Biparental inheritance of mitochondrial DNA in humans


New paper Biparental Inheritance of Mitochondrial DNA in Humans, by Luo et al. PNAS (2018).

Interesting excerpts (emphasis mine):


Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent tooffspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.

An example

Compared with Family A, a strikingly similar mtDNA transmission pattern was demonstrated in Families B and C. Taking Family B for illustration, II-3 having 29 heteroplasmic and seven homoplasmic variants should have inherited mtDNA from both his father (I-1, haplogroup of K1b2a) and his mother (I-10, haplogroup of H), who were supposed to possess 34 and nine homoplasmic variants, respectively. II-3 further transmitted his mtDNA that he inherited from I-1 to his son (III-2), who also inherited all of his mother’s mtDNA (II-30, carrying 34 variants and a haplogroup of T2a1a). However, III-2’s sister (III-1) and half-brother (III-5) only inherited the maternal mtDNA. Fresh blood sampling and repeated mtDNA sequencing in a second independent laboratory were also performed to rule out the possibility of sample mix-up for III-2 (III-2, column F-G and H-I). Additionally, these samples were further verified using Pacific Bio single molecular sequencing (see Materials and Methods) and by restriction fragment length polymorphism (RFLP) analysis of Family A, and these results were fully consistent with the previous sequencing.

Biparental mtDNA inheritance pattern shown in Family B. (A) Pedigree of Family B. The black filled symbols indicate the two family members (II-3 and III-2) showing biparental mtDNA transmission. The IDs of five family members tested by whole mtDNA sequencing analysis have been underlined in the pedigree. (B) Schematic of the mtDNA genotype defined by the homoplasmic and/or heteroplasmic variants aligned from the reference mitochondrial genome. Blue bars represent the genotype of paternally derived mtDNA, whereas purple-red and orange-red bars represent maternally derived mtDNA. Entries labeled (D) represent deduced mtDNA genotypes. (C) Summary of the haplogroup and mtDNA variant numbers in Family B.

A Resurgence of the Paternal Transmission Hypothesis

The results presented in this paper make a robust case for paternal transmission of mtDNA. Here, we report biparental mtDNA inheritance (either directly or indirectly) in 17 members in three multigeneration families. Thirteen of these individuals were identified directly by sequencing of the mitochondrial genome, whereas four could be inferred based on preexisting maternal heteroplasmy caused by biparental inheritance in the previous generation.

To further confirm these remarkable results and to exclude the possibility of sample mix-up and/or contamination, the whole mtDNA sequencing procedure was repeated independently in at least two different laboratories by different laboratory technicians with newly obtained blood samples. All results were reproducible, indicating no artifacts or contamination exist. More importantly, the multiple mtDNA variants that were paternally transmitted differ in both number and position among each of these three families as well as the related haplogroup (R0a1 in Family A, K1b2a in Family B, and K2b1a1a in Family C, respectively), providing two distinct forms of evidence supporting transmission of the paternal mtDNA.

Therefore, we have unequivocally demonstrated the existence of biparental mtDNA inheritance as evidenced by the high number and level of mtDNA heteroplasmy in these three unrelated multigeneration families. Most interestingly, the mixed haplogroups in these samples are very reminiscent of the mixed haplogroups found in the 20 studies that were dismissed by Bandelt et al. as due to contamination or sample mix-up. One is forced to wonder how many other instances of individuals with biparental mtDNA inheritance have been dismissed as technical errors, and whether Schwartz and Vissing’s original discovery has really been given the proper follow-up that it deserves. We suspect that these results will initiate a broader reassessment of the topic.

We propose that the paternal mtDNA transmission in these families should be accompanied by segregation of a mutation in one nuclear gene involved in paternal mitochondrial elimination and that there is a high probability that the gene in question operates through one of the pathways identified above.

If I have to be honest, I was stuck with the paternal transmission hypothesis which we were taught in class long ago. I didn’t know it was controversial or dismissed, I just thought it was really exceptional, and I never thought about learning more on the subject.

This paper proves it may be more complicated than that, especially for population genomics purposes, because biparental mtDNA transmission with autosomal dominant-like inheritance puts a serious barrier to a general, simplistic interpretation of mtDNA.

I don’t think it is a blow to all interpretations based on mtDNA, though, because the traditional interpretation should often work statistically. However, one has to be always very careful when saying “if it’s mtDNA from region X, it’s about female exogamy”, especially when samples are from neighbouring regions and similar periods.

The term “uniparental marker” for mtDNA is obviously misleading and shouldn’t be used, and many research papers and interpretations taking mtDNA as strictly uniparental should be taken with a pinch of salt.


The Iron Age expansion of Southern Siberian groups and ancestry with Scythians


Maternal genetic features of the Iron Age Tagar population from Southern Siberia (1st millennium BC), by Pilipenko et al. (2018).

Interesting excerpts (emphasis mine):

The positions of non-Tagar Iron Age groups in the MDS plot were correlated with their geographic position within the Eurasian steppe belt and with frequencies of Western and Eastern Eurasian mtDNA lineages in their gene pools. Series from chronological Tagar stages (similar to the overall Tagar series) were located within the genetic variability (in terms of mtDNA) of Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables). Specifically, the Early Tagar series was more similar to western nomads (North Pontic Scythians), while the Middle Tagar was more similar to the Southern Siberian populations of the Scythian period. The Late Tagar group (Tes`culture) belonging to the Early Xiongnu period had the “western-most” location on the MDS plot with the maximal genetic difference from Xiongnu and other eastern nomadic groups (but see Discussion concerning the low sample size for the Tes`series).

In a comparison of our Tagar series with modern populations in Eurasia, we detected similarity between the Tagar group and some modern Turkic-speaking populations (with the exception of the Indo-Iranian Tajik population) (Fig 7; S2 Table). Among the modern Turkic-speaking groups, populations from the western part of the Eurasian steppe belt, such as Bashkirs from the Volga-Ural region and Siberian Tatars from the West Siberian forest-steppe zone, were more similar to the Tagar group than modern Turkic-speaking populations of the Altay-Sayan mountain system (including the Khakassians from the Minusinsk basin) (Fig 7).

Location of Tagar archaeological sites from which samples for this study were obtained. Burial grounds: 1—Novaya Chernaya-1; 2—Podgornoe Ozero, Barsuchiha-1, Barsuchiha-6, Barsuchiha-7; 3—Perevozinskiy; 4—Ulug-Kyuzyur, Kichik-Kyuzyur, Sovetskaya Khakassiya; 5—Tepsey-3, Tepsey-8, Tepsey-9; 6—Dolgiy Kurgan.

Mitochondrial DNA diversity and genetic relationships of the Tagar population

Our results are not inconsistent with the assumption of a probable role of gene flow due to the migration from Western Eurasia to the Minusinsk basin in the Bronze Age in the formation of the genetic composition of the Tagar population. Particularly, we detected many mtDNA lineages/clusters with probable West Eurasian origin that were dominant in modern populations of different parts of Europe, Caucasus, and the Near East (such as K and HV6) in our Tagar series based on a phylogeographic analysis.

We detected relatively low genetic distances between our Tagar population and two Bronze Age populations from the Minusinsk basin—the Okunevo culture population (pre-Andronovo Bronze Age) and Andronovo culture population, followed by Afanasievo population from the Minusinsk Basin and Middle Bronze Age population from the Mongolian Altai Mountains (the region adjacent to the Minusinsk basin) (Figs 3 and 6; S3 and S5 Tables). Among West Eurasian part of our Tagar series we also observed haplogroups/sub-haplogroups and haplotypes shared with Early and Middle Bronze Age populations from Minusinsk Basin and western part of Eurasian steppe belt (Fig 4; S5 Table). Thus, our results suggested a potentially significant role of the genetic components, introduced by migrants from Western Eurasia during the Bronze Age, in the formation of the genetic composition of the Tagar population. It is necessary to note the relatively small size of available mtDNA samples from the Bronze Age populations of Minusinsk basin; accordingly, additional mtDNA data for these populations are required to further confirm our inference.

Phylogenetic tree of mtDNA lineages from the Tagar population. Color coding of the Tagar stages: orange—the Early Tagar stage; blue—the Middle Tagar Stage; green—the Late Tagar stage. Color of haplogroup labels: yellow—for Western Eurasian haplogroups; red—for Eastern Eurasian haplogroups.

Another substantial part of the mtDNA pool of the Tagar and other eastern populations of the Scythian World is typical of populations in Southern Siberia and adjacent regions of Central Asia (autochthonous Central Asian mtDNA clusters). Most of these components belong to the East Eurasian cluster of mtDNA haplogroups. Moreover, the role of each of these components in the formation of the genetic composition of subsequent (to the present) populations in South Siberia and Central Asia could be very different. In this regard, cluster C4a2a (and its subcluster C4a2a1), and haplogroup A8 are of particular interest.

Genetic features of successive Tagar groups

We compared successive Tagar groups (Early, Middle, and Late Tagar) with each other and with other Iron Age nomadic populations to evaluate changes in the mtDNA pool structure. Despite the genetic similarity between the Early and Middle Tagar series and Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables), there were some peculiarities. For example, the Early Tagar series was more similar to North Pontic Classic Scythians, while the Middle Tagar samples were more similar to the Southern Siberian populations of the Scythian period (i.e., completely synchronous populations of regions neighboring the Minusinsk basin, such as the Pazyryk population from the Altay Mountains and Aldy-Bel population from Tuva).

We observed differences in the mtDNA pool structure between the Early and the Middle chronological stages of the Tagar culture population, as evidenced by the change in the ratio of Western to Eastern Eurasian mtDNA components. The contribution of Eastern Eurasian lineages increased from about one-third (34.8%) in the Early Tagar group to almost one-half (45.8%) in the Middle Tagar group.

Results of multidimensional scaling based on matrix of Slatkin population differentiation (FST) according to frequencies of mtDNA haplogroup in Tagar populations and modern populations of Eurasia. Populations: Tagar (red pentagon) (this study); Mongolian-speaking populations: Khamnigans (Buryat Republic, Russia) [43]; Barghuts (Inner Mongolia, China) [44]; Buryats (Buryat Republic, Southern Siberia, Russia) [43]; Mongols (Mongolia) [45]. Turkic-speaking populations: Tuvinians (Tuva Republic, Russia) [43]; Tofalars (Irkutsk region, Russia) [46]; Altai-Kizhi ((Altai Republic, Russia) [43, 47]; Telenghits (Altai Republic, Russia) [43,47]; Tubalars (Altai Republic) [48]; Shors (Kemerovo region, Russia) [43, 47]; Khakassians (Khakassian Rupublic, Russia) [43, 46]; Altaian Kazakhs (Altai Republic) [49]; Kazakhs (Kazakhstan, Uzbekistan) [50, 51]; Kirghiz (Kyrgyzstan) [50, 51]; Uighurs (Kazakhstan and Xinjiang) [50, 52]; Siberian Tatars (Tyumen and Omsk regions, Russia) [53]; Tatars (Volga-Ural rigion, Russia) [54]; Bashkirs (Volga-Ural region, Russia) [55]; Uzbeks (Uzbekistan) [51, 56]; Turkmens (Turkmenistan) [51, 56]; Nogays [57]; Turkeys [58]; other populations: Evenks [43, 46]; Ulchi [59]; Koreans (South Korea) [43]; Han Chinese [60]; Zhuang (Guangxi, China) [61]; Tadjiks (Tadjikistan) [43, 51]; Iranians [60]; Russians [62].

At the level of mtDNA haplogroups, we detected a decrease in the diversity of phylogenetic clusters during the transition from the Early Tagar to the Middle Tagar. This decline in diversity equally affected the West Eurasian and East Eurasian components of the Tagar mtDNA pool. It should be noted that this decrease can be partially explained by the smaller number of Middle Tagar than Early Tagar samples. Under a simple binomial approximation the mtDNA clusters, observed at frequencies of 6.3% and 11.7%, could be lost by chance in our Early (N = 46) and Middle (N = 24) Tagar samples, respectively. However, the simultaneous lack of several such clusters, with a total frequency in the gene pool of the Early group of 34.8%, is unlikely.

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian-like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains. We did not obtain strong evidence for an intensification of genetic contact between the population of the Minusinsk basin and the Altai Mountains in the Middle Tagar period compared with the Early Tagar period. Although, several archaeologists have found evidence for the intensification of contact at the level of material culture, namely, a cultural influence of the population of the Altai Mountains (represented by the Pazyryk population) on the population of the Minusinsk basin (the Saragash Tagar group) [6, 71, 72].

Another important issue is the change in the genetic structure of the Tagar population during the transition from the Middle (Saragash) to the Late (Tes`) stage. The Late Tagar stage refers to the Xiongnu period. Many archaeologists suggest that the formation of the Tes`stage involved the direct cultural influence of the Xiongnu and/or related groups of nomads from more eastern regions of Central Asia [71, 73]. Some archaeologists have even suggested renaming the Tes`stage in the Tes`culture [71], emphasizing the role of new eastern cultural elements. If this influence also existed at the genetic level, then we would expect to observe new genetic elements in the Tes`gene pool, particularly those of East Eurasian origin.

Siberian ancestry

Just a reminder of the recent session in ISBA 8 on expanding Scythians (and also Mongolians and Turks) spreading Siberian ancestry, usually (wrongly) identified as “Uralic-Yeniseian” based on modern populations (similar to how steppe ancestry is wrongly identified as “Indo-European”), see the following graphic including the Tagar population:

Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

And also the poster by Alexander M. Kim et al. Yeniseian hypotheses in light of genome-wide ancient DNA from historical Siberia:

The relevance of ancient DNA data to debates in historical linguistics is an emphatic strand in much recent work on the archaeogenetics of Eurasia, where the discussion has focused heavily on Indo-European (Haak et al. 2015; Narasimhan et al. 2018; de Barros Damgaard et al. 2018a,b). We present new genome-wide ancient DNA data from a historical Siberian individual in relation to Yeniseian, an isolated language “microfamily” (Vajda 2014) that nonetheless sits at the center of numerous controversial proposals in historical linguistics and cultural interaction. Yeniseian’s sole surviving representative is Ket, a critically endangered language fluently spoken by only a few dozen individuals near the Middle Yenisei River of Central Siberia.

In strong contrast to the present-day picture, river names and argued substrate influences and loanwords in languages outside the current range of Yeniseian, as well as direct records from the Russian colonial period, indicate that speakers of extinct Yeniseian languages had a formerly much broader presence in the taiga of Central Siberia as well as further south in the mountainous Altai-Sayan region – and perhaps even further afield in Inner Asia (Vajda 2010; Gorbachov 2017; Blažek 2016). The consilience of these proposals with genetic data is not straightforward (Flegontov et al. 2015, 2017) and faces a major obstacle in the lack of genetic information from verifiable speakers of Yeniseian languages other than the Kets, who have had complex ongoing interactions with speakers of non-Yeniseian languages such as the Samoyedic Selkups. We attempt to remedy this with new historical Siberian aDNA data, orienting our search for common denominators and systematic difference in a broader landscape of concordance, discordance, and uncertainty at the interface of diachronic linguistics and genetics.


Global demographic history inferred from mitogenomes

Open access Global demographic history of human populations inferred from whole mitochondrial genomes, by Miller, Manica, and Amos, Royal Society Open Science (2018).

Relevant excerpts (emphasis mine):


The Phase 3 sequence data from 20 populations, comprising five populations for each of the four main geographical regions of Europe, East Asia, South Asia and Africa, were downloaded from the 1000 Genomes Project website (, [8]), including whole mitochondrial genome data for 1999 individuals. We decided not to analyse populations from the Americas due to the region’s complex history of admixture [13,14].

The European populations were as follows: Finnish sampled in Finland (FIN); European Caucasians resident in Utah, USA (CEU); British in England and Scotland (GBR); an Iberian population from Spain (IBS) and Toscani from Italy (TSI). Representing East Asia were the Han Chinese in Beijing (CHB); Southern Han Chinese (CHS); Dai Chinese from Xishuangbanna, China (CDX); Kinh population from Ho Chi Minh City, Vietnam (KHV) and Japanese from Tokyo (JPT). The South Asian populations were Punjabi Indians from Lahore, Pakistan (PJL); Gujarati Indians in Houston, USA (GIH) as well as Indian Telugu sampled in the UK (ITU); Bengali from Bangladesh (BEB) and Sri Lankan Tamil from the UK (STU). (…)


We analysed our mtDNA data with the extended Bayesian skyline plot (EBSP) method, a Bayesian, non-parametric technique for inferring past population size fluctuations from genetic data. Building on the previous Bayesian skyline plot (BSP) approach, EBSP uses a piecewise-linear model and Markov chain Monte Carlo (MCMC) methods to reconstruct a populations’ demographic history [17] and is implemented in the software package BEAST v. 2.3.2 [11]. Alignments for each of the 20 populations were loaded separately into the Bayesian Evolutionary Analysis Utility tool (BEAUti v. 2.3.2) in NEXUS format.

Relationship between profile similarity and genetic distance, measured as Fst. Comparisons between regions, circles, are colour-coded: black ¼ AFR-EA; yellow ¼ AFR-EUR; blue ¼ AFR-SA; orange ¼ EUR-EA; green ¼ EA-SA; red ¼ EUR-SA. Comparisons within regions, squares, are coded: peach ¼ EUR; pink ¼ EA; dark blue ¼ EA; light blue ¼ AFR. Profile similarity is calculated as inferred size difference summed over 20 evenly spaced intervals (see Material and methods).

Regional demographic histories


The five European profiles are presented in figure 2. The four southerly populations all show profiles with a stable size up to approximately 14 ka followed by a sudden, rapid increase that becomes progressively less steep towards the present. There is also a north-south trend, with confidence intervals becoming broader towards the north, particularly for the oldest time-points. The Finnish population profile appears rather different, but this is to be expected both because it is so far north and because previous studies have identified Finns as a strong genetic outlier in Europe [19–22].

Inferred demographic histories of five European populations. Dotted line is the median estimate of Ne and the thin grey lines show the boundary of the 95% CPD interval. The x-axis represents time from the present in years and all plots are on the same scale. Map shows origins of sampled populations.

South Asia:

The five profiles for South Asia are shown in figure 3. All populations reveal a period of rapid growth approximately 45–40 ka which then slows. Near the present the two southerly populations, GIH and STU both show evidence of a decline. However, this may be due to these samples being drawn from populations no longer living on the subcontinent, with the downward trend capturing a bottleneck associated with moving to Europe/America, perhaps accentuated by the tendency for immigrant populations to group by region, religion and race [23].

Inferred South Asian population demographic histories. Dotted line is the median Ne estimate and the thin grey lines show the boundary of the 95% CPD intervals. The x-axis represents time from the present in thousands of years and all plots are on the same scale. The map shows location of sampled populations.