the northern and northeastern parts of the Carpathian Basin.* The Czech prince Bořivoj, a member of the Přemyslid family which would unify and rule Bohemia in the following century, is believed to have been baptized in 874 by Methodius in Moravia together with his wife Ludmila (St. Wenceslas’s grandmother).

*Brather, Archäologie, p. 71. The expansion into the region of the Upper Vistula (Little Poland) results from one of St. Methodius’ prophecies, for which see the Life of Methodius 11, p. 72; Poleski, “Contacts between the Great Moravian empire and the tribes”; Poleski, “Contacts between the tribes in the basins.” Despite an early recognition of the Moravian influences on the material culture in 9th-century southern Poland and Silesia (e.g., Dostál, “Das Vordringen”), the question of Svatopluk’s expansion has triggered in the 1990s a fierce debate among Polish archaeologists. See Wachowski, “Problem”; Abłamowicz, “Górny Śląsk”; Wachowski, “Północny zasięg ekspansji”; Szydłowski, “Czy ślad”; Jaworski, “Elemente.”

On Piast Poland

Mieszko agreed to marry Oda, the daughter of the margrave of the North March, for his first wife had died in 977. The marriage signaled a change in the relations with the Empire, for Mieszko sent troops to help Otto II against the Slavic rebels of 983. He also attacked Bohemia and incorporated Silesia and Lesser Poland into the Piast realm, which prompted Bohemians to ally themselves with the Slavic rebels against whom Emperor Otto was now fighting. By 980, therefore, Mieszko was part of a broader configuration of power, and his political stature was recognized in Scandinavia as well. His daughter, Swietoslawa married first Erik Segersäll of Sweden (ca. 970–ca. 995) and then Sweyn Forkbeard of Denmark (986–1014).26 In the early 990s, together with his wife and children, Mieszko offered his state (called “civitas Schinesghe,” the state of Gniezno) to the pope as a fief, as attested by a unique document known as Dagome iudex and preserved in a late 11th-century summary. The document describes the inner boundaries of the state and peripheral provinces, as if Gniezno were a civitas (city) in Italy, with its surrounding territory. Regional centers, however, did indeed come into being shortly before AD 1000 in Lesser Poland (Cracow, Sandomierz), Pomerania (Gdańsk), and Silesia (Wrocław). Such regional centers came to be distinguished from other strongholds by virtue of the presence within their walls of some of the earliest churches built in stone. Mieszko got his own, probably missionary bishop.

In light of this recent find, which complements the Early Slav of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, we can assume now less speculatively that I2a-CTS10228 most likely expanded with Common Slavs, because alternative explanations for its emergence in the Carpathian Basin, among Early West Slavs, and among Early East Slavs within this short period of time requires too many unacceptable assumptions.

Modern distribution of “Dinaric” I2a. Modified from Balanovsky et al. (2008)

Hungarian Conquerors

Knowing that R1a-Z280 was an Eastern Corded Ware lineage, found from Baltic Finns to Finno-Ugric populations of the Trans-Urals, we can probably assign expanding Magyars to at least R1a-Z280, R1a-Z93, and N1c-L392 (xB197) lineages.

From Curta (2019):

Earlier Latin sources, especially those of the first half of the 10th century, refer to Magyars as Huns or Avars. They most likely called themselves Magyars, a word indicating that the language they spoke was not Turkic, but Finno-Ugrian, related to a number of languages spoken in Western Siberia and the southern Ural region. The modern word—Hungarian—derives from the Slavic word for those people, U(n)gri, which is another indication of Ugric roots. This has encouraged the search for the origin of the Hungarian people in the lands to the east from the Ural Mountains, in western Siberia, where the Hungarian language is believed to have emerged between 1000 and 500 BC.

In looking for the Magyar primordial homeland, they draw comparisons with the assemblages found in Hungary that have been dated to the 10th century and attributed to the Magyars. Some of those comparisons had extraordinary results. For example, the excavation of the burial mound cemetery recently discovered near Lake Uelgi, in the Cheliabinsk region of Russia, has produced rosette-shaped harness mounts and silver objects ornamented with palmette and floral designs arranged in reticulated patterns, which are very similar to those of Hungary. But Uelgi is not dated to prehistory, and many finds from that site coincided in time with those found in burial assemblages in Hungary. In other words, although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).14 However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

Adding J2a and I1a samples to the Early Slavic stock, based on medieval samples from Poland – with G2a and E-V13 lineages probably shared with Goths from Wielbark/Chernyakhov, or becoming acculturated in the Carpathian Basin – one is left to wonder which of these lineages actually took part in Common Slavic migrations/acculturation events, whenever and wherever those actually happened.

I have tentatively re-assigned lineages of Hungarian conquerors according to their likely origins in a simplistic way – similar to how the paper classifies them – , now (I think) less speculatively, assuming that Early Slavs likely formed eventually part of them:

Image modified from the paper, with drawn red square around lineages of likely East Slavic origin, and blue squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples, of likely Ugric origin Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

NOTE. The ancestral origin of lineages is meaningless for an ethnolinguistic identification. The only reasonable assumption is that all the individuals sampled formed part of the Magyar polity, shared Magyar culture, and likely spoke Hungarian, unless there is a clear reason to deny this: which I guess should include at least a clearly ‘foreign’ ancestry (showing a distant cluster compared to the group formed by all other samples), ‘foreign’ isotopic data (showing that he was born and/or raised outside of the Carpathian Basin), and particularly ‘foreign’ cultural assemblage of the burial, if one really wants to risk assuming that the individual didn’t speak Hungarian as his mother tongue.

“Dinaric” or Slavic I2a?

I don’t like the use of “Dinaric I2a”, because it is reminiscent of the use of “Iberian R1b-DF27”, or “Germanic R1b-U106”, when ancient DNA has shown that this terminology is most often wrong, and turns out to be misleading. As misleading as “Slavic R1a”. Recently, a Spanish reader wrote me emails wondering how could I possibly say that R1b-DF27 came from Central Europe, because modern distribution maps (see below) made it evident that the haplogroup expanded from Iberia…

Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

The obvious answer is, these maps show modern distributions, not ancient ones. In the case of R1b-DF27, different Iberian lineages are not even related to the same expansion. At least R1b-M167/SRY2627 lineages seem to have expanded from Central Europe into Iberia much more recently than other DF27 subclades associated with Bell Beakers. What’s more, if R1b-M167/SRY2627 appear densest in north-east Spain it is not because of the impact of Celts or Iberians before the arrival of Romans, but because of the impact of medieval expansions during the Reconquista from northern kingdoms expanding south in the Middle Ages:

Genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. Image modified from Bycroft et al. (2018).

Similarly, the term “Dinaric I2a”, based on the higher density in the Western Balkans, is misleading because it is probably the result of later bottlenecks. Just like the density of different R1a subclades among Modern Slavs is most likely the result of acculturation of different groups, especially to the east and north-east, where language shift is known to have happened in historical times, with the cradle of Russians in particular being a Finno-Volgaic hotspot, later expanding with hg. R1a-Z280 and N1c-L392 lineages.

Now, one may think that maybe Slavs expanded with ALL of these different lineages. Since we are talking about late Iron Age / medieval expansions, there might be confederations of different peoples expanding with a single lingua franca… But no, not really. Not likely in linguistics, not likely in archaeology, and apparently not in population genomics, either.

How many ancient peoples from the Iron Age and Early Middle Ages expanded with so many different lineages? We see bottlenecks in expansions even in recent times: say, in Visigoths under E-V13 (probably recently incorporated during their migrations); in Moors (mostly Berbers) with E-M81 and J; in medieval Iberians under different DF27 bottlenecks during the Reconquista (including huge bottlenecks among Basques); similarly, huge bottlenecks are found in Finnic expansions under N1c…How likely is it that Proto-Slavs (and Common Slavs) expanded with all those attested lineages to date among Early Slavs (E-V13, I2a-L621, R1a-M458, I1, J2a) AND also with other R1a subclades prevalent today, but almost absent in sampled Early Slavs?

To sum up, I am not so sure anymore about the possibility of simplistically assigning R1a-M458 to expanding Common Slavs. R1a-M458 may well have been the prevalent R1a subclade in Central Europe among early Balto-Slavic – and possibly also neighbouring Northern Indo-European-speaking – peoples (let’s see what subclades Tollense and Unetice samples bring), but it is more and more likely that most of the density we see in modern R1a-M458 distribution maps is actually the effect of medieval bottlenecks of West Slavs, similar to the case of Iberia.

Modern distribution of R1a-M458, after Underhill et al. (2015).


Migrations in the Levant region during the Chalcolithic, also marked by distinct Y-DNA


Open access Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation, by Harney et al. Nature Communications (2018).

Interesting excerpts (emphasis mine, reference numbers deleted for clarity):


The material culture of the Late Chalcolithic period in the southern Levant contrasts qualitatively with that of earlier and later periods in the same region. The Late Chalcolithic in the Levant is characterized by increases in the density of settlements, introduction of sanctuaries, utilization of ossuaries in secondary burials, and expansion of public ritual practices as well as an efflorescence of symbolic motifs sculpted and painted on artifacts made of pottery, basalt, copper, and ivory. The period’s impressive metal artifacts, which reflect the first known use of the “lost wax” technique for casting of copper, attest to the extraordinary technical skill of the people of this period.

The distinctive cultural characteristics of the Late Chalcolithic period in the Levant (often related to the Ghassulian culture, although this term is not in practice applied to the Galilee region where this study is based) have few stylistic links to the earlier or later material cultures of the region, which has led to extensive debate about the origins of the people who made this material culture. One hypothesis is that the Chalcolithic culture in the region was spread in part by immigrants from the north (i.e., northern Mesopotamia), based on similarities in artistic designs. Others have suggested that the local populations of the Levant were entirely responsible for developing this culture, and that any similarities to material cultures to the north are due to borrowing of ideas and not to movements of people.

Previous genome-wide ancient DNA studies from the Near East have revealed that at the time when agriculture developed, populations from Anatolia, Iran, and the Levant were approximately as genetically differentiated from each other as present-day Europeans and East Asians are today. By the Bronze Age, however, expansion of different Near Eastern agriculturalist populations — Anatolian, Iranian, and Levantine — in all directions and admixture with each other substantially homogenized populations across the region, thereby contributing to the relatively low genetic differentiation that prevails today. Showed that the Levant Bronze Age population from the site of ‘Ain Ghazal, Jordan (2490–2300 BCE) could be fit statistically as a mixture of around 56% ancestry from a group related to Levantine Pre-Pottery Neolithic agriculturalists (represented by ancient DNA from Motza, Israel and ‘Ain Ghazal, Jordan; 8300–6700 BCE) and 44% related to populations of the Iranian Chalcolithic (Seh Gabi, Iran; 4680–3662 calBCE). Suggested that the Canaanite Levant Bronze Age population from the site of Sidon, Lebanon (~1700 BCE) could be modeled as a mixture of the same two groups albeit in different proportions (48% Levant Neolithic-related and 52% Iran Chalcolithic-related). However, the Neolithic and Bronze Age sites analyzed so far in the Levant are separated in time by more than three thousand years, making the study of samples that fill in this gap, such as those from Peqi’in, of critical importance.

This procedure produced genome-wide data from 22 ancient individuals from Peqi’in Cave (4500–3900 calBCE) (…)


We find that the individuals buried in Peqi’in Cave represent a relatively genetically homogenous population. This homogeneity is evident not only in the genome-wide analyses but also in the fact that most of the male individuals (nine out of ten) belong to the Y-chromosome haplogroup T, a lineage thought to have diversified in the Near East. This finding contrasts with both earlier (Neolithic and Epipaleolithic) Levantine populations, which were dominated by haplogroup E, and later Bronze Age individuals, all of whom belonged to haplogroup J.

Detailed sample background data for each of the 22 samples from which we successfully obtained ancient DNA. Additionally, background information for all samples from Peqi’in that were screened is included in Supplementary Data 1. *Indicates that Y-chromosome haplogroup call should be interpreted with caution, due to low coverage data.

Our finding that the Levant_ChL population can be well-modeled as a three-way admixture between Levant_N (57%), Anatolia_N (26%), and Iran_ChL (17%), while the Levant_BA_South can be modeled as a mixture of Levant_N (58%) and Iran_ChL (42%), but has little if any additional Anatolia_N-related ancestry, can only be explained by multiple episodes of population movement. The presence of Iran_ChL-related ancestry in both populations – but not in the earlier Levant_N – suggests a history of spread into the Levant of peoples related to Iranian agriculturalists, which must have occurred at least by the time of the Chalcolithic. The Anatolian_N component present in the Levant_ChL but not in the Levant_BA_South sample suggests that there was also a separate spread of Anatolian-related people into the region. The Levant_BA_South population may thus represent a remnant of a population that formed after an initial spread of Iran_ChL-related ancestry into the Levant that was not affected by the spread of an Anatolia_N-related population, or perhaps a reintroduction of a population without Anatolia_N-related ancestry to the region. We additionally find that the Levant_ChL population does not serve as a likely source of the Levantine-related ancestry in present-day East African populations.

These genetic results have striking correlates to material culture changes in the archaeological record. The archaeological finds at Peqi’in Cave share distinctive characteristics with other Chalcolithic sites, both to the north and south, including secondary burial in ossuaries with iconographic and geometric designs. It has been suggested that some Late Chalcolithic burial customs, artifacts and motifs may have had their origin in earlier Neolithic traditions in Anatolia and northern Mesopotamia. Some of the artistic expressions have been related to finds and ideas and to later religious concepts such as the gods Inanna and Dumuzi from these more northern regions. The knowledge and resources required to produce metallurgical artifacts in the Levant have also been hypothesized to come from the north.

Our finding of genetic discontinuity between the Chalcolithic and Early Bronze Age periods also resonates with aspects of the archeological record marked by dramatic changes in settlement patterns, large-scale abandonment of sites, many fewer items with symbolic meaning, and shifts in burial practices, including the disappearance of secondary burial in ossuaries. This supports the view that profound cultural upheaval, leading to the extinction of populations, was associated with the collapse of the Chalcolithic culture in this region.

Genetic structure of analyzed individuals. a Principal component analysis of 984 present-day West Eurasians (shown in gray) with 306 ancient samples projected onto the first two principal component axes and labeled by culture. b ADMIXTURE analysis of 984 and 306 ancient samples with K = 11
ancestral components. Only ancient samples are shown


I think the most interesting aspect of this paper is – as usual – the expansion of peoples associated with a single Y-DNA haplogroup. Given that the expansion of Semitic languages in the Middle East – like that of Anatolian languages from the north – must have happened after ca. 3100 BC, coinciding with the collapse of the Uruk period, these Chalcolithic north Levant peoples are probably not related to the posterior Semitic expansion in the region. This can be said to be supported by their lack of relationship with posterior Levantine migrations into Africa. The replacement of haplogroup E before the arrival of haplogroup J suggests still more clearly that Natufians and their main haplogroup were not related to the Afroasiatic expansions.

Distribution of Semitic languages. From Wikipedia.

On the other hand, while their ancestry points to neighbouring regional origins, their haplogroup T1a1a (probably T1a1a1b2) may be closely related to that of other Semitic peoples to the south, as found in east Africa and Arabia. This may be due either to a northern migration of these Chalcolithic Levantine peoples from southern regions in the 5th millennium BC, or maybe to a posterior migration of Semitic peoples from the Levant to the south, coupled with the expansion of this haplogroup, but associated with a distinct population. As we know, ancestry can change within certain generations of intense admixture, while Y-DNA haplogroups are not commonly admixed in prehistoric population expansions.

Without more data from ancient DNA, it is difficult to say. Haplogroup T1a1 is found in Morocco (ca. 3780-3650 calBC), which could point to a recent expansion of a Berbero-Semitic branch; but also in a sample from Balkans Neolithic ca. 5800-5400 calBCE, which could suggest an Anatolian origin of the specific subclades encountered here. In any case, a potential origin of Proto-Semitic anywhere near this wide Near Eastern region ca. 4500-3500 BC cannot be discarded, knowing that their ancestors came probably from Africa.

Distribution of haplogroup T of Y-chromosome. From Wikipedia.

Interesting from this paper is also that we are yet to find a single prehistoric population expansion not associated with a reduction of variability and expansion of Y-DNA haplogroups. It seems that the supposedly mixed Yamna community remains the only (hypothetical) example in history where expanding patrilineal clans will not share Y-DNA haplogroup…


Recent Africa origin with hybridization, and back to Africa 70,000 years ago


Open access Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago, by Cabrera et al. BMC Evol Biol (2018) 18(98).

Abstract (emphasis mine):


The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya.


The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers.


These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis.


You can also read the recent interesting open access review How did Homo sapiens evolve? by Julia Galway-Witham, Chris Stringer, Science (2018) 360:6395 1296-1298.


R1b-V88 migration through Southern Italy into Green Sahara corridor, and the Afroasiatic connection


Open access article The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages, by D’Atanasio, Trombetta, Bonito, et al., Genome Biology (2018) 19:20.


Little is known about the peopling of the Sahara during the Holocene climatic optimum, when the desert was replaced by a fertile environment.

In order to investigate the role of the last Green Sahara in the peopling of Africa, we deep-sequence the whole non-repetitive portion of the Y chromosome in 104 males selected as representative of haplogroups which are currently found to the north and to the south of the Sahara. We identify 5,966 mutations, from which we extract 142 informative markers then genotyped in about 8,000 subjects from 145 African, Eurasian and African American populations. We find that the coalescence age of the trans-Saharan haplogroups dates back to the last Green Sahara, while most northern African or sub-Saharan clades expanded locally in the subsequent arid phase.

Our findings suggest that the Green Sahara promoted human movements and demographic expansions, possibly linked to the adoption of pastoralism. Comparing our results with previously reported genome-wide data, we also find evidence for a sex-biased sub-Saharan contribution to northern Africans, suggesting that historical events such as the trans-Saharan slave trade mainly contributed to the mtDNA and autosomal gene pool, whereas the northern African paternal gene pool was mainly shaped by more ancient events.

Maximum parsimony Y chromosome tree and dating of the four trans-Saharan haplogroups. a Phylogenetic relations among the 150 samples analysed here. Each haplogroup is labelled in a different colour. The four Y sequences from ancient samples are marked by the dagger symbol. b Phylogenetic tree of the four trans-Saharan haplogroups, aligned to the timeline (at the bottom). At the tip of each lineage, the ethno-geographic affiliation of the corresponding sample is represented by a circle, coloured according to the legend (bottom left). The last Green Sahara period is highlighted by a green belt in the background

Also, interesting excerpts:

The fertile environment established in the Green Sahara probably promoted demographic expansions and rapid dispersals of the human groups, as suggested by the great homogeneity in the material culture of the early Holocene Saharan populations [62]. Our data for all the four trans-Saharan haplogroups are consistent with this scenario, since we found several multifurcated topologies, which can be considered as phylogenetic footprints of demographic expansions. The multifurcated structure of the E-M2 is suggestive of a first demographic expansion, which occurred about 10.5 kya, at the beginning of the last Green Sahara (Fig. 2; Additional file 2: Figure S4). After this initial expansion, we found that most of the trans-Saharan lineages within A3-M13, E-M2 and R-V88 radiated in a narrow time interval at 8–7 kya, suggestive of population expansions that may have occurred in the same time (Fig. 2; Additional file 2: Figures S3, S4 and S6). Interestingly, during roughly the same period, the Saharan populations adopted pastoralism, probably as an adaptive strategy against a short arid period [1, 62, 63]. So, the exploitation of pastoralism resources and the reestablishment of wetter conditions could have triggered the simultaneous population expansions observed here. R-V88 also shows signals of a further and more recent (~ 5.5 kya) Saharan demographic expansion which involved the R-V1589 internal clade. We observed similar demographic patterns in all the other haplogroups in about the same period and in different geographic areas (A3-M13/V3, E-M2/V3862 and E-M78/V32 in the Horn of Africa, E-M2/M191 in the central Sahel/central Africa), in line with the hypothesis that the start of the desertification may have caused massive economic, demographic and social changes [1].

Finally, the onset of the arid conditions at the end of the last African humid period was more abrupt in the eastern Sahara compared to the central Sahara, where an extensive hydrogeological network buffered the climatic changes, which were not complete before ~ 4 kya [6, 62, 64]. Consistent with these local climatic differences, we observed slight differences among the four trans-Saharan haplogroups. Indeed, we found that the contact between northern and sub-Saharan Africa went on until ~ 4.5 kya in the central Sahara, where we mainly found the internal lineages of E-M2 and R-V88 (Additional file 2: Figures S4 and S6). In the eastern Sahara, we found a sharper and more ancient (> 5 kya) differentiation between the people from northern Africa (and, more generally, from the Mediterranean area) and the groups from the eastern sub-Saharan regions (mainly from the Horn of Africa), as testified by the distribution and the coalescence ages of the A3-M13 and E-M78 lineages (Additional file 2: Figures S3 and S5).

Time estimates and frequency maps of the four trans-Saharan haplogroups and major sub-clades. a Time estimates of the four trans-Saharan clades and their main internal lineages. To the left of the timeline, the time windows of the main climatic/historical African events are reported in different colours (legend in the upper left). b Frequency maps of the main trans-Saharan clades and sub-clades. For each map, the relative frequencies (percentages) are reported to the right

R-V88 has been observed at high frequencies in the central Sahel (northern Cameroon, northern Nigeria, Chad and Niger) and it has also been reported at low frequencies in northwestern Africa [37]. Outside the African continent, two rare R-V88 sub-lineages (R-M18 and R-V35) have been observed in Near East and southern Europe (particularly in Sardinia)[30, 37, 38, 39]. Because of its ethno-geographic distribution in the central Sahel, R-V88 has been linked to the spread of the Chadic branch of the Afroasiatic linguistic family [37, 40].

(…) the R-V88 lineages date back to 7.85 kya and its main internal branch (branch 233) forms a “star-like” topology (“Star-like” index = 0.55), suggestive of a demographic expansion. More specifically, 18 out of the 21 sequenced chromosomes belong to branch 233, which includes eight sister clades, five of which are represented by a single subject. The coalescence age of this sub-branch dates back to 5.73 kya, during the last Green Sahara period. Interestingly, the subjects included in the “star-like” structure come from northern Africa or central Sahel, tracing a trans-Saharan axis. It is worth noting that even the three lineages outside the main multifurcation (branches 230, 231 and 232) are sister lineages without any nested sub-structure. The peculiar topology of the R-V88 sequenced samples suggests that the diffusion of this haplogroup was quite rapid and possibly triggered by the Saharan favourable climate (Fig. 2b).

One of the theories I proposed in the Indo-European demic diffusion model since the first edition – based mainly on phylogeography – is that R1b-V88 lineages had probably crossed the Mediterranean through southern Italy into a Green Sahara region, and distributed from there throuh important green corridors, humid areas between megalakes. Even though this new study – like the rest of them – is based solely on modern samples, and as such is quite prone to error in assessing ancient distributions – as we have seen in Europe -, it seems that a southern Italian route (probably through Sicily) for R1b-V88 and a late expansion through Green Sahara is more and more likely.

If we accept that the migration of R1b-V88 lineages is the last great expansion through a Green Sahara, then this expansion is a potential candidate for the initial Afroasiatic expansion – whereas older haplogroup expansions would represent languages different than Afroasiatic, and more recent haplogroup expansions would represent subsequent expansions of Afroasiatic dialects, like Semitic, Hamitic, Cushitic, or Chadic – as I explained in an older post.

In absolutely shameless speculative terms, then – as is today common in Genetic studies, by the way, so let’s all have some fun here – instead of some sort of R1b/Eurasiatic continuity in Europe, as some autochthonous continuists would like, this could mean that there would be an old Afroasiatic – R1b connection. That would imply:

NOTE. Regarding the contribution of CHG ancestry in the Pontic-Caspian steppe cultures, it is usually explained as caused by exogamy, or by absorption of a previous population (as in the Indo-Iranian case), although a contribution of communities of mainly J subclades to the formation of Neolithic steppe cultures cannot be ruled out. As for some autochthonous continuists’ belief in some sort of mythical mixed steppe people with mixed haplogroups and mixed language, well…

Simple Nostratic tree by Bomhard (2008)

The Pre-Indo-European linguistic situation, before the formation of Neolithic steppe cultures, seems like pure speculation, because a) language macro-families (with the exception of Afroasiatic) are highly speculative, b) sound anthropological models are lacking for them, and c) migrations inferred from haplogroup distributions of modern populations are often incorrect:

  • Haplogroup R could then be argued to be the source of Nostratic, and earlier subclades the source of Starostin’s Borean, given the distribution of its subclades in Asia and the timing of their migrations.
  • But of course one could also argue that, given the comparatively late population expansions that Genomics is showing, supporting Western European linguistic schools – where Russian Nostraticists tend to date languages further back in timeR1b (and not R) expansion could be the marker of Nostratic languages, due to its most likely southern path (and their old subclades found in Iran and the Caucasus), which would be more in line with the wet dreams of Europeans proposing R1b autochthonous continuity theories. I like this option far less because of that, but it cannot be ruled out.

If you have read this blog before, you know I profoundly dislike lexicostatistical and glottochronological methods, and I don’t like mass comparisons either. Whereas these methods pretend to apply mathematics to big (raw) data where there is almost no knowledge of what one is doing, comparative grammar applies complex reasoning where there is a lot of partially processed data.

But, it is always fun to ask “what if they were right?” and follow from there…

See also:

Expansion of peoples associated with spread of haplogroups: Mongols and C3*-F3918, Arabs and E-M183 (M81)


The expansion of peoples is known to be associated with the spread of a certain admixture component, joint with the expansion and reduction in variability of a haplogroup. In other words, few male lineages are usually more successful during the expansion.

Known examples include:

Two recent interesting papers add prehistoric cases of potential expansion of cultures associated with haplogroups:

1. Whole Y-chromosome sequences reveal an extremely recent origin of the most common North African paternal lineage E-M183 (M81), by Solé-Morata et al., Scientific Reports (2017).


E-M183 (E-M81) is the most frequent paternal lineage in North Africa and thus it must be considered to explore past historical and demographical processes. Here, by using whole Y chromosome sequences from 32 North African individuals, we have identified five new branches within E-M183. The validation of these variants in more than 200 North African samples, from which we also have information of 13 Y-STRs, has revealed a strong resemblance among E-M183 Y-STR haplotypes that pointed to a rapid expansion of this haplogroup. Moreover, for the first time, by using both SNP and STR data, we have provided updated estimates of the times-to-the-most-recent-common-ancestor (TMRCA) for E-M183, which evidenced an extremely recent origin of this haplogroup (2,000–3,000 ya). Our results also showed a lack of population structure within the E-M183 branch, which could be explained by the recent and rapid expansion of this haplogroup. In spite of a reduction in STR heterozygosity towards the West, which would point to an origin in the Near East, ancient DNA evidence together with our TMRCA estimates point to a local origin of E-M183 in NW Africa.

Distribution of E-M183 subclades among North Africa, the Near East and the Iberian Peninsula. Pie chart sectors areas are proportional to haplogroup frequency and are coloured according to haplogroup in the schematic tree to the right. n: sample size. Map was generated using R software.

An interesting excerpt, from the discussion:

Regarding the geographical origin of E-M183, a previous study suggested that an expansion from the Near East could explain the observed east-west cline of genetic variation that extends into the Near East. Indeed, our results also showed a reduction in STR heterozygosity towards the West, which may be taken to support the hypothesis of an expansion from the Near East. In addition, previous studies based on genome-wide SNPs reported that a North African autochthonous component increase towards the West whereas the Near Eastern decreases towards the same direction, which again support an expansion from the Near East. However, our correlations should be taken carefully because our analysis includes only six locations on the longitudinal axis, none from the Near East. As a result, we do not have sufficient statistical power to confirm a Near Eastern origin. In addition, rather than showing a west-to-east cline of genetic diversity, the overall picture shown by this correlation analysis evidences just low genetic diversity in Western Sahara, which indeed could be also caused by the small sample size (n = 26) in this region. Alternatively, given the high frequency of E-M183 in the Maghreb, a local origin of E-M183 in NW Africa could be envisaged, which would fit the clear pattern of longitudinal isolation by distance reported in genome-wide studies. Moreover, the presence of autochthonous North African E-M81 lineages in the indigenous population of the Canary Islands, strongly points to North Africa as the most probable origin of the Guanche ancestors. This, together with the fact that the oldest indigenous inviduals have been dated 2210 ± 60 ya, supports a local origin of E-M183 in NW Africa. Within this scenario, it is also worth to mention that the paternal lineage of an early Neolithic Moroccan individual appeared to be distantly related to the typically North African E-M81 haplogroup30, suggesting again a NW African origin of E-M183. A local origin of E-M183 in NW Africa > 2200 ya is supported by our TMRCA estimates, which can be taken as 2,000–3,000, depending on the data, methods, and mutation rates used.

The TMRCA estimates of a certain haplogroup and its subbranches provide some constraints on the times of their origin and spread. Although our time estimates for E-M78 are slightly different depending on the mutation rate used, their confidence intervals overlap and the dates obtained are in agreement with those obtained by Trombetta et al Regarding E-M183, as mentioned above, we cannot discard an expansion from the Near East and, if so, according to our time estimates, it could have been brought by the Islamic expansion on the 7th century, but definitely not with the Neolithic expansion, which appeared in NW Africa ~7400 BP and may have featured a strong Epipaleolithic persistence. Moreover, such a recent appearance of E-M183 in NW Africa would fit with the patterns observed in the rest of the genome, where an extensive, male-biased Near Eastern admixture event is registered ~1300 ya, coincidental with the Arab expansion. An alternative hypothesis would involve that E-M183 was originated somewhere in Northwest Africa and then spread through all the region. Our time estimates for the origin of this haplogroup overlap with the end of the third Punic War (146 BCE), when Carthage (in current Tunisia) was defeated and destroyed, which marked the beginning of Roman hegemony of the Mediterranean Sea. About 2,000 ya North Africa was one of the wealthiest Roman provinces and E-M183 may have experienced the resulting population growth.

2. The Y-chromosome haplogroup C3*-F3918, likely attributed to the Mongol Empire, can be traced to a 2500-year-old nomadic group, by Zhang et al., Journal of Human Genetics (2017)


The Mongol Empire had a significant role in shaping the landscape of modern populations. Many populations living in Eurasia may have been the product of population mixture between ancient Mongolians and natives following the expansion of Mongol Empire. Geneticists have found that most of these populations carried the Y-haplogroup C3* (C-M217). To trace the history of haplogroup (Hg) C3* and to further understand the origin and development of Mongolians, ancient human remains from the Jinggouzi, Chenwugou and Gangga archaeological sites, which belonged to the Donghu, Xianbei and Shiwei, respectively, were analysed. Our results show that nine of the eleven males of the Gangga site, two of the eight males of Chengwugou site and all of the twelve males of Jinggouzi site were found to have mutations at M130 (Hg C), M217 (Hg C3), L1373 (C2b, ISOGG2015), with the absence of mutations at M93 (Hg C3a), P39 (Hg C3b), M48 (Hg C3c), M407 (Hg C3d) and P62 (Hg C3f). These samples were attributed to the Y-chromosome Hg C3* (Hg C2b, ISOGG2015), and most of them were further typed as Hg C2b1a based on the mutation at F3918. Finally, we inferred that the Y-chromosome Hg C3*-F3918 can trace its origins to the Donghu ancient nomadic group.

The development of Mongolia and the frequencies of haplogroup C3* in modern Eurasians. a The development of Mongolia. b The frequencies of haplogroup C3 in modern Eurasians. The dotted line represents the approximate boundary between the Xiongnu and the Donghu. The black and grey arrows denote the migration of the Donghu and Mongolians, respectively

Featured image: Diachronic map of Iron Age migrations ca. 750-250 BC.