Ahead of the (Indo-European – Uralic) game: in theory and in numbers


There is a good reason for hope, for those who look for a happy ending to the revolution of population genomics that is quickly turning into an involution led by beliefs and personal interests. This blog is apparently one of the the most read sites on Indo-European peoples, if not the most read one, and now on Uralic peoples, too.

I’ve been checking the analytics of our sites, and judging by the numbers of the English blog, Indo-European.eu (without the other languages) is quickly turning into the most visited one from Academia Prisca‘s sites on Indo-European languages, beyond Indo-European.info (and its parent sites in other languages), which host many popular files for download.

If we take into account file downloads (like images or PDFs), and not only what Google Analytics can record, Indo-European.eu has not more users than all other websites of Academia Prisca, but at this pace it will soon reach half the total visits, possibly before the end of 2019.

Overall, we have evolved from some 10,000 users/year in 2006 to ~300,000 active users/year and >1,000,000 page+file views/year in 2018 (impossible to say exactly without spending too much time on this task). Nothing out of the ordinary, I guess, and obviously numbers are not a quality index, but rather a hint at increasing popularity of the subject and of our work.

NOTE. The mean reading time is ~2:40 m, which I guess fits the length of most posts, and most visitors read a mean of ~2+ pages before leaving, with increasing reader fidelity over time.

Number of active users of indo-european.eu, according to Google Analytics since before the start of the new blog. Notice the peaks corresponding to the posts below (except the last one, corresponding to the publication of A Song of Sheep and Horses).

The most read posts of 2018, now that we can compare those from the last quarter, are as follows:

  1. – The series on the Corded Ware-Uralic theory, with a marked increase in readers, especially with the last three posts:
    1. Finno-Permic and the expansion of N-L392/Siberian ancestry,
    2. “Siberian ancestry” and Ugric-Samoyedic expansions, and
    3. Haplogroups R1a and N in Finno-Ugric and Samoyedic
  2. Haplogroup is not language, but R1b-L23 expansion was associated with Proto-Indo-Europeans
  3. The history of the simplistic ‘haplogroup R1a — Indo-European’ association
  4. On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers
  5. On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  6. The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna
  7. Something is very wrong with models based on the so-called ‘Yamnaya admixture’ – and archaeologists are catching up (II)
  8. Olalde et al. and Mathieson et al. (Nature 2018): R1b-L23 dominates Bell Beaker and Yamna, R1a-M417 resurges in East-Central Europe during the Bronze Age
  9. Early Indo-Iranian formed mainly by R1b-Z2103 and R1a-Z93, Corded Ware out of Late PIE-speaking migrations
  10. “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

NOTE. Of course, the most recent posts are the most visited ones right now, but that’s because of the constant increase in the number of visitors.

I think it is obvious what the greatest interest of readers has been in the past two years. You can see the pattern by looking at the most popular posts of 2017, when the blog took off again:

  1. Germanic–Balto-Slavic and Satem (‘Indo-Slavonic’) dialect revisionism by amateur geneticists, or why R1a lineages *must* have spoken Proto-Indo-European
  2. The renewed ‘Kurgan model’ of Kristian Kristiansen and the Danish school: “The Indo-European Corded Ware Theory”
  3. The new “Indo-European Corded Ware Theory” of David Anthony
  4. Correlation does not mean causation: the damage of the ‘Yamnaya ancestral component’, and the ‘Future American’ hypothesis
  5. The Aryan migration debate, the Out of India models, and the modern “indigenous Indo-Aryan” sectarianism

The most likely reason for the radical increase in this blog’s readership is very simple, then: people want to know what is really happening with the research on ancestral Indo-Europeans and Uralians, and other blogs and forums are not keeping up with that demand, being content with repeating the same ideas again and again (R1a-CWC-IE, R1b-BBC-Vasconic, and N-Comb Ware-Uralic), despite the growing contradictions. As you can imagine, once you have seen the Yamna -> Bell Beaker migration model of North-West Indo-European, with Corded Ware obviously representing Uralic, you can’t unsee it.

The online bullying, personal attacks, and similar childish attempts to silence those who want to talk about this theory elsewhere (while fringe theories like R1a/CHG-OIT, R1b-Vasconic, or the Anatolian/Armenian-CHG hypotheses, to name just a few, are openly discussed) has had, as could be expected, the opposite effect to what was intended. I guess you can say this blog and our projects have profited from the first relevant Streisand effect of population genomics, big time.

If this trend continues this year (and other bloggers’ or forum users’ faith in miracles is not likely to change), I suppose that after the Yamna Hungary samples are published (with the expected results) this blog is going to be the most read in 2020 by a great margin… I can only infer that this tension is also helping raise the interest in (and politicization of) the question, hence probably the overall number of active users and their participation in other blogs and forums is going to increase everywhere in 2019, too, as this debate becomes more and more heated.

So, what I infer from the most popular posts and the numbers is that people want criticism and controversy, and if you want blood you’ve got it. Here it is, my latest addition to the successful series criticizing the “Corded Ware/R1a–Indo-European” pet theories, a post I wrote two-three months ago, slightly updated with the newest comedy, and a sure success for 2019 (already added to the static pages of the menu):

The “Indo-European Corded Ware theory” doesn’t hold water

This is how I feel when I see spikes in visits with more and more returning users linked to my controversial posts 😉

Are you not entertained?! Are you not entertained?! Is this not why you are here?!

The importance of fine-scale studies for integrating palaeogenomics and archaeology


Short review (behind paywall) The importance of fine-scale studies for integrating paleogenomics and archaeology, by Krishna R. Veeramah, Current Opinion in Genetics & Development (2018) 53:83-89.

Abstract (emphasis mine):

There has been an undercurrent of intellectual tension between geneticists studying human population history and archaeologists for almost 40 years. The rapid development of paleogenomics, with geneticists working on the very material discovered by archaeologists, appears to have recently heightened this tension. The relationship between these two fields thus far has largely been of a multidisciplinary nature, with archaeologists providing the raw materials for sequencing, as well as a scaffold of hypotheses based on interpretation of archaeological cultures from which the geneticists can ground their inferences from the genomic data. Much of this work has taken place in the context of western Eurasia, which is acting as testing ground for the interaction between the disciplines. Perhaps the major finding has not been any particular historical episode, but rather the apparent pervasiveness of migration events, some apparently of substantial scale, over the past ∼5000 years, challenging the prevailing view of archaeology that largely dismissed migration as a driving force of cultural change in the 1960s. However, while the genetic evidence for ‘migration’ is generally statistically sound, the description of these events as structured behaviours is lacking, which, coupled with often over simplistic archaeological definitions, prevents the use of this information by archaeologists for studying the social processes they are interested in. In order to integrate paleogenomics and archaeology in a truly interdisciplinary manner, it will be necessary to focus less on grand narratives over space and time, and instead integrate genomic data with other form of archaeological information at the level of individual communities to understand the internal social dynamics, which can then be connected amongst communities to model migration at a regional level. A smattering of recent studies have begun to follow this approach, resulting in inferences that are not only helping ask questions that are currently relevant to archaeologists, but also potentially opening up new avenues of research.

Interesting excerpts (emphasis mine, reference numbers removed for clarity):

There are two major, somewhat intertwined, problems that currently exist.

First, archaeologists are not critiquing whether the migrations identified by paleogenomics using sophisticated population genetic machinery are actually occurring. Instead, the technical criticism arrives in terms of how these migrations are being ascribed to specific cultures. In many paleogenomic papers, there is a tendency (and often an analytical and technical need) to associate samples with particular archaeological cultures, for which all samples are then treated as possessing some kind homogenous and pervasive social identity that is bound in space and time. The major critiques of this thus far have been directed to those studies examining Corded-Ware and Bell-Beaker-related individuals and their potential relationship to the Yamnaya [Vander Linden (2016), Heyd (2017), Furholt (2017)], but are applicable to many other ‘migration’ scenarios described in the recent literature. This is compounded by the use of sometimes small numbers of samples to represent certain cultures from a particular geographic area as representatives of the entire culture at a supra-regional level. Yet often these archaeological cultures such as Corded-Ware and Bell-Beaker themselves show considerable variability in space and time, and even within cemeteries, which is not factored into the genetic analysis.

From a population geneticists point of view, this kind of simplification is somewhat understandable and will often likely have very little impact on the final analysis, given that the primary goal is usually to use ancient samples to better understand modern genetic variation. Though there may be a specific historical interest in some of these past events, I would argue that the aim for most population geneticists at a higher level is to try and fit modern patterns of genetic variation using the simplest models possible that take into account past demographic events (for example fitting f-statistics using the ADMIXTUREGRAPH approach), as this is how we are trained. Although sharing an archaeological culture may not mean that a set of individuals are part of the same homogeneous social group in reality, this approach may be a good enough heuristic to find broad genetic connections compared to another group represented by a different culture, which can then ultimately help understand and model modern human population structure. However, for an archaeologists interested in the ancient individuals themselves and their social identity, this lumping is unsatisfactory, where sophisticated narratives of the individual migrants and their ancient communities are the intended goal.

From the paper. Barplot showing cumulative number of ancient Eurasian genomes published on a yearly basis up to 8th July 2018. Includes samples undergoing both whole genome shotgun and SNP capture sequencing.

The second related problem is that ‘migration’ in the sense used currently in the paleogenomics literature lacks sufficient detail to be of much use for an archaeologists attempting to disentangle the complex social dynamics within and between communities. To truly understand the role of migration as a social process and its contribution towards cultural changes, it is necessary to describe it as a structured behaviour, rather than treating it as an explanatory ‘black box’. Are the migrations occurring as a result of short range waves-of-advance movements, or as long-distance movements via leapfrogging models or stream migrations along established routes dependent on key kinship networks. Are there return migrants, and are some subset of individuals more predisposed to migration driving the signals? Although such models were implemented in past studies (even with classical markers [1]) and are part of the population genetics literature, they are lacking in the current paleogenomics literature when discussing migration. The finding that there is an increase of 12.3% of ancestry type X in population A compared to the preceding population B that is suggestive of a migration, is not particularly useful for examining these kind of models. It is also unclear to what degree standard population genetic parameters estimated from genomic data such as effective population size, Ne, and gene flow are relevant to models studied in archaeology, given they reflect (somewhat undefined) long-term population sizes and average rates of movements over time, rather than reflecting any kind of reality of census size and mobility in the ancient communities the archaeologists are actually attempting to study.

The text goes on to talk about ways of studying fine-grained social dynamics of local cultures, such as:

define levels of genetic relatedness, but also in terms of material culture, age, sex, stress and activity indicators, stable isotopes for diet reconstruction (nitrogen, d13C and d15N, carbon, 13C/12C) and strontium and oxygen isotopes for mobility (87Sr/86Sr, d18O). Where possible, sites should be examined over multiple generations. In addition it will be incredibly useful to characterize the impact of disease in these communities, which is also proving to be a highly fruitful realm for paleogenomics.

I would say that the main problem is not the obvious limitations of palaeogenomics in terms of identifying prehistoric ethnolinguistic communities and their evolution, which is why it is just another tool to complement archaeology and linguistics. The main problem is the narrow understanding that some people have of the inherent limitations of palaeogenomics – especially when it interests them – , when publicizing simplistic conclusions based on these tools and their results. And I am not referring only to amateurs.


The future of the Reich Lab’s studies and interpretations of Late Indo-European migrations


Short report on advances in Genomics, and on the Reich Lab:

Some interesting details:

  • The Lab is impressive. I would never dream of having something like this at our university. I am really jealous of that working environment.
  • They are currently working on population transformations in Italy; I hope we can have at last Italic and Etruscan samples.
  • It is always worth it to repeat that we are all the source of multiple admixture events, many of them quite recent; and I liked the Star Wars simile.
  • Also, some names hinting at potential new samples?? Zajo-I, Chanchan, Gurulde?, Володарка (Ukraine – medieval?), Autodrom, Облевка, Кресты, Кудуксай (Ural region, palaeo-metal?), Золкут, etc.
Ancient DNA sample bag?

On the bad aspect, they keep repeating the same “steppe ancestry” meme (in the featured image above, or the one below). I know this is the news report (i.e. science communication), not exactly the Reich Lab, but these maps didn’t appear out of the blue.

Steppe ancestry distribution in Europe, according to PBS.

Interesting for future interpretations is the whiteboard behind David Reich’s back (apparently they like to keep relevant information on whiteboards…):

Whiteboard behind David Reich’s back (at his office?).

It seems that while the Copenhagen group will still be bound (see here) by the Gimbutas/Kristiansen starting point, the Reich Lab will remain bound by Anthony’s selection of Ringe’s (2002) glottochronological model, and they will try to make genomic data fit in with it.

In fact, the whiteboard doesn’t even include Ringe’s link of Germanic with Italo-Celtic, which could maybe hint at Anthony’s recent change of heart? (i.e. Yamna Hungary -> Corded Ware). That would mean still less Linguistics (if glottochronology can be called that), and more Archaeology…

Image from Anthony & Ringe (2015). “The Proto-Indo-European homeland, with migrations outward at about 4200 BCE (1), 3300 BCE (2), and 3000 BCE (3a and 3b). A tree diagram (inset) shows the pre-Germanic split as unresolved. Modified from Anthony (2013).”

I don’t know why university labs need to do this: To select the linguistic model preferred by a single archaeologist, which happens to be the lead archaeologist of the group, and then try to make genetic data agree again and again with that model. I guess it is a strategic question, and has to do with granting continued contacts with archaeological sites, and access to samples from them?

I understand none of them will try to learn ancient languages, too much work probably. But, wouldn’t it have been more scientifish, at least, to depart from, say, three or four reasonable potential linguistic models (that is, from Indo-Europeanists), and from there discuss the best potential fits for the current genomic data in each paper?

This is, for example, how the Heyd (archaeologist) + German/Spanish Indo-Europeanist schools would look like:

Yamnaya expansion coupled with Meid’s (1975) description of three stages of Proto-Indo-European development (as interpreted by Adrados 1998) and depiction of Heyd’s proposal of Yamna expansion.

Wouldn’t you say it could have fitted the statistical and Y-DNA data seamlessly, in contrast to Gimbutas/Trager (i.e. Kristiansen today), or to Anthony/Ringe?

NOTE. I would say the mainstream German school follows Meid’s (1975) three-stage theory coupled with Dunkel’s (e.g. 1997) nomenclature. The Spanish school follows Adrados, who has repeated ad nauseam that he was the first to mention the three-stage theory in conferences and papers previous to and coincident with Meid’s proposal (see his latest JIES article, a paper available in Scribd). In any case, Spanish and German scholars have been working hand in hand in accepting and developing a general linguistic model similar to the one above.

Archaeological theories like those of Heyd or Mallory for Yamna and Bell Beaker (in contrast to Kristiansen or Anthony), and Prescott and Walderhaug for Bell Beaker and Germanic (contrasting with Kristiansen and Iversen) are compatible with this German/Spanish model.

The French school is non-existent on the homeland matter, Italian scholars seem to be behind even in the description of Anatolian as archaic (probably related to the general wish to have Latin as derived from Vergil’s Troy), Russian scholars are still working with Nostratic and Mesolithic expansions, and Leiden, as the leading IE publisher worldwide today, is full of very different ‘divos’, each with his own pet theory (some obviously agreeing with the German/Spanish model; and especially interesting is that some of them are strong supporters of an Indo-Uralic proto-language).

The English-speaking world, on the other hand, has seen the most varied models being either proposed or translated into its language, with the most popular ones being those publicized by archaeologists (Winfred P. Lehmann being one of the noteworthy exceptions), which may explain why for some people (archaeologists or geneticists) linguistics seems more like a game. It is to be assumed that these same people haven’t taken a look at the dozens of genetic papers published to date – and hundreds of archaeological papers using a bit of linguistics to support their models – , and how wrong they have all been in their interpretations, or else they would realize that genomics does (sadly) not really look like a serious discipline at all right now among most linguists, and among many archaeologists either…

Thus, instead of comparing the main theories on Proto-Indo-European (i.e. linguistics->archaeology->genetics), which would have offered the most stable framework to assess potential prehistoric ethnolinguistic identifications, they keep using a single, simplistic language tree liked by an archaeologist, and trying to fit genetic data to it, while also adapting archaeology to genetics, i.e. genetics->archaeology->linguistics; which, as you can imagine, is not going to convince any linguist.

Especially disappointing is that the world’s leading genetic lab still relies on a marginal proposal based on glottochronology, the homeopathy of linguistics… At least in that regard everyone should know better by now.

Also, they keep interacting with the wrong audience: instead of trying to engage linguists into the real homeland and dialectal quest, to keep Genomics a serious discipline among academics, they tend to discuss with politically- or racially-motivated people, which is probably also in line with strategic decisions.

In the example below, we see the main author of their recent paper on Indo-Iranian migrations seeking once again interaction, this time through “news” promoted by Hindu nationalist bigots, so that – even if that makes them look more neutral in the eyes of those who may allow access to Indian samples – , in the end, we see in genomics a fictitious revival of the “AIT vs. OIT debate” dead long ago in linguistics and archaeology (anywhere but in India).

Pretty disappointing to see these trends; so much effort and time invested in futile discussions and infinitely reworked doomed glottochronological or 19th-century models, when it is the fine-scale population structure of expanding Yamna peoples what we should be discussing now, and thus Late PIE dialectalisation with offshoots Afanasevo, East Bell Beaker, Balkan Bronze Age, and Sintashta/Potapovka; as well as Corded Ware evolution in Uralic-speaking territory.

EDIT (7 JUN 2018): Some parts of the text have been corrected or slightly modified.


FADS1 and the timing of human adaptation to agriculture


Open access FADS1 and the timing of human adaptation to agriculture, by Sara Mathieson & Iain Mathieson, bioRxiv (2018).


Variation at the FADS1/FADS2 gene cluster is functionally associated with differences in lipid metabolism and is often hypothesized to reflect adaptation to an agricultural diet. Here, we test the evidence for this relationship using both modern and ancient DNA data. We document pre-out-of-Africa selection for both the derived and ancestral FADS1 alleles and show that almost all the inhabitants of Europe carried the ancestral allele until the derived allele was introduced approximately 8,500 years ago by Early Neolithic farming populations. However, we also show that it was not under strong selection in these populations. Further, we find that this allele, and other proposed agricultural adaptations including variants at LCT/MCM6, SLC22A4 and NAT2, were not strongly selected until the Bronze Age, 2,000-4,000 years ago. Similarly, increased copy number variation at the salivary amylase gene AMY1 is not linked to the development of agriculture although in this case, the putative adaptation precedes the agricultural transition. Our analysis shows that selection at the FADS locus was not tightly linked to the development of agriculture. Further, it suggests that the strongest signals of recent human adaptation may not have been driven by the agricultural transition but by more recent changes in environment or by increased efficiency of selection due to increases in effective population size.

Interesting excerpt for the steppe-related expansion:

Allele frequency trajectories for other putative agricultural adaptation variants. As in Figure 2C, estimated allele frequency trajectories and selection coefficients in different ancient European populations. Significant selection coefficients are labelled.

In the case of FADS1 and all the other examples we investigated, the proposed agricultural adaption was either not temporally linked with agriculture or showed no evidence of selection in agricultural populations. Instead, most of the variants with any evidence of selection were only strongly selected at some point between the Bronze Age and the present day, that is, in a period starting 2000-4000 BP and continuing until the present. This time period is one in which there is relatively limited ancient DNA data, and so we are unable to determine the timing of selection any more accurately. Future research should address the question of why this recent time period saw the most rapid changes in apparently diet associated genes. One plausible hypothesis is that the change in environment at this time was actually more dramatic than the earlier change associated with agriculture. Another is that effective population sizes were so small before this time that selection did not operate efficiently on variants with small selection coefficients. For example, analysis of present-day genomes from the United Kingdom suggests that effective population size increased by a factor of 100-1000 in the past 4500 years (Browning and Browning 2015). Ancient effective population sizes less that 104 would suggest that those populations would not be able to efficiently select for variants with selection coefficients on the order of 10-4 or smaller. Larger ancient DNA datasets from the past 4,000 years will likely resolve this question.

This complexity of the reasons for selection reminded me of the comment by Narasimhan on lactase persistence expanding with steppe populations into Central Asia (based on data of the paper where he is the first author):

I always thought that to argue for natural selection in humans (viz. skin color, lactase persistence, etc.) was possible for archaic groups over tens of thousands of years, but that more recent selections would be very difficult to prove, in so far as historical population expansions involve more ‘artificial’ (i.e. man-made or man-caused) societal changes.

NOTE. I am probably more inclined to think about regional outbreaks (especially of new diseases) as one of the few potential short-term selection mechanisms in historical societies, because of their potential to create sudden bottlenecks of better fitted survivors.

I think recent works like these are showing a mixed situation, where maybe some traits were strongly selected for environmental reasons; but most of the time they were probably – like, say, Y-DNA haplogroup bottlenecks in Europe after the steppe-related expansions – due mostly to chance.

The new Scicomm’s warhorse is “CHG ancestry = PIE” and the Iranian homeland


Funny reports are popping up due to a recent article in New Scientist (behind paywall), World’s most-spoken languages may have arisen in ancient Iran, which echoes the controversial interpretations of Wang et al. (2018).

I have been waiting to read the printed edition, but that of May 26th doesn’t have the article in it, so it may be a web-only text.

Nevertheless, here are some excerpts about the PIE homeland from a news aggregator that caught my attention (emphasis mine):

The two proposed locations are divided by the Caucasus mountains, which are found between the Black and Caspian Seas. In today’s geography, the mountains cover parts of Russia, Georgia, Azerbaijan, and Armenia.

To find out whether the ancient language came from north or south of these mountains, a team from the Max Planck Institute for the Science of Human History looked at the bones of 45 ancient humans from the Caucasus region, and analyzed their DNA. These people lived in the area between 3,200 and 6,500 years ago.

Interestingly, from looking at their genes, the researchers determined that these ancient people seemed to be moving predominantly in one direction – they were heading north. This suggests that, contrary to what was previously believed, the first Indo-European language might actually have arisen south of the Caucasus mountains, only spreading to other parts of Europe and Asia as people migrated north from this region. The findings are currently available on BioRxiv.

We know that the Proto-Indo-European language appeared somewhere between 5,500 and 9,000 years ago, and the study suggests it only spread to Europe about 6,500 years ago. Therefore, this lost language could have originated south of the Caucasus.

What’s more, the ancient people analyzed had similar genetic signatures to prehistoric farmers who once lived in western Iran. Therefore, the ancient version of many of our languages may have first evolved in ancient Iran, before spreading with the people who first spoke it, and their ancestors, as they radiated north of the Caucasus mountains to the Eurasian steppe.

However, there are still many who favor the conflicting theory – that the Proto-Indo-European language arose in the Eurasian steppe. But this would only take the language back about 4,800 years – when people moved from the Eurasian steppe into Europe – and specialists think the language is significantly older. The idea that it first sprung up in Iran about 6,500 years ago follows this assumption.

It seems that – now that the Danish workgroup (responsible for the “steppe ancestry = Indo-European” and “Corded Ware expanded from Yamna“) is backing down, and both it and the Reich/Jena group are accepting that Yamna represents the expansion of Late Indo-European into Afanasevo, Bell Beaker, and Sintashta – anything before Yamna in the steppe is just another “conflicting theory” among equals…

So forget the “steppe ancestry = PIE”, and welcome the newly fashionable “CHG ancestry = PIE“, and of course the Iranian homeland.

This is how I imagine genetic labs writing anthropological interpretations and conclusions of their papers, against every single reasonable restraint (and the well-established models of linguists and archaeologists) and then publicizing them:



David Reich on social inequality and Yamna expansion with few Y-DNA subclades

Interesting article from David Reich that I had missed, at Nautilus, Social Inequality Leaves a Genetic Mark.

It explores one of the main issues we are observing with ancient DNA, the greater reduction in Y-DNA lineages relative to mtDNA lineages, and its most likely explanation (which I discussed recently).

Excerpts interesting for the Indo-European question (emphasis mine):

Gimbutas’s reconstruction has been criticized as fantastical by her critics, and any attempt to paint a vivid picture of what a human culture was like before the period of written texts needs to be viewed with caution. Nevertheless, ancient DNA data has provided evidence that the Yamnaya were indeed a society in which power was concentrated among a small number of elite males. The Y chromosomes that the Yamnaya carried were nearly all of a few types, which shows that a limited number of males must have been extraordinarily successful in spreading their genes. In contrast, in their mitochondrial DNA, the Yamnaya had more diverse sequences.9 The descendants of the Yamnaya or their close relatives spread their Y chromosomes into Europe and India, and the demographic impact of this expansion was profound, as the Y-chromosome types they carried were absent in Europe and India before the Bronze Age but are predominant in both places today.13

This Yamnaya expansion also cannot have been entirely friendly, as is clear from the fact that the proportion of Y chromosomes of steppe origin in both western Europe14 and in India15 today is much larger than the proportion of the rest of the genome. This preponderance of male ancestry coming from the steppe implies that male descendants of the Yamnaya with political or social power were more successful at competing for local mates than men from the local groups. The most striking example I know is from Iberia in far southwestern Europe, where Yamnaya-derived ancestry arrived suddenly at the onset of the Bronze Age between 4,500 and 4,000 years ago. Daniel Bradley’s laboratory and my laboratory independently produced ancient DNA from individuals of this period.14 We find that in the first Iberians with Yamnaya-derived ancestry, the proportion of Yamnaya ancestry across the whole genome is almost never more than around 15 percent. However, around 90 percent of males who carry Yamnaya ancestry have a Y-chromosome type of steppe origin that was absent in Iberia prior to that time. It is clear that there were extraordinary hierarchies and imbalances in power at work in the Yamnaya expansions.

David Reich clearly doesn’t give a damn about how other people might react to his commentaries. That’s nice.

In any case, if anyone was still in denial, R1b-M269 expanded with Yamna (through the Bell Beaker expansion) into Iberia, hence yes, 90% of modern Basque male lineages have an origin in the steppe, like the R1b-DF27 sample recently found, and their common ancestor spoke Late Proto-Indo-European.

Findings like these, which should be taken as normal developments of research, are apparently still a trauma for many – like R1a-fans from India realizing most of their paternal ancestors came from the steppe, or its fans from Northern Europe understanding that their paternal ancestors probably spoke Uralic or a related language; or N1c-fans seeing how their paternal ancestors probably didn’t speak Uralic. It seems life isn’t fair to stupid simplistic ethnolinguistic ideas

Let’s see which Y-DNA haplogroups we find in West Yamna, to verify the latest migration model of Late PIE speakers of the Reich Lab (featured image).

Check out also the BBC News coverage of David Reich and Nick Patterson, the two most influential researchers of the moment in Human Ancestry: How ancient DNA is transforming our view of the past.


The uneasy relationship between Archaeology and Ancient Genomics

Allentoft Corded Ware

News feature Divided by DNA: The uneasy relationship between archaeology and ancient genomics, Two fields in the midst of a technological revolution are struggling to reconcile their views of the past, by Ewen Callaway, Nature (2018) 555:573-576.

Interesting excerpts (emphasis mine):

In duelling 2015 Nature papers6,7the teams arrived at broadly similar conclusions: an influx of herders from the grassland steppes of present-day Russia and Ukraine — linked to Yamnaya cultural artefacts and practices such as pit burial mounds — had replaced much of the gene pool of central and Western Europe around 4,500–5,000 years ago. This was coincident with the disappearance of Neolithic pottery, burial styles and other cultural expressions and the emergence of Corded Ware cultural artefacts, which are distributed throughout northern and central Europe. “These results were a shock to the archaeological community,” Kristiansen says.


Still, not everyone was satisfied. In an essay8 titled ‘Kossinna’s Smile’, archaeologist Volker Heyd at the University of Bristol, UK, disagreed, not with the conclusion that people moved west from the steppe, but with how their genetic signatures were conflated with complex cultural expressions. Corded Ware and Yamnaya burials are more different than they are similar, and there is evidence of cultural exchange, at least, between the Russian steppe and regions west that predate Yamnaya culture, he says. None of these facts negates the conclusions of the genetics papers, but they underscore the insufficiency of the articles in addressing the questions that archaeologists are interested in, he argued. “While I have no doubt they are basically right, it is the complexity of the past that is not reflected,” Heyd wrote, before issuing a call to arms. “Instead of letting geneticists determine the agenda and set the message, we should teach them about complexity in past human actions.”

Many archaeologists are also trying to understand and engage with the inconvenient findings from genetics. (…)
[Carlin:] “I would characterize a lot of these papers as ‘map and describe’. They’re looking at the movement of genetic signatures, but in terms of how or why that’s happening, those things aren’t being explored,” says Carlin, who is no longer disturbed by the disconnect. “I am increasingly reconciling myself to the view that archaeology and ancient DNA are telling different stories.” The changes in cultural and social practices that he studies might coincide with the population shifts that Reich and his team are uncovering, but they don’t necessarily have to. And such biological insights will never fully explain the human experiences captured in the archaeological record.

Reich agrees that his field is in a “map-making phase”, and that genetics is only sketching out the rough contours of the past. Sweeping conclusions, such as those put forth in the 2015 steppe migration papers, will give way to regionally focused studies with more subtlety.

This is already starting to happen. Although the Bell Beaker study found a profound shift in the genetic make-up of Britain, it rejected the notion that the cultural phenomenon was associated with a single population. In Iberia, individuals buried with Bell Beaker goods were closely related to earlier local populations and shared little ancestry with Beaker-associated individuals from northern Europe (who were related to steppe groups such as the Yamnaya). The pots did the moving, not the people.

This final paragraph apparently sums up a view that Reich has of this field, since he repeats it:

Reich concedes that his field hasn’t always handled the past with the nuance or accuracy that archaeologists and historians would like. But he hopes they will eventually be swayed by the insights his field can bring. “We’re barbarians coming late to the study of the human past,” Reich says. “But it’s dangerous to ignore barbarians.”

I would say that the true barbarians didn’t have a habit or possibility to learn from the higher civilizations they attacked or invaded. Geneticists, on the other hand, only have to do what they expect archaeologists to do: study.

EDIT (30 MAR 2018): A new interesting editorial of Nature, On the use and abuse of ancient DNA.

See also:

Population substructure in Iberia, highest in the north-west territory (to appear in Nature)

A manuscript co-authored by Angel Carracedo, from the University of Santiago de Compostela, and (always according to him) pre-accepted in Nature, will offer more insight into the population substructure of Spain, based on autosomal DNA.

Carracedo’s lecture about DNA (in Galician), including his summary of the paper (from december 2017):

Some of the points made in the video:

  • The study shows a situation parallelling – as expected – the expansion of Spanish Medieval kingdoms during the Reconquista (and subsequent repopulation).
  • In it, the biggest surprise seems to be the greater substructure found in Galicia, the north-western Spanish territory – greater even than expected by the authors.
  • As a side note, Galicia shows a great influence from Moorish” ancestral components, due mainly to the influx from Portugal, which shows more.

It is difficult to judge only from the image and his words, but one could say that there are:

  • Certain quite old ancestral Galician groups;
    • then two – also quite old – ancestral Basque groups;
      • then more recent Galician groups;
        • and then a common, central Spanish group – including
          • a wider Asturian-Catalan group, with a western Asturian-Leonese, and an eastern Catalan subgroup;
          • and a central Castillian-Aragonese group, also with a western Castillian, and an eastern Aragonese subgroup.
Spain’s population substructure, from the video.

We thought that certain parts of the British Isles could show ancestral components related to the old population, although this has not proven exactly right, due to more recent population expansions.

However, this paper might shed light to the controversy surrounding Lusitanian (possibly Gallaico-Lusitanian) as a Pre-Celtic Indo-European group of Iberia, either slightly older as an Italo-Celtic dialect, or potentially from the Bell Beaker expansion, whose genetic imprint might have survived the Roman conquest, which apparently didn’t replace its ancestral population.

Given the presence of a central Spanish group opposed to the other minor groups – and knowing that (at least part of) the Medieval kingdoms should be related to the Occitan region – due to the Celtic expansion, and also potentially later during the Visigothic Kingdom, and the Carolingian Empire – , we can only guess that the other (north-western and Basque) groups are potentially quite old, and reflect prehistoric population structures.

Just speculating here, of course. Another interesting genetic paper to await…

Seen first in the Facebook group Iberia ADN.