Pasture usage by ancient pastoralists in Middle and Late Bronze Age Kazakhstan


Open access Pasture usage by ancient pastoralists in the northern Kazakh steppe informed by carbon and nitrogen isoscapes of contemporary floral biomes, by Miller et al. Archaeol Anthropol Sci (2018).

Interesting excerpts (emphasis mine):

Bronze age settlement, society, and subsistence in the northern Kazakh steppe

The Middle to Late Bronze Age (2200 to 1400 cal BCE) in the northern Kazakh steppe encompassed a major shift in settlement patterns from semi-sedentary pastoralism to more dispersed, mobile lifeways engaged in pastoral nomadism (Tkacheva 1999; Grigory’ev 2002; Koryakova and Epimakhov 2007; Kuz’mina 2007; Tkacheva and Tkachev 2008). Middle Bronze Age (2200 to 1700 cal BCE) settlements had large enclosures consisting of an earthen wall and ditch. Inside the enclosure, earthen domestic structures with shared walls (numbering from 30 to 60) housed an estimated 200 to 700 individuals (Gening et al. 1992; Grigor’yev 2002; Anthony 2007; Kohl 2007; Koryakova and Epimakhov 2007; Hanks 2009; Batanina and Hanks 2013). MBA settlements were repeatedly occupied, evidenced by successive building phases that added structures and enlarged enclosures. Aggregated MBA sites are situated between 40 and 60 km apart, and landscapes between enclosed settlements may have been territories of particular settlements (Epimakhov 2002; Zdanovich and Batanina 2002; Merrony et al. 2009; Stobbe et al. 2016). While there is currently no archeological evidence for structures such as animal corrals or walls outside of MBA settlement enclosures, open areas within settlements may have been used to house livestock. Reconstructions of landscape use in the vicinity of MBA sites determined that pastures within 4 km of the site could have supported herd sizes large enough to sustain sedentary livestock herders (Stobbe et al. 2016). During the subsequent Late Bronze Age (1800 to 1400 cal BCE) settlements were more dispersed across the landscape and significantly smaller, consisting of fewer than 20 dwellings, further lacking enclosures and building phases (Kuz’mina 2007:36–8; Zakh and Ilyushina 2010). This shift in settlement size and distribution has been interpreted to indicate the emergence of nomadic pastoralism and the intensification of long-distance mobility (Tkacheva 1999; Grigory’ev 2000; Kuz’mina 2007; Tkacheva and Tkachev 2008).

MBA communities engaged in pastoralism and supplemented their diets with wild plants and wild game (Krause and Koryakova 2013; Ventresca Miller et al. 2014a; Hanks et al. 2018). A variety of wild plants have been recovered during flotation, but so far, domesticated grains have not been recovered (Krause and Koryakova 2013; Ng 2013; Hanks et al. 2018). Carbon and nitrogen stable isotope analyses of bone collagen indicate that human dietary intake in the MBA focused on terrestrial animal protein, likely in the form of meat and milk, which was supplemented by locally available fish and wild plants (Ventresca Miller et al. 2014a; Hanks et al. 2018). While the subsequent LBA has been interpreted as a shift to nomadic pastoralism, little data is available regarding landscape use or herd management strategies for this period. Paleodietary studies suggest that human diets during the LBA focused on pastoral products and were supplemented by wild plants, fish, and wild animals (Ventresca Miller et al. 2014a, 2014b).

Location of the archeological sites of Bestamak (MBA), Kamennyi Ambar (MBA), Bolshekaragansky (MBA), and Lisakovsk (LBA)


A major shift in patterns of settlement occurred at the Middle to Late Bronze Age transition, from large semi-sedentary populations in enclosed settlements to smaller populations in open settlements dispersed across the landscape. Scholars have suggested that animal management strategies also changed at this time from semi-sedentary pastoralism to more mobile forms of pastoral nomadism. However, our findings suggest that livestock management practices did not shift in concert with social landscapes, demonstrating consistency in pastoral adaptations through time in the region. Similar isotopic patterning between livestock during the MBA and LBA across several sites in the CES indicates that there were no changes across time in pasture usage patterns. Among ancient livestock, differences in δ13C and δ15N values between horses and ruminants (cattle, sheep, goat) strongly suggest that livestock were grazed pastures either extensively or intensively, respectively. Horses grazed in open steppe areas or intermittently in areas with well-watered soils that lacked salinity, likely staying well outside of settlements. In contrast, cattle and sheep/goat grazed in pastures across multiple zones, both near the settlement and in non-local pastures that were grazed intensively. A wider range of δ13C and δ15N values among ruminants at Kamennyi Ambar (MBA) suggests that aggregated human populations may have had larger herds, some of which accessed non-local pastures outside of the easily accessible territories surrounding enclosed sites. Continued research on the isotopic composition of vegetation surrounding Bronze Age sites should clarify patterns of landscape use between MBA sites.


Paleoenvironment in mid- to late Holocene in the Cis-Ural steppes, and Epigravettian in Eastern Europe

Dynamics of paleoenvironments in the Cis-Ural steppes during the mid- to late Holocene, by Khokhlova, Morgunova, Khokhlov, and Golyeva, Quaternary Research (2018), 1–15.

Interesting excerpts:

About the studied site

The Turganik settlement in the Orenburg Region constitutes part of the so-called Ivanovo microregion of cultural heritage monuments, along with the Mesolithic Starotokskaya site; an Ivanovskoye multi-layered settlement (Neolithic, Eneolithic [or Chalcolithic], Late Bronze Age); Toksky I and Toksky II settlements attributed to the Late Bronze Age (the Timber-Grave archaeological culture); an Ivanovsky ground burial dated to the Eneolithic; and the Ivanovsky kurgan cemetery of the Early Iron Age (Fig. 1).

The ancient settlements are located at the Turganik River mouth, where the river joins the Tok River (the Samara River drainage basin). The Turganik River enters an old channel of the Tok which continues to flow due to that fact. Both valleys are wide and dissected by multiple river channels. The floodplain landscapes are mostly wet meadows with rich herb and grass vegetation, pastures, and hay fields. On both sides of the Turganik River, and farther along the right side of the Tok valley there are flat-topped elevations, with occasional forests (Chibilev, 1996). The Turganik settlement was positioned on a slightly elevated surface at the confluence of the Turganik and Tok rivers, on the right side of the valley. The settlement was inhabited in the Eneolithic and the Late Bronze Age, the fifth to fourth millennia BC.

(a and b) Location of the studied region and (c) the objects of the cultural heritage in the microregion: 1, Turganik settlement; 2, Toksky II settlement; 3, Ivanovsky dune with Ivanovsky ground cemetery; 4, Ivanovskoye II multi-layered settlement; 5, Staro-Tokskaya site; 6, Toksky I settlement; 7, Ivanovsky I kurgan cemetery.

Results and discussion

Pollen assemblages of the Atlantic optimum ~ 5500 yr BP indicate some increase in moisture supply and related afforestation of the floodplain (Lavrushin and Spiridonova, 1995). As follows from our data, the site was abandoned at that time and the no-longer-functioning cultural layer VI was gradually buried under deposits of frequent floods. According to the 14C ages obtained on archeological materials, the age of layer VI (or the second stage of the Eneolithic epoch on the Turganik settlement) may be dated to 4237–3790 cal yr BC, that is, somewhat earlier than the Holocene optimum suggested by palynologists.

Layer V shows another interval marked by increasing climate aridity and the dominance of grass steppes. As stated by the above-cited authors, the climate at the time that layer V was functioning was even dryer than during the formation of layer VI. That is confirmed by our data on the layer V composition, was formed during early Pit-Grave culture (the Early Bronze Age), in the range from 3800–3360 BC, according to the dates obtained on archeological materials (Morgunova et al., 2016b). As follows from the above, the maximum of aridity coincided with the Atlantic optimum.

It follows from the above that the Atlantic period of the Holocene was mostly characterized by arid environments; the peak of aridity fell on the early Bronze Age, the time of the early (Repino) stage of the Yamnaya culture in the Cis-Ural steppes. The Subboreal and Subatlantic periods were relatively colder and more humid, though short episodes of aridity could occur and some of them happened to be recorded in the sequence under study.

The reconstructed history of the climate changes in the Cis-Ural steppes during three intervals of the Holocene is in a good agreement with the results obtained in other regions. According to Alexandrovskiy (1996, 2000; Alexandrovskiy et al., 1999, 2004), the Atlantic period was the most arid one in the south of Russia, the subsequent intervals being comparatively wetter and colder. The extreme aridity was recorded on the Ukraine territory at the final Atlantic period, a few less arid chrono-intervals having been identified over the entire period (Kotova, 2009).

There are, however, other schemes of climate fluctuations in the central part of the Russian steppe zone; a few of them consider the Atlantic period to be humid, or even the most humid, as compared with the second half of the Holocene (Ivanov, 1992; Demkin, 1997). Also acceptable is a scenario of climatic fluctuations occurring at different times in different regions (Chendev et al., 2010). Further investigations and accumulation of empirical data would help to gain a better insight into the problem.


The ancient people inhabited the place from 5000 to 4000 BC (actually throughout the Atlantic period), when the place was not subjected to flooding. At the time of human habitation, the climate was mostly arid. Paleosols of that time are attributable to the Kastanozems (Endosalic Protosodic). They developed under grass (or herb and grass) steppes. The peak of aridity falls on the final Atlantic period. At the end of Eneolithic epoch (the fifth millennium BC) and in the Early Bronze Age (the fourth millennium BC) there were short-term but violent floods, which forced people to leave the habitable place.

During the Subboreal and Subatlantic periods of the Holocene, the climate became more humid, the floods became regular, the vegetation was dominated by meadow forbs and herbs growing on meadow-chernozem soils (Luvic Chernozem [Stagnic]), and the settlement was completely abandoned. In general, the studied sedimentary record at the Turganik archeological site reveals traceable climate change towards lower temperatures and increasing humidity in the second part of the Holocene, with occasional episodes of aridity that did not affect the general trend.

Interesting also the paper Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian, by Drucker et al., Quaternary Research (2018), 1-13

Location of the sites considered in this study.

About the studied site

The central East European plains are famous for their Epigravettian sites that date to around 15–12 14C ka BP (ca. 18.2–13.8 cal ka BP) and display impressive large structures made from the bones of woolly mammoth (Mammuthus primigenius; e.g., Gladkih et al., 1984; Soffer, 1985; Hoffecker, 2002). The origin of the large accumulations of mammoth remains is still a matter of debate, with the main hypotheses being the collection of natural occurrences versus active hunting (e.g., Soffer, 1985; Haynes 1989; Svoboda et al., 2005). In favor of this second scenario, studies of the mammoth remains of Yudinovo (Germonpré et al., 2008) concluded that the mammoths were hunted and, at Mezhyrich, mammoths were obtained by combined procurement via collection of carcasses and active hunting (Péan, 2015). Hunting practices were observed in older sites of the Gravettian culture in the Dnieper and Desna valleys (Demay et al., 2016).

Between ca. 22 and 12 14C ka BP (ca. 26.2–13.8 ka cal BP), the Dnieper and Desna basins correspond to the southern part of the geographical distribution of the woolly mammoth (Markova et al., 2013; Kahlke, 2014). Over time their distribution shifted northwards, while the density of the mammoth population decreased (Markova et al., 2013). According to Markova et al. (2013), the combined effect of gradual warming and growing human pressure is most likely to have had a negative impact on the mammoths, resulting in their local extinction in the Russian and Ukrainian plains around 14–12 14C kaBP (ca. 17.0–13.8 ka cal BP; Stuart et al., 2005).

Discussion and conclusion

Measured δ34S and δ15N values on bone collagen of mammoth, large canid, and fox from Mezhyrich (M), Buzhanka 2 (B), Yudinovo (Y), and Eliseevichi (E).

Humans could have taken advantage of the mammoth vulnerability, as reflected by lower δ15N values, to access animals that died naturally, collect bones, and hunt the most fragile individuals. This, with the possible assistance of domesticated dogs as hunting partners, could have countered a possible return to more suitable conditions for mammoth (Sablin and Khlopachev, 2002; Shipman, 2015). Our results confirm at least that mammoth specimens from Mezhyrich, Buzhanka 2, and, to a lesser extent, Eliseevichi were part of late mammoth populations surviving in sub-optimal conditions. They were thus most likely vulnerable to any pressure from environmental and/or human origin. Detecting further such cases among the late surviving mammoth populations using stable isotopic tracking may be a way to test if mammoth populations still had an optimal ecology or were metastable and, therefore, vulnerable to extinction. For instance, the insular Holocene population of mammoth on Saint Paul Island exhibited low and variable δ15N values, indicating suboptimal ecological conditions preceding their final disappearance (Graham et al., 2016).

The results of δ34S analyses showed no differences among mammoth according to the site but possibly a forage range partitioning between mammoth and coexisting large ungulates. Thus, variability in the mobility pattern for the mammoth between the high and low δ15N groups, such as migratory versus sedentary individuals, is not supported so far. We consider that rapid environmental modifications over time, probably not detectable through radiocarbon dating, can be a valid alternative explanation. Combined with direct competition with other large herbivores, such as the horse, and hunting of the most vulnerable individuals, the loss of their optimal habitat was likely to be the driving factor behind the local extinction of the mammoth in the central East European plains.


Shared ancestry of ancient Eurasian hepatitis B virus diversity linked to Bronze Age steppe


Ancient hepatitis B viruses from the Bronze Age to the Medieval period, by Mühlemann et al., Science (2018) 557:418–423.

NOTE. You can read the PDF at Dalia Pokutta’s account.

Abstract (emphasis):

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10−6–1.51 × 10−5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.

Geographical distribution of analysed samples and modern genotypes. a (featured image), Distribution of modern human HBV genotypes. Genotypes relevant to this Letter are shown in colour. Coloured shapes indicate the locations of the HBV-positive samples included for further analysis. b (above this text), Locations of analysed Bronze Age samples are shown as circles and Iron Age and later samples are shown as triangles. Coloured markers indicate HBV-positive samples. Ancient genotype A samples are found in regions in which genotype D predominates today, and HBV-DA27 is of subgenotype D5 which today is found almost exclusively in India.

Interesting excerpts:

We find genotype A in south-western Russia by 4.3 ka (in samples RISE386 and RISE387) in individuals belonging to the Sintashta culture, and in a Hungarian sample (DA195) from the Scythian culture. The western Scythians are related to the Bronze Age cultures of western steppe populations2 and their shared ancestry suggests that the modern genotype A may descend from this ancient Eurasian diversity and not, as previously hypothesized, from African ancestors29,30. This is also consistent with the phylogeny (Fig. 2), as well as the fact that the three oldest ancient genotype A sequences (HBV-DA195, HBV-RISE386 and HBV-RISE387) lack the six-nucleotide insertion found in the youngest (HBV-DA119) and in all modern genotype A sequences. The ancestors of subgenotypes A1 and A3 could have been carried into Africa subsequently, via migration from western Eurasia31.

The ancient HBV genotype D sequences were all found in Central Asia. HBV-DA27, found in Kazakhstan and dated to 1.6 ka, falls basal to the modern subgenotype D5 sequences that today are found in the Paharia tribe from eastern India32. DA27 and the Paharia people in India are linked by their East Asian ancestry2,33.

Dated maximum clade credibility tree of HBV. A log-normal relaxed clock and coalescent exponential population prior were used. Grey horizontal bars indicate the 95% HPD interval of the age of the node. Larger numbers on the nodes indicate the median age and 95% HPD interval of the age (in parentheses) under a strict clock and Bayesian skyline tree prior. Clades of genotypes C (except clade C4), E, F, G and H are collapsed and shown as dots. The figure includes a possible tenth genotype, J, based on a single human isolate. Taxon names for ancient samples indicate era (BA, Bronze Age; IA, Iron Age or later), sample name, sample age in years, ISO 3166 three-letter abbreviation of country of sequence origin, and region of sequence origin. Taxon names for modern samples indicate human genotype or subgenotype or host species if non-human, GenBank accession number, sample age in years, ISO 3166 three-letter abbreviation of country of sequence origin, and region of sequence origin.

(…)Despite the age of the samples and the imperfect diagnostic test, our dataset contained a high proportion of HBV-positive individuals. The actual ancient prevalence during the Bronze Age and thereafter might have been higher, reaching or exceeding the prevalence typically found in contemporary indigenous populations5. This clearly establishes the potential of HBV as powerful proxy tool for research into human spread and interactions. The data from ancient genomes reveal aspects of complexity in HBV evolution that are not apparent when only modern sequences are considered. They show the existence of ancient HBV genotypes in locations incongruent with their present-day distribution, contradicting previously suggested geographical or temporal origins of genotypes or sub-genotypes; evidence for the creation of genotype A via recombination and the emergence of the genotype outside Africa; at least one now-extinct human genotype; ancient genotype-level localized diversity; and demonstrate that the viral substitution rate obtained from modern heterochronously sampled sequences is probably misleading. Together, these findings suggest that the difficulty in formulating a coherent theory for the origin and spread of HBV may be due to genetic evidence of an earlier evolutionary scenario being overwritten by relatively recent alterations, as has previously been suggested in the context of recombination24

See also:

Oldest bubonic plague genome decoded in Srubna ca. 3800 YBP

New open access paper from the Max Planck Institute: Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague, by Spyrou et al., Nature Communications (2018) 9:2234.

Interesting excerpts from the paper and supplementary materials (emphasis mine):

Here, we analyse material from the Mikhailovsky II burial site, which was excavated in 2015 and is one of numerous kurgan cemeteries identified in the Samara Oblast. It consists of seven kurgan burials, and is chronologically associated to the ‘Pokrovka’ phase (3,900-3,750 BP) of the ‘Srubnaya’ culture (3,850-3,150 BP) (radiocarbon dates produced in this study provided in Supplementary Table 6), also referred to as the ‘proto-Srubnaya’ that is considered the earliest phase of the LBA in the Samara Oblast. All sex and age groups were represented in this cemetery. We analysed nine individuals buried in three kurgans and identified two individuals buried in the same kurgan (see Supplementary Figure 1) to be positive for Y. pestis. According to anthropological analysis these were a 30-40 year-old male (RT5) and 35- 45 year-old female (RT6).

After its divergence from Y. pseudotuberculosis, Y. pestis acquired its high pathogenicity and distinct niche mainly by chromosomal gene loss16 as well as the acquisition of two virulence-associated plasmids, pMT1 and pPCP11,17,18. Throughout this process, one of the most crucial evolutionary adaptations related to its pathogenicity was its ability to colonise arthropods, a phenotypic/functional gain mediated by a combination of chromosomal and plasmid loci19,20. These genetic changes are central to the most common “bubonic” form of the disease, where bacteria enter the body via the bite of an infected flea, travel via the lymph to the closest lymph node and replicate while evading host defences. Recent ancient genomic investigations of Y. pestis have identified its earliest known variants in Eurasia during the Late Neolithic/Bronze Age period (LNBA) that show genetic characteristics incompatible with arthropod adaptation. These strains, therefore, have been considered incapable of an efficient flea-based transmission2; however, the alternative early-phase transmission could have provided an independent means of arthropod dissemination2,3,21. To date, the earliest evidence of a Y. pestis strain with signatures associated with flea adaptation has been reported during the Iron Age through shotgun sequencing of an ~2900-year-old genome from Armenia (strain RISE397), though at a coverage too low (0.25-fold) to permit confident phylogenetic positioning2. Although the mechanism by which the LNBA lineage caused human disease is unclear, its frequency in Eurasia during the Bronze Age2,3 and its phylogeographic pattern that mimics contemporaneous human migrations are noteworthy3.

Population genetic analysis to infer the ancestry of RT5. b Principal component analysis (PCA) of modern-day western Eurasian populations (not shown) and projected ancient populations (n = 82, see population labels), including the newly sequenced RT5 individual from Samara and c estimation of ancestral admixture components using ADMIXTURE analysis (K= 12) (see Supplementary Methods)

The central steppe region seems to have played a significant role as a migration corridor during the entire Bronze Age, and as such, it likely facilitated the spread of human-associated pathogens, such as Y. pestis, across Eurasia. Here, we explore additional Y. pestis diversity in that region by isolating strains from LBA Samara, in Russia. We identify a Y. pestis lineage contemporaneous to the LNBA strains with genomic variants consistent with flea adaptation. This reveals the co-circulation of two Y. pestis lineages during the Bronze Age with different properties in terms of their transmission and disease potentials.

A recent study has suggested that flea-adapted Y. pestis, along with its potential to cause bubonic plague in humans, likely originated around 3000y BP2. Contrary to such conclusions, the lineage giving rise to our Y. pestis isolates (RT5 and RT6) likely arose ~4000 years ago (Supplementary Tables 6 and 9), and possessed all vital genetic characteristics required for flea-borne transmission of plague in rodents, humans and other mammals. (…)

Moreover, our analysis of the previously published Iron Age RISE397 strain from modern-day Armenia2 revealed its close relationship to RT5 and RT6 (Supplementary Fig. 4). Note that the modern 0.PE2 and 0.PE7 lineages, which are known to possess all genomic characteristics that confer adaptation to fleas19, fall ancestral to RT5 (Fig. 2b) and RISE397 (Supplementary Fig. 4), but are more derived than the LNBA lineage. Our phylogenetic and dating results thus suggest that 0.PE2 and 0.PE7 also originated during the Bronze Age, with their mean divergence here estimated to 4474 (HPD 95%: 3936–5158) and 5237 (HPD 95%: 4248–6346) years BP, respectively, based on the Bayesian skyline model (Supplementary Table 9). While these lineages may have been confined to sylvatic rodent reservoirs during the EBA, the possibility that they co circulated among human populations contemporaneously with the LNBA lineage should be considered. Although the places of origin of 0.PE2 and 0.PE7 are not known, today, their strains are isolated from modern-day China and the Caucasus region. In terms of their disease potential, both 0.PE2 and 0.PE7 possess pMT1 plasmids with fully functional ymt genes, but 0.PE2 strains lack pPCP144, and though frequently recovered from sylvatic rodent reservoirs, their virulence in humans is not known. On the other hand, the more basal 0.PE7 contains pPCP12 and has previously been associated with human bubonic plague12. It is, therefore, tempting to hypothesise that efficient flea adaptation in Y. pestis, as well as the potential for bubonic disease, might have evolved earlier than 5000 years ago.

Maximum Clade Credibility tree. The MCC tree was produced using TreeAnnotator of BEAST v1.88 and is a product of demographic analysis based on the Coalescent Skyline model, summarizing 27,001 trees. The tree was visualized in FigTree v1.4.2 ( It is presented in a temporal scale between 6,000 and 0 yBP, and the mean divergence dates of major Y. pestis lineages are indicated on each corresponding node.

It seems possible that already in the Bronze Age, with the establishment of transport and trade networks, the interconnectivity between Europe and Asia that is also reflected in the ancient human genomes, likely contributed to the spread of infectious disease. Similarly, the abundant trade routes of the medieval period are considered the main conduit for plague’s movement between Asia and Europe8,12. Our current data suggest a more complex model, where at least two human-associated lineages (LNBA and RT5) with different transmission potentials were established in Eurasia during the Bronze Age (Fig. 2b, c).

The haplogroup of RT5 is R1a1a1b-Z645 (most likely Z93, only with coverage of 1-fold), mtDNA U2e2a.

See also materials from the Max Plank Institute.


Sintashta-Petrovka and Potapovka cultures, and the cause of the Steppe EMBA – MLBA differences

Interesting recent papers on Sintashta and related Volga-Ural MLBA communities, with relevant excerpts (emphasis mine):

Social Organization of the Sintashta-Petrovka Groups of the Late Bronze Age and a Cause for Origin of Social Elites (Based on Materials of the Settlement of Kamenny Ambar), by Chechushkov et al. Stratum Plus (2018) Nº2.

Abstract (official, in English):

The formation of social complexity often unfolded in non-unilineal ways in those regions of the world where the surplus product remained low enough to support institutionalized power and state bureaucracy. The Bronze Age of Northern Eurasia is a vivid example where social complexity arose based on herding economy, while population density remained low enough not to form territorially separate competing groups. Studying of such societies sheds light on how and under what conditions the social elite emerged. The undertaken analysis suggests that the formation, development, and decline of social complexity in the Bronze Age steppe societies were directly related to the intensification of subsistence practices and colonization of new territories. At the same time, some members of the society took upon themselves the role of community life’s managers, and, in return, received privileged statuses. The environment and the economy changing, the need for such functions disappeared. As a result, the Bronze Age social elites dissolved in the mass and lost their privileged statuses.

Open access Sintashta as a transcultural phenomenon, by N.B. Vinogradov, Архив Поволжская археология №1 (23) 2018.

Abstract (official, in English)

The paper features a substantiation of the understanding of Sintashta-type monuments dating back to the boundary of the Middle and Late Bronze Ages in the Southern Trans- Urals as a transcultural phenomenon, the establishment and operation of which has been associated with the clans of miners, smelters and smiths of the Southern Ural cultures of the studied period. In the author’s opinion, the variety of ceramic complexes from Sintashta burial mounds suggest a reconsideration of several cultural traditions and the peculiar nature of family and marriage relations practiced by the clans of Sintashta-type communities.

Interesting excerpts, from the conclusion (translated from Russian):

1. In contrast to the pastoral cattle-breeding cultures of the Alakul cultural-historical community, the Sintashta clan-communities, in the author’s opinion, were a more specific transcultural phenomenon with an original model of life organization, uniting clans of miners, metallurgists, blacksmiths and casters, sometimes from several neighboring archaeological cultures (my italics – N.V.), in particular, the Abashevo culture of the South Urals, some “proto-Srubna” culture of the Southern Urals and quasi-Eneolithic cultures of the Southern Urals and of Northern Kazakhstan.

2. The Sintashta phenomenon as a community of clans of miners – metallurgists – smiths functioned relatively independently, outside or under conditions of partial jurisdiction (?) Of the elites of the above mentioned cultures.

3. At the historical level, the facts presented by the author concerning both funeral rites and ceramics can be understood as a reflection of the characteristics, first of all, of the family-marriage relations system within the specialized communities. And it is not by chance that the ceramics of Sintashta cemeteries carry in themselves often reinterpreted (especially in the case of ornamentation) traces of several cultural traditions. The variety of ceramic complexes of Sintashta monuments and the rethinking, reworking of marker elements of ornament on vessels testify, in the author’s view, about the distinctiveness, the specifics of family relations in Sintashta communities.

Paleoanthropological Data as a Source of Reconstruction of the Process of Social Formation and Social Stratifi cation (based on the Sintashta and Potapovo sites of the Bronze Age), by Kitov et al. Stratum Plus (2018) Nº 2.

Abstract (official, in English):

The paper is devoted to the analysis of craniological materials from the cemeteries of the Bronze Age of the Volga-Ural region (Sintashta and Potapovo assemblages). The characteristic feature of the physical appearance of this population is the combination of different morphological variations with a dominant and the presence of the Uraloid components. At the same time, a group of individuals with a specific, different from other individuals, skull structure is distinguished: maturized, broad-faced men with a set of striking features in the face. Analysis of the funerary rites of these individuals indicates their high social status in the Sintashta-Potapovo society. The addition of such an anthropological complex occurred in the Eneolithic on the territory of modern Kazakhstan as a result of contacts of steppe sharply profiled Europeoid populations and groups of Uraloid origin. This led to the formation of a population, originally of metisic origin, conventionally called “steppe Kazakhstan”, which took part in the process of morphogenesis, and, indirectly, the cultural genesis of Sintashta and Potapovo communities.

While this paper reports mainly athropometric data, the team forms part of the Samara Valley project – including Khokhlov.

Here are interesting excerpts from the general conclusions (translated from Russian):

Summing up, it can be noted that the distinguishing feature of the carriers of the Sintashta and Potapovka traditions is the sharp heterogeneity of the anthropological features, the cause of which were active ethno- and culturogenetic processes in the Volga-Ural region at the turn of the 3rd/2nd millennium BC. One of the active components of these processes was probably a population group with specific craniological data, distinct from the rest of the craniocomplexes. These included mature, broad-leaning male individuals with a set of vivid signs in the structure of the face, such as unfolded and flattened cheekbones, and a strong nose protrusion.

The peculiarities of the burial rite speak about their high social position in the society: burials were made in large central burial pits, accompanied by abundant sacrificial remains in the form of skulls and limbs of horses, large and small cattle, rich funeral complements including bronze tools and weapons, artifacts of metal production, attributes of the chariot complex. It should be noted that such a craniological type is present in every mound of the Sintashta-Potapovka circle of monuments, and is found on the wide territory of the steppes and forest-steppes of the Volga region, the Southern Urals, and the Trans-Urals. The addition of the similar anthropological complex occurred in the Eneolithic due to the contacts, on the one hand, of steppe sharply profiled Europoid populations that extended to the east and, on the other hand, encountered groups of uraloid origin, which led to the formation of a population, originally of metisic origin, which can be conditionally called “steppe Kazakhstan”.


Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans


Open access Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans, by Krause-Kyora et al., Nature Communications (2018)


Leprosy, a chronic infectious disease caused by Mycobacterium leprae (M. leprae), was very common in Europe till the 16th century. Here, we perform an ancient DNA study on medieval skeletons from Denmark that show lesions specific for lepromatous leprosy (LL). First, we test the remains for M. leprae DNA to confirm the infection status of the individuals and to assess the bacterial diversity. We assemble 10 complete M. leprae genomes that all differ from each other. Second, we evaluate whether the human leukocyte antigen allele DRB1*15:01, a strong LL susceptibility factor in modern populations, also predisposed medieval Europeans to the disease. The comparison of genotype data from 69 M. leprae DNA-positive LL cases with those from contemporary and medieval controls reveals a statistically significant association in both instances. In addition, we observe that DRB1*15:01 co-occurs with DQB1*06:02 on a haplotype that is a strong risk factor for inflammatory diseases today.

Relationship of 53 medieval leprosy-positive Danes to contemporary Europeans. Principal component analysis plot for 53 medieval St. Jørgen individuals in relation to European population samples from the 1000 Genomes project. (CEU, Northern Europeans from Utah; GBR, British in England and Scotland; IBS, Iberian population in Spain; TSI, Tuscans in Italy; FIN, Finnish in Finland)

The study shows mtDNA haplogroups comparable to those of northern Europeans today, and findings in general indicate no major genome-wide changes in the Danish population structure in the past 1000 years.

The paper may be of interest for earlier migrations:


Discovered via Iain Mathieson:


Fast life history as adaptive regional response to less hospitable and unstable Early Indo-Iranian territory


Another interesting paper, Life in the fast lane: Settled pastoralism in the Central Eurasian Steppe during the Middle Bronze Age, by Judd et al. (2017).

Abstract (emphasis mine):

We tested the hypothesis that the purported unstable climate in the South Urals region during the Middle Bronze Age (MBA) resulted in health instability and social stress as evidenced by skeletal response.The skeletal sample (n = 99) derived from Kamennyi Ambar 5 (KA-5), a MBA kurgan cemetery (2040-1730 cal. BCE, 2 sigma) associated with the Sintashta culture. Skeletal stress indicators assessed included cribra orbitalia, porotic hyperostosis, dental enamel hypoplasia, and tibia periosteal new bone growth. Dental disease (caries, abscess, calculus, and periodontitis) and trauma were scored. Results were compared to regional data from the nearby Samara Valley, spanning the Early to Late Bronze Age (EBA, LBA).Lesions were minimal for the KA-5 and MBA-LBA groups except for periodontitis and dental calculus. No unambiguous weapon injuries or injuries associated with violence were observed for the KA-5 group; few injuries occurred at other sites. Subadults (<18 years) formed the majority of each sample. At KA-5, subadults accounted for 75% of the sample with 10% (n = 10) estimated to be 14-18 years of age.Skeletal stress markers and injuries were uncommon among the KA-5 and regional groups, but a MBA-LBA high subadult mortality indicates elevated frailty levels and inability to survive acute illnesses. Following an optimal weaning program, subadults were at risk for physiological insult and many succumbed. Only a small number of individuals attained biological maturity during the MBA, suggesting that a fast life history was an adaptive regional response to a less hospitable and perhaps unstable environment

Interesting excerpt:

The low frequencies of violence-related trauma contrast sharply to the epidemic of skeletal violence observed during the Iron Age (8th-2nd centuries BC) at other regional sites, notably Aymyrlyg (Murphy, 2003). The paucity of weapon-related injuries among the Bronze Age groups may be the outcome of many factors. While weapons and chariots did exist, they could have had multi-functional contexts aside from warfare. Individuals killed in warfare may not be present if bodies were abandoned on battlefields or disposed of where the individual died. Alternatively, warfare may have involved the capture of humans in addition to material resources, such as herds or weapons, leaving no skeletal trace of physical violence (Martin, Harrod, & Fields, 2010; Wilkinson, 1997). Trauma analysis is further complicated by the lack of soft tissue, which is the target for those attempting to kill or immobilize their opponent (Judd, 2008; Judd & Redfern, 2012), and it is possible that violence-related injuries or burns sustained from metallurgy were absent because only the soft tissue was affected. The skeletal evidence for trauma is minimal at KA-5 and its contemporary sites, which may be partially attributed to the less than desirable preservation of the collections. Based on the skeletal material available, internal or external social tensions resulting in altercations are not supported.

The lack of material or skeletal evidence for warfare has encouraged a more optimistic interpretation of Steppe community relations living with environmental instability. Herding camps, such as that at Peschanyi Dol, provided evidence for assorted groups utilizing the site based on the clay sources of ceramic sherds found in the camp’s trash pit (Anthony, Brown, Kuznetsov, & Mochalov, 2016a). Anthony et al. (2016a, 2016b) suggested that herders shifted according to a schedule that permitted several settlements to use prime camp sites. They proposed a cooperative region-wide organization of groups that worked together in three key activities: mining, summer herding, and winter wolf-dog rituals (Anthony et al., 2016a). A similar regional social arrangement may have existed in the KA-5 vicinity and accords with the livestock management models proposed by Stobbe and colleagues (2016).

Demographic distribution of KA-5 and Samara Valley samples

Using the available sampling, and based on the absence of skeletal stress markers (in combination with the high subadult mortality among Sintashta samples), the study concludes that the available data cannot support the traditional view that MBA was a period of social strife.

Since other Samara Valley samples do not follow a similar trend with Sintashta, a homogeneous, long-term relationship with the environment is suggested for this culture, independent of climatic shift or unpredictability.

We already know that R1a-Z645 subclades, which expanded with the Corded Ware culture, appeared in a Poltavka cemetery rather early, which, coupled with the incomplete replacement that we see in Early Indo-Iranian communities, suggest a gradual expansion of its (mostly R1a-Z93) subclades among Proto-Indo-Iranians.

My limited, speculative proposal of how this lineage replacement took place was based precisely on this traditional description of partially isolated, warring communities:

The process by which this cultural assimilation happened in the Sintashta-Petrovka region, given the presupposed warring nature of their contacts, remains unclear. It is conceivable, in a region of highly fortified settlements, to think about alliances of different groups against each other, akin to the situation found in Bronze Age Europe: a minority of Abashevo chiefs and their families would dominate over certain fortified settlements and wage war against other, neighbouring tribes.

After a certain number of generations, the most successful settlements would have replaced the paternal lineages of the region – with only a slight drift to steppe admixture observed in PCA compared to Corded Ware –, while the majority of the population in these settlements – including females, commoners and slaves – retained the original Poltavka culture. R1b1a1a2a2-Z2103 lineages were mostly replaced in the region by haplogroup R1a1a1b2-Z93, as demonstrated by the later expansion of its subclades with Andronovo and Srubna cultures, and by present-day distribution of R1a1a1b2-Z93 lineages in Eurasia.

Now we see more proof for a likely bottleneck in a more peaceful (or, rather, cooperative) region, as recently described by Anthony. In fact, if you take a look at the sampling of the paper (which is obviously not randomised), Potapovka – coeval with Sintashta, but genetically more similar to the earlier Yamna and Poltavka – follows a less steep demographic distribution than Sintashta, with succeeding Srubna (which shows a marked shift toward the Corded Ware cluster) maintaining a similar demographic pattern…

I guess the answer is probably between both positions, war and environment; the main issue is which one was the most important contributing factor. If we judged the whole picture solely by the samples studied in this paper, the answer would be the environment.

In any case, even though we like to see every single paternal lineage substitution in a territory as necessarily linked with a meaningful migration coupled with ethnolinguistic change, sometimes this is not the case; as, the replacement of R1b-L23 lineages in Proto-Balto-Slavic and Proto-Indo-Iranian communities by R1a-Z645 subclades; the replacement of R1a-Z645 by N1c-L392 subclades in Uralic-speaking territories; or the replacement of native lineages by R1b-L51 subclades among Basques.


Decline of genetic diversity in ancient domestic stallions in Europe

Open access research article Decline of genetic diversity in ancient domestic stallions in Europe, by Wutke et al., Science (2018), 4(4):eaap9691.

Abstract (emphasis mine):

Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection—initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times.

The frequencies of Y chromosome haplotypes started to change during the Late Bronze Age (1600–900 BCE).
Inferred temporal trajectories of haplotype frequencies. Each haplotype is displayed by a different color. The shaded area represents the 95% highest-density region. The trajectories were constructed taking the median values across frequencies from the simulations of the Bayesian posterior sample. The small chart represents the stacked frequencies; the amplitude of each colored area is proportional to the median haplotype frequencies (normalized) at a given time. The x and y axes of the small chart match those in the large one. Ka, thousands of years.

Interesting excerpts:

The first record of the modern domestic Y chromosome haplotype stems from two Bronze Age samples of similar age. Notably, both samples were found in two distantly located regions: present-day Slovakia (2000–1600 BCE, dated by archaeological context) and western Siberia (14C-dated: 1609–1436 cal. BCE). Although a very recent study proposes an oriental origin of this haplotype (14), we cannot determine the geographical origin of Y-HT-1 with certainty, because this haplotype has not been found thus far in predomestic or wild stallions. There are two possible scenarios: (i) Y-HT-1 emerged within the domestic population by mutation and (ii) Y-HT-1 was already present in wild horses and entered the domestic population either at the beginning of domestication (but initially restricted to Asian horses) or later by introgression (from wild Y-HT-1 carrying studs during the Iron Age). Crosses between domestic animals and their wild counterparts have been observed in several domestic species (15–18); thus, the simplest explanation would be that we missed Y-HT-1 in older samples because of limited geographical sampling. However, the estimated haplotype age is contemporary (Fig. 4) with the assumed starting point of horse domestication ~4000–3500 BCE (19), rendering it likely that Y-HT-1 originated within the domestic horse gene pool. Still, we cannot rule out definitively that it appeared before domestication.

Independent of its geographical origin, Y-HT-1 progressively replaced all other haplotypes—except for one additional lineage that is restricted to Yakutian horses (11). Considering our data, this trend in paternal diversity toward dominance of the modern lineage appears to start in the Bronze Age and becomes even more pronounced during the Iron Age. The Bronze Age was a time of large-scale human migrations across Eurasia (20–22), movements that were undoubtedly facilitated by the spread of horses as a means of transport and warfare. At that time, the western Eurasian steppes were inhabited by highly mobile cultures that largely relied on horses (20, 21, 23, 24). The genetic admixture of northern and central European humans with Caucasians/eastern Europeans did correlate with the spread of the Yamnaya culture from the Pontic-Caspian steppe (25), an area that has repeatedly been suggested as the center of horse domestication (19, 26, 27). Given the importance of domestic horses, it appears that deliberate selection/rejection of certain stallions by these people might have contributed to the loss of paternal diversity. The spread of humans out of this region might also have resulted in the spread of Y-HT-1 from Asia to Europe. This scenario also agrees with recent findings that the low male diversity of extant horses is not caused by recruiting only a limited number of stallions during early domestication (13).

Decline of paternal diversity began in Asia.
Maps displaying age, locality, and haplotype (different colors) of each successfully genotyped sample.

The presence of the Y chromosome haplotype carried by present-day Przewalski horses (Y-HT-2) in early domestic stallions and a European wild horse (Pie05; table S2) could be the result of introgression of Przewalski stallions. Although the original distribution of the Przewalski horse is unknown, it was probably much larger than that of the relict population in Mongolia that produced modern Przewalski horses and might even have extended into Central Europe. However, it is also possible that either Przewalski horses were among the initially domesticated horses or that Y-HT-2 occurred both in Przewalski horses and in those wild horses that are the ancestors of domestic horses, based on autosomal DNA data (30). Regardless of how Y-HT-2 entered the domestic gene pool, it was eventually lost, as were all haplotypes except Y-HT-1. In our sample set, Y-HT-2 was undetectable as early as the third time bin. However, it is possible that Y-HT-2 may have been present during this time period, but with a frequency below 0.11 (with 95% probability). The inferred time trajectories for Y-HT-2 frequencies suggest that it could nevertheless have persisted at very low frequencies until the Middle Ages (Fig. 3). On the basis of these simulations, this finding could be interpreted as a relic of this haplotype’s formerly higher frequency in the domestic horse gene pool. It is also possible that the presence of this haplotype could be the result of mating a wild stallion with a domestic mare, a frequently reported breeding practice when wild horses were still widely distributed. However, a significant contribution of the Przewalski horse to the gene pool of modern domestic horses has been almost ruled out by recent genomic studies (13, 31, 32).

Stallion lineages through time.
Temporal haplotype network of the four detected Y chromosome haplotypes. Age of the samples indicated by multiple layers separated by color; vertical lines connecting the haplotypes of consecutive layers/ages represent which haplotype was transferred into a later/younger period. Numbers constitute the respective number of individuals showing this particular haplotype for that period. Prz, Przewalski; Dom, domestic.


The origins of the Tumulus culture: Proto-Lusatian and potential Proto-Balto-Slavic origins

Interesting chapter The birth of a new world. Barrows, warriors, and metallurgists, by Przemyslaw Makarowicz. In: Urbańczyk P. (Ed.) THE PAST SOCIETIES. Polish lands from the first evidence of human presence to the Early Middle Ages, Warszawa 2017, vol. 3, U. Bugaj (Ed.) (2000 – 500 BC), Warszawa, pp. 127-186.

Some interesting excerpts from the introduction (emphasis mine):

In the 17th century BC the northern reaches of the Únětice culture oecumene experienced a structural crisis and a settlement hiatus; no such interruption in development occurred in the southern or western regions, or further west in the circle of the Blechkreiskulturen (Innerhofer 2000; Müller 2012, 257f.). In light of the most recent research, the decline of Únětice structures in the north was associated with a growing social and ecological crisis that resulted e.g., in the well-documented regression in the development of the fortified settlement in Bruszczewo in Greater Poland/Wielkopolska, which occurred ca. 1650/1600 BC (Kneisel 2012; Kneisel 2013, 101f.; Müller 2012). The settlement structure in that region only stabilized after several decades, with the emergence of Tumulus culture (Schurbein 2009; Cwaliński 2012, 16). In some parts of Central Europe (e.g., Bohemia, Bavaria, Hesse, Thuringia) a relatively gradual and smooth transition in the form of bronze items and pottery was observed between the periods of BA2 and BB1, diagnostic for the Early and Middle Bronze Age respectively (Rittershofer 1984; Innerhofer 2000). The term ‘pre-Tumulus’ horizon (BA3) was introduced to denote the stage that followed the disappearance of Early Bronze Age cultural structures and preceded the formation of Tumulus culture at the foothills of the Alps (Innerhofer 2000, 241f.)

The processes behind the development of this new cultural phenomenon may become clearer if one considers the origins of the new ideology of warriorhood apparent in the most progressive formations of the late stages of the early Bronze Age in the Carpathian Basin (Vandkilde 2007, 129; 2014; the beginnings of the Middle Bronze Age in Hungarian chronology; Hänsel 1968; Bóna 1992; Harding 2000, Fig. 1.3).This factor is particularly relevant in the case of the centralized communities of the Otomani-Füzesabony culture. Its members built impressive fortified settlements, knew advanced methods of bronze casting, and maintained a vast network of contacts that connected the north of Europe with the eastern reaches of the Mediterranean world (e.g., Bouzek 1985; Furmánek, Veliačik, Vladár 1991; Kristiansen, Larrson 2005; David 2007)
The composition of some spectacular hoards and the presence of military items in some of the graves associated with such communities may suggest that a new type of individualized elite (military aristocracy) emerged in this very culture (Kristiansen 1998, 376f.; 1999; Kristiansen, Larrson 2005). The attractive ideology would then have spread to the west and north-west and be adapted by the ‘post-Early-Bronze’, de-centralized and mobile communities (most likely based on kinship) of animal farmers inhabiting the upper Danube basin and the upper Rhine basin, as well as by the peoples of the Nordic regions (Vandkilde 2014, Fig. 5). This process went hand in hand with the dissemination of the custom of tumulus-building and the associated religious concepts, funerary practices, and territorial behaviour. The mechanism behind the adoption of this custom remains unknown. It may have been the result of imitating the barrows of Corded Ware culture, already present in the landscape of Central Europe – a similar process took place in the communities of the Trzciniec circle (Makarowicz 2009; 2010; 2011). It is also possible that the tumuli were based on the few existing Únětice barrows, though in this case the similarities are more apparent in the stone elements beneath the barrows’ mound. In both cases there was no direct contact between the earlier cultural formation and the emerging group.

Spatial range of the Silesian-Greater Polish Tumulus Culture (‘Vorlauzitzer Kultur’) after M. Gedl 1992, amended

The new lifestyle became a pan-European phenomenon, but involved a considerable degree of regional diversity that stemmed primarily from contact with local tradition (Bóna 1975; Gedl 1989; Jockenhövel, Kubach [eds.] 1994; David 2002; Jockenhövel 2013). But how did this model spread? It appears that analogies for this development may be found in the social processes and interactions that took place at the beginning of the 3rd millennium BC and led to the emergence of the Bell Beaker phenomenon (Burgess 1986; Nicolis 2001 [ed.]; Czebreszuk 2001; 2004 [ed.]; Heyd 2013; Van der Linden 2013, further literature therein). The most important elements of the ‘Tumulus set of cultural patterns’ included: warriorhood (conveyed through the presence of individual weaponry as grave goods), characteristic types of territorial behaviour (methods of familiarizing space that largely relied on constructing tumuli – monumental graves with a unique external form and internal architecture that was singular, spectacular, and immensely symbolic), and a specific array of valuables made of bronze or, less frequently, of amber or glass (such items indicated the status, gender, and sometimes also the social role of the deceased with whom they were buried). Local cultural milieux transmitted and adapted a set of ideological, social, and political principles that gave the emerging formation coherence and a new ‘quality’. The symbolism of the stone barrow construction (rings, kerbs, cores, rays, etc.), the high value of bronze and amber, and the emergence of the custom of cremation suggests that ‘Tumulus’ communities had a large part to play in the dissemination of the solar cult during the Middle Bronze Age (cf. Kristiansen, Larsson 2005; Czebreszuk 2011, 164-171).

The decline of the Central European early Bronze Age civilization and the birth of a new, pan-European formation was a complex process that lasted at least several decades. It may be surmised that the downfall of Únětice structures and the Otomani-Füzesabony-Gyulavarsánd complex in the Carpathian Basin was brought about primarily by internal structural crises, yet the reasons for the emergence of Tumulus culture lay in the attractive, almost ‘Dionysian’ ideology of warriorhood. Its solidification coincided with the decline of the ‘old’ Early Bronze Age elites that ruled over centralized structures that were territorial in character (fortified settlements with proto-urban characteristics) and were buried in magnificent, richly furnished graves covered with mounds (Fürstengräber). It was also concurrent with the emergence of active kinship-based and de-centralized groups led by the ‘new’ elite class of warriors (the beginnings of military aristocracy?). The significance of such groups continued to grow during the pivotal period – and the decline of the Únětice world and the final turbulent phase of the development of centres in the Carpathian Basin may well be thus described. The process was facilitated by the escalation of military conflicts that occurred in the Bronze Age (Harding 1999; 2007; Kristiansen 1999; Osgood, Monks, with Thoms 2000; Kristiansen, Larsson 2005; Hårde 2006; Vandkilde 2011; 2014). War became an inherent part of social life, as indicated by the increasing presence of weaponry in male graves, rock carvings and steles depicting warriors and their equipment, as well as arrowheads and spearheads embedded in the bones (soft tissues) of the deceased, and plentiful evidence of injuries caused by melee weapons (e.g., Osgood 2006). New types of weaponry (swords, spears) started to be used in the first half of the 2nd millennium BC, leading to more efficient methods of combat (e.g., Harding 2006; Thrane 2006). This must have resulted in the emergence of new types of units, combat styles, and military strategies. It may also be surmised that ‘Tumulus’ communities adopted a hitherto unknown, institutionalized model of warriorhood based on groups of men who dealt with warfare professionally (cf. Sarauw 2007, 66).

The origin of the Tumulus culture meant therefore a pan-European ideological socio-political and ideological change, that may be associated with the last true North-West Indo-European dialect continuum in Europe, as evidenced in Archaeology by long-distance cultural contacts, in Linguistics potentially by late layers of shared vocabulary, and in Ancient Genomics by the different origins of combatants studied from the the Tollense valley.

Settlement points of the Silesian-Greater Polish Tumulus Culture in the Prosna-Odra interfluve (‘close zone’) superimposed on a hypsometric map. By Jakub Niebieszczański

The origins of Tumulus culture in what is now Polish territory most likely resulted from a combination of different factors. In the hitherto prevailing narrative its arrival in the Odra-middle Vistula interfluve was associated with an invasion (aggressive migration) of the Tumulus peoples from enclaves in the middle Danube basin, the destruction of Únětice centres and the Nowa Cerekwia Group, and the subsequent conquest of the western territories inhabited by members of the Trzciniec culture (Gedl 1975, 81; 1989; 1992; Gediga 1978). There is, however, much evidence to suggest that the provenance of this cultural group is more complex.

Recent archaeological research and environmental analyses indicate that the decline of the Únětice culture in the northern reaches of its scope (e.g., the economic and settlement crisis of the Kościan agglomeration with its centre in Bruszczewo and the princely barrow graves in Łęki Małe) was mainly the result of excessive human activity and overly intense exploitation of natural resources (Kneisel 2012; 2013; Müller 2012). Palynological data from the period of1700-1500 BC collected in this part of the North European Plain indicates a decline of human activity. It coincides with the devolution of settlement centres (hamlets and necropolises) dated to the end of the Early Bronze Age and the beginning of the Middle Bronze Age (depopulation?). The decline of Early Bronze Age settlements occurred between 1700 and 1600 BC, whereas the beginning of the Silesian-Greater Polish Tumulus culture may be dated to 1600-1500 BC. A renewed increase in human activity, indicated e.g., by the ‘opening’ of the landscape, did not occur until ca. 1500-1400 BC, in the classic period of the development of ‘Tumulus’ cultural structures (Kneisel 2012, 221).

The whole paper is interesting from the point of view of the potential formation of a Proto-Balto-Slavic community in the Proto-Lusatian or Silesian-Greater Polish Tumulus culture, before its expansion to the east.

After O&M 2018, the only plausible alternative to this model of Balto-Slavic homeland is that Proto-Lusatian represents a Temematic community instead, and an Indo-Slavonic community formed in East Yamna, whereby Balto-Slavic would have possibly expanded with Srubna, and only much later over Temematic territory, absorbing its language as a North-West Indo-European substratum.

See also:

Iberia in the Copper and Early Bronze Age: Cultural, demographic, and environmental analysis


New paper (behind paywall), Cultural, Demographic and Environmental Dynamics of the Copper and Early Bronze Age in Iberia (3300–1500 BC): Towards an Interregional Multiproxy Comparison at the Time of the 4.2 ky BP Event, Blanco-González, Lillios, López-Sáez, et al. J World Prehist (2018).

Abstract (emphasis mine):

This paper presents the first comprehensive pan-Iberian overview of one of the major episodes of cultural change in later prehistoric Iberia, the Copper to Bronze Age transition (c. 2400–1900 BC), and assesses its relationship to the 4.2 ky BP climatic event. It synthesizes available cultural, demographic and palaeoenvironmental evidence by region between 3300 and 1500 BC. Important variation can be discerned through this comparison. The demographic signatures of some regions, such as the Meseta and the southwest, diminished in the Early Bronze Age, while other regions, such as the southeast, display clear growth in human activities; the Atlantic areas in northern Iberia barely experienced any changes. This paper opens the door to climatic fluctuations and inter-regional demic movements within the Peninsula as plausible contributing drivers of particular historical dynamics.

Division of Iberia into 5 study areas according to their culture history (3300–1550 BC)

Interesting excerpts summarizing key trends in the different regions:

  • Between 2200 and 1900 BC, the northernmost regions (i.e. Galicia, the Cantabrian strip and the northeastern sector to the north of the Ebro valley) underwent relatively minor changes in the realms of settlement and burial practices. (…) In addition, some Atlantic areas show a marked and statistically significant fall in human activity c. 2200 BC, with a subsequent recovery c. 1600 BC, and such observations are matched by paleoenvironmental proxies and a lack of known EBA sites
  • The overall impression from the Meseta is one of sharp disruption in cultural practices; these include both settlement and burial patterns, abrupt shifts in local climate conditions, and striking differences in human pressure on vegetation. However, there was also clear intra-regional variability, with remarkable internal particularities and differential tempos between the western and eastern sectors. In terms of material culture, discontinuity with the Copper Age is the main trend in the western Duero and the Tagus valleys, yet EBA communities to the north of the Central System adopted far more distinctive and therefore traceable site types (hilltops) and material repertoire. This shift was even stronger in the case of the Motillas culture at La Mancha, whose pathway seems closely tied to the Argaric area.
  • Intra-regional variability is also apparent within the northeast (…) In the second millennium BC, material culture changed, long-distance exchange intensified and anthropogenic pressure increased, despite continuity in diverse realms of social practice.
  • The pattern in the southwest was one of marked discontinuity with two key features: a) it follows the general decreasing trends manifest across Atlantic Iberia; and b) its temporality was clearly different from the rest of the Peninsula and apparently unrelated to the 4.2 ky BP event. Thus, a highly conspicuous and rich variety of cultural expressions in the Chalcolithic, with an early and marked peak in human activity during the Beaker phase c. 2500 BC, gave way to a sudden cultural collapse prior to the onset of the EBA
  • The southeast exhibits one of the most remarkable cultural shifts in Western Europe. (…) The radical transformation in Chalcolithic materiality and ways of life could be regarded as a kind of societal collapse. The Argaric, a highly hierarchical and integrated regional polity, is the clearest example of a new scenario that emerged after the 4.2 ky BP event, yet the contributing role of environmental change and immigration from other regions remains to be fully explored.

Since R1b-DF27 lineages are widely distributed in modern western Europe, it is only logical that the recent find of its first ancient sample in Iberia has sparked the interest for Chalcolithic and Early Bronze Age Iberian cultures.

There is not much literature in English about Iberian prehistory, especially on the evolution of Bell Beaker culture. Also, most papers in Spanish on this cultural phenomenon – in my humble opinion, as a non-archaeologist – seem to be written from a merely descriptive archaeological point of view, many of them still sharing the radiocarbon-based assessment of origin and distribution of materials, instead of more complex anthropological models of cultural change and potential migrations.

Nevertheless, changes and influences in Iberian cultures are obvious regardless of the view taken on population movements (which are becoming quite clear now), and this paper seems to me a thorough review, very interesting for international researchers when interpreting ancient DNA from Iberia.

Featured image, modified from the paper: “The Bell Beaker culture in the northern Meseta: an artistic recreation of funerary ritual at Fuente Olmedo (Valladolid). Source: Garrido-Pena et al. 2011, Fig. 7.7”.

EDIT (21 MAR 2018): Interesting C14 date repository project Cronología de la Prehistoria de la Península Ibérica (read a brief description, in Spanish).