Ahead of the (Indo-European – Uralic) game: in theory and in numbers


There is a good reason for hope, for those who look for a happy ending to the revolution of population genomics that is quickly turning into an involution led by beliefs and personal interests. This blog is apparently one of the the most read sites on Indo-European peoples, if not the most read one, and now on Uralic peoples, too.

I’ve been checking the analytics of our sites, and judging by the numbers of the English blog, Indo-European.eu (without the other languages) is quickly turning into the most visited one from Academia Prisca‘s sites on Indo-European languages, beyond Indo-European.info (and its parent sites in other languages), which host many popular files for download.

If we take into account file downloads (like images or PDFs), and not only what Google Analytics can record, Indo-European.eu has not more users than all other websites of Academia Prisca, but at this pace it will soon reach half the total visits, possibly before the end of 2019.

Overall, we have evolved from some 10,000 users/year in 2006 to ~300,000 active users/year and >1,000,000 page+file views/year in 2018 (impossible to say exactly without spending too much time on this task). Nothing out of the ordinary, I guess, and obviously numbers are not a quality index, but rather a hint at increasing popularity of the subject and of our work.

NOTE. The mean reading time is ~2:40 m, which I guess fits the length of most posts, and most visitors read a mean of ~2+ pages before leaving, with increasing reader fidelity over time.

Number of active users of indo-european.eu, according to Google Analytics since before the start of the new blog. Notice the peaks corresponding to the posts below (except the last one, corresponding to the publication of A Song of Sheep and Horses).

The most read posts of 2018, now that we can compare those from the last quarter, are as follows:

  1. – The series on the Corded Ware-Uralic theory, with a marked increase in readers, especially with the last three posts:
    1. Finno-Permic and the expansion of N-L392/Siberian ancestry,
    2. “Siberian ancestry” and Ugric-Samoyedic expansions, and
    3. Haplogroups R1a and N in Finno-Ugric and Samoyedic
  2. Haplogroup is not language, but R1b-L23 expansion was associated with Proto-Indo-Europeans
  3. The history of the simplistic ‘haplogroup R1a — Indo-European’ association
  4. On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers
  5. On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  6. The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna
  7. Something is very wrong with models based on the so-called ‘Yamnaya admixture’ – and archaeologists are catching up (II)
  8. Olalde et al. and Mathieson et al. (Nature 2018): R1b-L23 dominates Bell Beaker and Yamna, R1a-M417 resurges in East-Central Europe during the Bronze Age
  9. Early Indo-Iranian formed mainly by R1b-Z2103 and R1a-Z93, Corded Ware out of Late PIE-speaking migrations
  10. “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

NOTE. Of course, the most recent posts are the most visited ones right now, but that’s because of the constant increase in the number of visitors.

I think it is obvious what the greatest interest of readers has been in the past two years. You can see the pattern by looking at the most popular posts of 2017, when the blog took off again:

  1. Germanic–Balto-Slavic and Satem (‘Indo-Slavonic’) dialect revisionism by amateur geneticists, or why R1a lineages *must* have spoken Proto-Indo-European
  2. The renewed ‘Kurgan model’ of Kristian Kristiansen and the Danish school: “The Indo-European Corded Ware Theory”
  3. The new “Indo-European Corded Ware Theory” of David Anthony
  4. Correlation does not mean causation: the damage of the ‘Yamnaya ancestral component’, and the ‘Future American’ hypothesis
  5. The Aryan migration debate, the Out of India models, and the modern “indigenous Indo-Aryan” sectarianism

The most likely reason for the radical increase in this blog’s readership is very simple, then: people want to know what is really happening with the research on ancestral Indo-Europeans and Uralians, and other blogs and forums are not keeping up with that demand, being content with repeating the same ideas again and again (R1a-CWC-IE, R1b-BBC-Vasconic, and N-Comb Ware-Uralic), despite the growing contradictions. As you can imagine, once you have seen the Yamna -> Bell Beaker migration model of North-West Indo-European, with Corded Ware obviously representing Uralic, you can’t unsee it.

The online bullying, personal attacks, and similar childish attempts to silence those who want to talk about this theory elsewhere (while fringe theories like R1a/CHG-OIT, R1b-Vasconic, or the Anatolian/Armenian-CHG hypotheses, to name just a few, are openly discussed) has had, as could be expected, the opposite effect to what was intended. I guess you can say this blog and our projects have profited from the first relevant Streisand effect of population genomics, big time.

If this trend continues this year (and other bloggers’ or forum users’ faith in miracles is not likely to change), I suppose that after the Yamna Hungary samples are published (with the expected results) this blog is going to be the most read in 2020 by a great margin… I can only infer that this tension is also helping raise the interest in (and politicization of) the question, hence probably the overall number of active users and their participation in other blogs and forums is going to increase everywhere in 2019, too, as this debate becomes more and more heated.

So, what I infer from the most popular posts and the numbers is that people want criticism and controversy, and if you want blood you’ve got it. Here it is, my latest addition to the successful series criticizing the “Corded Ware/R1a–Indo-European” pet theories, a post I wrote two-three months ago, slightly updated with the newest comedy, and a sure success for 2019 (already added to the static pages of the menu):

The “Indo-European Corded Ware theory” doesn’t hold water

This is how I feel when I see spikes in visits with more and more returning users linked to my controversial posts 😉

Are you not entertained?! Are you not entertained?! Is this not why you are here?!

ASoSaH Reread (II): Y-DNA haplogroups among Uralians (apart from R1a-M417)


This is mainly a reread of from Book Two: A Game of Clans of the series A Song of Sheep and Horses: chapters iii.5. Early Indo-Europeans and Uralians, iv.3. Early Uralians, v.6. Late Uralians and vi.3. Disintegrating Uralians.

“Sredni Stog”

While the true source of R1a-M417 – the main haplogroup eventually associated with Corded Ware, and thus Uralic speakers – is still not known with precision, due to the lack of R1a-M198 in ancient samples, we already know that the Pontic-Caspian steppes were probably not it.

We have many samples from the north Pontic area since the Mesolithic compared to the Volga-Ural territory, and there is a clear prevalence of I2a-M223 lineages in the forest-steppe area, mixed with R1b-V88 (possibly a back-migration from south-eastern Europe).

R1a-M459 (xR1a-M198) lineages appear from the Mesolithic to the Chalcolithic scattered from the Baltic to the Caucasus, from the Dniester to Samara, in a situation similar to haplogroups Q1a-M25 and R1b-L754, which supports the idea that R1a, Q1a, and R1b expanded with ANE ancestry, possibly in different waves since the Epipalaeolithic, and formed the known ANE:EHG:WHG cline.

Y-DNA samples from Khvalynsk and neighbouring cultures. See full version.

The first confirmed R1a-M417 sample comes from Alexandria, roughly coinciding with the so-called steppe hiatus. Its emergence in the area of the previous “early Sredni Stog” groups (see the mess of the traditional interpretation of the north Pontic groups as “Sredni Stog”) and its later expansion with Corded Ware supports Kristiansen’s interpretation that Corded Ware emerged from the Dnieper-Dniester corridor, although samples from the area up to ca. 4000 BC, including the few Middle Eneolithic samples available, show continuity of hg. I2a-M223 and typical Ukraine Neolithic ancestry.

NOTE. The further subclade R1a-Z93 (Y26) reported for the sample from Alexandria seems too early, given the confidence interval for its formation (ca. 3500-2500 BC); even R1a-Z645 could be too early. Like the attribution of the R1b-L754 from Khvalynsk to R1b-V1636 (after being previously classifed as of Pre-V88 and M73 subclade), it seems reasonable to take these SNP calls with a pinch of salt: especially because Yleaf (designed to look for the furthest subclade possible) does not confirm for them any subclade beyond R1a-M417 and R1b-L754, respectively.

The sudden appearance of “steppe ancestry” in the region, with the high variability shown by Ukraine_Eneolithic samples, suggests that this is due to recent admixture of incoming foreign peoples (of Ukraine Neolithic / Comb Ware ancestry) with Novodanilovka settlers.

The most likely origin of this population, taking into account the most common population movements in the area since the Neolithic, is the infiltration of (mainly) hunter-gatherers from the forest areas. That would confirm the traditional interpretation of the origin of Uralic speakers in the forest zone, although the nature of Pontic-Caspian settlers as hunter-gatherers rather than herders make this identification today fully unnecessary (see here).

EDIT (3 FEB 2019): As for the most common guesstimates for Proto-Uralic, roughly coinciding with the expansion of this late Sredni Stog community (ca. 4000 BC), you can read the recent post by J. Pystynen in Freelance Reconstruction, Probing the roots of Samoyedic.

Late Sredni Stog admixture shows variability proper of recent admixture of forest-steppe peoples with steppe-like population. See full version here.

NOTE. Although my initial simplistic interpretation (of early 2017) of Comb Ware peoples – traditionally identified as Uralic speakers – potentially showing steppe ancestry was probably wrong, it seems that peoples from the forest zone – related to Comb Ware or neighbouring groups like Lublyn-Volhynia – reached forest-steppe areas to the south and eventually expanded steppe ancestry into east-central Europe through the Volhynian Upland to the Polish Upland, during the late Trypillian disintegration (see a full account of the complex interactions of the Final Eneolithic).

The most interesting aspect of ascertaining the origin of R1a-M417, given its prevalence among Uralic speakers, is to precisely locate the origin of contacts between Late Proto-Indo-European and Proto-Uralic. Traditionally considered as the consequence of contacts between Middle and Upper Volga regions, the most recent archaeological research and data from ancient DNA samples has made it clear that it is Corded Ware the most likely vector of expansion of Uralic languages, hence these contacts of Indo-Europeans of the Volga-Ural region with Uralians have to be looked for in neighbours of the north Pontic area.

Sredni Stog – Repin contacts representing Uralic – Late Indo-European contacts were probably concentrated around the Don River.

My bet – rather obvious today – is that the Don River area is the source of the earliest borrowings of Late Uralic from Late Indo-European (i.e. post-Indo-Anatolian). The borrowing of the Late PIE word for ‘horse’ is particularly interesting in this regard. Later contacts (after the loss of the initial laryngeal) may be attributed to the traditionally depicted Corded Ware – Yamna contact zone in the Dnieper-Dniester area.

NOTE. While the finding of R1a-M417 populations neighbouring R1b-L23 in the Don-Volga interfluve would be great to confirm these contacts, I don’t know if the current pace of more and more published samples will continue. The information we have right now, in my opinion, suffices to support close contacts of neighbouring Indo-Europeans and Uralians in the Pontic-Caspian area during the Late Eneolithic.

Classical Corded Ware

After some complex movements of TRB, late Trypillia and GAC peoples, Corded Ware apparently emerged in central-east Europe, under the influence of different cultures and from a population that probably (at least partially) stemmed from the north Pontic forest-steppe area.

Single Grave and central Corded Ware groups – showing some of the earliest available dates (emerging likely ca. 3000/2900 BC) – are as varied in their haplogroups as it is expected from a sink (which does not in the least resemble the Volga-Ural population):

Interesting is the presence of R1b-L754 in Obłaczkowo, potentially of R1b-V88 subclade, as previously found in two Central European individuals from Blätterhole MN (ca. 3650 and 3200 BC), and in the Iron Gates and north Pontic areas.

Haplogroups I2a and G have also been reported in early samples, all potentially related to the supposed Corded Ware central-east European homeland, likely in southern Poland, a region naturally connected to the north Pontic forest-steppe area and to the expansion of Neolithic groups.

Y-DNA samples from early Corded Ware groups and neighbouring cultures. See full version.

The true bottlenecks under haplogroup R1a-Z645 seem to have happened only during the migration of Corded Ware to the east: to the north into the Battle Axe culture, mainly under R1a-Z282, and to the south into Middle Dnieper – Fatyanovo-Balanovo – Abashevo, probably eventually under R1a-Z93.

This separation is in line with their reported TMRCA, and supports the split of Finno-Permic from an eastern Uralic group (Ugric and Samoyedic), although still in contact through the Russian forest zone to allow for the spread of Indo-Iranian loans.

This bottleneck also supports in archaeology the expansion of a sort of unifying “Corded Ware A-horizon” spreading with people (disputed by Furholt), the disintegrating Uralians, and thus a source of further loanwords shared by all surviving Uralic languages.

Confirming this ‘concentrated’ Uralic expansion to the east is the presence of R1a-M417 (xR1a-Z645) lineages among early and late Single Grave groups in the west – which essentially disappeared after the Bell Beaker expansion – , as well as the presence of these subclades in modern Central and Western Europeans. Central European groups became thus integrated in post-Bell Beaker European EBA cultures, and their Uralic dialect likely disappeared without a trace.

NOTE. The fate of R1b-L51 lineages – linked to North-West Indo-Europeans undergoing a bottleneck in the Yamna Hungary -> Bell Beaker migration to the west – is thus similar to haplogroup R1a-Z645 – linked to the expansion of Late Uralians to the east – , hence proving the traditional interpretation of the language expansions as male-driven migrations. These are two of the most interesting genetic data we have to date to confirm previous language expansions and dialectal classifications.

It will be also interesting to see if known GAC and Corded Ware I2a-Y6098 subclades formed eventually part of the ancient Uralic groups in the east, apart from lineages which will no doubt appear among asbestos ware groups and probably hunter-gatherers from north-eastern Europe (see the recent study by Tambets et al. 2018).

Corded Ware ancestry marked the expansion of Uralians

Sadly, some brilliant minds decided in 2015 that the so-called “Yamnaya ancestry” (now more appropriately called “steppe ancestry”) should be associated to ‘Indo-Europeans’. This is causing the development of various new pet theories on the go, as more and more data contradicts this interpretation.

There is a clear long-lasting cultural, populational, and natural barrier between Yamna and Corded Ware: they are derived from different ancestral populations, which show clearly different ancestry and ancestry evolution (although they did converge to some extent), as well as different Y-DNA bottlenecks; they show different cultures, including those of preceding and succeeding groups, and evolved in different ecological niches. The only true steppe pastoralists who managed to dominate over grasslands extending from the Upper Danube to the Altai were Yamna peoples and their cultural successors.

Corded Ware admixture proper of expanding late Sredni Stog-like populations from the forest-steppe. See full version here.

NOTE. You can also read two recent posts by FrankN in the blog aDNA era, with detailed information on the Pontic-Caspian cultures and the formation of “steppe ancestry” during the Palaeolithic, Mesolithic and Neolithic: How did CHG get into Steppe_EMBA? Part 1: LGM to Early Holocene and How did CHG get into Steppe_EMBA? Part 2: The Pottery Neolithic. Unlike your typical amateur blogger on genetics using few statistical comparisons coupled with ‘archaeolinguoracial mumbo jumbo’ to reach unscientific conclusions, these are obviously carefully redacted texts which deserve to be read.

I will not enter into the discussion of “steppe ancestry” and the mythical “Siberian ancestry” for this post, though. I will just repost the opinion of Volker Heyd – an archaeologist specialized in Yamna Hungary and Bell Beakers who is working with actual geneticists – on the early conclusions based on “steppe ancestry”:

[A]rchaeologist Volker Heyd at the University of Bristol, UK, disagreed, not with the conclusion that people moved west from the steppe, but with how their genetic signatures were conflated with complex cultural expressions. Corded Ware and Yamnaya burials are more different than they are similar, and there is evidence of cultural exchange, at least, between the Russian steppe and regions west that predate Yamnaya culture, he says. None of these facts negates the conclusions of the genetics papers, but they underscore the insufficiency of the articles in addressing the questions that archaeologists are interested in, he argued. “While I have no doubt they are basically right, it is the complexity of the past that is not reflected,” Heyd wrote, before issuing a call to arms. “Instead of letting geneticists determine the agenda and set the message, we should teach them about complexity in past human actions.


ASoSaH Reread (I): Y-DNA haplogroups among Indo-Europeans (apart from R1b-L23)


Given my reduced free time in these months, I have decided to keep updating the text on Indo-European and Uralic migrations and/or this blog, simultaneously or alternatively, to make the most out of the time I can dedicate to this. I will add the different ‘A Song of Sheep and Horses (ASoSaH) reread’ posts to the original post announcing the books. I would be especially interested in comments and corrections to the book chapters rather than the posts, but any comments are welcome (including in the forum, where comments are more likely to stick).

This is mainly a reread of iv.2. Indo-Anatolians and vi.1. Disintegrating Indo-Europeans.

Indo-Anatolians and Late Indo-Europeans

I have often written about R1b-L23 as the majority haplogroup among Late Proto-Indo-Europeans (see my predictions for 2018 and my summary of 2018), but always expected other haplogroups to pop up somewhere along the way, in Khvalynsk, in Repin, in Yamna, and in Bell Beakers (see e.g. the post on common fallacies of R1a/IE-fans).

Luckily enough – for those of us who want precise answers to our previous infinite models of Indo-European language expansions (viz. GAC-associated expansion, IE-speaking Old Europe, Anatolian homeland, Iran homeland, Maykop as Proto-Anatolian, Palaeolithic Continuity Theory, Celtic in the Atlantic façade, etc.) – the situation has been more clear-cut than expected: it turns out that, especially during population expansions, acute Y-chromosome bottlenecks were very common in the past, at least until the Iron Age.

Khvalynsk and Repin-Yamna expansions were no different, and that seems quite natural in hindsight, given the strong familial ties and aversion to foreigners proper of the Late Proto-Indo-European society and culture – probably not really that different from other contemporary societies, like the neighbouring Late Proto-Uralic or Trypillian ones.

Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

Y-DNA haplogroups

During the expansion of early Khvalynsk, the most likely Indo-Anatolian culture, the society of the Don-Volga area was probably made up of different lineages including R1b-V1636, R1b-M269, R1a-YP1272, Q1a-M25, and I2a-L699 (and possibly some R1b-V88?), a variability possibly greater than that of the contemporary north Pontic area, probably a sign of this region being a sink of different east and west migrations from steppe and forest areas.

During its expansion, the Khvalynsk society saw its haplogroup variability reduced, as evidenced by the succeeding expansive Repin culture:

Afanasevo, representing Pre-Tocharian (the earliest Late PIE dialect to branch off), expanded with R1b-L23 – especially R1b-Z2103 – lineages, while early Yamna expanded with R1b-L23 and I2a-L699 lineages, which suggests that these are the main haplogroups that survived the Y-DNA bottleneck undergone during the Khvalynsk expansion, and especially later during the late Repin expansion. Nevertheless, other old haplogroups might still pop up during the Repin and early Yamna period, such as the R1b-V1636 sample from Yamna in the Northern Caucasus.

It is still unclear if R1b-L23 sister clade R1b-PF7562 (formed ca. 4400 BC, TMRCA ca. 3400 BC), prevalent among modern Albanians, expanded with Yamna migrants, or if it was part of an earlier expansion of R1b-M269 into the Balkans, and represent thus Indo-Anatolian speakers who later hitchhiked the expansion of the Late PIE language from the north or west Pontic area. The early TMRCA seems to suggest an association with Repin (and therefore Yamna), rather than later movements in the Balkans.

Y-DNA samples from Yamnaya and neighbouring cultures. See full version here.

‘Yamnaya’ or ‘steppe’ ancestry?

After the early years when population genetics relied mainly on modern Y-DNA haplogroups, geneticists and amateurs have been recently playing around with testing “ancestry percentages”, based on newly developed free statistical tools, which offer obviously just one among many types of data to achieve a proper interpretation of the past.

Today we have quite a lot Y-DNA haplogroups reported for ancient samples of more recent prehistoric periods, and they seem to offer (at least since the 2015 papers, but more evidently since the 2018 papers on Bell Beakers and Europeans, Corded Ware, or Fennoscandia among others) the most straightforward interpretation of all results published in population genomics research.

NOTE. The finding of a specific type of ancestry in one isolated 40,000-year-old sample from Tianyuan can offer very interesting information on potential population movements to the region. However, the identification of ethnolinguistic communities and their migrations among neighbouring groups in Neolithic or Bronze Age groups is evidently not that simple.

Yamnaya (Indo-European peoples) and their evolution in the steppes, together with North Pontic (eventually Uralic) peoples.Notice how little Indo-European ancestry changes from Khvalynsk (Indo-Anatolian) to Yamna Hungary (North-West Indo-Europeans) Image modified from Wang et al. (2018). See more on the evolution of “steppe ancestry”.

It is becoming more and more clear with each paper that the true “Yamnaya ancestry” – not the originally described one – was in fact associated with Indo-Europeans (see more on the very Yamnaya-like Yamna Hungary and early East Bell Beaker R1b samples, all of quite similar ancestry and PCA cluster before their further admixture with EEF- and CWC-like groups).

The so-called “steppe ancestry”, on the other hand, reflects the contribution of a Northern Caucasus-related ancestry to expanding Khvalynsk settlers, who spread through the steppes more than a thousand years before the expansion of Late Proto-Indo-Europeans with late Repin, and can thus be found among different groups related to the Pontic-Caspian steppes (see more on the emergence and evolution of “steppe ancestry”).

In fact, after the Yamna/Indo-European and Corded Ware/Uralic expansions, it is more likely to find “steppe ancestry” to the north and east in territories traditionally associated with Uralic languages, whereas to the south and west – i.e. in territories traditionally associated with Indo-European languages – it is more likely to find “EEF ancestry” with diminished “steppe ancestry”, among peoples patrilineally descended from Yamna settlers.

Y-DNA haplogroups, the only uniparental markers (see exceptions in mtDNA inheritance) – unlike ancestry percentages based on the comparison of a few samples and flawed study designs – do not admix, do not change, and therefore they do not lend themselves to infinite pet theories (see e.g. what David Reich has to say about R1b-P312 in Iberia directly derived from Yamna migrants in spite of their predominant EEF ancestry): their cultural continuity can only be challenged with carefully threaded linguistic, archaeological, and genetic data.


Biparental inheritance of mitochondrial DNA in humans


New paper Biparental Inheritance of Mitochondrial DNA in Humans, by Luo et al. PNAS (2018).

Interesting excerpts (emphasis mine):


Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent tooffspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.

An example

Compared with Family A, a strikingly similar mtDNA transmission pattern was demonstrated in Families B and C. Taking Family B for illustration, II-3 having 29 heteroplasmic and seven homoplasmic variants should have inherited mtDNA from both his father (I-1, haplogroup of K1b2a) and his mother (I-10, haplogroup of H), who were supposed to possess 34 and nine homoplasmic variants, respectively. II-3 further transmitted his mtDNA that he inherited from I-1 to his son (III-2), who also inherited all of his mother’s mtDNA (II-30, carrying 34 variants and a haplogroup of T2a1a). However, III-2’s sister (III-1) and half-brother (III-5) only inherited the maternal mtDNA. Fresh blood sampling and repeated mtDNA sequencing in a second independent laboratory were also performed to rule out the possibility of sample mix-up for III-2 (III-2, column F-G and H-I). Additionally, these samples were further verified using Pacific Bio single molecular sequencing (see Materials and Methods) and by restriction fragment length polymorphism (RFLP) analysis of Family A, and these results were fully consistent with the previous sequencing.

Biparental mtDNA inheritance pattern shown in Family B. (A) Pedigree of Family B. The black filled symbols indicate the two family members (II-3 and III-2) showing biparental mtDNA transmission. The IDs of five family members tested by whole mtDNA sequencing analysis have been underlined in the pedigree. (B) Schematic of the mtDNA genotype defined by the homoplasmic and/or heteroplasmic variants aligned from the reference mitochondrial genome. Blue bars represent the genotype of paternally derived mtDNA, whereas purple-red and orange-red bars represent maternally derived mtDNA. Entries labeled (D) represent deduced mtDNA genotypes. (C) Summary of the haplogroup and mtDNA variant numbers in Family B.

A Resurgence of the Paternal Transmission Hypothesis

The results presented in this paper make a robust case for paternal transmission of mtDNA. Here, we report biparental mtDNA inheritance (either directly or indirectly) in 17 members in three multigeneration families. Thirteen of these individuals were identified directly by sequencing of the mitochondrial genome, whereas four could be inferred based on preexisting maternal heteroplasmy caused by biparental inheritance in the previous generation.

To further confirm these remarkable results and to exclude the possibility of sample mix-up and/or contamination, the whole mtDNA sequencing procedure was repeated independently in at least two different laboratories by different laboratory technicians with newly obtained blood samples. All results were reproducible, indicating no artifacts or contamination exist. More importantly, the multiple mtDNA variants that were paternally transmitted differ in both number and position among each of these three families as well as the related haplogroup (R0a1 in Family A, K1b2a in Family B, and K2b1a1a in Family C, respectively), providing two distinct forms of evidence supporting transmission of the paternal mtDNA.

Therefore, we have unequivocally demonstrated the existence of biparental mtDNA inheritance as evidenced by the high number and level of mtDNA heteroplasmy in these three unrelated multigeneration families. Most interestingly, the mixed haplogroups in these samples are very reminiscent of the mixed haplogroups found in the 20 studies that were dismissed by Bandelt et al. as due to contamination or sample mix-up. One is forced to wonder how many other instances of individuals with biparental mtDNA inheritance have been dismissed as technical errors, and whether Schwartz and Vissing’s original discovery has really been given the proper follow-up that it deserves. We suspect that these results will initiate a broader reassessment of the topic.

We propose that the paternal mtDNA transmission in these families should be accompanied by segregation of a mutation in one nuclear gene involved in paternal mitochondrial elimination and that there is a high probability that the gene in question operates through one of the pathways identified above.

If I have to be honest, I was stuck with the paternal transmission hypothesis which we were taught in class long ago. I didn’t know it was controversial or dismissed, I just thought it was really exceptional, and I never thought about learning more on the subject.

This paper proves it may be more complicated than that, especially for population genomics purposes, because biparental mtDNA transmission with autosomal dominant-like inheritance puts a serious barrier to a general, simplistic interpretation of mtDNA.

I don’t think it is a blow to all interpretations based on mtDNA, though, because the traditional interpretation should often work statistically. However, one has to be always very careful when saying “if it’s mtDNA from region X, it’s about female exogamy”, especially when samples are from neighbouring regions and similar periods.

The term “uniparental marker” for mtDNA is obviously misleading and shouldn’t be used, and many research papers and interpretations taking mtDNA as strictly uniparental should be taken with a pinch of salt.


The complex origin of Samoyedic-speaking populations


Open access Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations, by Karafet et al. Am J Hum Biol (2018) e23194.

Interesting excerpts (emphasis mine):

Siberian groups

Consistent with their origin, Mongolic-speaking Buryats demonstrate genetic similarity with Mongols, and Turkic-speaking Altai-Kizhi and Teleuts are drawn close to CAS groups. The Tungusic-speaking Evenks collected in central and eastern Siberia cluster together and overlap with Yukagirs. Dolgans are widely scattered in the plot, justifying their recent origin from one Evenk clan, Yakuts, and Russian peasants in the 18th century (Popov, 1964). Uralic-speaking populations comprise a very wide cluster with Komi drawn to Europe, and Khants showing a closer affinity with Selkups, Tundra and Forest Nentsi. Yenisey-speaking Kets are intermingled with Selkups. Interestingly, Samoyedic-speaking Nganasans from the Taymyr Peninsula form a separate tight cluster closer to Evenks, Yukagirs, and Koryaks.

Principal component analysis (PCA) using the “drop one in” technique for 27 present-day (N = 424) and 6 ancient populations (N = 20). PCA was performed on 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples

ADMIXTURE and the “Siberian component”

Among Siberians, the Komi are primarily Europeans, while Nganasans, Evenks, Yukagirs, and Koryaks are nearly 100% East Asians. At K = 4 finer scale subcontinental structure can be distinguished with the emergence of a “Siberian” component. This component is highly pronounced in the Nganasans. Outside Siberia, this component is present in Germany and in CAS at low frequency. Within ancient cultures, this component has the highest frequency in three BA Karasuk samples. It is also found in Mal’ta, ENE Afanasievo and BA Andronovo, but not in Ust’-Ishim and BA Okunevo. At K = 5, the “Siberian” component is roughly subdivided into two components with different geographic distributions. The “Nganasan” component is frequent in nearly all Siberian populations, except the Komi, Kets and Selkups. The newly derived “Selkup-Ket” component is found at high frequencies in western Siberian populations. It is observed in BA Karasuk and in Mal’ta. At K = 6, the western Siberian “Nentsi-Khant” ancestry component was developed in Forest and Tundra Nentsi, Khants. This component is also present at low levels in EUR, CAS, Tibet, and southern Siberia.


The Dolgans share more segments with the Nganasans than within themselves (54.13 vs 41.72, Mann-Whitney test, P = .000000000001562546). The result is not surprising as the demographic data showed that the Nganasans were subjected to intense assimilation by the Dolgans in the second half of the 20th century (Goltsova, Osipova, Zhadanov, & Villems, 2005). Tundra Nentsi share more IBD with Forest Nentsi than within themselves (83.96 vs 50.3, P = .000055) possibly due to the common origin and long-term gene flow. The Ket and Selkup populations allocate significantly more IBD blocks between populations than with individuals from their own population (121.2 cM vs 85.9 cM for Kets, P = .000008, and 121.2 cM vs 114.9 cM for Selkups, P = .043).

ADMIXTURE plot. Clustering of 444 individuals from 27 present-day and 6 ancient populations (281 093 SNPs) assuming K6 to K7 clusters. Individuals are shown as vertical bars colored in ratio to their estimated ancestry within each cluster

Haplogroup N in Siberia

Although Siberia exhibits 42 haplogroups, the vast majority of Siberian Y-chromosomes belong only to 4 of the 18 major clades (N = 46.2%; C = 20.9%; Q = 14.4%; and R = 15.2%). The Y-chromosome haplogroup N is widely spread across Siberia and Eastern Europe (Ilumae et al., 2016; Karafet et al., 2002; Wong et al., 2016) and reaches its maximum frequency among Siberian populations such as Nganasans (94.1%) and Yakuts (91.9%). Within Siberia, two sister subclades N-P43 and N-L708 show different geographic distributions. N-P43 and derived haplogroups N-P63 and N- P362 (phylogenetically identical to N-B478* and N-B170, respectively) (Ilumae et al., 2016) are extremely rare in other major geographic regions. Likely originating in western Siberia, they are limited almost entirely to northwest Siberia, the Volga- Uralic regions, and the Taymyr Peninsula (ie, do not extend to eastern Siberia). Conversely, clade N-L708 is frequent in all Siberian populations except the Kets and Selkups, reaching its highest frequency in the Yakuts (91.9%).

Surprisingly, not a single sign of the proposed reindeer pastoralist horde led by Nganasans into north-eastern Europe. This is strange because “Siberian” migrants hypothetically imposed their language over Indo-Europeans quite recently, apparently after the Iron Age

Interesting comparisons among Siberian groups, though.


Minimal gene flow from western pastoralists in the Bronze Age eastern steppes


Open access paper Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, by Jeong et al. PNAS (2018).

Interesting excerpts (emphasis mine):

To understand the population history and context of dairy pastoralism in the eastern Eurasian steppe, we applied genomic and proteomic analyses to individuals buried in Late Bronze Age (LBA) burial mounds associated with the Deer Stone-Khirigsuur Complex (DSKC) in northern Mongolia. To date, DSKC sites contain the clearest and most direct evidence for animal pastoralism in the Eastern steppe before ca. 1200 BCE.

Most LBA Khövsgöls are projected on top of modern Tuvinians or Altaians, who reside in neighboring regions. In comparison with other ancient individuals, they are also close to but slightly displaced from temporally earlier Neolithic and Early Bronze Age (EBA) populations from the Shamanka II cemetry (Shamanka_EN and Shamanka_EBA, respectively) from the Lake Baikal region. However, when Native Americans are added to PC calculation, we observe that LBA Khövsgöls are displaced from modern neighbors toward Native Americans along PC2, occupying a space not overlapping with any contemporary population. Such an upward shift on PC2 is also observed in the ancient Baikal populations from the Neolithic to EBA and in the Bronze Age individuals from the Altai associated with Okunevo and Karasuk cultures.

Image modified from the article. Karasuk cluster in green, closely related to sample ARS026 in red. Principal Component Analysis (PCA) of selected 2,077 contemporary Eurasians belonging to 149 groups. Contemporary individuals are plotted using three-letter abbreviations for operational group IDs. Group IDs color coded by geographic region. Ancient Khövsgöl individuals and other selected ancient groups are represented on the plot by filled shapes. Ancient individuals are projected onto the PC space using the “lsqproject: YES” option in the smartpca program to minimize the impact of high genotype missing rate.

(…) two individuals fall on the PC space markedly separated from the others: ARS017 is placed close to ancient and modern northeast Asians, such as early Neolithic individuals from the Devil’s Gate archaeological site (22) and present-day Nivhs from the Russian far east, while ARS026 falls midway between the main cluster and western Eurasians.

Upper Paleolithic Siberians from nearby Afontova Gora and Mal’ta archaeological sites (AG3 and MA-1, respectively) (25, 26) have the highest extra affinity with the main cluster compared with other groups, including the eastern outlier ARS017, the early Neolithic Shamanka_EN, and present-day Nganasans and Tuvinians (Z > 6.7 SE for AG3). Main cluster Khövsgöl individuals mostly belong to Siberian mitochondrial (A, B, C, D, and G) and Y (all Q1a but one N1c1a) haplogroups.

The genetic affinity of the Khövsgöl clusters measured by outgroup-f3 and -f4 statistics. (A) The top 20 populations sharing the highest amount of >genetic drift with the Khövsgöl main cluster measured by f3(Mbuti; Khövsgöl, X). (B) The top 15 populations with the most extra affinity with each of the three Khövsgöl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f4(Mbuti, X; Tuvinian/Khövsgöl, Khövsgöl/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f4 statistic.

Previous studies show a close genetic relationship between WSH populations and ANE ancestry, as Yamnaya and Afanasievo are modeled as a roughly equal mixture of early Holocene Iranian/ Caucasus ancestry (IRC) and Mesolithic Eastern European hunter-gatherers, the latter of which derive a large fraction of their ancestry from ANE. It is therefore important to pinpoint the source of ANE-related ancestry in the Khövsgöl gene pool: that is, whether it derives from a pre-Bronze Age ANE population (such as the one represented by AG3) or from a Bronze Age WSH population that has both ANE and IRC ancestry.

The amount of WSH contribution remains small (e.g., 6.4 ± 1.0% from Sintashta). Assuming that the early Neolithic populations of the Khövsgöl region resembled those of the nearby Baikal region, we conclude that the Khövsgöl main cluster obtained ∼11% of their ancestry from an ANE source during the Neolithic period and a much smaller contribution of WSH ancestry (4–7%) beginning in the early Bronze Age.

Admixture modeling of Altai populations and the Khövsgöl main cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA and (B and C) Khövsgöl, each colored block represents the proportion of ancestry derived from a corresponding ancestry source in the legend. Error bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN and AG3. The Khövsgöl main cluster is modeled as (B) a two-way admixture of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+AG3+Sintashta.

Apparently, then, the first individual with substantial WSH ancestry in the Khövsgöl population (ARS026, of haplogroup R1a-Z2123), directly dated to 1130–900 BC, is consistent with the first appearance of admixed forest-steppe-related populations like Karasuk (ca. 1200-800 BC) in the Altai. Interestingly, haplogroup N1a1a-M178 pops up (with mtDNA U5a2d1) among the earlier Khövsgöl samples.

I will repeat what I wrote recently here: Samoyedic arrived in the Altai with Karasuk and hg R1a-Z645 + Steppe_MLBA-like ancestry, admixed with Altai populations, clustering thus within an Ancient Altai cline. Only later did N1a1a subclades infiltrate Samoyedic (and Ugric) populations, bringing them closer to their modern Palaeo-Siberian cline. The shared mtDNA may support an ancestral EHG-“Siberian” cline, or else a more recent Afanasevo-related origin.

Modified image from Jeong et al. (2018), supplementary materials. The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the north-south cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals. Read more.

Also interesting, Q1a2 subclades and ANE ancestry making its appearance everywhere among ancestral Eurasian peoples, as Chetan recently pointed out.


Mongolian tribes cluster with East Asians, closely related to the Japanese


New paper behind paywall Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia, by Bai et al Nature Genetics (2018).

Interesting excerpts (emphasis mine):

Genome sequencing, variant calling, and construction of the Mongolian reference panel. We collected peripheral blood with informed consent from 175 Mongolian individuals representing six distinct tribes/regions in northern China and Mongolia, including the Abaga, Khalkha, Oirat, Buryat, Sonid, and Horchin tribes.

Population genetic structure. a, PCA of Mongolian individuals and 1000G samples. Mongolians fill a large, less characterized gap between Admixed/Native Americans and other East Asians in the 1000G project. b, PCA of Mongolians and East Asians of 1000G. The abbreviations of EAS populations were used from reference 11.

The fixation index (FST) was used to estimate pairwise genetic differentiation among our Mongolian samples and 26 modern human populations selected from 1000G (…) the Mongolian tribes cluster with East Asian groups. The Mongolian populations show the smallest differentiation from the CHB, and FST values increase relative to the magnitude of geographical separation. The Buryat are the most differentiated tribe compared with other East Asians (1.82–2.97%), while the Horchin are the least (0.25–1.35%). All tribes are closer to the Japanese (JPT) than the CHS with the exception of the Horchin. Among the tribes, the Abaga, Khalkha, Oirat, and Sonid show the least differentiation from one another (FST < 0.15%)

A PCA places the Mongolians in close genetic proximity to a group of North Asian Siberians, including Altaians, Tuvinians, Evenki, and Yakut, indicating that the Mongolian whole-genome variation panel could be a better proxy for these groups than any populations currently in the 1000G panel

The most common Y-chromosome haplogroups are from the C3 sublineage (41.67%), including C3c (29.17%) and C3b (12.50%), followed by haplogroup O (23.61%), and haplogroup N (18.06%) (…) While haplogroups C and O are primarily restricted to Asia, haplogroup N is present at high frequency in Finns (60.5%), at low frequency in non-Mongolian East Asians (< 1%), and virtually absent throughout the remainder of European and African samples in 1000G

Comparison with Finns

Distribution of D-values from D-test under the model of [EAS, Mongolians, X, chimpanzee], where X represents the test population and chimpanzee serves as an outgroup. The positive D-value (Z > 3) indicates that the test population (X) is closer to Mongolians than to EAS. The whiskers correspond to range, and the dots to individual data points, box limits are the upper and lower quartiles. The n in each boxplot is 30. All abbreviations of populations in the figure were used from reference 11.

Of the populations included in our study, Mongolians share the second-highest level of IBD with the Finnish people (FIN), behind only Northern Han Chinese (CHB). While Mongolians share more IBD with Europeans (EUR) as a whole compared with other non-EAS people (Fig. 4b), removal of Finns from the Europeans drops the level of sharing to as low as that with South Asians (SAS) or Admixed American (AMR).

There is considerable geographic separation between modern-day Mongolians and Europe. The positive D-statistic that reveal gene flow between Mongolians and Europeans (Fig. 4c), and the high degree of IBD sharing with Finnish people in particular suggest that complex admixture may have occurred throughout northeastern Europe and Siberia. To see whether Mongolians represent the ethnic group in East Asia with the highest level of gene flow with Finnish people, we calculated a D-statistic for each set of populations [Mongolians, X, FIN, Yoruba (YRI)], where X represents a population from Siberia or Northern Canada. Most of the populations reveal an imbalance in allele frequencies that suggests gene flow with Finns (D >0, Z >3), but the greatest imbalance is observed between Siberians/Northern Canadians and Finnish, rather than between Mongolians and Finns. This pattern indicates that northern Asian populations interacted across large geographic ranges.

6 migration events, from the supplementary materials.

I guess the 1000G does not have northern Eurasian groups, because the IBD map and values would be lightening up with Palaeo-Siberian peoples


Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions


This is the fourth of four posts on the Corded Ware—Uralic identification:

Let me begin this final post on the Corded Ware—Uralic connection with an assertion that should be obvious to everyone involved in ethnolinguistic identification of prehistoric populations but, for one reason or another, is usually forgotten. In the words of David Reich, in Who We Are and How We Got Here (2018):

Human history is full of dead ends, and we should not expect the people who lived in any one place in the past to be the direct ancestors of those who live there today.

Haplogroup N

Another recurrent argument – apart from “Siberian ancestry” – for the location of the Uralic homeland is “haplogroup N”. This is as serious as saying “haplogroup R1” to refer to Indo-European migrations, but let’s explore this possibility anyway:

Ancient haplogroups

We have now a better idea of how many ancient migrations (previously hypothesized to be associated with westward Uralic migrations) look like in genetic terms. From Damgaard et al. (Science 2018):

These serial changes in the Baikal populations are reflected in Y-chromosome lineages (Fig. SA; figs. S24 to S27, and tables S13 and SI4). MAI carries the R haplogroup, whereas the majority of Baikal_EN males belong to N lineages, which were widely distributed across Northern Eurasia (29), and the Baikal_LNBA males all carry Q haplogroups, as do most of the Okunevo_EMBA as well as some present-day Central Asians and Siberians.

The only N1c1 sample comes from Ust’Ida Late Neolithic, 180km to the north of Lake Baikal, which – together with the Bronze Age sample from the Kola peninsula, and the medieval sample from Ust’Ida – gives a good idea of the overall expansion of N subclades and Siberian ancestry among the Circum-Arctic peoples of Eurasia, speakers of Palaeo-Siberian languages.

Geographical location of ancient samples belonging to major clade N of the Y-chromosome.

Modern haplogroups

What we should expect from Uralic peoples expanding with haplogroup N – seeing how Yamna expands with R1b-L23, and Corded Ware expands with R1a-Z645 – is to find a common subclade spreading with Uralic populations. Let’s see if it works like that for any N-X subclade, in data from Ilumäe et al. (2016):

Geographic-Distribution Map of hg N3 / N1c / N1a.

Within the Eurasian circum-Arctic spread zone, N3 and N2a reveal a well-structured spread pattern where individual sub-clades show very different distributions:

N1a1-M46 (or N-TAT), formed ca. 13900 BC, TMRCA 9800 BC

   N1a1a2-B187, formed ca. 9800 BC, TMRCA 1050 AD:

The sub-clade N3b-B187 is specific to southern Siberia and Mongolia, whereas N3a-L708 is spread widely in other regions of northern Eurasia.

     N1a1a1a-L708, formed ca. 6800 BC, TMRCA 5400 BC.

       N1a1a1a2-B211/Y9022, formed ca. 5400 BC, TMRCA 1900 BC:

The deepest clade within N3a is N3a1-B211, mostly present in the Volga-Uralic region and western Siberian Khanty and Mansi populations.

         N1a1a1a1a-L392/L1026), formed ca. 4400 BC, TMRCA 2800 BC:

The neighbor clade, N3a3’6-CTS6967, spreads from eastern Siberia to the eastern part of Fennoscandia and the Baltic States

Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders.

           N1a1a1a1a1a-CTS2929/VL29, formed ca. 2100 BC, TMRCA 1600 BC:

In Europe, the clade N3a3-VL29 encompasses over a third of the present-day male Estonians, Latvians, and Lithuanians but is also present among Saami, Karelians, and Finns (Table S2 and Figure 3). Among the Slavic-speaking Belarusians, Ukrainians, and Russians, about three-fourths of their hg N3 Y chromosomes belong to hg N3a3.

In the post on Finno-Permic expansions, I depicted what seems to me the most likely way of infiltration of N1c-L392 lineages with Akozino warrior-traders into the western Finno-Ugric populations, with an origin around the Barents sea.

This includes the potential spread of (a minority of) N1c-B211 subclades due to contacts with Anonino on both sides of the Urals, through a northern route of forest and forest-steppe regions (equivalent to the distribution of Cherkaskul compared to Andronovo), given the spread of certain subclades in Ugric populations.

NOTE. An alternative possibility is the association of certain B211 subclades with a southern route of expansion with Pre-Scythian and Scythian populations, under whose influence the Ananino culture emerged -which would imply a very quick infiltration of certain groups of haplogroup N everywhere among Finno-Ugrics on both sides of the Urals – , and also the expansion of some subclades with Turkic-speaking peoples, who apparently expanded with alliances of different peoples. Both (Scythian and Turkic) populations expanded from East Asia, where haplogroup N (including N1c) was present since the Neolithic. I find this a worse model of expansion for upper clades, but – given the YFull estimates and the presence of this haplogroup among Turkic peoples – it is a possibility for many subclades.

           N1a1a1a1a2-Z1936, formed ca. 2800 BC, TMRCA 2400 BC:

The only notable exception from the pattern are Russians from northern regions of European Russia, where, in turn, about two-thirds of the hg N3 Y chromosomes belong to the hg N3a4-Z1936—the second west Eurasian clade. Thus, according to the frequency distribution of this clade, these Northern Russians fit better among other non-Slavic populations from northeastern Europe. N3a4 tends to increase in frequency toward the northeastern European regions but is also somewhat unexpectedly a dominant hg N3 lineage among most Turcic-speaking Volga Tatars and South-Ural Bashkirs.

Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

The expansion of N1a-Z1936 in Fennoscandia is most likely associated with the expansion of Saami into asbestos ware-related territory (like the Lovozero culture) during the Late Iron Age – and mixture with its population – , and with the later Fennic expansion to the east and north, replacing their language.

           N1a1a1a1a4-M2019 (previously N3a2), formed ca. 4400 BC, TMRCA 1700 BC:

Sub-hg N3a2-M2118 is one of the two main bifurcating branches in the nested cladistic structure of N3a2’6-M2110. It is predominantly found in populations inhabiting present-day Yakutia (Republic of Sakha) in central Siberia and at lower frequencies in the Khanty and Mansi populations, which exhibit a distinct Y-STR pattern (Table S7) potentially intrinsic to an additional clade inside the sub-hg N3a2

The second widespread sub-clade of hg N is N2a. (…):

   N1a2b-P43 (B523/FGC10846/Y3184), formed ca. 6800 BC, TMRCA ca. 2700 BC:

The absolute majority of N2a individuals belong to the second sub-clade, N2a1-B523, which diversified about 4.7 kya (95% CI = 4.0–5.5 kya). Its distribution covers the western and southern parts of Siberia, the Taimyr Peninsula, and the Volga-Uralic region with frequencies ranging from from 10% to 30% and does not extend to eastern Siberia (…)

Geographic-Distribution Map of hg N2a1 / N1a2b-P43

The “European” branch suggested earlier from Y-STR patterns turned out to consist of two clades

     N1a2b2a-Y3185/FGC10847, formed ca. 2200 BC, TMRCA 800 BC:

N2a1-L1419, spread mainly in the northern part of that region.

     N1a2b2b1-B528/Y24382, formed ca. 900 BC, TMRCA ca. 900 BC:

N2a1-B528, spread in the southern Volga-Uralic region.

Haplogroup R1a

We also have a good idea of the distribution of haplogroup R1a-Z645 in ancient samples. Its subclades were associated with the Corded Ware expansion, and some of them fit quite well the early expansion of Finno-Permic, Ugric, and Samoyedic peoples to the east.

Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

This is how the modern distribution of R1a among Uralians looks like, from the latest report in Tambets et al. (2018):

  • Among Fennic populations, Estonians and Karelians (ca. 1.1 million) have not suffered the greatest bottleneck of Finns (ca. 6-7 million), and show thus a greater proportion of R1a-Z280 than N1c subclades, which points to the original situation of Fennic peoples before their expansion. To trust Finnish Y-DNA to derive conclusions about the Uralic populations is as useful as relying on the Basque Y-DNA for the language spread by R1b-P312
  • Among Volga-Finnic populations, Mordovians (the closest to the original Uralic cluster, see above) show a majority of R1a lineages (27%).
  • Hungarians (ca. 13-15 million) represent the majority of Ugric (and Finno-Ugric) peoples. They are mainly R1a-Z280, also R1a-Z2123, have little N1c, and lack Siberian ancestry, and represent thus the most likely original situation of Ugric peoples in 4th century AD (read more on Avars and Hungarians).
  • Among Samoyedic peoples, the Selkup, the southernmost ones and latest to expand – that is, those not heavily admixed with Siberian populations – , also have a majority of R1a-Z2123 lineages (see also here for the original Samoyedic haplogroups to the south).

To understand the relevance of Hungarians for Ugric peoples, as well as Estonians, Karelians, and Mordovians (and northern Russians, Finno-Ugric peoples recently Russified) for Finno-Permic peoples, as opposed to the Circum-Arctic and East Siberian populations, one has to put demographics in perspective. Even a modern map can show the relevance of certain territories in the past:

Population density (people per km2) map of the world in 1994. From Wikipedia.

Summary of ancestry + haplogroups

Fennic and Samic populations seem to be clearly influenced by Palaeo-Laplandic peoples, whereas Volga-Finnic and especially Permic populations may have received gene flow from both, but essentially Palaeo-Siberian influence from the north and east.

The fact that modern Mansis and Khantys offer the highest variation in N1a subclades, and some of the highest “Siberian ancestry” among non-Nganasans, should have raised a red flag long ago. The fact that Hungarians – supposedly stemming from a source population similar to Mansis – do not offer the same amount of N subclades or Siberian ancestry (not even close), and offer instead more R1a, in common with Estonians (among Finno-Samic peoples) and Mordvins (among Volga-Finnic peoples) should have raised a still bigger red flag. The fact that Nganasans – the model for Siberian ancestry – show completely different N1a2b-P43 lineages should have been a huge genetic red line (on top of the anthropological one) to regard them as the Uralian-type population.

We know now that ethnolinguistic groups have usually expanded with massive (usually male-biased) migrations, and that neighbouring locals often ‘resurge’ later without changing the language. That is seen in Europe after the spread of Bell Beakers, with the increase of previous ancestry and lineages in Scandinavia during the formation of the Nordic ethnolinguistic community; in Central-West Europe, with the resurgence of Neolithic ancestry (and lineages) during the Bronze Age over steppe ancestry; and in Central-East Europe (with Unetice or East European Bronze Age groups like Mierzanowice, Trzciniec, or Lusatian) showing an increase in steppe ancestry (and resurge of R1a subclades); none of them represented a radical ethnolinguistic change.

Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

It is not hard to model the stepped arrival, infiltration, and/or resurge of N subclades and “Siberian ancestries”, as well as their gradual expansion in certain regions, associated with certain migrations first – such as the expansions to the Circum-Arctic region, and later the Scythian- and Turkic-related movements – , as well as limited regional developments, like the known bottleneck in Finns, or the clear late expansion of Ugric and Samoyedic languages to the north among nomadic Palaeo-Siberians due to traditions of exogamy and multilingualism. This fits quite well with the different arrival of N (N1c and xN1c) lineages to the different Uralic-speaking groups, and to the stepped appearance of “Siberian ancestry” in the different regions.

The aternative

It is evident that a lot of people were too attached to the idea of Palaeolithic R1b lineages ‘native’ to western Europe speaking Basque languages; of R1a lineages speaking Indo-European and spreading with Yamna; and N lineages ‘native’ to north-eastern Europe and speaking Uralic, and this is causing widespread weeping and gnashing of teeth (instead of the joy of discovering where one’s true patrilineal ancestors come from, and what language they spoke in each given period, which is the supposed objective of genetic genealogy…)

Since an Indo-Germanic branch (as revived now by some in the Copenhaguen group to fit Kristiansen’s theory of the 1980s with recent genetic data) does not make any sense in linguistics, the finding of R1a in Yamna would not have led where some think it would have, because North-West Indo-European would still be the main Late PIE branch in Europe. Don’t take my word for it; take James P. Mallory’s (2013).

The levels of Indo-European reconstruction, from Mallory & Adams (2006).

If an (unlikely) Indo-Slavonic group were posited, though, such a group would still be bound (with Indo-Iranian) to the steppes with East Yamna/Poltavka (admixing with Abashevo migrants, but retaining its language), developing Sintashta/Potapovka → Srubna/Andronovo, and R1a lineages would have equally undergone the known bottlenecks of the steppes where they replaced R1b-Z2103 – which this eastern group shares with Balkan languages, a haplogroup that links therefore together the Graeco-Aryan group.

As far as I know – and there might be many other similar pet theories out there – there have been proposals of “modern Balto-Slavic-like” populations (in an obvious circular reasoning based on modern populations) in some Scythian clusters of the Iron Age.

NOTE. I will not enter into “Balto-Slavic-like R1a” of the Late Bronze Age or earlier because no one can seriously believe at this point of development of Population Genetics that autosomal similarity predating 1,500+ years the appearance of Slavs equates to their (ethnolinguistic) ancestral population, without a clear intermediate cultural and genetic trail – something we lack today in the Slavic case even for the late Roman period…

The Finnic and Saamic separation looks shallower than it actually is. Invisible convergence can be ‘triangulated’ with the help of Germanic layers of mutual loanwords (Häkkinen 2012).

We also know of R1a-Z280 lineages in Srubna, probably expanding to the west. With that in mind, and knowing that Palaeo-Germanic was in close contact with Finno-Samic while both were already separated but still in contact, and that Palaeo-Germanic was also in contact and closely related to a ‘Temematic’ distinct from Balto-Slavic (and also that early Proto-Baltic and Proto-Slavic from the Roman Iron Age and later were in contact with western Uralic) this will be the linguistic map of the Iron Age if R1a is considered to expand Indo-European from some kind of “patron-client” relationship with west Yamna:

Eastern European language map during the Late Bronze Age / Iron Age, if R1a spread Indo-European languages and Eastern Yamna spoke Indo-Slavonic. Palaeo-Germanic (i.e. Pre- to Proto-Germanic) needs to be in contact with both the Samic Lovozero population and the Fennic west Circum-Arctic one. Italic and Celtic in contact with Pre-Germanic. Germanic in contact with Temematic. Balto-Slavic in contact with Iranian, and near Fennic to allow for later loanwords. For Germanic and Temematic, see Kortlandt (2018).

You might think I have some personal or political reason against this kind of proposals. I haven’t. We have been proposing Indo-European to be the language of the European Union for more than 10 years, so to support R1b-Italo-Celtic in the whole Western Europe, R1a-Germanic in Central and Eastern Europe, and R1a-Indo-Slavonic in the steppes (as the Danish group seems to be doing) has nothing inherently bad (or good) for me. If anything, it gives more reason to support the revival of North-West Indo-European in Europe.

My problem with this proposal is that it is obviously beholden to the notion of the uninterrupted cultural, historic and ethnic continuity in certain territories. This bias is common in historiography (von Falkenhausen 1993), but it extends even more easily into the lesser known prehistory of any territory, and now more than ever some people feel the need to corrupt (pre)history based on their own haplogroups (or the majority haplogroups of their modern countries). However, more than on philosophical grounds, my rejection is based on facts: this picture is not what the combination of linguistic, archaeological, and genetic data shows. Period.

Nevertheless, if Yamna + Corded Ware represented the “big and early expansion” of Germanic and Italo-Celtic peoples proper of the dream Nazi’s Lebensraum and Fascist’s spazio vitale proposals; Uralians were Siberian hunter-gatherers that controlled the whole eastern and northern Russia, and miraculously managed to push (ethnolinguistically) Neolithic agropastoralists to the west during and after the Iron Age, with gradual (and often minimal) genetic impact; and Balto-Slavic peoples were represented by horse riders from Pokrovka/Srubna, hiding then somewhere around the forest-steppe until after the Scythian expansion, and then spreading their language (without much genetic impact) during the early Middle Ages…so be it.