The Iron Age expansion of Southern Siberian groups and ancestry with Scythians


Maternal genetic features of the Iron Age Tagar population from Southern Siberia (1st millennium BC), by Pilipenko et al. (2018).

Interesting excerpts (emphasis mine):

The positions of non-Tagar Iron Age groups in the MDS plot were correlated with their geographic position within the Eurasian steppe belt and with frequencies of Western and Eastern Eurasian mtDNA lineages in their gene pools. Series from chronological Tagar stages (similar to the overall Tagar series) were located within the genetic variability (in terms of mtDNA) of Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables). Specifically, the Early Tagar series was more similar to western nomads (North Pontic Scythians), while the Middle Tagar was more similar to the Southern Siberian populations of the Scythian period. The Late Tagar group (Tes`culture) belonging to the Early Xiongnu period had the “western-most” location on the MDS plot with the maximal genetic difference from Xiongnu and other eastern nomadic groups (but see Discussion concerning the low sample size for the Tes`series).

In a comparison of our Tagar series with modern populations in Eurasia, we detected similarity between the Tagar group and some modern Turkic-speaking populations (with the exception of the Indo-Iranian Tajik population) (Fig 7; S2 Table). Among the modern Turkic-speaking groups, populations from the western part of the Eurasian steppe belt, such as Bashkirs from the Volga-Ural region and Siberian Tatars from the West Siberian forest-steppe zone, were more similar to the Tagar group than modern Turkic-speaking populations of the Altay-Sayan mountain system (including the Khakassians from the Minusinsk basin) (Fig 7).

Location of Tagar archaeological sites from which samples for this study were obtained. Burial grounds: 1—Novaya Chernaya-1; 2—Podgornoe Ozero, Barsuchiha-1, Barsuchiha-6, Barsuchiha-7; 3—Perevozinskiy; 4—Ulug-Kyuzyur, Kichik-Kyuzyur, Sovetskaya Khakassiya; 5—Tepsey-3, Tepsey-8, Tepsey-9; 6—Dolgiy Kurgan.

Mitochondrial DNA diversity and genetic relationships of the Tagar population

Our results are not inconsistent with the assumption of a probable role of gene flow due to the migration from Western Eurasia to the Minusinsk basin in the Bronze Age in the formation of the genetic composition of the Tagar population. Particularly, we detected many mtDNA lineages/clusters with probable West Eurasian origin that were dominant in modern populations of different parts of Europe, Caucasus, and the Near East (such as K and HV6) in our Tagar series based on a phylogeographic analysis.

We detected relatively low genetic distances between our Tagar population and two Bronze Age populations from the Minusinsk basin—the Okunevo culture population (pre-Andronovo Bronze Age) and Andronovo culture population, followed by Afanasievo population from the Minusinsk Basin and Middle Bronze Age population from the Mongolian Altai Mountains (the region adjacent to the Minusinsk basin) (Figs 3 and 6; S3 and S5 Tables). Among West Eurasian part of our Tagar series we also observed haplogroups/sub-haplogroups and haplotypes shared with Early and Middle Bronze Age populations from Minusinsk Basin and western part of Eurasian steppe belt (Fig 4; S5 Table). Thus, our results suggested a potentially significant role of the genetic components, introduced by migrants from Western Eurasia during the Bronze Age, in the formation of the genetic composition of the Tagar population. It is necessary to note the relatively small size of available mtDNA samples from the Bronze Age populations of Minusinsk basin; accordingly, additional mtDNA data for these populations are required to further confirm our inference.

Phylogenetic tree of mtDNA lineages from the Tagar population. Color coding of the Tagar stages: orange—the Early Tagar stage; blue—the Middle Tagar Stage; green—the Late Tagar stage. Color of haplogroup labels: yellow—for Western Eurasian haplogroups; red—for Eastern Eurasian haplogroups.

Another substantial part of the mtDNA pool of the Tagar and other eastern populations of the Scythian World is typical of populations in Southern Siberia and adjacent regions of Central Asia (autochthonous Central Asian mtDNA clusters). Most of these components belong to the East Eurasian cluster of mtDNA haplogroups. Moreover, the role of each of these components in the formation of the genetic composition of subsequent (to the present) populations in South Siberia and Central Asia could be very different. In this regard, cluster C4a2a (and its subcluster C4a2a1), and haplogroup A8 are of particular interest.

Genetic features of successive Tagar groups

We compared successive Tagar groups (Early, Middle, and Late Tagar) with each other and with other Iron Age nomadic populations to evaluate changes in the mtDNA pool structure. Despite the genetic similarity between the Early and Middle Tagar series and Scythian World nomadic groups (Figs 5 and 6; S4 and S6 Tables), there were some peculiarities. For example, the Early Tagar series was more similar to North Pontic Classic Scythians, while the Middle Tagar samples were more similar to the Southern Siberian populations of the Scythian period (i.e., completely synchronous populations of regions neighboring the Minusinsk basin, such as the Pazyryk population from the Altay Mountains and Aldy-Bel population from Tuva).

We observed differences in the mtDNA pool structure between the Early and the Middle chronological stages of the Tagar culture population, as evidenced by the change in the ratio of Western to Eastern Eurasian mtDNA components. The contribution of Eastern Eurasian lineages increased from about one-third (34.8%) in the Early Tagar group to almost one-half (45.8%) in the Middle Tagar group.

Results of multidimensional scaling based on matrix of Slatkin population differentiation (FST) according to frequencies of mtDNA haplogroup in Tagar populations and modern populations of Eurasia. Populations: Tagar (red pentagon) (this study); Mongolian-speaking populations: Khamnigans (Buryat Republic, Russia) [43]; Barghuts (Inner Mongolia, China) [44]; Buryats (Buryat Republic, Southern Siberia, Russia) [43]; Mongols (Mongolia) [45]. Turkic-speaking populations: Tuvinians (Tuva Republic, Russia) [43]; Tofalars (Irkutsk region, Russia) [46]; Altai-Kizhi ((Altai Republic, Russia) [43, 47]; Telenghits (Altai Republic, Russia) [43,47]; Tubalars (Altai Republic) [48]; Shors (Kemerovo region, Russia) [43, 47]; Khakassians (Khakassian Rupublic, Russia) [43, 46]; Altaian Kazakhs (Altai Republic) [49]; Kazakhs (Kazakhstan, Uzbekistan) [50, 51]; Kirghiz (Kyrgyzstan) [50, 51]; Uighurs (Kazakhstan and Xinjiang) [50, 52]; Siberian Tatars (Tyumen and Omsk regions, Russia) [53]; Tatars (Volga-Ural rigion, Russia) [54]; Bashkirs (Volga-Ural region, Russia) [55]; Uzbeks (Uzbekistan) [51, 56]; Turkmens (Turkmenistan) [51, 56]; Nogays [57]; Turkeys [58]; other populations: Evenks [43, 46]; Ulchi [59]; Koreans (South Korea) [43]; Han Chinese [60]; Zhuang (Guangxi, China) [61]; Tadjiks (Tadjikistan) [43, 51]; Iranians [60]; Russians [62].

At the level of mtDNA haplogroups, we detected a decrease in the diversity of phylogenetic clusters during the transition from the Early Tagar to the Middle Tagar. This decline in diversity equally affected the West Eurasian and East Eurasian components of the Tagar mtDNA pool. It should be noted that this decrease can be partially explained by the smaller number of Middle Tagar than Early Tagar samples. Under a simple binomial approximation the mtDNA clusters, observed at frequencies of 6.3% and 11.7%, could be lost by chance in our Early (N = 46) and Middle (N = 24) Tagar samples, respectively. However, the simultaneous lack of several such clusters, with a total frequency in the gene pool of the Early group of 34.8%, is unlikely.

The observed reduction in the genetic distance between the Middle Tagar population and other Scythian-like populations of Southern Siberia(Fig 5; S4 Table), in our opinion, is primarily associated with an increase in the role of East Eurasian mtDNA lineages in the gene pool (up to nearly half of the gene pool) and a substantial increase in the joint frequency of haplogroups C and D (from 8.7% in the Early Tagar series to 37.5% in the Middle Tagar series). These features are characteristic of many ancient and modern populations of Southern Siberia and adjacent regions of Central Asia, including the Pazyryk population of the Altai Mountains. We did not obtain strong evidence for an intensification of genetic contact between the population of the Minusinsk basin and the Altai Mountains in the Middle Tagar period compared with the Early Tagar period. Although, several archaeologists have found evidence for the intensification of contact at the level of material culture, namely, a cultural influence of the population of the Altai Mountains (represented by the Pazyryk population) on the population of the Minusinsk basin (the Saragash Tagar group) [6, 71, 72].

Another important issue is the change in the genetic structure of the Tagar population during the transition from the Middle (Saragash) to the Late (Tes`) stage. The Late Tagar stage refers to the Xiongnu period. Many archaeologists suggest that the formation of the Tes`stage involved the direct cultural influence of the Xiongnu and/or related groups of nomads from more eastern regions of Central Asia [71, 73]. Some archaeologists have even suggested renaming the Tes`stage in the Tes`culture [71], emphasizing the role of new eastern cultural elements. If this influence also existed at the genetic level, then we would expect to observe new genetic elements in the Tes`gene pool, particularly those of East Eurasian origin.

Siberian ancestry

Just a reminder of the recent session in ISBA 8 on expanding Scythians (and also Mongolians and Turks) spreading Siberian ancestry, usually (wrongly) identified as “Uralic-Yeniseian” based on modern populations (similar to how steppe ancestry is wrongly identified as “Indo-European”), see the following graphic including the Tagar population:

Very important observation with implication of population turnover is that pre-Turkic Inner Eurasian populations’ Siberian ancestry appears predominantly “Uralic-Yeniseian” in contrast to later dominance of “Tungusic-Mongolic” sort (which does sporadically occur earlier). Alexander M. Kim

And also the poster by Alexander M. Kim et al. Yeniseian hypotheses in light of genome-wide ancient DNA from historical Siberia:

The relevance of ancient DNA data to debates in historical linguistics is an emphatic strand in much recent work on the archaeogenetics of Eurasia, where the discussion has focused heavily on Indo-European (Haak et al. 2015; Narasimhan et al. 2018; de Barros Damgaard et al. 2018a,b). We present new genome-wide ancient DNA data from a historical Siberian individual in relation to Yeniseian, an isolated language “microfamily” (Vajda 2014) that nonetheless sits at the center of numerous controversial proposals in historical linguistics and cultural interaction. Yeniseian’s sole surviving representative is Ket, a critically endangered language fluently spoken by only a few dozen individuals near the Middle Yenisei River of Central Siberia.

In strong contrast to the present-day picture, river names and argued substrate influences and loanwords in languages outside the current range of Yeniseian, as well as direct records from the Russian colonial period, indicate that speakers of extinct Yeniseian languages had a formerly much broader presence in the taiga of Central Siberia as well as further south in the mountainous Altai-Sayan region – and perhaps even further afield in Inner Asia (Vajda 2010; Gorbachov 2017; Blažek 2016). The consilience of these proposals with genetic data is not straightforward (Flegontov et al. 2015, 2017) and faces a major obstacle in the lack of genetic information from verifiable speakers of Yeniseian languages other than the Kets, who have had complex ongoing interactions with speakers of non-Yeniseian languages such as the Samoyedic Selkups. We attempt to remedy this with new historical Siberian aDNA data, orienting our search for common denominators and systematic difference in a broader landscape of concordance, discordance, and uncertainty at the interface of diachronic linguistics and genetics.


Global demographic history inferred from mitogenomes

Open access Global demographic history of human populations inferred from whole mitochondrial genomes, by Miller, Manica, and Amos, Royal Society Open Science (2018).

Relevant excerpts (emphasis mine):


The Phase 3 sequence data from 20 populations, comprising five populations for each of the four main geographical regions of Europe, East Asia, South Asia and Africa, were downloaded from the 1000 Genomes Project website (, [8]), including whole mitochondrial genome data for 1999 individuals. We decided not to analyse populations from the Americas due to the region’s complex history of admixture [13,14].

The European populations were as follows: Finnish sampled in Finland (FIN); European Caucasians resident in Utah, USA (CEU); British in England and Scotland (GBR); an Iberian population from Spain (IBS) and Toscani from Italy (TSI). Representing East Asia were the Han Chinese in Beijing (CHB); Southern Han Chinese (CHS); Dai Chinese from Xishuangbanna, China (CDX); Kinh population from Ho Chi Minh City, Vietnam (KHV) and Japanese from Tokyo (JPT). The South Asian populations were Punjabi Indians from Lahore, Pakistan (PJL); Gujarati Indians in Houston, USA (GIH) as well as Indian Telugu sampled in the UK (ITU); Bengali from Bangladesh (BEB) and Sri Lankan Tamil from the UK (STU). (…)


We analysed our mtDNA data with the extended Bayesian skyline plot (EBSP) method, a Bayesian, non-parametric technique for inferring past population size fluctuations from genetic data. Building on the previous Bayesian skyline plot (BSP) approach, EBSP uses a piecewise-linear model and Markov chain Monte Carlo (MCMC) methods to reconstruct a populations’ demographic history [17] and is implemented in the software package BEAST v. 2.3.2 [11]. Alignments for each of the 20 populations were loaded separately into the Bayesian Evolutionary Analysis Utility tool (BEAUti v. 2.3.2) in NEXUS format.

Relationship between profile similarity and genetic distance, measured as Fst. Comparisons between regions, circles, are colour-coded: black ¼ AFR-EA; yellow ¼ AFR-EUR; blue ¼ AFR-SA; orange ¼ EUR-EA; green ¼ EA-SA; red ¼ EUR-SA. Comparisons within regions, squares, are coded: peach ¼ EUR; pink ¼ EA; dark blue ¼ EA; light blue ¼ AFR. Profile similarity is calculated as inferred size difference summed over 20 evenly spaced intervals (see Material and methods).

Regional demographic histories


The five European profiles are presented in figure 2. The four southerly populations all show profiles with a stable size up to approximately 14 ka followed by a sudden, rapid increase that becomes progressively less steep towards the present. There is also a north-south trend, with confidence intervals becoming broader towards the north, particularly for the oldest time-points. The Finnish population profile appears rather different, but this is to be expected both because it is so far north and because previous studies have identified Finns as a strong genetic outlier in Europe [19–22].

Inferred demographic histories of five European populations. Dotted line is the median estimate of Ne and the thin grey lines show the boundary of the 95% CPD interval. The x-axis represents time from the present in years and all plots are on the same scale. Map shows origins of sampled populations.

South Asia:

The five profiles for South Asia are shown in figure 3. All populations reveal a period of rapid growth approximately 45–40 ka which then slows. Near the present the two southerly populations, GIH and STU both show evidence of a decline. However, this may be due to these samples being drawn from populations no longer living on the subcontinent, with the downward trend capturing a bottleneck associated with moving to Europe/America, perhaps accentuated by the tendency for immigrant populations to group by region, religion and race [23].

Inferred South Asian population demographic histories. Dotted line is the median Ne estimate and the thin grey lines show the boundary of the 95% CPD intervals. The x-axis represents time from the present in thousands of years and all plots are on the same scale. The map shows location of sampled populations.


Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations


Open access Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations, by Wang, Lu, Chung, and Xu, Hereditas (2018) 155:19.

Abstract (emphasis mine):

Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied.

We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant.

These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

Population level phylogenetic Tree and Principal component analysis (PCA). (A) The maximum likelihood tree was constructed based on pair-wise FST matrix. And the marked number are bootstrap value; (B) The top two PCs of individuals representing six East Asian populations, mapped to their corresponding geographic locations (generated by R 2.15.2 and Microsoft Excel 2010)

Interesting excerpts:

It is obvious that the genetic difference among the three East Asian groups initially resulted from population divergence due to pre-historical or historical migrations. Subsequently, different geographical locations where the three populations are located, mainland of China, Korean Peninsular and Japanese archipelago, respectively, apparently facilitated population differentiation due to physical isolation and independent genetic drift. Our estimations of population divergence time among the three groups, 1.2~ 3.6 KYA, are largely consistent with known history of the three populations and those related. However, considering that recent admixture could have reduced genetic difference between populations, it is likely the divergence time was underestimated.

We detected substantial gene flow among the three populations and also from the surrounding populations. For example, based on our analysis with the F3 test, Korean received gene flow from Han Chinese and Japanese, and gene flow also happened between Han Chinese and Japanese (Additional file 12: Table S3). These gene flows are expected to have reduced the genetic differentiation between the three ethnic groups. On the other hand, we also detected considerable gene flow from surrounding populations to the three populations studied. For instance, an ancestral population represented by Ryukyuan have contributed greater to Japanese than to Han Chinese, while southern ethnic group like Dai have contributed more to continent populations than to island and peninsula populations. Contrary to the gene flow among the three populations, these gene flows from surrounding populations are expected to have increased genetic difference among the three populations if they occurred independently and from different source populations. According to our results, the major source of gene flow to the three ethnic groups were substantially different, for example, the major source of gene flow to Han Chinese was from southern ethnic groups, the major source of gene flow to Japanese was from southern islands, and the major source of gene flow to Korean were from both mainland and islands. Therefore, those gene flows might have significantly contributed to further genetic differentiation of the three populations.

The three populations have similar but not identical demographical history; they all experience a strong population expansion in the last 20,000 years. However, according to different geographic distribution, their effective population size and population expansion are different.

Although based on modern populations, the study is interesting in light of the potential implications for a Macro-Altaic proposal.


Ancient Di-Qiang people show early links with Han Chinese


Bernard Sécher reports on a recent article, Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese, by Li et al., BMC Evolutionary Biology (2017).


Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese.

We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300–3800 years ago.

Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.

MDS plot of genetic distance Fst between 3 ancient and 38 modern Chinese groups

Interesting times now for the investigation of potential migrations associated with the expansion of Sino-Tibetan and Altaic languages


Two more studies on the genetic history of East Asia: Han Chinese and Thailand


A comprehensive map of genetic variation in the world’s largest ethnic group – Han Chinese, by Charleston et al. (2017).

It is believed – based on uniparental markers from modern and ancient DNA samples and array-based genome-wide data – that Han Chinese originated in the Central Plain region of China during prehistoric times, expanding with agriculture and technology northward and southward, to become the largest Chinese ethnic group.


As are most non-European populations around the globe, the Han Chinese are relatively understudied in population and medical genetics studies. From low-coverage whole-genome sequencing of 11,670 Han Chinese women we present a catalog of 25,057,223 variants, including 548,401 novel variants that are seen at least 10 times in our dataset. Individuals from our study come from 19 out of 22 provinces across China, allowing us to study population structure, genetic ancestry, and local adaptation in Han Chinese. We identify previously unrecognized population structure along the East-West axis of China and report unique signals of admixture across geographical space, such as European influences among the Northwestern provinces of China. Finally, we identified a number of highly differentiated loci, indicative of local adaptation in the Han Chinese. In particular, we detected extreme differentiation among the Han Chinese at MTHFR, ADH7, and FADS loci, suggesting that these loci may not be specifically selected in Tibetan and Inuit populations as previously suggested. On the other hand, we find that Neandertal ancestry does not vary significantly across the provinces, consistent with admixture prior to the dispersal of modern Han Chinese. Furthermore, contrary to a previous report, Neandertal ancestry does not explain a significant amount of heritability in depression. Our findings provide the largest genetic data set so far made available for Han Chinese and provide insights into the history and population structure of the world’s largest ethnic group.

Using Shanghai individuals as representatives, shared drift between Chinese and ancient humans are computed by calculating the outgroup f3 statistics of the form f3(Mbuty;X, Y), with ancient individuals separated into approximately Palaeolithic, Mesolithic, Neolithic , and Chalcolithic-Medieval times. it is found that modern Chinese individuals show greater shared drift with pre-Neolithic hunter-gatherers rather than Neolithic farmers (Featured image from the article).

EDIT (17/7/2017): Davidski at Eurogenes shares an interesting view on this kind of results:

These sorts of estimates always look way off. And I doubt that it’s largely the result of the Silk Road, which linked China to the Near East and Mediterranean rather than to Northern Europe. More likely it reflects gene flow from the Pontic-Caspian steppe in Eastern Europe during the Bronze and Iron ages, via the Afanasievo, Andronovo, and other closely related steppe peoples

New insights from Thailand into the maternal genetic history of Mainland Southeast Asia, by Kutanan et al. (2017)


Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1,234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA sequences from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the extension and expansion of TK people through MSEA, although there is also some support for an admixture model. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.