North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic

germanic-balto-slavic-expansion

In his recent paper on Late Proto-Indo-European migrations, when citing Udolph to support his model, Frederik Kortlandt failed to mention that the Old European hydrotoponymy in northern Central-East Europe evolved into Baltic and Slavic layers, and both take part in some Northern European (i.e. Germanic – Balto-Slavic) commonalities.

Proto-Slavic

From Expansion slavischer Stämme aus namenkundlicher und bodenkundlicher sicht, by Udolph, Onomastica (2016), translated into English (emphasis mine):

NOTE. An archived version is available here. The DOI references for Onomastica do not work.

(…) there is a clear center of Slavic names in the area north of the Carpathians. Among them are root words of the Slavic languages such as reka / rzeka, potok u. a. m.

Even more important than this mapping is the question of how the dispersion of ancient Slavic names happened. What is meant by ancient Slavic names? I elaborated on this in this journal years ago (Udolph, 1997):

(1)Ancient suffixes that are no longer productive today.

This clearly includes Slavic *-(j)ava as in Vir-ava, Vod-ava, Il-ava, Glin-iawa, Breg-ava, Ljut-ava, Mor-ava, Orl-java among others. It has clear links to the ancient common Indo-European language (Lupawa, Morava-March-Moravia, Orava, Widawa). They have a center north of the Carpathians.

ava-slavic

(2) Unproductive appellatives (water words), which have disappeared from the language, are certain witnesses of ancient Slavic settlements. A nice example of this is Ukr. bahno, Pol. bagno ‘swamp, bog, morass’ etc. The word has long been missing in South Slavic, although it appears in South Slavic names, but only in very specific areas (see Udolph, 1979, pp. 324-336).

(3) Names that go back to different sound shifts. [Examples:]

  • (…) the Slavic clan around Old Sorbian brna ‘feces, earth’, Bulgarian OCS brьnije ‘feces, loam’, OCS brъna ‘feces’, Slovenian brn, ‘river mud’, etc. is solved with the inclusion of onomastic materials (Udolph, 1979, p. 499-514). (…) Toponymic mapping shows important details.
  • bryn-slavic
    Karte 4. brъn < *brŭn und bryn- < *brūn- in slavischen Namen
  • (…)We also have an ablauting *krŭn-:*krūn- in front of us. Map 5 shows the distribution of both variants in Slavic names.
  • The next case is quite similar. It concerns Russ. appellative grjaz’ ‘dirt, feces, mud’, (…) for which an Old Slavic form *gręz exists. Slavic also knows the ablauting variant *grǫz.

    These maps (see Map 6, p. 222) show that a homeland of Slavic tribes can only be inferred north of the Carpathians.

    (4) Place-names formed by Slavic suffixes of Pre-Slavic nature, i.e. derived from Old European hydronyms.

    (a) The largest river in Poland, the Wisła, German Vistula, bears a clearly Pre-Slavic name, no matter how one explains it (Babik, 2001, pp. 311-315; Bijak, 2013, p. 34, Udolph, 1990 , Pp. 303-311).

    (b) With the same suffix are formed Sanok, place on the southwest of Przemyśl; Sanoka, a no longer known waters name, 1448 as fluvium Szanoka, near the place Sanoka and with a diminutive suffix -ok- a tributary of the Sanok, which is called Sanoczek (for details see Udolph, 1990, pp. 264-270; Rymut / Majtan, 1998, p. 222). The San also has a single-language name, but that does not change anything about the right etymology. The suffix variant -očь also includes Liwocz and Liwoczka, river names near Cracow; also a mountain range of the Beskydy is mentioned at Długosz as Lywocz.

    According to the opinion of the “Słownik prasłowiański” (Sławski (red.), 1974, p. 92), the suffix -ok- represents a Proto-Slavic archaism. It appears, for example, in sъvědokъ, snubokъ, vidokъ, edok, igrok, inok among others, but its antiquity also shows, among other things, that it started at archaic athematic tribes.

    east-slavic-language-expansion
    Mapping of older and younger East Slavic place-names and translation into settlement evolution.

    Slavonic Urheimat

    If we apply this to the loess distribution in western Ukraine and south-eastern Poland, it is very noticeable that the center of the Old Slavic place names lies in the area where loess dispersal is gradually “frayed out”, i.e. for example, in the area west of Kiev between Krakow in the west and Winnycja and Moldavia in the east. In short, the distribution of good soils coincides with ancient Slavic names. If that is correct, we can expect a homeland in the Pre-Carpathian region, or better, a core landscape of Slavic settlement.

    The existence of Pre-Slavic Indo-European place names and water names whose structure indicates that they originated from an Indo-European basis, but then also developed Slavic peculiarities, can now – as stated above – only be understood to mean that the language group that we call today Slavic emerged in a century-long process from an Indo-European dialectal area.

    Loess areas between Poland and Ukraine. Image from Jary et al. (2018).

    From a genetic point of view, the scarce data published to date show a clear shift of central-east populations from more Corded Ware-like groups in the EBA towards more BBC-derived ancestry in the common era, to the point where ancient DNA samples from East Germany, Poland and Lithuania evolve from clustering between Corded Ware and Sub-Neolithic peoples to clustering close to Bell Beaker-derived groups, such as West Germanic peoples, Tollense samples, etc. (see below)

    Furthermore, sampled Early Slavs show bottlenecks under “Dinaric” I2a-L621 and central-eastern E1b-V13, which – in combination with the known phylogeography of Únětice and Urnfield – is compatible with its late expansion from a central-east European Slavonic homeland, such as the Pomeranian culture, in turn likely derived from Lusatian culture groups.

    This doesn’t preclude a more immediate expansion of Common Slavic in Antiquity closer to the northern Carpathians, which is also supported by the available Early Slavic sampling, apart from samples from the Avar and Hungarian polities.

    pca-balto-slavic-iron-age
    Likely Baltic (yellow-green) and Slavic (orange) groups ca. 500 AD on, with Finnic (cyan) and Mordvinic (blue) groups roughly divided through hydrotoponymy line ca. 1000 AD Top Left: Late Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Baltic / Proto-Slavic

    Northern European hydronymy

    From Alteuropäische Hydronymie und urslavische Gewässernamen, by Udolph, Onomastica (1997), translated into English (emphasis mine):

    NOTE. An HTML version is available at Jurgen Udolph’s personal site.

    Because of the already striking similarities as the well-known “-m-case”, the number-words for ‘1000’, ’11’ and ’12’ and so on, J. Grimm had already assumed a close relationship between Germanic and Baltic and Slavic. (…)

    In my own search, I approached this trinity from the nomenclature side. In doing so, I noticed some name groups that can speak for a certain common context:

    1.* bhelgh-, *bholgh-.

    Map 10, p. 64, shows that a root * bhelgh- occurs in the name material of a region from which later Germanic, Baltic and Slavic originated. The Balkans play no role in this.

    bholgh-germanic-balto-slavic

    2. *dhelbh-, *dholbh-, *dhl̥bh-

    The proof of the three ablauting * dhelbh, * dholbh, * dhl̥bh- within a limited area shows the close relationship that this root has with the Indo-European basis. Again it is significant in which area the names meet (…)

    dhelbh-germanic-balto-slavic

    3. An Indo-European root extension *per-s- with the meaning ‘spray, splash, dust, drop’ is detectable in several languages (…). From a Baltic-Slavic-Germanic peculiarity cannot therefore be spoken from the toponymic point of view. The picture changes, however, if one includes the derived water names.

    4. The root extension *pel-t-, *pol-t-, *pl̥-t- of a tribe widely spread in the Indo-European languages around *pel-, pol- ‘pour, flow, etc.’, whose reflexes are found Armenian through Baltic and Slavic to the Celtic area, is found in the Baltic toponymy, cf. Latv. palts, palte ‘puddle, pool’.

    trzciniec-riesenbecher-culture
    The dynamics of stylistic changes of the form of the “Trzciniec pot” in the lowland regions of Central Europe, and spreading routes of the Trzciniec package in Central Europe. A good proxy for contacts through the Northern European Plain during the Early Bronze Age. Modified from Czebreszuk (1998).

    Early Balto-Finnic

    In order to properly delimit (geographically and chonologically) the Proto-Baltic and Proto-Slavic expansions, it is necessary to understand where the late Balto-Finnic homeland was located during the Bronze Age. The following are excerpts from the comprehensive hydrotoponymic study by Pauli Rahkonen (2013):

    In any case, Finnic probably had its origin somewhere around the Gulf of Finland. Names of large and central rivers such as Vuoksi (< Finnic vuo ‘stream’) and Neva (< Finnic neva ‘marsh, river’) must be very old and might represent Proto-Finnic hydronyms. In the southern coastal area of Finland, the names Kymi and Nietoo < *Niet|oja (id. later Porvoonjoki) may also be of Finnic origin and derive from, respectively, kymi ‘stream’ (see SSA I s.v. *kymi; see however SPK s.v. Kemijärvi; Rahkonen 2013: 24) and nieto(s) ‘heap of snow’ (SSA II s.v. nietos), in hydronyms probably ‘high (snowy?) banks of a river’. Mustion|joki is clearly a Finnish name < *must|oja ‘black river’. The river name Vantaa remains somewhat obscure, although Nissilä (see SPK s.v. Vantaanjoki) has derived it from the Finnic word vana ‘water route’. In western Finland the names of large rivers, such as Aura and Eura, are supposedly of Germanic origin (Koivulehto 1987).

    In Estonia the names of many of the most important rivers might be of Finnic origin: e.g. Ema|jõgi Est. ema ‘mother’ [Tartu district] (?? cf. the Lake Piiga|ndi < Est. piiga ‘maiden’), Pärnu [Pärnu district] < Est. pärn ‘linden’, Valge|jõgi [Loksa district] < Est. valge ‘white’, Must|jõgi [Võru district] < Est. must ‘black’. It is possible that Emajogi and especially Piigandi are the result of later folk etymologizing of a name with some unknown origin. However, as a naming motif there exist in Finland numerous toponyms with the stems Finnic *emä (e.g. 3 Emäjoki), *neit(V)- ‘maiden’ (e.g. Neitijärvi, Neittävänjoki, Neittävänjärvi) and Saami stems that can be derived from Proto Saami *nejte̮ ‘id’ (GT2000; NA).

    finnic-toponyms
    The historical southern boundary of Finnic hydronyms, excluding hydronyms produced by the Karelian refugees of the 17th century.

    These seemingly very old names of relatively large rivers in southern Finland, modern Leningrad oblast and Estonia support the hypothesis that Proto-Finnic was spoken for a long time on both sides of the Gulf of Finland and it thus basically corresponds to the hypothesis of Terho Itkonen (see below). In the Novgorod, Tver or Vologda oblasts of Russia, Finnic names for large rivers cannot be found (Rahkonen 2011: 229). For this reason, it is likely that the Late Proto-Finnic homeland was the area around the Gulf of Finland.

    Beyond the southeastern boundary of the modern or historically known Finnic-speaking area, there exists a toponymic layer belonging to the supposedly non-Finnic Novgorodian Čudes (see Rahkonen 2011). In theory it is possible that Proto-Finnic and Proto-Čudian separated from each other at an early stage or it is even possible that Proto-Čudian was identical with Proto-Finnic. However, this cannot be proven, because there is not enough material available describing what Novgorodian Čudic was like exactly.

    finno-saamic-mordvin
    Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2013)

    A summary of the data is then:

    • The Daugava River and the Gulf of Livonia formed the most stable south-western Balto-Finnic border (up until ca. 1000 AD): the Daugava shows a likely Indo-European etymology, while some of its tributaries are best explained as derived from Uralic.
    • The first layer of “Early Baltic” loans in Early Balto-Finnic are of a non-attested Baltic dialect closest to Proto-Balto-Slavic (read more about this early layer).
    • The latest samples of the Trzciniec culture (or derived Iron Age group) from its easternmost group in Turlojiškė (ca. 1000-800 BC?) show a western shift towards Bell Beaker, although they show a majority of hg. R1a-Z280; while the earliest sample from Gustorzyn (ca. 1900 BC), likely from Trzciniec/Iwno, from the westernmost area of the culture, shows a Corded Ware-like ancestry (and hg. R1a-Z280, likely S24902+) among a BA sampling from Poland clearly derived from Bell Beaker groups.

    One can therefore infer that the expansion of the Trzciniec culture – as the earliest expansion of central-west European peoples into the Baltic after the Bell Beaker period – represented either the whole disintegrating Balto-Slavic community, or at least an Early Baltic-speaking community expanding from the West Baltic area to the east.

    The similarity of Early Slavs and the Trzciniec outlier with the Czech BA cluster, formed by samples from Bohemia (ca. 2200–1700 BC), and the varied haplogroups found among Early Slavs – reminiscent of the variability of the Unetice/Urnfield sampling – may help tentatively connect the early Proto-Slavic homeland more strongly with a Proto-Lusatian community immediately to the south-west of the Iwno/Proto-Trzciniec core.

    pca-late-bronze-age-balto-slavic-finnic
    Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Balto-Slavic homeland

    Disconnected western border: Germanic

    The common Balto-Slavic – Germanic community must necessarily be traced back to the West Baltic. From Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994), translated from German (emphasis mine):

    My work [Namenkundliche Studien zum Germanenproblem] has shown how strong the Germanic toponymy is related to the East, less to Slavic, much more to Baltic. It confirms the recent thesis by W.P. Schmid on the special relationship Germanic and Baltic, according to which “the formation of the typical Germanic linguistic characteristics…must have taken place in the neighborhood of Baltic“.

    If one starts from a Germanic core area whose eastern boundary is to be set on the middle Elbe between the Erzgebirge and Altmark, there are little more than 400 km. to the undoubtedly Baltic settlement area east of the Vistula. Stretching the Baltic area westwards over the Vistula (as far as the much-cited Persante), the distance is reduced to less than 300 km. Assuming further that Indo-European tribes between the developing Germanic and the Baltic groups represent the connection between the two language groups, so can one understand well the special relationship proposed by W.P. Schmid between Germanic and Baltic. In an earlier period shared Slavic evidently the same similarities (Baltic-Slavic-Germanic peculiarities).

    balto-slavic-balto-finnic-homeland
    Top: Palaeo-Germanic (G2, blue area), Proto-Balto-Slavic/Pre-Baltic (PBSL, green area) and Early Proto-Balto-Finnic (PBF, cyan area) homelands superimposed over Early Bronze Age cultures. Persante hydronym and Gustorzyn ancient DNA sample location marked. Y-DNA haplogroups during the Early Bronze Age (Bottom left) and during the Middle Bronze Age (Bottom right). Notice a mix of R1b-L151 samples from the west and the process of integration of R1a-Z645 lineages from the the north-east. See full maps and PCAs.

    Substrate and immediate eastern border: Early Balto-Finnic

    While Balto-Finnic shows a late Balto-Slavic adstrate, Balto-Slavic has a Balto-Finnic(-like) substrate, also found later in Baltic and Slavic, which implies that Balto-Slavic (and later Baltic and Slavic) replaced the language of peoples who spoke Balto-Finnic(-like) languages, influencing at the same time the language of neighbouring peoples, who still spoke Balto-Finnic (or were directly connected to the Balto-Finnic community).

    For more on this relative chronology in Balto-Slavic – Balto-Finnic contacts, see e.g. the recent posts on Kallio (2003), Olander (2019), or a summary of this substrate.

    While Rahkonen (2013) entertains Parpola’s theory of a West-Uralic-speaking Netted Ware area (ca. 1900-500 BC), due to the Uralic-like hydrotoponymy of its territory, he also supports Itkonen’s idea of the ancient presence of almost exclusively Balto-Finnic place and river names in the Eastern Baltic and the Gulf of Finland since at least the Corded Ware period, due to the lack of Indo-European layers there:

    NOTE. This idea was also recently repeated by Kallio (2015), who can’t find a non-Uralic layer of hydrotoponymy in Balto-Finnic-speaking areas.

    It should be observed that the territory between the historical Finnic and Mordvin-speaking areas matches quite well with the area of the so-called Textile Ceramics [circa 1900–800 BC] (cf. Parpola 2012: 288). The culture of Textile Ceramics could function as a bridge between these two extreme points. Languages that were spoken later in this vast territory between Finland–Estonia and Mordovia seem to derive from Western Uralic (WU) as well. I have called those languages Meryan-Muroma, Eastern and Western Čudian and an unknown “x” language spoken in inland Finland, Karelia and the Lake Region of the Russian North (Rahkonen 2011; 241; 2012a: 19–27; 2013: 5– 43). This might mean that the territory of the Early Textile Ceramics reflects to some extent the area of late Western Uralic.

    The archaeologically problematic area is Estonia, Livonia and Coastal Finland – the area traditionally assumed to have been populated by the late Proto-Finns. The Textile Ceramics culture was absent there. It is very difficult to believe that the Textile Ware population in inland Finland migrated or was even the main factor bringing the Pre- or Early Proto-Finnic language to Estonia or Livonia. There are no archaeological or toponymic signs of it. Therefore, I am forced to believe that Textile Ceramics did not bring Uralic-speaking people to those regions. This makes it possible, but not absolutely proven, to assume that some type of Uralic language was spoken in the region of the Gulf of Finland already before Textile Ceramics spread to the northwest (circa 1900 BC).

    corded-ware-west-uralic
    Top Left: Corded Ware culture expansion. Top right: PCA of Corded Ware and Sub-Neolithic groups. Y-DNA haplogroups during the Corded Ware expansion (Bottom left) and during the subsequent Bell Beaker expansion (Bottom right). Notice the rapid population replacement of typical Corded Ware R1a-Z645 lineages by expanding Bell Beakers of hg. R1b-L23 in central-east Europe, while they show continuity in the described ancestral Fennoscandian West-Uralic-speaking territory. See full maps and PCAs.

    The Corded Ware population in Finland is thought to have been NW Indo-European by many scholars (e.g. Koivulehto 2006: 154–155; Carpelan & Parpola 2001: 84). At least, it is probable that the Corded Ware culture was brought to Finland by waves of migration, because the representatives of the former Late Comb Ceramics partially lived at the same time side by side with the Corded Ware population. However, it is possible that the immigrants were a population that spoke Proto-Uralic, who had adopted the Corded Ware culture from their Indo-European neighbors, possibly from the population of the Fatjanovo culture, e.g. in the Valdai region. This was suggested by Terho Itkonen (1997: 251) as well. In that case the population of the Typical and Late Comb Ceramics may have spoken some Paleo European language (see Saarikivi 2004a). In the Early Bronze Age, the Baltic Pre-Finnic language that I have suggested must have been very close to late WU and therefore no substantial linguistic differences existed between the Baltic Pre-Finns and the population of Textile Ceramics in inland Finland. I admit that this model is difficult to prove, but I have presented it primarily in order to offer new models of thinking.16 At least, there is no archaeological or linguistic reason against this idea.

    This dubitative attribution of Proto-Uralic to the expansion of Corded Ware groups in eastern Europe, which is what hydrotoponymic data suggests in combination with archaeology, has to be understood as a consequence of how striking Rahkonen finds the results of his research, despite Itkonen’s previous proposal, in the context of an overwhelming majority of Indo-Europeanists who, until very recently, simplistically associated Corded Ware with the Indo-European expansion.

    Conclusion

    Even Kortlandt accepts at this point the identification of expanding East Bell Beakers from the Carpathian Basin as those who left the Alteuropäische layer reaching up to the Baltic. However, he identified Udolph’s data solely with West Indo-European, forgetting to mention the commonly agreed upon western Proto-Balto-Slavic homeland, most likely because it contradicts two of his main tenets:

    1. that Balto-Slavic split from a hypothetical Indo-Slavonic (i.e. Satem) group expanding from the east; and
    2. that laryngeals can be reconstructed for Balto-Slavic – unlike for North-West Indo-European.
    old-european-asian-hydro-toponymy
    Indo-European hydrotoponymy in Europe and the Middle East (scarce Central Asian data). Baltic data compensated, statistical method RBF: intermediate regions devoid of Indo-European toponyms are inferred to have them; it compensates thus e.g. for the scarce Indo-European hydrotoponyms in Poland by assuming ‘soft’ continuity from West Germany to the Baltic.

    A hypothetic “Pre-Indo-Slavonic” laryngeal Indo-European layer reaching Fennoscandia and the Forest Zone with Corded Ware is fully at odds with all known data:

    • in comparative grammar, since the one feature that characterizes Graeco-Aryan is precisely its set of innovations relative to Northern Indo-European, which presupposes a longer contact (and further laryngeal loss) once Tocharian and North-West Indo-European had separated – hence probably represented by Palaeo-BalkanCatacomb-Poltavka contacts once Afanasevo and Yamna settlers from the Carpathian Basin / East Bell Beakers had become isolated;
    • in hydrotoponymy, because of the prehistoric linguistic areas that can be inferred from (1) the distribution of Old European hydrotoponymy; (2) Udolph’s work on Germanic and the likely non-Indo-European substrate in Scandinavia and land contacts with Balto-Finnic; (3) from the Northern European traits in the Northern European Plain; or (4) from the decreasing proportion of Indo-European place and river names from central Europe towards the east and north.
    • NOTE. An alternative explanation of Old European/Balto-Slavic layers, e.g. by a ‘Centum’ Temematic – even if one obviates the general academic rejection to Holzer’s proposal – couldn’t account for the absolute lack of an ancestral layer of Indo-European hydrotoponymy in North-Eastern Europe (i.e. the longest-lasting Corded Ware territory), in sharp contrast with Western Europe, South-Eastern Europe, and South Asia. All of that contradicts an Eastern Indo-European community, even without a need to recall that the oldest hydrotoponymic layers common to Fennoscandia and the Forest Zone are of Uralic nature.

    • in archaeology, because cultural expansions of the Eastern European Early Bronze Age province since the Bell Beaker period (viz. Mierzanowice, Trzciniec, Lusatian, Pomeranian, West Baltic Culture of Cairns) suggest once and again west-east movements, most (if not all) of which – based on the presence of Indo-European speakers during the common era – were likely associated with Indo-European-speaking communities replacing or displacing previous ones.
    • in palaeogenomics, because of the late and different association of Corded Ware ancestry and haplogroups among Balto-Slavic and Indo-Iranian communities, in turn corresponding to the different satemization processes found in both dialects, which may have actually been related to the Uralic substrate that is found in both (read more on Uralic influences on Balto-Slavic and on Indo-Iranian).

    On the other hand, a careful combination of Uralic and Indo-European comparative grammar, hydrotoponymic data, and population genomics fits perfectly well Itkonen’s and Rahkonen’s association of Corded Ware in Eastern Europe with Uralic languages, as well as the traditional mainstream view of Uralic before Indo-European in Fennoscandia and in the Forest Zone, as I explained in a recent post about genetic continuity in the East Baltic area.

    Population genomics is not the main reason to reject the Indo-European Corded Ware theory – or any other prehistoric ethnolinguistic identification, for that matter. It can’t be. This new field offers just the occasional confirmation of a well-founded theory or, alternatively, another nail in the coffin of fringe theories that were actually never that likely, but seemed impossible to fully dismiss on purely theoretical grounds.

    The problem with Corded Ware was that we couldn’t see how unlikely its association with Indo-European languages was until we had ancient DNA to corroborate archaeological models, because few (if any) Indo-Europeanists really cared about the linguistic prehistory of eastern and northern Europe, or about Uralic languages in general (contrary to the general trend among Uralicists to be well-versed in Indo-European studies). Now they will.

    Related

    European hydrotoponymy (III): from Old European to Palaeo-Germanic and the Nordwestblock

    nordic-bronze-age-cultures

    The study of hydrotoponymy shows a prevalent initial Old European layer in central and northern Germany, too, similar to the case in Iberia, France, Italy, and the British Isles.

    The recent paper on Late Proto-Indo-European migrations by Frederik Kortlandt relies precisely on this ancestral layer as described by Jürgen Udolph to support a Danubian expansion of North-West Indo-European with East Bell Beakers, identified as the Alteuropäische (Old European) layer that was succeeded by Germanic in the North European Plain.

    The Proto-Germanic homeland

    The following are excerpts are translated from the German original (emphasis mine) in Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994):

    udolph-namenkunde
    Buy the book at De Gruyter’s site or at Amazon.

    The following is a concise compilation of the investigation into nine points, which will be subsequently discussed: there are Brink (in the north brekk-), -by (on the Elbe), the name of the Elbe itself, germ, haugaz and blaiw, klint, malm / melm, the name of the Rhön, and the place name element -wedel.

    I want to briefly summarize the results:

    1. Brink has toponymically a clear focus in Germany between the Rhine and the Weser; in Schleswig-Holstein and Denmark it is almost completely missing, the Scandinavian place name documents show an accumulation in eastern Sweden. The English Brink names can not be associated with the Scandinavian ones. The “real” Scandinavian variant brekka, brekke, however, also appear on the Shetland and Orkney Islands and in central England.

    2. The Central Elbian –by-place names have nothing to do with the Danish and Scandinavian -by-names.

    3. The name of the Elbe has been carried from south to north and has become an appellative in Scandinavia. This clearly proves that a south-north migration has taken place.

    4. The distribution of haugaz does not support a Nordic origin of the word. K. Bischoff in his thorough investigation never asked whether the reverse path from south to north would be possible. However, in comparison with the results of the study of other toponyms, this second option will be much more likely to be accepted. On the “problem of the gap” in the distribution (between Aller and northern Holstein) see page 910.

    hlaiwaz-germanisch

    5. Completely missing is the assumption of Nordic origin in the case of hlaiwaz. A look at Map 67 shows this clearly.

    6. Even in the case of klint, Denmark and Scandinavia are only marginally involved in the distribution of names. This contradicts the thesis that the English Klint names are of Nordic origin. On the other hand, Map 68 (Klit- / Klett-) shows how Nordic place names can have an influence on the British Isles.

    klint-germanisch

    7. Even in the case of germ, melm (ablauting malm, mulm), everything speaks for a continental Germanic starting point: here are all ablaut stages in the appellative vocabulary and in the toponymy, which shows together with the name Melmer perhaps the most ancient -r-derivations, which are unknown to the Nordic area, while the Nordic names, in turn, have a distinct tendency to spread to eastern Sweden, towards the Baltic Sea.

    8. The name of the Rhön can only be interpreted with the aid of the Nord Germanic apellative hraun “boulder field, stony ground, lava field”. This does not mean that Nord Germanic peoples have given this name, but that the Common or Proto-Germanic peoples knew the appelative still. The Rhön owes its name to this language stage.

    9. The spread of the fronds names in Germany, classified by E. Schröder as “North Germanic invasion”, can be explained differently: more important than the often younger names north of the Elbe in Schleswig-Holstein (type Wedelboek) are the place names near Braunschweig, Büren (Westphalia), and in the Netherlands, in which case a south-north spread is more convincing than the assumption of a Nordic expansion.

    wedel-germanisch

    If you take the similar distribution maps 15 (wik), 31 (fenn), 36 (slk), 39 (büttel), 47 (live), 49 (quem), 50 (thing), 61 (brink) and 66 (haugaz) It can be seen from this (page 72, page 908) that there are parts of Germany which, to a lesser degree, are more heavily involved than others in Old Germanic place name formations: that applies to southern Thuringia, the Area between Werra and Fulda, the Magdeburger Börde and its western foothills to the Weser at the Porta Westfalica). On the other hand, the areas north of the Aller, Hanoverian Wendland and wide areas between the Lower Weser and the Lower Elbe (apart from the area around Osterholz-Scharmbeck as well as Kehdingen and Hadeln) are little and hardly affected.

    There is no question that the reasons for the different dispersion can not lie in the name itself, but have other causes. H. Kuhn has considered the natural conditions of the landscape with the fronds. Comparing the place name expansion outlined here with a bog map of Lower Saxony, as found in numerous publications (Map 73, page 910), solves the problems: even today’s bog distribution of Lower Saxony, diminished through cultivation and drainage (albeit still considerable), reflects the fact that the early colonization and naming of northern Germany has been shaped and, to a certain extent, controlled by settler-friendly and not-settler-friendly conditions.

    moorkarte-deutschland
    Distribution of bogs in Germany. Source: M. Sommer, Institut für Bodenlandschaftsforschung, ZALF, Müncheberg.

    On the location of the Germanic Urheimat

    According to the space briefly outlined by the present study, the Old Germanic settlement area in toponymic terms is roughly to be located between the Erzgebirge, Thüringerwald, Elbe, Aller and an open border in Westphalia, for the following reasons:

    • High proportion of old European names. This is a basic requirement, which of course is also fulfilled by other areas, but not by Schleswig-Holstein, Denmark and Scandinavia. (…)
    • Of particular importance was the discussion about relations with the north (the generally accepted ancient Germanic settlement area, section L, p. 830-917). I believe that the detailed study of the geographical names no longer allows one to assume a Scandinavian homeland of Germanic tribes. Too many arguments speak against it. It is much more likely to start with a northward migration (…).
    bell-beaker-germanic
    Bell Beaker expansion ca. 2600-2200 BC. Top Left: Tentative location of the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border). Top right: PCA of the Bell Beaker period, with Netherlands EBA cluster (population west of the Germanic Urheimat) in red, and Battle Axe/Baltic CWC (population east and north of the Urheimat) in cyan. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Western border: Nordwestblock

    Recently, W. Meid has once more dealt in detail with Kuhn’s thesis. After that, the most important criteria for the approach of this thesis are the following:

    1. -p- (and other shutter sounds) are partly not shifted in North German names;
    2. the existence of a -sí-suffix;
    3. -apa in river names;
    4. the suffix -andr-;
    5. certain words u. Name strains, e.g. Veneter, Belgian.
    6. Above-average relations of the northwestern block to Italic (Latin, Osco-Umbrian).

    W. Meid agrees with Kuhn’s theses, but with limitations: “These evidences seem to indicate that the NW-space did not belong to the original settlement area of ​​the Teutons, but that the Germanization of this area or larger parts of it did not take place until relatively late, namely – as Kuhn thinks – after the Germanic sound shift or during its last phase. According to Kuhn’s own words this “space… appears as a block that has long defied Germanization”.

    Udolph continues explaining why most of these non-Germanic examples are “optic illusions”, since he can explain most of them as from Old European to Old Germanic stages, which is mostly in agreement with the known features of Old European hydrotoponymy. For example, -apa- and -andra-names as Old European; -p- as before the Germanic sound shift; -st- and -s-formations as Northern European; -ithi- also unrelated to a hypothetic “Venetic” substrate.

    I think that the point to discuss should not be the similarity with Old European or the oldest reconstructible Proto-Germanic stage (i.e. the closest to North-West Indo-European), or the appearance of these traits also in neighbouring Germanic territory, but the proportion of “more archaic” features contrasting with the proper Germanic area, and thus differences in frequency with the Germanic core territories.

    Just as Udolph can’t accept the non-Indo-European nature of most cases, one can’t simply accept his preference for a Pre-Proto-Germanic nature either, for the same reason one can’t accept the relationship of Western European “Pre-Celtic” hydrotoponymy with Celtic peoples because of some shared appellatives whose Celtic nature is not proven.

    NOTE. If there is something missing from this huge book is certainly statistical analyses with GIS, which would make this case much easier to discuss in graphical and numerical terms. Let’s hope Udolph can update the data in the near future, because he is still (fortunately) active.

    In any case, the Nordwestblock remains a likely Old European hydrotoponymic area partially shared by Germanic, which doesn’t lie at the core of the spread of Old European place names and has a potential non-Indo-European substrate shared with Northern European groups. Combined with comparative grammar and with results of population genomics supporting the spread of East Bell Beakers of Yamna descent from the Carpathian Basin, this essentially renders interpretations of Old European expansion from Northern Europe devoid of support in linguistics.

    Palaeo-Germanic expansion

    To the north, the settlement movement depends on the location and spread of settlement-deficient areas, such as the moors northeast of Wolfsburg, north of Gifhorn, south of Fallingbostel, etc. As soon as this belt has been breached, the place name frequency in the eastern Lüneburg Heath indicates where more favorable settlement conditions are to be found: the Altmark in Saxony-Anhalt, the Jeetzel lowlands and especially the Ilmenau area near Uelzen, Bevensen and Lüneburg (it is difficult not to recall the name Jastorf here).

    If one combines these findings with the dispersion of ancient Germanic place names, one will find that above all the section of the river east from Hamburg to about Lauenburg was particularly favorable for crossing. The onomastic data speaks in favour of this aspect, e.g. the following names lying north and south of this area.

    brink-germanisch

    1. Delvenau = Elbe-Lübeck Canal.

    2. Neetze north of Lüneburg (-d-/-t-change).

    3. Wipperau north of Lüneburg (-p-/-b- change).

    4. The dispersion of the -wik places (Bardowik), cf. Map 15, p. 106.

    5. The dissemination of the -r formations (Map 24, p. 191).

    6. The -ithi formations Geesthacht, Bleckede u.a. south of the Elbe, Eckede north of the stream (see Map 28, p.272).

    7. Fenn south of the Elbe in the north of Lüneburg (Map 31, p.315).

    8. The distribution of the Hor name (Harburg) and northeast of it in Holstein (Map 32, p.328).

    9. Germ, sik- with clear clusters southeast. and northeastern. from Hamburg (Map 36, p. 409).

    10. Also the -büttel names show a concentration east of Hamburg on the one hand and a second accumulation at the estuary of the Elbe (Brunsbüttel) (map 39, p.438).

    11. Gorleben and other places in Hann. Wendland south of the river (Map 47, p.503).

    12. Werber-names southeast from Hamburg and in eastern Holstein (Map 53, p.742).

    13. The scattering of brink names (Map 61, p. 843).

    The place name distributions also make it possible to track the settlement movement north of the Elbe. It has been repeatedly emphasized that Schleswig-Holstein has little share in old Germanic toponymy. One tries to explain this fact, which reaches into the realm of the Old European hydronyms, by saying that, according to archeology, “large parts of Schleswig-Holstein in the 5th to 7th centuries were sparsely populated”.

    scandinavia-neolithic-dagger-period
    Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

    If one summarizes these synoptically (Map 74, p.914) and also takes into account the not-included -leben-names (Map 47, p.503), then it is quite clear that Denmark by no means shares these types of names. The most important points are, in my opinion:

    1. North of today’s German-Danish border, the quantity of old place names drops rapidly and even tends towards zero. West Jutland in particular is rarely involved in the dispersion.
    2. Within Jutland there is a clear orientation to the east. The connection with southern Sweden is established via Funen and Zeeland.
    3. Disputed is in my opinion, whether the spread of toponymy followed a roughly direct line Fehmarn and Lolland/Falster. This is not to be excluded, but the maps of toponymy distribution do not give a clear indication in this direction.

    The synoptic map makes it clear that both western Schleswig-Holstein and western Jutland are not to be regarded as Old Germanic settlement areas. Rather, East Jutland and the Danish islands were reached by Germanic tribes.

    pca-bronze-age-germanic
    Bronze Age groups ca. 2200-1750 BC. Top Left: Tentative location of (1) the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border), (2) the Pre-Proto-Germanic expansion area, coinciding with the Nordic Dagger Period, and (3) the Pre-Proto-Germanic-like Nord-West-Block. Top right: PCA of European Bronze Age groups. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Absolute chronology and Balto-Finnic

    It is imprecise to estimate the age of settlement movements from toponymic research. I do not want to be involved in speculation, but I think that Klingberg’s estimate could have some arguments in its favor. In the approximate dating, however, it is important to include a fact that has already been briefly mentioned above and should be treated here in more detail: the fact of Germanic-Finnic relations.

    W.P. Schmid has emphatically pointed out the difficulty that arises when one considers the unfolding of Germanic too far from the Baltic Sea settlement areas. Among other things, it draws attention to the fact that a Germanic homeland that were postulated too far west could not explain how Germanic loanwords might appear in the Finnic names of Northern Russia. These will be mentioned with reference to M. Vasmer: Randale to Finn. ranta “beach”, Pel’doza and Nimpel’da to Finn. pelto, Justozero to Finn. juusto “cheese”, Tervozero to Finn. terva “tar” and Rovdina Gora to Finn. rauta “ore”.

    I think it is possible that the clear spread of Old and North Germanic toponyms, as described in the synoptic map 74 (p. 914) and in the already mentioned -ing, -lösa, -by, -sta(d) and -säter-maps (19, 46, 63-65), can offer some help: quite early the Germanic tribes reached the Swedish east coast. It is also clear that there have previously been contacts with Slavic and Finno-Ugric tribes by sea. However, intensive German-Finnic relations can, in my opinion, have come about only through close contacts on the mainland.

    Pre-Indo-European substrate

    In my investigation, I have repeatedly come up with suggestions to explain a hard-to-interpret North Germanic name from a Pre-Germanic, possibly Non-Indo-European substrate. Most of these were views of H. Kuhn, which he also used to support his so-called “Nord-West block”.

    On one point H. Kuhn may have been right with an assumption of a Pre-Germanic substrate that did not provide the basis for further development in Germanic terms: he very clearly argued that Scandinavia too was Pre-Germanic, even Pre-Indo-European A substrate that stands out above all because of the lack of Lautverschiebung : “In the Nordic countries, we have to reckon with non-Germanic, non-Indo-European prehistoric names scarcely less than in the other Germanic languages”. In light of the results of the present work that makes a relatively late Germanization of Scandinavia very likely, this sentence should not be set aside in the future, but carefully examined on the basis of the material.

    Both data, the known long-lasting Palaeo-Germanic – Finno-Samic contacts, and the underresearched presence of non-Indo-European vocabulary in Scandinavia, are likely related to the presence of a West Uralic(-like) substrate in Scandinavia and most likely also in Northern Europe, based on the disputed non-Indo-European components shared through the North European Plain (see above), and on the scarce ancient Indo-European hydrotoponymy in central-east Europe to the north of the Carpathians.

    Population genomics

    Although there is yet scarce genetic data from northern European territories, the haplogroup distribution among sampled peoples from the Germanic migration period and during the Viking expansion suggests a prevalence of R1b-U106 in the North European Plain (also found in Barbed Wire Beakers), and thus a later integration of typically Neolithic (I1) and CWC-related (R1a) subclades to the Germanic-speaking community during the expansion into Southern Scandinavia.

    This is compatible with the described development of maritime elites by Bell Beakers, representing maritime mobility and trade, and an appealing ideology, similar to the prevalence of Athens over Sparta (Corded Ware in this analogy). It is also supported by the bottlenecks under R1b-U106 to the north of Schleswig-Holstein.

    NOTE. Nevertheless, other R1b-L151 may have been part of the Germanic-speaking communities, especially during its earliest stage, and also R1b-U106 (and other R1b-L161) subclades may appear all the way from the Carpathians to Northern Europe, including the Eastern European Early Bronze Age.

    germanic-iron-age
    Common Germanic expansions ca. 500 BC on. Top Left: Early Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority of R1b-U106 (practically absent from previous Bronze Age populations of Central Europe) among sampled Germanic tribes. See full maps and PCAs.

    Archaeology

    This sudden population bust to the south and predominance of a Southern Scandinavian maritime society in the Nordic circle seems to be also supported by inferences from archaeological data, too. For example, from the recent Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe, by Feeser et al. The Holocene (2019):

    The second boom between c. 3000 and 2900 cal. BC relates to increases in the palynological proxy and the binned all site SCDPD curve. From an archaeological point of view, this time reflects the transition from the Funnelbeaker to the Single Grave Culture. The emergence of this new cultural phenomenon is often regarded to have been associated with a shift in subsistence practices, that is, a shift from sedentary agricultural to mobile pastoral subsistence (Hinz, 2015; Hübner, 2005; Iversen, 2013; Sangmeister, 1972).

    denmark-demography-bronze-age
    Left: Map with pollen sites. Right: Bin sensitivity plots based on summed calibrated date probability distributions (SPD) using different degrees of binning on-site level (h = 0 no binning; h = 1000 high binning) and Kernel density plots (KDE) of available radiocarbon dates from the settlement context (settlement sites). Modified from the paper to include a red arrow showing Corded Ware bust and subsequent boom with the Dagger Period..

    (…) there is palynological evidence for increased importance of cereal cultivation during the Young Neolithic in comparison to the Early Neolithic (Feeser et al., 2012). This, however, does not rule out an increased importance of pastoralism, as grazing on grasslands and extensive cereal cultivation are difficult to distinguish and to disentangle in the palynological record. Generally however, human impact on the environment and population levels, respectively, did not reach Funnelbeaker times maxima values during this boom phase at the beginning of the Younger Neolithic. The similar short-term synchronous developments in both the pollen profiles during 2800–2300 cal. BC could point to large-scale, over-regional uniform development during the Younger Neolithic in our study area (cf. also Feeser et al., 2016).

    Between c. 2400 and 2300 cal. BC, the palynological proxy and the binned all site SCDPD curve show a similar distinct decrease (Figure 6), and we define a second bust phase accordingly. The soil erosion record, however, indicates elevated values at around this time but declines, although not very well defined, to a minimum at around 2200 cal. BC. Due to the generally low number of colluvial deposits recorded for the Younger Neolithic, this is not regarded to contradict our interpretation, as low sample sizes generally minimize the chances of identifying a robust pattern. A strong increase in all the three proxies between 2200 and 2100 cal. BC defines our third boom phase.

    Bronze Age evolution

    Candidate homelands for the succeeding (Palaeo-Germanic) stages of the language are shifted also in archaeology to the south, due to the economic influence of demographically stronger Nordic Bronze Age cultural groups of northern Germany over Southern Scandinavia.

    A good description of societal changes in the Palaeo-Germanic stages is offered by the recent paper Cultural change and population dynamics during the Bronze Age: Integrating archaeological and palaeoenvironmental evidence for Schleswig-Holstein, Northern Germany, by Kneisel et al. The Holocene (2019):

    schleswig-holstein-culture-demography
    Qualitative data from material culture and demography in Schleswig-Holstein and Mecklenburg-Western Pomerania. Modified from the original to remark periods of likely demographic decrease (red square) and growth (blue square).

    At each beginning of a boom phase and each end of a bust phase, changes in the material culture could be observed.

    When the pressure on the landscape is at its lowest around 1500 BC and shortly before it rises again, the type of burial changes, hoards and bronzes increase, and monumental burial mounds are erected again. Vice versa, when the pressure on the landscape reaches its maximum value around 1250 BC, tools and hoard depositions decrease again and only the monumental burial and prestige goods are maintained. The ‘elite’ are continuing with their way of burial. The reduction in house surface area and the number of hoards takes place earlier, possibly because of material scarcity as could also be proven in Thy, northern Jutland (Bech and Rasmussen 2018).

    Again, the human impact decreases, and at its lowest point at the beginning of Period IV ca. 1100 BC, the monumental burial custom and the addition of prestige goods also end. The number of hoards and graves begins to rise again, and cooking pits appear. Exchange networks shift with the beginning of Period V, while axes increase again together with a slight decrease in the human impact curve. The appearance of certain artefacts or burial rites at the beginning of such a period of upheaval seems to suggest the role of a trigger. With this analysis, we have defined several likely indicators for social change in the less distinct phases and societal change in the strongly pronounced phases around 1500 BC and 1100 BC and the most important triggers for the Schleswig-Holstein Bronze Age.

    soegel-wohlde-nordic-bronze-age
    Distribution of burials with Valsømagle, Sögel and Wohlde blades with provenance known to parish. q = Valsømagle blades; s = Wohlde blades (small = one grave with a blade; medium = two graves with a blade); l = Sögel blades (small = one grave with a blade, medium = two graves with a blade, large = three graves with a blade). From Bergerbrant (2007).

    While population movements can’t be really understood without a proper genetic transect proving or disproving archaeological theories, it seems that the intermediate zone of the Nordic circle was subjected to at least two demographic busts and succeeding booms during the Middle and Late Bronze Age periods, which not only affected the hydrotoponymy of Schleswig-Holstein (see above), but probably served as dynamic changes in the linguistic evolution of Palaeo-Germanic-speaking communities up to the Common Germanic expansion.

    Read more on the Northern Early Bronze Age province.

    Related

    Sea Peoples behind Philistines were Aegeans, including R1b-M269 lineages

    New open access paper Ancient DNA sheds light on the genetic origins of early Iron Age Philistines, by Feldman et al. Science Advances (2019) 5(7):eaax0061.

    Interesting excerpts (modified for clarity, emphasis mine):

    Here, we report genome-wide data from human remains excavated at the ancient seaport of Ashkelon, forming a genetic time series encompassing the Bronze to Iron Age transition. We find that all three Ashkelon populations derive most of their ancestry from the local Levantine gene pool. The early Iron Age population was distinct in its high genetic affinity to European-derived populations and in the high variation of that affinity, suggesting that a gene flow from a European-related gene pool entered Ashkelon either at the end of the Bronze Age or at the beginning of the Iron Age. Of the available contemporaneous populations, we model the southern European gene pool as the best proxy for this incoming gene flow. Last, we observe that the excess European affinity of the early Iron Age individuals does not persist in the later Iron Age population, suggesting that it had a limited genetic impact on the long-term population structure of the people in Ashkelon.

    philistines-pca
    Ancient genomes (marked with color-filled symbols) projected onto the principal components inferred from present-day west Eurasians (gray circles). The newly reported Ashkelon populations are annotated in the upper corner.

    Genetic discontinuity between the Bronze Age and the early Iron Age people of Ashkelon

    In comparison to ASH_LBA, the four ASH_IA1 individuals from the following Iron Age I period are, on average, shifted along PC1 toward the European cline and are more spread out along PC1, overlapping with ASH_LBA on one extreme and with the Greek Late Bronze Age “S_Greece_LBA” on the other. Similarly, genetic clustering assigns ASH_IA1 with an average of 14% contribution from a cluster maximized in the Mesolithic European hunter-gatherers labeled “WHG” (shown in blue in Fig. 2B) (15, 22, 26). This component is inferred only in small proportions in earlier Bronze Age Levantine populations (2 to 9%).

    In agreement with the PCA and ADMIXTURE results, only European hunter-gatherers (including WHG) and populations sharing a history of genetic admixture with European hunter-gatherers (e.g., as European Neolithic and post-Neolithic populations) produced significantly positive f4-statistics (Z ≥ 3), suggesting that, compared to ASH_LBA, ASH_IA1 has additional European-related ancestry.

    We find that the PC1 coordinates positively correlate with the proportion of WHG ancestry modeled in the Ashkelon individuals, suggesting that WHG reasonably tag a European-related ancestral component within the ASH_IA1 individuals.

    philistines-admixture
    We plot the ancestral proportions of the Ashkelon individuals inferred by qpAdm using Iran_ChL, Levant_ChL, and WHG as sources ±1 SEs. P values are annotated under each model. In cases when the three-way model failed (χ2P < 0.05), we plot the fitting two-way model. The WHG ancestry is necessary only in ASH_IA1.

    The best supported one (χ2P = 0.675) infers that ASH_IA1 derives around 43% of ancestry from the Greek Bronze Age “Crete_Odigitria_BA” (43.1 ± 19.2%) and the rest from the ASH_LBA population.

    (…) only the models including “Sardinian,” “Crete_Odigitria_BA,” or “Iberia_BA” as the candidate population provided a good fit (χ2P = 0.715, 49.3 ± 8.5%; χ2P = 0.972, 38.0 ± 22.0%; and χ2P = 0.964, 25.8 ± 9.3%, respectively). We note that, because of geographical and temporal sampling gaps, populations that potentially contributed the “European-related” admixture in ASH_IA1 could be missing from the dataset.

    The transient impact of the “European-related” gene flow on the Ashkelon gene pool

    The ASH_IA2 individuals are intermediate along PC1 between the ASH_LBA ones and the earlier Bronze Age Levantines (Jordan_EBA/Lebanon_MBA) in the west Eurasian PCA (Fig. 2A). Notably, despite being chronologically closer to ASH_IA1, the ASH_IA2 individuals position closer, on average, to the earlier Bronze Age individuals.

    philistines-y-dna
    See more information on Y-DNA SNP calls, including ASH067 as R1b-M269 (xL151).

    The transient excess of European-related genetic affinity in ASH_IA1 can be explained by two scenarios. The early Iron Age European-related genetic component could have been diluted by either the local Ashkelon population to the undetectable level at the time of the later Iron Age individuals or by a gene flow from a population outside of Ashkelon introduced during the final stages of the early Iron Age or the beginning of the later Iron Age.

    By modeling ASH_IA2 as a mixture of ASH_IA1 and earlier Bronze Age Levantines/Late Period Egyptian, we infer a range of 7 to 38% of contribution from ASH_IA1, although no contribution cannot be rejected because of the limited resolution to differentiate between Bronze Age and early Iron Age ancestries in this model.

    Hg. R1b-M269 and the Aegean

    I already predicted this relationship of Philistines and Aegeans (Greeks in particular) months ago, based on linguistics, archaeology, and phylogeography, although it was (and still is) yet unclear if these paternal lineages might have come from other nearby populations which might be descended from Common Anatolians instead, given the known intense contacts between Helladic and West Anatolian groups.

    luwian-civilization-sea-peoples
    The alternative view: The Sea Peoples can be traced back to the Aegean, so they could also have consisted of Luwian petty kingdoms, who had formed an alliance and attacked Hatti from the south.

    The deduction process for the Greek connection was quite simple:

    Palaeo-Balkan populations

    We know that R1b-Z2103 expanded with Yamna, including West Yamna settlers: they appear in Vučedol, which means they formed part of the earliest expansion waves of Yamna settlers into the Carpathian Basin, and they also appear scattered among Bell Beakers (apart from dominating East Yamna and Afanasevo), which suggests that they were possibly one of the most successful lineages during the late Repin/early Yamna expansion.

    The “Steppe ancestry” associated with I2a-L699 samples among Balkan BA peoples may have also been associated with recent Bronze Age expansions, and this haplogroup’s presence among modern Balkan peoples may also suggest that it expanded with Palaeo-Balkan languages. Nevertheless, we don’t know which specific lineages and “Steppe ancestry” they represent, sadly.

    These samples may well be related to remnants of previous Balkan populations like Cernavodă or Ezero, because there has been no peer-reviewed attempt at distinguishing Khvalynsk-/Novodanilovka- from Sredni Stog- from Yamnaya-related populations (see here), and some groups that are associated with this ancestry, like Corded Ware, are known to be culturally distinct from Yamna.

    In any case, Proto-Greeks from the southern Balkans (say, Sitagroi IV and related groups) are probably going to show, based on Palaeo-Balkan substrate and Pre-Greek substrate and on the available Mycenaean samples, a process of decreasing proportion of R1b-Z2103 lineages relative to local ones, and a relatively similar cline of Yamna:EEF ancestry from northern to southern areas, at least in the periods closest to the Yamna expansion.

    NOTE. The finding of “archaic” R1b-L389 (R1b-V1636) and R1a-M198 subclades among modern Greeks and the likely Neolithic origin of these paternal lineages around the Caucasus suggest that their presence in Greece may be from any of the more recent migrations that have happened between Anatolia and the Balkans, especially during the Common Era, rather than Indo-Anatolian migrations; probably very very recently.

    -chalcolithic-late-balkans
    Bronze Age cultures in the Balkans and the Aegean. See full map including ancient samples with Y-DNA, mtDNA, and ADMIXTURE.

    Minoans and haplogroup J

    In the Aegean, it is already evident that the population changed language partly through cultural diffusion, probably through elite domination of Proto-Greek speakers. Whether that happened before the invasion into the Greek Peninsula or after it is unclear, as we discussed recently, because we only have one reported Y-chromosome haplogroup among Mycenaeans, and it is J (probably continuing earlier lineages).

    Now we have more samples from the so-called Emporion 2 cluster in Olalde et al. (2019), which shows Mycenaean-like eastern Mediterranean ancestry and 3 (out of 3) samples of haplogroup J, which – given the origin of the colony in Phocea – may be interpreted as the prevalence of West Anatolian-like ancestry and lineages in the eastern part of the Aegean (and possibly thus south Peloponnese), in line with the modern situation.

    NOTE. It does not seem likely that those R or R1b-L23 samples from the Emporion 1 cluster are R1b-Z2103, based on their West European-like ancestry, although they still may be, because – as we know – ancestry (unlike haplogroup) changes too easily to interpret it as an ancestral ethnolinguistic marker.

    anatolia-greek-aegean
    PCA of ancient samples related to the Aegean, with Minoans, Mycenaeans (including the Emporion 2 cluster in the background) Anatolia N-Ch.-BA and Levantine BA-LBA populations, including Tel Shadud samples. See more PCAs of ancient Eurasian populations.

    Greeks and haplogroup R1b-M269

    Therefore, while the presence of R1b-Z2103 among ancient Balkan peoples connected to the Yamna expansion is clear, one might ask if R1b-Z2103 really spread up to the Peloponnese by the time of the Mycenaean Civilization. That has only one indirect answer, and it’s most likely yes.

    We already had some R1b-Z2103 among Thracians and around the Armenoid homeland, which offers another clue at the migration of these lineages from the Balkans. The distribution of different “archaic” R1b-Z2103 subclades among modern Balkan populations and around the Aegean offered more support to this conclusion.

    But now we have two interesting ancient populations that bear witness to the likely intrusion of R1b-M269 with Proto-Greeks:

    An Ancient Greek of hg. R1b

    A single ancient sample supports the increase in R1b-Z2103 among Greeks during the “Dorian” invasions that triggered the Dark Ages and the phenomenon of the Aegean Sea Peoples. It comes from a Greek lab study, showing R1b1b (i.e. R1b-P297 in the old nomenclature) as the only Y-chromosome haplogroup obtained from the sampling of the Gulf of Amurakia ca. 470-30 BC, i.e. before the Roman foundation of Nikopolis, hence from people likely from Anaktorion in Ancient Acarnania, of Corinthian origin.

    ancient-greeks-y-dna-mtdna

    Even with the few data available – and with the caution necessary for this kind of studies from non-established labs, which may be subject to many different kinds of errors – one could argue that the western Greek areas, which received different waves of migrants from the north and shows a higher distribution of R1b-Z2103 in modern times, was probably more heavily admixed with R1b-Z2103 than southern and eastern areas, which were always dominated by Greek-speaking populations more heavily admixed with locals.

    The Dorian invasion and the Greek Dark Ages may thus account for a renewed influx of R1b-Z2103 lineages accompanying the dialects that would eventually help form the Hellenic Koiné. In a sense, it is only natural that demographically stronger populations around the Bronze Age Aegean would suffer a limited (male) population replacement with the succeeding invasions, starting with a higher genetic impact in the north-west and diminishing as they progressed to the south and the east, coupled with stepped admixture events with local populations.

    This would be therefore the late equivalent of what happened at the end of the 3rd millennium BC, with Mycenaeans and their genetic continuity with Minoans.

    pre-greek-ssos
    Distribution of Pre-Greek place-names ending in -ssos/-ssa or -sos/-sa. See original images and more on the south/east cline distribution of Pre-Greek place-names here.

    Sea peoples of hg. R1b-M269

    Thanks to Wang et al. (2018) supplementary materials we knew that one of the two Levantine LBA II samples from Tel Shadud (final 13th–early 11th c. BC) published in van den Brink (2017) was of hg. R1b-M269 – in fact, the one interpreted as a Canaanite official residing at this site and emulating selected funerary aspects of Egyptian mortuary culture.

    Both analyzed samples, this elite individual and a commoner of hg. J buried nearby, were genetically similar and indistinguishable from local populations, though:

    Principal Components Analysis of L112 and L126 was carried out within the framework described in Lazaridis et al. (2016). This analysis showed that the two individuals cluster genetically, with similar estimated proportions of ancestry from diverse West Eurasian ancestral sources. These results are consistent with the hypothesis that they derive from the same population, or alternatively that they derive from two quite closely related populations.

    We know that ancestry changes easily within a few generations, so there was not much information to go on, except for the fact that – being R1b-M269 – this individual could trace his paternal ancestor at some point to Proto-Indo-Europeans.

    One might think that, because many haplogroups in this spreadsheet were wrong, this is also wrong; nevertheless, many haplogroups are correctly identified by Yleaf, and finding R1b-M269 in the Levant after the expansion of Sea Peoples could not be that surprising, because they were most likely related to populations of the Aegean Sea. Any other related hg. R1b (R1b-M73, R1b-V88, even R1b-V1636) wouldn’t fit as well as R1b-M269.

    sea-peoples-egypt-rameses-iii

    However, the early expansion of Proto-Indo-Aryans into the Middle East, as well as the later expansion of Armenians from the Balkans through Anatolia and of West Iranians from the east may have all potentially been related to this sample. But still, the previous linguistic and archaeological theories concerning the Philistines and the expansion of Sea Peoples in the Levant made this sample a likely (originally) Greek “Dorian” lineage, rather than the other (increasingly speculative) alternatives.

    In any case, it was obvious to anyone – that is, to anyone with a minimum knowledge of how population genomics works – that just the two samples from van den Brink (2017) couldn’t be used to get to any conclusions about the ancestral origin of these individuals (or their differences) beyond Levantine peoples, because their ancestry was essentially (i.e. statistically) the same as the other few available ancient samples from nearby regions and similar periods.

    If anything, the PCA suggested an origin of the R1b sample closer to Aegean populations relative to the J individual (see PCA above), and this should have been supported also by amateur models, without any possible confirmation (as with the ASH_IA2 cluster in this paper). However, if you have followed online discussions of Tel Shadud R1b-M269 sample since it was mentioned first on Eupedia months ago – including another wave of misguided speculation based on the ancestry of both individuals triggered by a discussion on this blog -, you have once more proof of how misleading ancestry analyses can be in the wrong hands.

    NOTE. This is the Nth proof (and that only in 2019) of how it’s best to just avoid amateur analyses and interpretations altogether, as I did in the recent publication of the books. All those who didn’t take into account whatever was commented about the ancestry of these samples haven’t lost a single bit of relevant information on Levantine peoples, and have had more time for useful reads, compared to those dedicated to endless void speculation, once again gone awfully wrong, as does everything related to cocky ancient DNA crackpottery 😉

    bronze-age-late-aegean
    Late Bronze Age population movements in the Eastern Mediterranean and the Middle East. See full map including ancient DNA samples with Y-DNA, mtDNA, and ADMIXTURE.

    Admittedly, though, even accepting the evident Mediterranean origin of this lineage, one could have argued that this sample may have been of R1b-L151 subclade, if one were inclined to support the theory that Italic peoples were behind Sea Peoples expanding east – and consequently that the ancestors of Etruscans had migrated eastward into the Aegean (e.g. into Lemnos), so that it could be asserted that Tyrsenian might have been a remnant language of an ancient population of northern Italy.

    Philistines

    Fortunately, some of the samples recovered in Feldman et al. (2019) that could be analyzed (those of the cluster ASH_IA1) offer a very specific time frame where European ancestry appeared (ca. 1250 BC) before it subsequently became fully diluted (as seen in cluster ASH_IA2) among the prevalent Levantine ancestry of the area.

    Also fortunately, this precise cluster shows another R1b-M269 sample, likely R1b-Z2103 (because it is probably xL151), and this sample together with others from the same cluster prove that the ancestry related to the original southern European incomers was:

    1. Recent, related thus to LBA population movements, as expected; and
    2. More closely related to coeval Aegeans, including Mycenaeans with Steppe-related ancestry.

    NOTE. I say “fortunately” because, as you can imagine if you have dealt with amateurish discussions long enough, without this cluster with evident Aegean ancestry and the R1b-M269 (Z2103) sample precisely associated to it, some would enter again in endless comment loops created by ancestry magicians, showing how Aegean peoples were not behind Sea Peoples, or not behind Philistines, or not behind the R1b-M269 among Philistines, depending on their specific agendas.

    aegean-sea-peoples
    Map of the Sea People invasions in the Aegean Sea and Eastern Mediterranean at the end of the Late Bronze Age (blue arrows).. Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows. From Kaniewski et al. (2011). Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows.

    The results of the paper don’t solve the question of the exact origin of all Sea Peoples (not even that of Philistines), but it is quite clear that most of those forming this seafaring confederation must have come from sites around the Aegean Sea. This supports thus the traditional origin attributed to them, including a hint at the likely expansion of Eastern Mediterranean ancestry and lineages into the Italian Peninsula precisely from the Aegean, as some oral communications have already disclosed.

    As an indirect conclusion from the findings in this paper, then, we can now more confidently support that Tyrsenian speakers most likely expanded into the Appenines and the Alps originally from a Tyrsenian-speaking LBA population from Lemnos, due to the social unrest in the whole Aegean region, and might have become heavily admixed with local Italic peoples quite quickly, as it happened with Philistines, resulting in yet another case of language expansion through (the simplistically called) elite domination.

    Conclusion

    Even more interesting than these specific findings, this paper confirms yet another hypothesis based on phylogeography, and proves once again two important starting points for ancient DNA interpretation that I have discussed extensively in this blog:

    • The rare R1b-M269 Y-chromosome lineage of Tel Shadud offered ipso facto the most relevant clue about the ancestral geographical origin of this Canaanite elite male’s paternal family, most likely from the north-west based on ancient phylogeography, which indirectly – in combination with linguistics and archaeology – supported the ancestral ethnolinguistic identification of Philistines with the Aegean and thus with (a population closest to) Ancient Greeks.
    • Ancestry analyses are often fully unreliable when assessing population movements, especially when few samples from incomplete temporal-geographical transects are assessed in isolation, because – unlike paternal (and maternal) haplogroups – ancestry might change fully within a few generations, depending on the particular anthropological setting. Their investigation is thus bound by many limitations – of design, statistical, and anthropological (i.e. archaeological and linguistic) – which are quite often not taken into account.

    These cornerstones of ancient DNA interpretation have been already demonstrated to be valid not only for Levantine populations, as in this case, but also for Balkan peoples, for Bell Beakers, for steppe populations (like Khvalynsk, Sredni Stog, Yamna, Corded Ware), for Basques, for Balto-Slavs, for Ugrians and Samoyeds, and for many other prehistoric peoples.

    I rest my case.

    Related

    Yamna the likely source of modern horse domesticates; the closest lineage, from East Bell Beakers

    Open access Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series, by Fages et al. Cell (2019).

    Interesting excerpts (emphasis mine):

    The earliest archaeological evidence of horse milking, harnessing, and corralling is found in the ∼5,500-year-old Botai culture of Central Asian steppes (Gaunitz et al., 2018, Outram et al., 2009; see Kosintsev and Kuznetsov, 2013 for discussion). Botai-like horses are, however, not the direct ancestors of modern domesticates but of Przewalski’s horses (Gaunitz et al., 2018). The genetic origin of modern domesticates thus remains contentious, with suggested candidates in the Pontic-Caspian steppes (Anthony, 2007), Anatolia (Arbuckle, 2012, Benecke, 2006), and Iberia (Uerpmann, 1990, Warmuth et al., 2011). Irrespective of the origins of domestication, the horse genome is known to have been reshaped significantly within the last ∼2,300 years (Librado et al., 2017, Wallner et al., 2017, Wutke et al., 2018). However, when and in which context(s) such changes occurred remains largely unknown.

    To clarify the origins of domestic horses and reveal their subsequent transformation by past equestrian civilizations, we generated DNA data from 278 equine subfossils with ages mostly spanning the last six millennia (n = 265, 95%) (Figures 1A and 1B; Table S1; STAR Methods). Endogenous DNA content was compatible with economical sequencing of 87 new horse genomes to an average depth-of-coverage of 1.0- to 9.3-fold (median = 3.3-fold; Table S2). This more than doubles the number of ancient horse genomes hitherto characterized. With a total of 129 ancient genomes, 30 modern genomes, and new genome-scale data from 132 ancient individuals (0.01- to 0.9-fold, median = 0.08-fold), our dataset represents the largest genome-scale time series published for a non-human organism (Tables S2, S3, and S4; STAR Methods).

    genetic-affinities-horse-domesticates-pca
    Genetic Affinities.
    (A)
    Principal Component Analysis (PCA) of 159 ancient and modern horse genomes showing at least 1-fold average depth-of-coverage. The overall genetic structure is shown for the first three principal components, which summarize 11.6%, 10.4% and 8.2% of the total genetic variation, respectively. The two specimens MerzlyYar_Rus45_23789 and Dunaujvaros_Duk2_4077 discussed in the main text are highlighted. See also Figure S7 and Table S5 for further information.
    (B) Visualization of the genetic affinities among individuals, as revealed by the struct-f4 algorithm and 878,475 f4 permutations. The f4 calculation was conditioned on nucleotide transversions present in all groups, with samples were grouped as in TreeMix analyses (Figure 3). In contrast to PCA, f4 permutations measure genetic drift along internal branches. They are thus more likely to reveal ancient population substructure.

    Discovering Two Divergent and Extinct Lineages of Horses

    Domestic and Przewalski’s horses are the only two extant horse lineages (Der Sarkissian et al., 2015). Another lineage was genetically identified from three bones dated to ∼43,000–5,000 years ago (Librado et al., 2015, Schubert et al., 2014a). It showed morphological affinities to an extinct horse species described as Equus lenensis (Boeskorov et al., 2018). We now find that this extinct lineage also extended to Southern Siberia, following the principal component analysis (PCA), phylogenetic, and f3-outgroup clustering of an ∼24,000-year-old specimen from the Tuva Republic within this group (Figures 3, 5A and S7A). This new specimen (MerzlyYar_Rus45_23789) carries an extremely divergent mtDNA only found in the New Siberian Islands some ∼33,200 years ago (Orlando et al., 2013) (Figure 6A; STAR Methods) and absent from the three bones previously sequenced. This suggests that a divergent ghost lineage of horses contributed to the genetic ancestry of MerzlyYar_Rus45_23789. However, both the timing and location of the genetic contact between E. lenensis and this ghost lineage remain unknown.

    modern-horse-domesticates-przewalski-hungary
    Population modeling of the demographic changes and admixture events in extant and extinct horse lineages. The two models presented show best fitting to the observed multi-dimensional SFS in momi2. The width of each branch scales with effective size variation, while colored dashed lines indicate admixture proportions and their directionality. The robustness of each model was inferred from 100 bootstrap pseudo-replicates. Time is shown in a linear scale up to 120,000 years ago and in a logarithmic scale above.

    Modeling Demography and Admixture of Extinct and Extant Horse Lineages

    Phylogenetic reconstructions without gene flow indicated that IBE differentiated prior to the divergence between DOM2 and Przewalski’s horses (Figure 3; STAR Methods). However, allowing for one migration edge in TreeMix suggested closer affinities with one single Hungarian DOM2 specimen from the 3rd mill. BCE (Dunaujvaros_Duk2_4077), with extensive genetic contribution (38.6%) from the branch ancestral to all horses (Figure S7B).This, and the extremely divergent IBE Y chromosome (Figure 6B), suggest that a divergent but yet unidentified ghost population could have contributed to the IBE genetic makeup.

    Rejecting Iberian Contribution to Modern Domesticates

    The genome sequences of four ∼4,800- to 3,900-year-old IBE specimens characterized here allowed us to clarify ongoing debates about the possible contribution of Iberia to horse domestication (Benecke, 2006, Uerpmann, 1990, Warmuth et al., 2011). Calculating the so-called fG ratio (Martin et al., 2015) provided a minimal boundary for the IBE contribution to DOM2 members (Cahill et al., 2013) (Figure 7A). The maximum of such estimate was found in the Hungarian Dunaujvaros_Duk2_4077 specimen (∼11.7%–12.2%), consistent with its TreeMix clustering with IBE when allowing for one migration edge (Figure S7B). This specimen was previously suggested to share ancestry with a yet-unidentified population (Gaunitz et al., 2018). Calculation of f4-statistics indicates that this population is not related to E. lenensis but to IBE (Figure 7B; STAR Methods). Therefore, IBE or horses closely related to IBE, contributed ancestry to animals found at an Early Bronze Age trade center in Hungary from the late 3rd mill. BCE. This could indicate that there was long-distance exchange of horses during the Bell Beaker phenomenon (Olalde et al., 2018). The fG minimal boundary for the IBE contribution into an Iron Age Spanish horse (ElsVilars_UE4618_2672) was still important (~9.6%–10.1%), suggesting that an IBE genetic influence persisted in Iberia until at least the 7th century BCE in a domestic context. However, fG estimates were more limited for almost all ancient and modern horses investigated (median = ~4.9%–5.4%; Figure 7A).

    horse-lineages-domesticates-przewalski-dom2-botai
    TreeMix Phylogenetic Relationships. The tree topology was inferred using a total of ∼16.8 million transversion sites and disregarding migration. The name of each sample provides the archaeological site as a prefix, and the age of the specimen as a suffix (years ago). Name suffixes (E) and (A) denote European and Asian ancient horses, respectively. See Table S5 for dataset information. Image modified to include the likely ancestor of domesticates in a red circle, represented by Yamna, the most likely direct ancestor of the Dunaujvarus specimen.

    Iron Age horses

    Y chromosome nucleotide diversity (π) decreased steadily in both continents during the last ∼2,000 years but dropped to present-day levels only after 850–1,350 CE (Figures 2B and S2E; STAR Methods). This is consistent with the dominance of an ∼1,000- to 700-year-old oriental haplogroup in most modern studs (Felkel et al., 2018, Wallner et al., 2017). Our data also indicate that the growing influence of specific stallion lines post-Renaissance (Wallner et al., 2017) was responsible for as much as a 3.8- to 10.0-fold drop in Y chromosome diversity.

    We then calculated Y chromosome π estimates within past cultures represented by a minimum of three males to clarify the historical contexts that most impacted Y chromosome diversity. This confirmed the temporal trajectory observed above as Byzantine horses (287–861 CE) and horses from the Great Mongolian Empire (1,206–1,368 CE) showed limited yet larger-than-modern diversity. Bronze Age Deer Stone horses from Mongolia, medieval Aukštaičiai horses from Lithuania (C9th–C10th [ninth through the tenth centuries of the Common Era]), and Iron Age Pazyryk Scythian horses showed similar diversity levels (0.000256–0.000267) (Figure 2A). However, diversity was larger in La Tène, Roman, and Gallo-Roman horses, where Y-to-autosomal π ratios were close to 0.25. This contrasts to modern horses, where marked selection of specific patrilines drives Y-to-autosomal π ratios substantially below 0.25 (0.0193–0.0396) (Figure 2A). The close-to-0.25 Y-to-autosomal π ratios found in La Tène, Roman, and Gallo-Roman horses suggest breeding strategies involving an even reproductive success among stallions or equally biased reproductive success in both sexes (Wilson Sayres et al., 2014).

    Lineage is used in this paper, as in many others in genetics, as defined by a specific ancestry. I keep that nomenclature below. It should not be confused with the “lineages” or “lines” referring to Y-chromosome (or mtDNA) haplogroups.

    Supporting the “archaic” nature of the Hungarian BBC horses expanding from the Pontic-Caspian steppes are:

    • Among Y-chromosome lines, the common group formed by Botai-Borly4 (closely related to DOM2), Scythian horses from Aldy Bel (Arzhani), Iron Age horses from Estonia (Ridala), horses from the Xiongnu culture (Uushgiin Uvur), and Roman horses from Autricum (Chartres).
    • Among mtDNA lines, the common group formed by Botai samples, LebyazhinkaIV NB35, and different Eurasian domesticates, including many ancient Western European ones, which reveals a likely expansion of certain subclades east and west with the Repin culture.
    • (…) DOM2 contributed 22% to the ancestor of Przewalski’s horses ca. 9.47 kya, suggesting the Holocene optimum, rather than the Eneolithic Botai culture (∼5.5 kya), as a period of population contact. This pre-Botai introgression could explain the Y chromosome topology, where Botai horses were reported to carry two different segregating haplogroups: one occupied a basal position in the phylogeny while the other was closely related to DOM2. Multiple admixture pulses, however, are known to have occurred along the divergence of DOM2 and the Botai-Borly4 lineage, including 2.3% post-Borly4 contribution to DOM2, and a more recent 6.8% DOM2 intogression into Przewalski’s horses (Gaunitz et al., 2018). Model C2 parameters accommodate all these as a single admixture pulse, likely averaging the contributions of all these multiple events.

      horse-domesticate-y-dna-mtdna
      Tip labels are respectively composed of individual sample names, their reference number as well as their age (years ago, from 2017). Red, orange, light green, green, dark green and blue refer to modern horses, ancient DOM2, Botai horses, Borly4 horses, Przewalski’s horses and E. lenensis, respectively. Black refers to wild horses not yet identified to belong to any particular cluster in absence of sufficient genome-scale data. Clades composed of only Przewalski’s horses or ancient DOM2 horses were collapsed to increase readability.

      (A) Best maximum likelihood tree retracing the phylogenetic relationships between 270 mitochondrial genomes.

      B) Best Y chromosome maximum likelihood tree (GTRGAMMA substitution model) excluding outgroup. Node supports are indicated as fractions of 100 bootstrap pseudoreplicates. Bootstrap supports inferior to 90% are not shown. The root was placed on the tree midpoint. See also Table S5 for dataset information.

      Image modified from the paper, including a red square in archaic groups that contain the Hungarian sample, and a red circle around the most likely common ancestral stallion and mare from the Pontic-Caspian steppes.

      The paper cannot offer a detailed picture of ancient horse domestication, but it is yet another step in showing how Repin/Yamna is the most likely source of expansion of horse domesticates in Eurasia. Even more interestingly, Yamna settlers in Hungary probably expanded an ancient lineage of that horse at the same time as they spread with the Classical Bell Beaker culture. Remarkable parallels are thus found between:

      The expansion of an ancient line of horse domesticates related to Yamna Hungary/East Bell Beakers seems to be confirmed by the pre-Iberian sample from Vilars I, Els Vilars4618 2672 (ca. 700-550 BC), likely of Iberian Beaker descent, showing a lineage older than the Indo-Iranian ones, which later replaced most European lines.

      NOTE. For known contacts between Yamna and Proto-Beakers just before the expansion of East Bell Beakers, see a recent post on Vanguard Yamna groups.

      The findings of the paper confirm the expansion of the horse firstly (and mainly) through the steppe biome, mimicking the expansion of Proto-Indo-Europeans first, and then replaced gradually (or not so gradually) by lines brought to Europe during westward expansions of Bronze Age, Iron Age, and later specialized horse-riding steppe cultures. The expansion also correlates well with the known spread of animal traction and pastoralism before 2000 BC:

      animal-traction-europe
      Top image: Map with evidence of animal traction before ca. 2000 BC. Bottom image: frequency of finds of evidence for animal traction (orange), cylinder seals (purple) and potter’s wheels (green) in the 4th and 3rd millennium BC (query from the Digital Atlas of Innovations). The data points to an early peak in the expansion of this innovation at the turn of the 4th–3rd millennium BC, while direct evidence supports a radical increase from around the mid–3th millennium BC until the early 2nd millennium, coinciding with the expansion of East Bell Beakers and related European Early Bronze Age cultures. Data and image modified from Klimscha (2017).

      EDIT (3 MAY 2019): A recent reminder of these parallel developments by David Reich in Insights into language expansions from ancient DNA:

      • Yamna expansion to the west “with horses and wagons”, with a more homogeneous ancestry in modern Europeans due to later migrations from the east (and north):
      • “Descendants” of Yamna (once the culture was already “dead”), expanding to the east mainly with Corded Ware ancestry:

      Another recent open access paper on horse domestication is The horse Y chromosome as an informative marker for tracing sire lines, by Felkel et al. Scientific Reports (2019).

      Related

    R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

    Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

    Avars of haplogroup N1c-Tat

    Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

    Interesting excerpts (emphasis mine):

    After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

    Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

    The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

    Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

    y-str-haplogroup-n-mongolian-ugrians
    Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

    A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

    Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

    Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

    EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

    One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

    Apparently, then, results are consistent with what was already known from studies of modern populations:

    According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

    haplogroup_n1
    Geographic-Distribution Map of hg N3 from Ilumäe et al.

    Finno-Ugrians share haplogroup R1a-Z280

    Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

    Interesting excerpts (emphasis mine):

    Y‑chromosome diversity

    The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

    In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

    bashkir-mari-southern-mansi
    Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

    Genetic structure

    (..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

    y-dna-hungarians-ugric-mansi
    Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

    Phylogenetic analysis

    Median-joining networks were constructed for:

    N-P43 (earlier N1b):

    (…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

    N1c-Tat:

    (…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

    n1c-n-tat-uralic-ugric
    Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

    R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

    The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

    r1a-z280-ugrians
    Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

    R1a-Z93 as isolated lineages among Permic and Ugric populations:

    Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

    r1a-z93-ugrians
    Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
    16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

    Comments

    The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

    EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

    On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

    I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

    Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

    Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

    r1a-z282-z280-z2125-distribution
    Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

    Conclusion

    Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

    ❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

    ✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

    ❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

    ✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

    ❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

    ✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

    finno-ugric-haplogroup-n
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

    Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

    Another true story whose rejection in genetics could not be predicted, like, not at all.

    Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

    Related

    Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia

    steppe-balearic-sicily-sardinia

    New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

    Interesting excerpts (emphasis in bold; modified for clarity):

    Balearic Islands: The expansion of Iberian speakers

    Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

    Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

    Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

    This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

    balearic-sicily-sardinia-pca
    PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

    Steppe in Sardinia IA: Phocaeans from Italy?

    Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

    Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

    We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

    yamnaya-samara
    Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

    Sicily EBA: The Lusitanian/Ligurian connection?

    (…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

    What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

    Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

    The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

    In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

    r1b-df27-z195
    Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

    We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

    The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

    The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

    For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

    This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

    Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

    Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

    EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

    Sad to read this:

    This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.

    Related

    R1a-Z280 lineages in Srubna; and first Palaeo-Balkan R1b-Z2103?

    herodotus-world-map

    Scythian samples from the North Pontic area are far more complex than what could be seen at first glance. From the new Y-SNP calls we have now thanks to the publications at Molgen (see the spreadsheet) and in Anthrogenica threads, I think this is the basis to work with:

    NOTE. I understand that writing a paper requires a lot of work, and probably statistical methods are the main interest of authors, editors, and reviewers. But it is difficult to comprehend how any user of open source tools can instantly offer a more complex assessment of the samples’ Y-SNP calls than professionals working on these samples for months. I think that, by now, it should be clear to everyone that Y-DNA is often as important (sometimes even more) than statistical tools to infer certain population movements, since admixture can change within few generations of male-biased migrations, whereas haplogroups can’t…

    Srubna

    Srubna-Andronovo samples are as homogeneous as they always were, dominated by R1a-Z645 subclades and CWC-related (steppe_MLBA) ancestry.

    The appearance of one (possibly two) R-Z280 lineages in this mixed Srubna-Alakul region of the southern Urals and this early (1880-1690 BC, hence rather Pokrovka-Alakul) points to the admixture of R1a-Z93 and R1a-Z280 already in Abashevo, which also explains the wide distribution of both subclades in the forest zones of Central Asia.

    If Abashevo is the cornerstone of the Indo-Iranian / Uralic community, as it seems, the genetic admixture would initially be quite similar, undergoing in the steppes a reduction to haplogroup R1a-Z93 (obviously not complete), at the same time as it expanded to the west with Pokrovka and Srubna, and to the east with Petrovka and Andronovo. To the north, similar reductions will probably be seen following the Seima-Turbino phenomenon.

    NOTE. Another R1a-Z280 has been found in the recent sample from Bronze Age Poland (see spreadsheet). As it appears right now in ancient and modern DNA, there seems to be a different distribution between subclades:

    • R1a-Z280 (formed ca. 2900 BC, TMRCA ca. 2600 BC) appears mainly distributed today to the east, in the forest and steppe regions, with the most ‘successful’ expansions possibly related to the spread of Abashevo- and Battle Axe-related cultures (Indo-Iranian and Uralic alike).
    • R1a-M458 (formed ca. 2700, TMRCA ca. 2700 BC) appears mainly distributed to the north, from central Europe to the east – but not in the steppe in aDNA, with the most ‘successful’ expansions to the west.

    M458 lineages seem thus to have expanded in the steppe in sizeable numbers only after the Iranian expansions (see a map of modern R1a distributions) i.e. possibly with the expansion of Slavs, which supports the model whereby cultures from central-east Europe (like Trzciniec and Lusatian), accompanied mainly by M458 lineages, were responsible for the expansion of Proto-Balto-Slavic (and later Proto-Slavic).

    The finding of haplogroup R1a-Z93, among them one Z2123, is no surprise at this point after other similar Srubna samples. As I said, the early Srubna expansion is most likely responsible for the Szólád Bronze Age sample (ca. 2100-1700 BC), and for the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, due to incursions along the central-east European steppe.

    cheek-pieces
    Map of decorated bone/antler bridle cheek-pieces and whip handle equivalents. They are often local translations that remained faithful to the originals (from data in Piggott, 1965; Kristiansen & Larsson, 2005; David, 2007). Image from Vandkilde (2014).

    Cimmerians

    Cimmerian samples from the west show signs of continuity with R1a-Z93 lineages. Nevertheless, the sample of haplogroup Q1a-Y558, together with the ‘Pre-Scythian’ sample of haplogroup N (of the Mezőcsát Culture) in Hungary ca. 980-830 BC, as well as their PCA, seem to depict an origin of these Pre-Scythian peoples in populations related to the eastern Central Asian steppes, too.

    NOTE. I will write more on different movements (unrelated to Uralic expansions) from Central and East Asia to the west accompanied by Siberian ancestry and haplogroup N with the post of Ugric-Samoyedic expansions.

    Scythians

    The Scythian of Z2123 lineage ca. 375-203 BC from the Volga (in Mathieson et al. 2015), together with the sample scy193 from Glinoe (probably also R1a-Z2123), without a date, as well as their common Steppe_MLBA cluster, suggest that Scythians, too, were at first probably quite homogeneous as is common among pastoralist nomads, and came thus from the Central Asian steppes.

    The reduction in haplogroup variability among East Iranian peoples seems supported by the three new Late Sarmatian samples of haplogroup R1a-Z2124.

    Approximate location of Glinoe and Glinoe Sad (with Starosilya to the south, in Ukrainian territory):

    This initial expansion of Scythians does not mean that one can dismiss the western samples as non-Scythians, though, because ‘Scythian’ is a cultural attribution, based on materials. Confirming the diversity among western Scythians, a session at the recent ISBA 8:

    Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths), by Järve et al.

    The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

    (…) Our results (…) support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

    Detail of the slide with admixture of Scythian groups in Ukraine:

    scythians-admixture

    The findings of those 31 samples seem to support what Krzewińska et al. (2018) found in a tiny region of Moldavia-south-western Ukraine (Glinoi, Glinoi Sad, and Starosilya).

    The question, then, is as follows: if Scythian dominance was “cultural rather than achieved through population replacement”…Where are the R1b-Z2103 from? One possibility, as I said in the previous post, is that they represent pockets of Iranian R1b lineages in the steppes descended from eastern Yamna, given that this haplogroup appears in modern populations from a wide region surrounding the steppes.

    The other possibility, which is what some have proposed since the publication of the paper, is that they are related to Thracians, and thus to Palaeo-Balkan populations. About the previously published Thracian individuals in Sikora et al. (2014):

    thracian-samples
    Geographic origin of ancient samples and ADMIXTURE results. (A) Map of Europe indicating the discovery sites for each of the ancient samples used in this study. (B) Ancestral population clusters inferred using ADMIXTURE on the HGDP dataset, for k = 6 ancestral clusters. The width of the bars of the ancient samples was increased to aid visualization. https://doi.org/10.1371/journal.pgen.1004353.g001

    For the Thracian individuals from Bulgaria, no clear pattern emerges. While P192-1 still shows the highest proportion of Sardinian ancestry, K8 more resembles the HG individuals, with a high fraction of Russian ancestry.

    Despite their different geographic origins, both the Swedish farmer gok4 and the Thracian P192-1 closely resemble the Iceman in their relationship with Sardinians, making it unlikely that all three individuals were recent migrants from Sardinia. Furthermore, P192-1 is an Iron Age individual from well after the arrival of the first farmers in Southeastern Europe (more than 2,000 years after the Iceman and gok4), perhaps indicating genetic continuity with the early farmers in this region. The only non-HG individual not following this pattern is K8 from Bulgaria. Interestingly, this individual was excavated from an aristocratic inhumation burial containing rich grave goods, indicating a high social standing, as opposed to the other individual, who was found in a pit.

    pca-thracians

    The following are excerpts from A Companion to Ancient Thrace (2015), by Valeva, Nankov, and Graninger (emphasis mine):

    Thracian settlements from the 6th c. BC on:

    (…) urban centers were established in northeastern Thrace, whose development was linked to the growth of road and communication networks along with related economic and distributive functions. The early establishment of markets/emporia along the Danube took place toward the middle of the first millennium BCE (Irimia 2006, 250–253; Stoyanov in press). The abundant data for intensive trade discovered at the Getic village in Satu Nou on the right bank of the Danube provides another example of an emporion that developed along the main artery of communication toward the interior of Thrace (Conovici 2000, 75–76).

    Undoubtedly the most prominent manifestation of centralization processes and stratification in the settlement system of Thrace arrives with the emergence of political capitals – the leading urban centers of various Thracian political formations.

    getic-thracian
    Image from Volf at Vol_Vlad LiveJournal.

    Their relationships with Scythians and Greeks

    The Scythian presence south of the Danube must be balanced with a Thracian presence north of the river. We have observed Getae there in Alexander’s day, settled and raising grain. For Strabo the coastlands from the Danube delta north as far as the river and Greek city of Tyras were the Desert of the Getae (7.3.14), notable for its poverty and tracklessness beyond the great river. He seems to suggest also that it was here that Lysimachus was taken alive by Dromichaetes, king of the Getae, whose famous homily on poverty and imperialism only makes sense on the steppe beyond the river (7.3.8; cf. Diod. 21.12; further on Getic possessions above the Danube, Paus. 1.9 with Delev 2000, 393, who seems rather too skeptical; on poverty, cf. Ballesteros Pastor 2003). This was the kind of discourse more familiarly found among Scythians, proud and blunt in the strength of their poverty. However, as Herodotus makes clear, simple pastoralism was not the whole story as one advanced round into Scythia. For he observes the agriculture practiced north and west of Olbia. These were the lands of the Alizones and the people he calls the Scythian Ploughmen, not least to distinguish them from the Royal Scythians east of Olbia, in whose outlook, he says, these agriculturalist Scythians were their inferiors, their slaves (Hdt. 4.20). The key point here is that, as we began to see with the Getan grain-fields of Alexander’s day, there was scope for Thracian agriculturalists to maintain their lifestyles if they moved north of the Danube, the steppe notwithstanding. It is true that it is movement in the other direction that tends to catch the eye, but there are indications in the literary tradition and, especially, in the archaeological record that there was also significant movement northward from Thrace across the Danube and the Desert of the Getae beyond it.

    Greek literary sources were not much concerned with Thracian migration into Scythia, but we should observe the occasional indications of that process in very different texts and contexts. At the level of myth, it is to be remembered that Amazons were regularly considered to be of Thracian ethnicity from Archaic times onward and so are often depicted in Thracian dress in Greek art (Bothmer 1957; cf. Sparkes 1997): while they are most familiar on the south coast of the Black Sea, east of Sinope, they were also located on the north coast, especially east of the Don (the ancient Tanais). Herodotus reports an origin-story of the Sauromatians there, according to which this people had been created by the union of some Scythian warriors with Amazons captured on the south coast and then washed up on the coast of Scythia (4.110). While the story is unhistorical, it is not without importance. First, it reminds us that passage north from the Danube was not the only way that Thracians, Thracian influence, and Thracian culture might find their way into Scythia. There were many more and less circuitous routes, especially by sea, that could bring Thrace into Scythia. Secondly, the myth offered some ideological basis for the Sauromatian settlement in Thrace that Strabo records, for Sauromatians might claim a Thracian origin through their Amazon forebears. Finally, rather as we saw that Heracles could bring together some of the peoples of the region, we should also observe that Ares, whose earthly home was located in Thrace by a strong Greek and Roman tradition, seems also to have been a deity of special significance and special cult among the Scythians. So much was appropriate, especially from a Classical perspective, in associations between these two peoples, whose fame resided especially in their capacity for war.

    skythen
    Scythians: cultures and findings (ca. 7th-4th/3rd c. BC). Greek colonies marked with concentric circles.

    This broad picture of cultural contact, interaction, and osmosis, beyond simple conflict, provides the context for a range of archaeological discoveries, which – if examined separately – may seem to offer no more than a scatter of peculiarities. Here we must acknowledge especially the pioneering work of Melyukova, who has done most to develop thinking on Thracian–Scythian interaction. As she pointed out, we have a good example of Thracian–Scythian osmosis as early as the mid-seventh century bce at Tsarev Brod in northeastern Bulgaria, where a warrior’s burial combines elements of Scythian and Thracian culture (Melyukova 1965). For, while the manner of his burial and many of the grave goods find parallels in Scythia and not Thrace, there are also goods which would be odd in a Scythian burial and more at home in a Thracian one of this period (notably a Hallstatt vessel, an iron knife, and a gold diadem). Also interesting in this regard are several stone figures found in the Dobrudja which resemble very closely figures of this kind (baby) known from Scythia (Melyukova 1965, 37–38). They range in date from perhaps the sixth to the third centuries bce, and presumably were used there – as in Scythia – to mark the burials of leading Scythians deposited in the area. Is this cultural osmosis? We should probably expect osmosis to occur in tandem with the movement of artefacts, so that only good contexts can really answer such questions from case to case. However, the broad pattern is indicated by a range of factors. Particularly notable in this regard is the observable development of a Thraco-Scythian form of what is more familiar as “Scythian animal style,” a term which – it must be understood – already embraces a range of types as we examine the different examples of the style across the great expanse from Siberia to the western Ukraine. As Melyukova observes, Thrace shows both items made in this style among Scythians and, more numerous and more interesting, a Thracian tendency to adapt that style to local tastes, with observable regional distinctions within Thrace itself. Among the Getae and Odrysians the adaptation seems to have been at its height from the later fifth century to the mid-third century (Melyukova 1965, 38; 1979).

    The absence of local animal style in Bulgaria before the fifth century bce confirms that we have cultural influences and osmosis at work here, though that is not to say that Scythian tradition somehow dominated its Thracian counterpart, as has been claimed (pace Melyukova 1965, 39; contrast Kitov 1980 and 1984). Of particular interest here is the horse-gear (forehead-covers, cheek-pieces, bridle fittings, and so on) which is found extensively in Romania and Bulgaria as well as in Scythia, both in hoarded deposits and in burials. This exemplifies the development of a regional animal style, not least in silver and bronze, which problematizes the whole issue of the place(s) of its production. Accordingly, the regular designation as “Thracian” of horse-gear from the rich fourth century Scythian burial of Oguz in the Ukraine becomes at least awkward and questionable (further, Fialko 1995). And let us be clear that this is no minor matter, nor even part of a broader debate about the shared development of toreutics among Thracians and Scythians (e.g., Kitov 1980 and 1984). A finely equipped horse of fine quality was a strong statement and striking display of wealth and the power it implied

    (…) while Thracian pottery appears at Olbia, Scythian pottery among Thracians is largely confined to the eastern limits of what should probably be regarded as Getic territory, namely the area close to the west of the Dniester, from the sixth century bce. Rather exceptional then is the Scythian pottery noted at Istros, which has been explained as a consequence of the Scythian pursuit of the withdrawing army of Darius and, possibly, a continued Scythian grip on the southern Danube in its aftermath (Melyukova 1965, 34). The archaeology seems to show us, therefore, that the elite Thracians and Scythians were more open to adaptation and acculturation than were their lesser brethren.

    palaeo-balkan-languages
    Paleo-Balkan languages in Eastern Europe between 5th and 1st century BC. From Wikipedia.

    Conclusion

    (…) we see distinct peoples and organizations, for example as Sitalces’ forces line up against the Scythians. Much more striking, however, against that general background, are the various ways in which the two peoples and their elites are seen to interact, connect, and share a cultural interface. We see also in Scyles’ story how the Greek cities on the coast of Thrace and Scythia played a significant role in the workings of relationships between the two peoples. It is not simply that these cities straddled the Danube, but also that they could collaborate – witness the honors for Autocles, ca. 300 bce (SEG 49.1051; Ochotnikov 2006) – and were implicated with the interactions of the much greater non-Greek powers around them. At the same time, we have seen the limited reality of familiar distinctions between settled Thracians and nomadic Scythians and the limited role of the Danube too in dividing Thrace and Scythia. The interactions of the two were not simply matters of dynastic politics and the occasional shared taste for artefacts like horse-gear, but were more profoundly rooted in the economic matrix across the region, so that “Scythian” nomadism might flourish in the Dobrudja and “Thracian-style” agriculture and settlement can be traced from Thrace across the Danube as far as Olbia. All of that offers scant justification for the Greek tendency to run together Thracians and Scythians as much the same phenomenon, not least as irrational, ferocious, and rather vulgar barbarians (e.g., Plato, Rep. 435b), because such notions were the result of ignorance and chauvinism. However, Herodotus did not share those faults to any degree, so that we may take his ready movement from Scythians to Thracians to be an indication of the importance of interaction between the two peoples whom he had encountered not only as slaves in the Aegean world, but as powerful forces in their own lands (e.g., Hdt. 4.74, where Thracian usage is suddenly brought into his account of Scythian hemp). Similarly, Thucydides, who quite without need breaks off his disquisition on the Odrysians to remark upon political disunity among the Scythians (Thuc. 2.97, a favorite theme: cf. Hdt. 4.81; Xen., Cyr. 1.1.4). As we have seen throughout this discussion, there were many reasons why Thracians might turn the thoughts of serious writers to Scythians and vice versa.

    It seems, following Sikora et al. (2014), that Thracian ‘common’ populations would have more Anatolian Neolithic ancestry compared to more ‘steppe-like’ samples. But there were important differences even between the two nearby samples published from Bulgaria, which may account for the close interaction between Scythians and Thracians we see in Krzewińska et al. (2018), potentially reflected in the differences between the Central, Southern and the South-Central clusters (possibly related to different periods rather than peoples??).

    If these R1b-Z2103 were descended from Thracian elites, this would be the first proof of Palaeo-Balkan populations showing mainly R1b-Z2103, as I expect. Their appearance together with haplogroup I2a2a1b1 (also found in Ukraine Neolithic and in the Yamna outlier from Bulgaria) seem to support this regional continuity, and thus a long-lasting cultural and ethnic border roughly around the Danube, similar to the one found in the northern Caucasus.

    However, since these samples are some 2,500 years younger than the Yamna expansion to the south, and they are archaeologically Scythians, it is impossible to say. In any case, it would seem that the main expansion of R1a-Z645 lineages to the south of the Danube – and therefore those found among modern Greeks – was mediated by the Slavic expansions centuries later.

    krzewinska-scythians-pca
    Modified image from Krzewińska et al. (2018), with added Y-DNA haplogroups to each defined Scythian cluster and Sarmatians. Principal component analysis (PCA) plot visualizing 35 Bronze Age and Iron Age individuals presented in this study and in published ancient individuals in relation to modern reference panel from the Human Origins data set. See image with population references.

    On the Northern cluster there is a sample of haplogroup R1b-P312 which, given its position on the PCA (apparently even more ‘modern Celtic’-like than the Hallstatt_Bylany sample from Damgaard et al. 2018), it seems that it could be the product of the previous eastward Hallstatt expansion…although potentially also from a recent one?:

    Especially important in the archaeology of this interior is the large settlement at Nemirov in the wooded steppe of the western Ukraine, where there has been considerable excavation. This settlement’s origins evidently owe nothing significant to Greek influence, though the early east Greek pottery there (from ca. 650 bce onward: Vakhtina 2007) and what seems to be a Greek graffito hint at its connections with the Greeks of the coast, especially at Olbia, which lay at the estuary of the River Bug on whose middle course the site was located (Braund 2008). The main interest of the site for the present discussion, however, is its demonstrable participation in the broader Hallstatt culture to its west and south (especially Smirnova 2001). Once we consider Nemirov and the forest steppe in connection with Olbia and the other locations across the forest steppe and coastal zone, together with the less obvious movements across the steppe itself, we have a large picture of multiple connectivities in which Thrace bulks large.

    scythian-peoples-balkans
    Early Iron Age cultures of the Carpathian basin ca. 7-6th century BC, including steppe-related groups. Ďurkovič et al. (2018).

    While the above description of clear-cut R1a-Steppe and R1b-Balkans is attractive (and probably more reliable than admixture found in scattered samples of unclear dates), the true ancient genetic picture is more complicated than that:

    • There is nothing in the material culture of the published western Scythians to distinguish the supposed Thracian elites.
    • We have the sample I0575, an Early Sarmatian from the southern Urals (one of the few available) of haplogroup R1b-Z2106, which supports the presence of R1b-Z2103 lineages among Eastern Iranian-speaking peoples.
    • We also have DA30, a Sarmatian of I2b lineage from the central steppes in Kazakhstan (ca. 47 BC – 24 AD).
    • Other Sarmatian samples of haplogroup R remain undefined.
    • There is R1a-Z93 in a late Sarmatian-Hun sample, which complicates the picture of late pastoralist nomads further.

    Therefore, the possibility of hidden pockets of Iranian peoples of R1b-Z2103 (maybe also R1b-P312) lineages remains the best explanation, and should not be discarded simply because of the prevalent haplogroups among modern populations, or because of the different clusters found, or else we risk an obvious circular reasoning: “this sample is not (autosomically or in prevalent haplogroups) like those we already had from the steppe, ergo it is not from this or that steppe culture.” Hopefully, the upcoming paper by Järve et al. will help develop a clearer genetic transect of Iranian populations from the steppes.

    All in all, the diversity among western Scythians represents probably one of the earliest difficult cases of acculturation to be studied with ancient DNA (obviously not the only one), since Scythians combine unclear archaeological data with limited and conflicting proto-historical accounts (also difficult to contrast with the wide confidence intervals of radiocarbon dates) with different evolving clusters and haplogroups – especially in border regions with strong and continued interactions of cultures and peoples.

    With emerging complex cases like these during the Iron Age, I am happy to see that at least earlier expansions show clearer Y-DNA bottlenecks, or else genetics would only add more data to argue about potential cultural diffusion events, instead of solving questions about proto-language expansions once and for all…

    Related