Yamnaya replaced Europeans, but admixed heavily as they spread to Asia


Recent papers The formation of human populations in South and Central Asia, by Narasimhan, Patterson et al. Science (2019) and An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers, by Shinde et al. Cell (2019).

NOTE. For direct access to Narasimhan, Patterson et al. (2019), visit this link courtesy of the first author and the Reich Lab.

I am currently not on holidays anymore, and the information in the paper is huge, with many complex issues raised by the new samples and analyses rather than solved, so I will stick to the Indo-European question, especially to some details that have changed since the publication of the preprint. For a summary of its previous findings, see the book series A Song of Sheep and Horses, in particular the sections from A Clash of Chiefs where I discuss languages and regions related to Central and South Asia.

I have updated the maps of the Preshistory Atlas, and included the most recently reported mtDNA and Y-DNA subclades. I will try to update the Eurasian PCA and related graphics, too.

NOTE. Many subclades from this paper have been reported by Kolgeh (download), Pribislav and Principe at Anthrogenica on this thread. I have checked some out for comparison, but even if it contradicted their analyses mine would be the wrong ones. I will upload my spreadsheets and link to them from this page whenever I find the time.

Ancestry clines (1) before and (2) after the advent of farming. Colour modified from the original to emphasize the CHG cline: notice the apparent relevance of forest-steppe groups in the formation of this CHG mating network from which Pre-Yamnaya peoples emerged.


I think the Narasimhan, Patterson et al. (2019) paper is well-balanced, and unexpectedly centered – as it should – on the spread of Yamnaya-related ancestry (now Western_Steppe_EMBA) as the marker of Proto-Indo-European migrations, which stretched ca. 3000 BC “from Hungary in the west to the Altai mountains in the east”, spreading later Indo-European dialects after admixing with local groups, from the Atlantic to South Asia.

I. Afanasievo

I.1. East or West PIE?

I expected Afanasievo to show (1) R1b-L23(xZ2103, xL51) and (2) R1b-L51 lineages, apart from (3) the known R1b-Z2103 ones, pointing thus to an ancestral PIE community before the typical Yamnaya bottlenecks, and with R1b-L51 supporting a connection with North-West Indo-European. The presence of some samples of hg. Q pointed in this direction, too.

However, Afanasievo samples show overwhelmingly R1b-Z2103 subclades (all except for those with low coverage), all apparently under R1b-Z2108 (formed ca. 3500 BC, TMRCA ca. 3500 BC), like most samples from East Yamnaya.

This necessarily shifts the split and spread of R1b-L23 lineages to Khvalynsk/early Repin-related expansions, in line with what TMRCA suggested, and what advances by Anthony (2019) and Khokhlov (2018) on future samples from the Reich Lab suggest.

Given the almost indistinguishable ancestry between Afanasievo and Early Yamnaya, there seems to be as of yet little potential information to support in population genomics that Pre-Tocharians were more closely related to North-West Indo-Europeans than to Graeco-Aryans, as it is proposed in linguistics based on the few shared traits between them, and the lack of innovations proper of the Graeco-Aryan community.

NOTE. A new issue of Wekʷos contains an abstract from a relevant paper by Blažek on vocabulary for ‘word’, including the common NWIE *wrdʰo-/wordʰo-, but also a new (for me, at least) Northern Indo-European one: *rēki-/*rēkoi̯-, shared by Slavic and Tocharian.

The fact that bottlenecks happened around the time of the late Repin expansion suggests that we might be able to see different clans based on the predominant lineages developing around the Don-Volga area in the 4th millennium BC. The finding of Pre-R1b-L51 in Lopatino (see below), and of a Catacomb sample of hg. R1b-Z2103(Z2105-) in the North Caucasus steppe near Novoaleksandrovskij also support a star-like phylogeny of R1b-L23 stemming from the Don-Volga area.

NOTE. Interestingly, a dismissal of a common trunk between Tocharian and North-West Indo-European would mean that shared similarities between such disparate groups could be traced back to a Common Late PIE trunk, and not to a shared (western) Repin community. For an example of such a ‘pure’ East-West dialectal division, see the diagram of Adams & Mallory (2007) at the end of the post. It would thus mean a fatal blow to Kortlandt’s Indo-Slavonic group among other hypothetical groupings (remade versions of the ancient Centum-Satem division), as well as to certain assumptions about laryngeal survival or tritectalism that usually accompany them. Still, I don’t think this is the case, so the question will remain a linguistic one, and maybe some similarities will be found with enough number of samples that differentiate Northern Indo-Europeans from the East Yamna/Catacomb-Poltavka-Balkan_EBA group.

Y-chromosome haplogroups of Afanasievo samples and neighbouring groups. See full maps.

I.2. Expansion or resurgence of hg. Q1b?

Haplogroup Q1b-Y6802(xY6798) seems to be the main lineage that expanded with Afanasievo, or resurged in their territory. It’s difficult to tell, because the three available samples are family, and belong to a later period.

NOTE. I have finally put some order to the chaos of Q1a vs. Q1b subclades in my spreadsheet and in the maps. The change of ISOGG 2016 to 2017 has caused that many samples reported as of Q1 subclades from papers prepared during the 2017-2018 period, and which did not provide specific SNP calls, were impossible to define with certainty. By checking some of them I could determine the specific standard used.

In favour of the presence of this haplogroup in the Pre-Yamnaya community are:

  • The statement by Anthony (2019) that Q1a [hence maybe Q1b in the new ISOGG nomenclature] represented a significant minority among an R1b-rich community.
  • The sample found in a Sintastha WSHG outlier (see below), of hg. Q1b-Y6798, and the sample from Lola, of hg. Q1b-L717, are thus from other lineage(s) separated thousands of years from the Afanasievo subclade, but might be related to the Khvalynsk expansion, like R1b-V1636 and R1b-M269 are.

These are the data that suggest multiple resurgence events in Afanasievo, rather than expanding Q1b lineages with late Repin:

  • Overwhelming presence of R1b in early Yamnaya and Afanasievo samples; one Q1(xQ1b) sample reported in Khvalynsk.
  • The three Q1b samples appear only later, although wide CI for radiocarbon dates, different sites, and indistinguishable ancestry may preclude a proper interpretation of the only available family.
    • Nevertheless, ancestry seems unimportant in the case of Afanasievo, since the same ancestry is found up to the Iron Age in a community of varied haplogroups.
  • Another sample of hg. Q1b-Y6802(xY6798) is found in Aigyrzhal_BA (ca. 2120 BC), with Central_Steppe_EMBA (WSHG-related) ancestry; however, this clade formed and expanded ca. 14000 BC.
  • The whole Altai – Baikal area seems to be a Q1b-L54 hotspot, although admittedly many subclades separated very early from each other, so they might be found throughout North Eurasia during the Neolithic.
  • One Afanasievo sample is reported as of hg. C in Shin (2017), and the same haplogroup is reported by Hollard (2014) for the only available sample of early Chemurchek to date, from Kulala ula, North Altai (ca. 2400 BC).
Y-chromosome haplogroups of late Afanasievo – early Chemurchek samples and neighbouring groups. See full maps.

I.3. Agricultural substrate

Evidence of continuous contacts of Central_Steppe_MLBA populations with BMAC from ca. 2100 BC on – visible in the appearance of Steppe ancestry among BMAC samples and BMAC ancestry among Steppe pastoralists – supports the close interaction between Indo-Iranian pastoralists and BMAC agriculturalists as the origin of the Asian agricultural substrate found in Proto-Indo-Iranian, hence likely related to the language of the Oxus Civilization.

Similar to the European agricultural substrate adopted by West Yamnaya settlers (both NWIE and Palaeo-Balkan speakers), Tocharian shows a few substrate terms in common with Indo-Iranian, which can be explained by contacts in different dialectal stages through phonetic reconstruction alone.

The recent Hermes et al. (2019) supports the early integration of pastoralism and millet cultivation in Central Asia (ca. 2700 BC or earlier), with the spread of agriculture to the north – through the Inner Asian Mountain Corridor – being thus unrelated to the Indo-Iranian expansions, which might support independent loans.

However, compared to the huge number of parallel shared loans between NWIE and Palaeo-Balkan languages in the European substratum, Indo-Iranians seem to have been the first borrowers of vocabulary from Asian agriculturalists, while Proto-Tocharian shows just one certain related word, with phonetic similarities that warrant an adoption from late Indo-Iranian dialects.

Y-chromosome haplogroups of Sintashta, Central Asia, and neighbouring groups in the Early Bronze Age. See full maps.

The finding of hg. (pre-)R1b-PH155 in a BMAC sample from Dzharkutan (to the west of Xinjiang) together with hg. R1b in a sample from Central Mongolia previously reported by Shin (2017) support the widespread presence of this lineage to the east and west of Xinjiang, which means it might have become incorporated to Indo-Iranian migrants into the Xiaohe horizon, to the Afanasievo-Chemurchek-derived groups, or the later from the former. In other words, the Island Biogeography Theory with its explanation of founder effects might be, after all, applicable to the whole Xinjiang area, not only during the Chemurchek – Tianshan-Beilu – Xiaohe interaction.

Of course, there is no need for too complicated models of haplogroup resurgence events in Central and South Asia, seeing how the total amount of hg. R1a-L657 (today prevalent among Indo-Aryan speakers from South Asia) among ancient Western/Central_Steppe_MLBA-related samples amounts to a total of 0, and that many different lineages survived in the region. Similar cases of haplogroup resurgence and Y-DNA bottleneck events are also found in the Central and Eastern Mediterranean, and in North-Eastern Europe. From the paper:

[It] could reflect stronger ecological or cultural barriers to the spread of people in South Asia than in Europe, allowing the previously established groups more time to adapt and mix with incoming groups. A second difference is the smaller proportion of Steppe pastoralist– related ancestry in South Asia compared with Europe, its later arrival by ~500 to 1000 years, and a lower (albeit still significant) male sex bias in the admixture (…).

Y-chromosome haplogroups of samples from the Srubna-Andronovo and Andronovo-related horizon, Xiaohe, late BMAC, and neighbouring groups. See full maps.

II. R1b-Beakers replaced R1a-CWC peoples

II.1. R1a-M417-rich Corded Ware

Newly reported Corded Ware samples from Radovesice show hg. R1a-M417, at least some of them xZ645, ‘archaic’ lineages shared with the early Bergrheinfeld sample (ca. 2650 BC) and with the coeval Esperstedt family, hence supporting that it eventually became the typical Western Corded Ware lineage(s), probably dominating over the so-called A-horizon and the Single Grave culture in particular. On the other hand, R1a-Z645 was typical of bottlenecks among expanding Eastern Corded Ware groups.

Interestingly, it is supported once again that known bottlenecks under hg. R1a-M417 happened during the Corded Ware expansion, evidenced also by the remarkable high variability of male lineages among early Corded Ware samples. Similarly, these Corded Ware samples from Bohemia form part of the typical ‘Central European’ cluster in the PCA, which excludes once again not only the ‘official’ Espersted outlier I1540, but also the known outlier with Yamnaya ancestry.

NOTE. The fact that Esperstedt is closely related geographically and in terms of ancestry to later Únětice samples further complicates the assumption that Únětice is a mixture of Bell Beakers and Corded Ware, being rather an admixture of incoming Bell Beakers with post-Yamnaya vanguard settlers who admixed with Corded Ware (see more on the expansion of Yamnaya ancestry). In other words, Únětice is rather an admixture of Yamnaya+EEF with Yamnaya+(CWC+EEF).

Y-chromosome haplogroups of samples from Catacomb, Poltavka, Balkan EBA, and Bell Beaker, as well as neighbouring groups. See full maps.

On Ukraine_Eneolithic I6561

If the bottlenecks are as straightforward as they appear, with a star-like phylogeny of R1a-M417 starting with the Pre-Corded Ware expansion, then what is happening with the Alexandria sample, so precisely radiocarbon dated to ca. 4045-3974 BC? The reported hg. R1a-M417 was fully compatible, while R1a-Z645 could be compatible with its date, but the few positive SNPs I got in my analysis point indeed to a potential subclade of R1a-Z94, and I trust more experienced hobbyists in this ‘art’ of ascertaining the SNPs of ancient samples, and they report hg. R1a-Z93 (Z95+, Y26+, Y2-).

Seeing how Y-DNA bottlenecks worked in Yamnaya-Afanasievo and in Corded Ware and related groups, and if this sample really is so deep within R1a-Z93 in a region that should be more strongly affected by the known Neolithic Y-chromosome bottlenecks and forest-steppe ecotone, someone from the lab responsible for this sample should check its date once again, before more people keep chasing their tails with an individual that (based on its derived SNPs’ TMRCA) might actually be dated to the Bronze Age, where it could make much more sense in terms of ancestry and position in the PCA.

EDIT (14 SEP 2019): … and with the fact that he is the first individual to show the genetic adaptation for lactase persistence (I3910-T), which is only found later among Bell Beakers, and much later in Sintashta and related Steppe_MLBA peoples (see comments below).

This is also evidenced by the other Ukraine_Eneolithic (likely a late Yamnaya) sample of hg. R1b-Z2103 from Dereivka (ca. 2800 BC) and who – despite being in a similar territory 1,000 years later – shows a wholly diluted Yamnaya ancestry under typically European HG ancestry, even more so than other late Sredni Stog samples from Dereivka of ca. 3600-3400 BC, suggesting a decrease in Steppe ancestry rather than an increase – which is supposedly what should be expected based on the ancestry from Alexandria…

Like the reported Chalcolithic individual of Hajji Firuz who showed an apparently incompatible subclade and Yamnaya ancestry at least some 1,000 years before it should, and turned out to be from the Iron Age (see below), this may be another case of wrong radiocarbon dating.

NOTE. It would be interesting, if this turns out to be another Hajji Firuz-like error, to check how well different ancestry models worked in whose hands exactly, and if anyone actually pointed out that this sample was derived, and not ancestral, to many different samples that were used in combination with it. It would also be a great control to check if those still supporting a Sredni Stog origin for PIE would shift their preference even more to the north or west, depending on where the first “true” R1a-M417 samples popped up. Such a finding now could be thus a great tool to discover whether haplogroup-based bias plays a role in ancestry magic as related to the Indo-European question, i.e. if it really is about “pure statistics”, or there is something else to it…

II.1. R1b-L51-rich Bell Beakers

The overwhelming majority of R1b-L51 lineages in Radovesice during the Bell Beaker period, just after the sampled Corded Ware individuals from the same site, further strengthen the hypothesis of an almost full replacement of R1a-M417 lineages from Central Europe up to southern Scandinavia after the arrival of Bell Beakers.

Yet another R1b-L151* sample has popped up in Central Europe, in the individual classified as Bilina_BA (ca. 2200-800 BC), which clusters with Bell Beakers from Bohemia, with the outlier from Turlojiškė, and with Early Slavs, suggesting once again that a group of central-east European Beakers represented the Pre-Proto-Balto-Slavic community before their spread and admixture events to the east.

The available ancient distribution of R1b-L51*, R1b-L52* or R1b-L151* is getting thus closer to the most likely origin of R1b-L51 in the expansion of East Bell Beakers, who trace their paternal ancestors to Yamnaya settlers from the Carpathian Basin:

NOTE. Some of these are from other sources, and some are samples I have checked in a hurry, so I may have missed some derived SNPs. If you send me a corrected SNP call to dismiss one of these, or more ‘archaic’ samples, I’ll correct the map accordingly. See also maps of modern distributionof R1b-M269 subclades.

Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

III. Proto-Indo-Iranian

Before the emergence of Proto-Indo-Iranian, it seems that Pre-Proto-Indo-Iranian-speaking Poltavka groups were subjected to pressure from Central_Steppe_EMBA-related peoples coming from the (south-?)east, such as those found sampled from Mereke_BA. Their ‘kurgan’ culture was dated correctly to approximately the same date as Poltavka materials, but their ancestry and hg. N2(pre-N2a) – also found in a previous sample from Botai – point to their intrusive nature, and thus to difficulties in the Pre-Proto-Indo-Iranian community to keep control over the previous East Yamnaya territory in the Don-Volga-Ural steppes.

We know that the region does not show genetic continuity with a previous period (or was not under this ‘eastern’ pressure) because of an Eastern Yamnaya sample from the same site (ca. 3100 BC) showing typical Yamnaya ancestry. Before Yamnaya, it is likely that Pre-Yamnaya ancestry formed through admixture of EHG-like Khvalynsk with a North Caspian steppe population similar to the Steppe_Eneolithic samples from the North Caucasus Piedmont (see Anthony 2019), so we can also rule out some intermittent presence of a Botai/Kelteminar-like population in the region during the Khvalynsk period.

It is very likely, then, that this competition for the same territory – coupled with the known harsher climate of the late 3rd millennium BC – led Poltavka herders to their known joint venture with Abashevo chiefs in the formation of the Sintashta-Potapovka-Filatovka community of fortified settlements. Supporting these intense contacts of Poltavka herders with Central Asian populations, late ‘outliers’ from the Volga-Ural region show admixture with typical Central_Steppe_MLBA populations: one in Potapovka (ca. 2220 BC), of hg. R1b-Z2103; and four in the Sintashta_MLBA_o1 cluster (ca. 2050-1650 BC), with two samples of hg. R1b-L23 (one R1b-Z2109), one Q1b-L56(xL53), one Q1b-Y6798.

Outlier analysis reveals ancient contacts between sites. We plot the average of principal component 1 (x axis) and principal component 2 (y axis) for the West Eurasian and All Eurasian PCA plots (…). In the Middle to Late Bronze Age Steppe, we observe, in addition to the Western_Steppe_MLBA and Central_Steppe_MLBA clusters (indistinguishable in this projection), outliers admixed with other ancestries. The BMAC-related admixture in Kazakhstan documents northward gene flow onto the Steppe and confirms the Inner Asian Mountain Corridor as a conduit for movement of people.

Similar to how the Sintashta_MLBA_o2 cluster shows an admixture with central steppe populations and hg. R1a-Z645, the WSHG ancestry in those outliers from the o1 cluster of typically (or potentially) Yamnaya lineages show that Poltavka-like herders survived well after centuries of Abashevo-Poltavka coexistence and admixture events, supporting the formation of a Proto-Indo-Iranian community from the local language as pronounced by the incomers, who dominated as elites over the fortified settlements.

The Proto-Indo-Iranian community likely formed thus in situ in the Don-Volga-Ural region, from the admixture of locals of Yamnaya ancestry with incomers of Corded Ware ancestry – represented by the ca. 67% Yamnaya-like ancestry and ca. 33% ancestry from the European cline. Their community formed thus ca. 1,000 years later than the expansion of Late PIE ca. 3500 BC, and expanded (some 500 years after that) a full-fledged Proto-Indo-Iranian language with the Srubna-Andronovo horizon, further admixing with ca. 9% of Central_Steppe_EMBA (WSHG-related) ancestry in their migration through Central Asia, as reported in the paper.

IV. Armenian

The sample from Hajji Firuz, of hg. R1b-Z2103 (xPF331), has been – as expected – re-dated to the Iron Age (ca. 1193-1019 BC), hence it may offer – together with the samples from the Levant and their Aegean-like ancestry rapidly diluted among local populations – yet another proof of how the Late Bronze Age upheaval in Europe was the cause of the Armenian migration to the Armenoid homeland, where they thrived under the strong influence from Hurro-Urartian.

Y-chromosome haplogroups of the Middle East and neighbouring groups during the Late Bronze Age / Iron Age. See full maps.

Indus Valley Civilization and Dravidian

A surprise came from the analysis reported by Shinde et al. (2019) of an Iran_N-related IVC ancestry which may have split earlier than 10000 BC from a source common to Iran hunter-gatherers of the Belt Cave.

For the controversial Elamo-Dravidian hypothesis of the Muscovite school, this difference in ancestry between both groups (IVC and Iran Neolithic) seems to be a death blow, if population genomics was even needed for that. Nevertheless, I guess that a full rejection of a recent connection will come down to more recent and subtle population movements in the area.

EDIT (12 SEP): Apparently, Iosif Lazaridis is not so sure about this deep splitting of ‘lineages’ as shown in the paper, so we may be talking about different contributions of AME+ANE/ENA, which means the Elamo-Dravidian game is afoot; at least in genomics:

I shared the idea that the Indus Valley Civilization was linked to the Proto-Dravidian community, so I’m inclined to support this statement by Narasimhan, Patterson, et al. (2019), even if based only on modern samples and a few ancient ones:

The strong correlation between ASI ancestry and present-day Dravidian languages suggests that the ASI, which we have shown formed as groups with ancestry typical of the Indus Periphery Cline moved south and east after the decline of the IVC to mix with groups with more AASI ancestry, most likely spoke an early Dravidian language.

Natural neighbour interpolation of qpAdm results – Maximum A Posteriori Estimate from the Hierarchical Model (estimates used in the Narasimhan, Patterson et al. 2019 figures) for Central_Steppe_MLBA-related (left), Indus_Periphery_West-related (center) and Andamanese_Hunter-Gatherer-related ancestry (right) among sampled modern Indian populations. In blue, peoples of IE language; in red, Dravidian; in pink, Tibeto-Burman; in black, unclassified. See full image.

I am wary of this sort of simplistic correlation with modern speakers, because we have seen what happened with the wrong assumptions about modern Balto-Slavic and Finno-Ugric speakers and their genetic profile (see e.g. here or here). In fact, I just can’t differentiate as well as those with deep knowledge in South Asian history the social stratification of the different tribal groups – with their endogamous rules under the varna and jati systems – in the ancestry maps of modern India. The pattern of ancestry and language distribution combined with the findings of ancient populations seem in principle straightforward, though.


The message to take home from Shinde et al. (2019) is that genomic data is fully at odds with the Anatolian homeland hypothesis – including the latest model by Heggarty (2014)* – whose relevance is still overvalued today, probably due in part to the shift of OIT proponents to more reasonable Out-of-Iran models, apparently more fashionable as a vector of Indo-Aryan languages than Eurasian steppe pastoralists?
*The authors listed this model erroneously as Heggarty (2019).

The paper seems to play with the occasional reference to Corded Ware as a vector of expansion of Indo-European languages, even after accepting the role of Yamnaya as the most evident population expanding Late PIE to western Europe – and the different ancestry that spread with Indo-Iranian to South Asia 1,000 years later. However, the most cringe-worthy aspect is the sole citation of the debunked, pseudoscientific glottochronological method used by Ringe, Warnow, and Taylor (2002) to support the so-called “steppe homeland”, a paper and dialectal scheme which keeps being referenced in papers of the Reich Lab, probably as a consequence of its use in Anthony (2007).

On the other hand, these are the equivalent simplistic comments in Narasimhan, Patterson et al. (2019):

The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the unique features shared between Indo-Iranian and Balto-Slavic languages. (…), which despite their vast geographic separation share the “satem” innovation and “ruki” sound laws.

Indo-European dialectal relationships, from Mallory and Adams (2006).

The only academic closely related to linguistics from the list of authors, as far as I know, is James P. Mallory, who has supported a North-West Indo-European dialect (including Balto-Slavic) for a long time – recently associating its expansion with Bell Beakers – opposed thus to a Graeco-Aryan group which shared certain innovations, “Satemization” not being one of them. Not that anyone needs to be a linguist to dismiss any similarities between Balto-Slavic and Indo-Iranian beyond this phonetic trend, mind you.

Even Anthony (2019) supports now R1b-rich Pre-Yamnaya and Yamnaya communities from the Don-Volga region expanding Middle and Late Proto-Indo-European dialects.

So how does the underlying Corded Ware ancestry of eastern Europe (where Pre-Balto-Slavs eventually spread to from Bell Beaker-derived groups) and of the highly admixed (“cosmopolitan”, according to the authors) Sintashta-Potapovka-Filatovka in the east relate to the similar-but-different phonetic trends of two unrelated IE dialects?

If only there was a language substrate that could (as Shinde et al. put it) “elegantly” explain this similar phonetic evolution, solving at the same time the question of the expansion of Uralic languages and their strong linguistic contacts with steppe peoples. Say, Eneolithic populations of mainly hunter-fisher-gatherers from the North Pontic forest-steppes with a stronger connection to metalworking


Predictions about the genetic change from Single Grave to the Late Neolithic in Denmark


New open access paper Mapping human mobility during the third and second millennia BC in present-day Denmark by Frei et al. PLOS One (2019), from the Copenhagen group (including Allentoft, Sikora, and Kristiansen) of samples whose genomic profile will probably be published soon.

Interesting excerpts (emphasis mine):

We present results of the largest multidisciplinary human mobility investigation to date of skeletal remains from present-day Denmark encompassing the 3rd and 2nd millennia BC. Through a multi-analytical approach based on 88 individuals from 37 different archaeological localities in which we combine strontium isotope and radiocarbon analyses together with anthropological investigations, we explore whether there are significant changes in human mobility patterns during this period. Overall, our data suggest that mobility of people seems to have been continuous throughout the 3rd and 2nd millennia BC. However, our data also indicate a clear shift in mobility patterns from around 1600 BC onwards, with a larger variation in the geographical origin of the migrants, and potentially including more distant regions. This shift occurred during a transition period at the beginning of the Nordic Bronze Age at a time when society flourished, expanded and experienced an unprecedented economic growth, suggesting that these aspects were closely related.

Map of present-day Denmark illustrating locations of the burial sites.
The dashed black line marks the maximum advance stage of the last glaciation (Weichselian). Drafted with public domain data from Natural Earth (https://www.naturalearthdata.com).

Strontium isotope analyses

The results of our strontium isotope analyses are presented in Table 2 and listed in chronological order according to the radiocarbon dates (in sites with multiple individuals we start with the oldest radiocarbon individual). The strontium isotope data set reveals a wide range of values from 87Sr/86Sr = 0.70871 (RISE 23, from the site of Debel) to 87Sr/86Sr = 0.71788 (RISE 20, from the site of Karlstrup). Despite the difficulties of establishing the baseline range some of the herein investigated individuals may be classified as non-locals. A few individuals have tooth enamel signatures that lie just above the upper baseline limit of 87Sr/86Sr = 0.711 and therefore, the classification of these humans as non-locals should be considered with caution. Nevertheless, the significant proportion of individuals with relatively radiogenic values suggest that about a quarter of the individuals studied herein seem to have originated from other places than from those they were buried, and hence implying a continuous degree of mobility during the 3rd and 2nd millennia BC.

Diagram plotting results of strontium isotope ratios versus calibrated radiocarbon dates of the individuals investigated. The grey band shows the “local” baseline.

Middle Neolithic

From the Single Grave Culture (SGC) which is closely related to the Corded Ware Complex in central and eastern Europe and dates from c. 2800 BC to 2200 BC, we analyzed seven of the at least ten individuals who were buried at the site of Gjerrild in eastern Jutland (Fig 1). Gjerrild is a key SGC site, as to date it has provided the most substantial skeletal material pertaining to this culture from present-day Denmark. However, it is not a typical SGC grave, but a megalithic chamber of the so-called “Bøstrup type”. The SGC pottery was decorated with cord or stamp impressions and the stone battle axes were a common feature of male equipment. Such shared traits in the Corded Ware Complex probably reflected shared occupational, social and religious characteristics. Apart from one individual who yielded a Bronze Age date, five individuals date within the period that spans from c. 2600 BC to 2200 BC, hence representing the middle and late SGC phases (Table 1 and S1 File). Of the seven individuals, three males, one female, two infants and one adult (only represented by a disarticulated mandible, and dated to the Bronze Age), all but one yielded strontium isotope signatures that fall within the local baseline range. Only the female (RISE 1283) has a more radiogenic strontium isotope signature of 87Sr/86Sr = 0.7127, which is similar to that of the male from Kyndeløse and might indicate non-local provenance. One of the individuals at Gjerrild, a mature-old adult male, who yielded a local signature (RISE 432) was accompanied by a D-type arrowhead and an amber bead which lay on his right side. He showed signs of inflammation on his lower legs, in particular on the left one. He had a healed trepanation (Fig 2). Another individual (RISE 73a, 1282), an adult male, was found with a type D arrowhead in the sternum (Fig 3).

Strontium isotope, 14C results and sex and age determinations from individuals from the 3rd and 2nd millennia BC from Denmark presented in chronological order. Modified from the paper, see full image.

Late Neolithic I

We sampled individuals from a total of twelve different sites that date to the Late Neolithic period (2300/2250-1700 BC).

One of these sites is Hellested on Zealand (Fig 1 and S1 File), with four flat graves containing five individuals, four young males and one mature adult female. We conducted strontium isotope analyses of enamel from all five individuals, and our results point to two individuals being characterized by local strontium isotope values. One of these individuals, the female, was buried with no grave goods (RISE 53, grave B) while the other, a young male, was buried with a fragmented bone pin (RISE 56, grave F). The other three male individuals (RISE 54, 55, 57) yielded similar strontium isotopic values that lie slightly above the local baseline range. All these individuals had been buried with early flint daggers (type I and II), and one of them (RISE 57, grave A) additionally had a ring-headed pin (Ringkopfnadel) [56]. On the basis of the presence of this ring-headed pin, Lomborg [56] suggested that these individuals had connections with the Únětice culture. Furthermore, three of them have radiocarbon dates that overlap (RISE 55, 56 and 57; Table 1).

Another Late Neolithic site is Juelsberg on the island of Funen (central Denmark, Fig 1 and S1 File) which is a gallery grave that contained at least 19 individuals. We conducted strontium isotope analyses of tooth enamel on 8 out of the 19 individuals and two of them, a male and female, yielded ratios that suggest a non-local origin (RISE 30 and 32). The grave goods comprise a (Lomborg) type I flint dagger but also some non-local type of artefacts. These consist of an early type of bone pin (type 7) mainly found in south-eastern Scandinavia, and a barbed and tanged flint arrowhead of the west-European Bell Beaker type suggesting western connections. The middle adult female (RISE 32) yielded an 87Sr/86Sr = 0.7121 and the mature to old adult male (RISE 30) yielded a 87Sr/86Sr = 0.7112. The different Sr isotope signatures of these individuals imply that they might have originated from different areas, albeit their radiocarbon dates are very similar.

The gallery grave of Marbjerg, Zealand (Fig 1), yielded 17 individuals (S1 File), and we conducted strontium isotope analyses of tooth enamel on 11 of them. The majority of the individuals were males, but females and children, too, were present. Anthropological investigations of the individuals from this site, males as well as females, indicate a relatively high life expectancy with respect to that typical for this period (S1 Table). Our radiocarbon dates revealed that this grave was in use for several hundred years from the Early Late Neolithic (2210–2030 cal BC, RISE 39) to the Late Neolithic /Early Nordic Bronze Age Period (1770–1620 cal BC, RISE 41). Despite the long-term use of this grave, 10 of the 11 individuals studied herein yielded a very narrow and overlapping range of strontium isotope values between 87Sr/86Sr = 0.7096–0.7101. Their values suggest not only that these individuals were local but that their food sources were derived from the same area over the course of several centuries. Only the tooth enamel sample of one individual, a middle to mature adult male (RISE 40), yielded a higher value of 87Sr/86Sr = 0.7117, which seems to suggest a non-local origin.

Predictions about these samples

Strontium isotope analyses only show potential movements during an individual’s lifetime, which is normally useless to assess relevant migrations if the sampling is not big enough (see more on investigating population movements). Still, if a sampling like this one shows many potentially non-local individuals from different parts of Denmark deviating from the baseline at a certain period, you can infer that something is happening within Denmark and in nearby regions.

Strontium isotope results of the 88 investigated individuals including Late Bronze Age individuals investigated previously. The grey band shows the “local” baseline.

Based on what we know now, I bet these are the most likely events in Denmark that marked the Nordic Late Neolithic with its Bell Beaker-related Dagger Period ca. 2400/2300 BC on:

  1. Sudden appearance of R1b-L23 lineages (probably R1b-U106 among them), originally from the Northern European Plain, ultimately from the Danube River Basin. R1a-M417 subclades, possibly prevalent in the previous period, disappear or appear rarely, to resurge later during the Bronze Age probably mostly as hg R1a-Z284, originally from the Battle Axe culture in Sweden, together with I1 – these resurgence events might be shifted to a later phase, though, and there might be some isolated R1a cases in the Danish LN, too.
  2. Shift of Middle Neolithic to Late Neolithic in the PCA away from the Corded Ware cluster and closer to the Bell Beaker cluster – whatever that means exactly for Danish SGC relative to Northern European Beakers, visible especially when enough samples are available.
  3. Evident sign of new incoming ancestry ultimately from Yamnaya-related populations, compared to earlier peoples of Corded Ware ancestry. Yes, even this far north, despite heavy admixture of Yamnaya-like Bell Beakers through exogamy with Corded Ware-like populations all the way to the north from the Danube Basin.

All this will support, once again, the expansion of Bell Beakers from Yamnaya settlers of Central-East Europe. That is probably what I will be reporting about the data as related to the Pre-Proto-Germanic homeland of the Northern European Plain, unless there is some big surprise, for example that R1b-U106 expanded later from Northern Germany, more clearly associated with later Barbed Wire Beakers or even Únětice movements, although I find this very unlikely at this point.

The above predictions are more or less evident to everyone, despite the current mistrust in the Yamnaya – Bell Beaker expansion route of North-West Indo-European, due to the prevalent nativist and/or reactionary trends in hobby population genomics and among academics. My main prediction is therefore about human behaviour:

(1) Seeing how the Copenhagen group started to describe recently South Scandinavian genetic and linguistic prehistory, their conclusions are predictable. From the introduction of this paper:

The 3rd millennium BC stands out as a period of migrations in western Eurasia, as pastoral steppe populations settled in temperate Europe after 2800 BC e.g. [1, 2]. This was also a period of cultural and genetic admixture e.g. [3]. From 1600 BC onwards, southern Scandinavia became more closely linked to the existing European metal trade networks (…)

See what they did there? No mention of the radical change that the Dagger Period brought to Scandinavia, in cultural or genetic terms (see e.g. here or here). Strange how the only thing that Kristiansen has changed since the 1980s – and only after the 2015 genetic papers – is his previous emphasis on the Dagger Period as the most relevant unifying cultural and population movement in Scandinavia, responsible for the formation of a common Nordic language, which is suddenly given as little weight as possible in all his publications, to support some imaginary continuity with the Corded Ware culture (see e.g. here or here).

(2) Only a few males from the Single Grave period are described in this sampling, and they are quite close to the arrival of Bell Beakers, so if someone is looking for closure about the “R1b from Corded Ware”, I bet there won’t be any. As with conspiracy theories of native Vasconic R1b-L51 hidden somewhere in Western Europe even after Olalde et al. (2018) and Olalde et al. (2019), the mythic native Nordic R1b-U106 of Corded Ware will remain hidden in some unsampled Corded Ware group in the minds of many, despite being already found in Bell Beaker-derived European EBA cultures of Bohemia and possibly of Hungary, too (ca. 2500-2200 BC, see SNP calls), apart from the Late Neolithic sample from Lilla Beddinge in Scania (ca. 2275-2032 BC, see SNP calls)

I hope that I am wrong, and that some scholar in the Danish group is capable of reporting the data as it is, even if it contradicts the theories of its leading archaeologist, Kristian Kristiansen. The apparent downplay of the increase in non-local origins of individuals during the Late Neolithic I period as they appear in this paper, as well as their summary of foreign migrations into Denmark which mysteriously stop with the arrival of “Steppe ancestry” ca. 2800 BC, make me think that a change in their narrative is not very likely. The cons of working with academic divos, I guess…


North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312


The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.


Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.


Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.


The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.


European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic


In his recent paper on Late Proto-Indo-European migrations, when citing Udolph to support his model, Frederik Kortlandt failed to mention that the Old European hydrotoponymy in northern Central-East Europe evolved into Baltic and Slavic layers, and both take part in some Northern European (i.e. Germanic – Balto-Slavic) commonalities.


From Expansion slavischer Stämme aus namenkundlicher und bodenkundlicher sicht, by Udolph, Onomastica (2016), translated into English (emphasis mine):

NOTE. An archived version is available here. The DOI references for Onomastica do not work.

(…) there is a clear center of Slavic names in the area north of the Carpathians. Among them are root words of the Slavic languages such as reka / rzeka, potok u. a. m.

Even more important than this mapping is the question of how the dispersion of ancient Slavic names happened. What is meant by ancient Slavic names? I elaborated on this in this journal years ago (Udolph, 1997):

(1)Ancient suffixes that are no longer productive today.

This clearly includes Slavic *-(j)ava as in Vir-ava, Vod-ava, Il-ava, Glin-iawa, Breg-ava, Ljut-ava, Mor-ava, Orl-java among others. It has clear links to the ancient common Indo-European language (Lupawa, Morava-March-Moravia, Orava, Widawa). They have a center north of the Carpathians.


(2) Unproductive appellatives (water words), which have disappeared from the language, are certain witnesses of ancient Slavic settlements. A nice example of this is Ukr. bahno, Pol. bagno ‘swamp, bog, morass’ etc. The word has long been missing in South Slavic, although it appears in South Slavic names, but only in very specific areas (see Udolph, 1979, pp. 324-336).

(3) Names that go back to different sound shifts. [Examples:]

  • (…) the Slavic clan around Old Sorbian brna ‘feces, earth’, Bulgarian OCS brьnije ‘feces, loam’, OCS brъna ‘feces’, Slovenian brn, ‘river mud’, etc. is solved with the inclusion of onomastic materials (Udolph, 1979, p. 499-514). (…) Toponymic mapping shows important details.
  • bryn-slavic
    Karte 4. brъn < *brŭn und bryn- < *brūn- in slavischen Namen
  • (…)We also have an ablauting *krŭn-:*krūn- in front of us. Map 5 shows the distribution of both variants in Slavic names.
  • The next case is quite similar. It concerns Russ. appellative grjaz’ ‘dirt, feces, mud’, (…) for which an Old Slavic form *gręz exists. Slavic also knows the ablauting variant *grǫz.

    These maps (see Map 6, p. 222) show that a homeland of Slavic tribes can only be inferred north of the Carpathians.

    (4) Place-names formed by Slavic suffixes of Pre-Slavic nature, i.e. derived from Old European hydronyms.

    (a) The largest river in Poland, the Wisła, German Vistula, bears a clearly Pre-Slavic name, no matter how one explains it (Babik, 2001, pp. 311-315; Bijak, 2013, p. 34, Udolph, 1990 , Pp. 303-311).

    (b) With the same suffix are formed Sanok, place on the southwest of Przemyśl; Sanoka, a no longer known waters name, 1448 as fluvium Szanoka, near the place Sanoka and with a diminutive suffix -ok- a tributary of the Sanok, which is called Sanoczek (for details see Udolph, 1990, pp. 264-270; Rymut / Majtan, 1998, p. 222). The San also has a single-language name, but that does not change anything about the right etymology. The suffix variant -očь also includes Liwocz and Liwoczka, river names near Cracow; also a mountain range of the Beskydy is mentioned at Długosz as Lywocz.

    According to the opinion of the “Słownik prasłowiański” (Sławski (red.), 1974, p. 92), the suffix -ok- represents a Proto-Slavic archaism. It appears, for example, in sъvědokъ, snubokъ, vidokъ, edok, igrok, inok among others, but its antiquity also shows, among other things, that it started at archaic athematic tribes.

    Mapping of older and younger East Slavic place-names and translation into settlement evolution.

    Slavonic Urheimat

    If we apply this to the loess distribution in western Ukraine and south-eastern Poland, it is very noticeable that the center of the Old Slavic place names lies in the area where loess dispersal is gradually “frayed out”, i.e. for example, in the area west of Kiev between Krakow in the west and Winnycja and Moldavia in the east. In short, the distribution of good soils coincides with ancient Slavic names. If that is correct, we can expect a homeland in the Pre-Carpathian region, or better, a core landscape of Slavic settlement.

    The existence of Pre-Slavic Indo-European place names and water names whose structure indicates that they originated from an Indo-European basis, but then also developed Slavic peculiarities, can now – as stated above – only be understood to mean that the language group that we call today Slavic emerged in a century-long process from an Indo-European dialectal area.

    Loess areas between Poland and Ukraine. Image from Jary et al. (2018).

    From a genetic point of view, the scarce data published to date show a clear shift of central-east populations from more Corded Ware-like groups in the EBA towards more BBC-derived ancestry in the common era, to the point where ancient DNA samples from East Germany, Poland and Lithuania evolve from clustering between Corded Ware and Sub-Neolithic peoples to clustering close to Bell Beaker-derived groups, such as West Germanic peoples, Tollense samples, etc. (see below)

    Furthermore, sampled Early Slavs show bottlenecks under “Dinaric” I2a-L621 and central-eastern E1b-V13, which – in combination with the known phylogeography of Únětice and Urnfield – is compatible with its late expansion from a central-east European Slavonic homeland, such as the Pomeranian culture, in turn likely derived from Lusatian culture groups.

    This doesn’t preclude a more immediate expansion of Common Slavic in Antiquity closer to the northern Carpathians, which is also supported by the available Early Slavic sampling, apart from samples from the Avar and Hungarian polities.

    Likely Baltic (yellow-green) and Slavic (orange) groups ca. 500 AD on, with Finnic (cyan) and Mordvinic (blue) groups roughly divided through hydrotoponymy line ca. 1000 AD Top Left: Late Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Baltic / Proto-Slavic

    Northern European hydronymy

    From Alteuropäische Hydronymie und urslavische Gewässernamen, by Udolph, Onomastica (1997), translated into English (emphasis mine):

    NOTE. An HTML version is available at Jurgen Udolph’s personal site.

    Because of the already striking similarities as the well-known “-m-case”, the number-words for ‘1000’, ’11’ and ’12’ and so on, J. Grimm had already assumed a close relationship between Germanic and Baltic and Slavic. (…)

    In my own search, I approached this trinity from the nomenclature side. In doing so, I noticed some name groups that can speak for a certain common context:

    1.* bhelgh-, *bholgh-.

    Map 10, p. 64, shows that a root * bhelgh- occurs in the name material of a region from which later Germanic, Baltic and Slavic originated. The Balkans play no role in this.


    2. *dhelbh-, *dholbh-, *dhl̥bh-

    The proof of the three ablauting * dhelbh, * dholbh, * dhl̥bh- within a limited area shows the close relationship that this root has with the Indo-European basis. Again it is significant in which area the names meet (…)


    3. An Indo-European root extension *per-s- with the meaning ‘spray, splash, dust, drop’ is detectable in several languages (…). From a Baltic-Slavic-Germanic peculiarity cannot therefore be spoken from the toponymic point of view. The picture changes, however, if one includes the derived water names.

    4. The root extension *pel-t-, *pol-t-, *pl̥-t- of a tribe widely spread in the Indo-European languages around *pel-, pol- ‘pour, flow, etc.’, whose reflexes are found Armenian through Baltic and Slavic to the Celtic area, is found in the Baltic toponymy, cf. Latv. palts, palte ‘puddle, pool’.

    The dynamics of stylistic changes of the form of the “Trzciniec pot” in the lowland regions of Central Europe, and spreading routes of the Trzciniec package in Central Europe. A good proxy for contacts through the Northern European Plain during the Early Bronze Age. Modified from Czebreszuk (1998).

    Early Balto-Finnic

    In order to properly delimit (geographically and chonologically) the Proto-Baltic and Proto-Slavic expansions, it is necessary to understand where the late Balto-Finnic homeland was located during the Bronze Age. The following are excerpts from the comprehensive hydrotoponymic study by Pauli Rahkonen (2013):

    In any case, Finnic probably had its origin somewhere around the Gulf of Finland. Names of large and central rivers such as Vuoksi (< Finnic vuo ‘stream’) and Neva (< Finnic neva ‘marsh, river’) must be very old and might represent Proto-Finnic hydronyms. In the southern coastal area of Finland, the names Kymi and Nietoo < *Niet|oja (id. later Porvoonjoki) may also be of Finnic origin and derive from, respectively, kymi ‘stream’ (see SSA I s.v. *kymi; see however SPK s.v. Kemijärvi; Rahkonen 2013: 24) and nieto(s) ‘heap of snow’ (SSA II s.v. nietos), in hydronyms probably ‘high (snowy?) banks of a river’. Mustion|joki is clearly a Finnish name < *must|oja ‘black river’. The river name Vantaa remains somewhat obscure, although Nissilä (see SPK s.v. Vantaanjoki) has derived it from the Finnic word vana ‘water route’. In western Finland the names of large rivers, such as Aura and Eura, are supposedly of Germanic origin (Koivulehto 1987).

    In Estonia the names of many of the most important rivers might be of Finnic origin: e.g. Ema|jõgi Est. ema ‘mother’ [Tartu district] (?? cf. the Lake Piiga|ndi < Est. piiga ‘maiden’), Pärnu [Pärnu district] < Est. pärn ‘linden’, Valge|jõgi [Loksa district] < Est. valge ‘white’, Must|jõgi [Võru district] < Est. must ‘black’. It is possible that Emajogi and especially Piigandi are the result of later folk etymologizing of a name with some unknown origin. However, as a naming motif there exist in Finland numerous toponyms with the stems Finnic *emä (e.g. 3 Emäjoki), *neit(V)- ‘maiden’ (e.g. Neitijärvi, Neittävänjoki, Neittävänjärvi) and Saami stems that can be derived from Proto Saami *nejte̮ ‘id’ (GT2000; NA).

    The historical southern boundary of Finnic hydronyms, excluding hydronyms produced by the Karelian refugees of the 17th century.

    These seemingly very old names of relatively large rivers in southern Finland, modern Leningrad oblast and Estonia support the hypothesis that Proto-Finnic was spoken for a long time on both sides of the Gulf of Finland and it thus basically corresponds to the hypothesis of Terho Itkonen (see below). In the Novgorod, Tver or Vologda oblasts of Russia, Finnic names for large rivers cannot be found (Rahkonen 2011: 229). For this reason, it is likely that the Late Proto-Finnic homeland was the area around the Gulf of Finland.

    Beyond the southeastern boundary of the modern or historically known Finnic-speaking area, there exists a toponymic layer belonging to the supposedly non-Finnic Novgorodian Čudes (see Rahkonen 2011). In theory it is possible that Proto-Finnic and Proto-Čudian separated from each other at an early stage or it is even possible that Proto-Čudian was identical with Proto-Finnic. However, this cannot be proven, because there is not enough material available describing what Novgorodian Čudic was like exactly.

    Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2013)

    A summary of the data is then:

    • The Daugava River and the Gulf of Livonia formed the most stable south-western Balto-Finnic border (up until ca. 1000 AD): the Daugava shows a likely Indo-European etymology, while some of its tributaries are best explained as derived from Uralic.
    • The first layer of “Early Baltic” loans in Early Balto-Finnic are of a non-attested Baltic dialect closest to Proto-Balto-Slavic (read more about this early layer).
    • The latest samples of the Trzciniec culture (or derived Iron Age group) from its easternmost group in Turlojiškė (ca. 1000-800 BC?) show a western shift towards Bell Beaker, although they show a majority of hg. R1a-Z280; while the earliest sample from Gustorzyn (ca. 1900 BC), likely from Trzciniec/Iwno, from the westernmost area of the culture, shows a Corded Ware-like ancestry (and hg. R1a-Z280, likely S24902+) among a BA sampling from Poland clearly derived from Bell Beaker groups.

    One can therefore infer that the expansion of the Trzciniec culture – as the earliest expansion of central-west European peoples into the Baltic after the Bell Beaker period – represented either the whole disintegrating Balto-Slavic community, or at least an Early Baltic-speaking community expanding from the West Baltic area to the east.

    The similarity of Early Slavs and the Trzciniec outlier with the Czech BA cluster, formed by samples from Bohemia (ca. 2200–1700 BC), and the varied haplogroups found among Early Slavs – reminiscent of the variability of the Unetice/Urnfield sampling – may help tentatively connect the early Proto-Slavic homeland more strongly with a Proto-Lusatian community immediately to the south-west of the Iwno/Proto-Trzciniec core.

    Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Balto-Slavic homeland

    Disconnected western border: Germanic

    The common Balto-Slavic – Germanic community must necessarily be traced back to the West Baltic. From Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994), translated from German (emphasis mine):

    My work [Namenkundliche Studien zum Germanenproblem] has shown how strong the Germanic toponymy is related to the East, less to Slavic, much more to Baltic. It confirms the recent thesis by W.P. Schmid on the special relationship Germanic and Baltic, according to which “the formation of the typical Germanic linguistic characteristics…must have taken place in the neighborhood of Baltic“.

    If one starts from a Germanic core area whose eastern boundary is to be set on the middle Elbe between the Erzgebirge and Altmark, there are little more than 400 km. to the undoubtedly Baltic settlement area east of the Vistula. Stretching the Baltic area westwards over the Vistula (as far as the much-cited Persante), the distance is reduced to less than 300 km. Assuming further that Indo-European tribes between the developing Germanic and the Baltic groups represent the connection between the two language groups, so can one understand well the special relationship proposed by W.P. Schmid between Germanic and Baltic. In an earlier period shared Slavic evidently the same similarities (Baltic-Slavic-Germanic peculiarities).

    Top: Palaeo-Germanic (G2, blue area), Proto-Balto-Slavic/Pre-Baltic (PBSL, green area) and Early Proto-Balto-Finnic (PBF, cyan area) homelands superimposed over Early Bronze Age cultures. Persante hydronym and Gustorzyn ancient DNA sample location marked. Y-DNA haplogroups during the Early Bronze Age (Bottom left) and during the Middle Bronze Age (Bottom right). Notice a mix of R1b-L151 samples from the west and the process of integration of R1a-Z645 lineages from the the north-east. See full maps and PCAs.

    Substrate and immediate eastern border: Early Balto-Finnic

    While Balto-Finnic shows a late Balto-Slavic adstrate, Balto-Slavic has a Balto-Finnic(-like) substrate, also found later in Baltic and Slavic, which implies that Balto-Slavic (and later Baltic and Slavic) replaced the language of peoples who spoke Balto-Finnic(-like) languages, influencing at the same time the language of neighbouring peoples, who still spoke Balto-Finnic (or were directly connected to the Balto-Finnic community).

    For more on this relative chronology in Balto-Slavic – Balto-Finnic contacts, see e.g. the recent posts on Kallio (2003), Olander (2019), or a summary of this substrate.

    While Rahkonen (2013) entertains Parpola’s theory of a West-Uralic-speaking Netted Ware area (ca. 1900-500 BC), due to the Uralic-like hydrotoponymy of its territory, he also supports Itkonen’s idea of the ancient presence of almost exclusively Balto-Finnic place and river names in the Eastern Baltic and the Gulf of Finland since at least the Corded Ware period, due to the lack of Indo-European layers there:

    NOTE. This idea was also recently repeated by Kallio (2015), who can’t find a non-Uralic layer of hydrotoponymy in Balto-Finnic-speaking areas.

    It should be observed that the territory between the historical Finnic and Mordvin-speaking areas matches quite well with the area of the so-called Textile Ceramics [circa 1900–800 BC] (cf. Parpola 2012: 288). The culture of Textile Ceramics could function as a bridge between these two extreme points. Languages that were spoken later in this vast territory between Finland–Estonia and Mordovia seem to derive from Western Uralic (WU) as well. I have called those languages Meryan-Muroma, Eastern and Western Čudian and an unknown “x” language spoken in inland Finland, Karelia and the Lake Region of the Russian North (Rahkonen 2011; 241; 2012a: 19–27; 2013: 5– 43). This might mean that the territory of the Early Textile Ceramics reflects to some extent the area of late Western Uralic.

    The archaeologically problematic area is Estonia, Livonia and Coastal Finland – the area traditionally assumed to have been populated by the late Proto-Finns. The Textile Ceramics culture was absent there. It is very difficult to believe that the Textile Ware population in inland Finland migrated or was even the main factor bringing the Pre- or Early Proto-Finnic language to Estonia or Livonia. There are no archaeological or toponymic signs of it. Therefore, I am forced to believe that Textile Ceramics did not bring Uralic-speaking people to those regions. This makes it possible, but not absolutely proven, to assume that some type of Uralic language was spoken in the region of the Gulf of Finland already before Textile Ceramics spread to the northwest (circa 1900 BC).

    Top Left: Corded Ware culture expansion. Top right: PCA of Corded Ware and Sub-Neolithic groups. Y-DNA haplogroups during the Corded Ware expansion (Bottom left) and during the subsequent Bell Beaker expansion (Bottom right). Notice the rapid population replacement of typical Corded Ware R1a-Z645 lineages by expanding Bell Beakers of hg. R1b-L23 in central-east Europe, while they show continuity in the described ancestral Fennoscandian West-Uralic-speaking territory. See full maps and PCAs.

    The Corded Ware population in Finland is thought to have been NW Indo-European by many scholars (e.g. Koivulehto 2006: 154–155; Carpelan & Parpola 2001: 84). At least, it is probable that the Corded Ware culture was brought to Finland by waves of migration, because the representatives of the former Late Comb Ceramics partially lived at the same time side by side with the Corded Ware population. However, it is possible that the immigrants were a population that spoke Proto-Uralic, who had adopted the Corded Ware culture from their Indo-European neighbors, possibly from the population of the Fatjanovo culture, e.g. in the Valdai region. This was suggested by Terho Itkonen (1997: 251) as well. In that case the population of the Typical and Late Comb Ceramics may have spoken some Paleo European language (see Saarikivi 2004a). In the Early Bronze Age, the Baltic Pre-Finnic language that I have suggested must have been very close to late WU and therefore no substantial linguistic differences existed between the Baltic Pre-Finns and the population of Textile Ceramics in inland Finland. I admit that this model is difficult to prove, but I have presented it primarily in order to offer new models of thinking.16 At least, there is no archaeological or linguistic reason against this idea.

    This dubitative attribution of Proto-Uralic to the expansion of Corded Ware groups in eastern Europe, which is what hydrotoponymic data suggests in combination with archaeology, has to be understood as a consequence of how striking Rahkonen finds the results of his research, despite Itkonen’s previous proposal, in the context of an overwhelming majority of Indo-Europeanists who, until very recently, simplistically associated Corded Ware with the Indo-European expansion.


    Even Kortlandt accepts at this point the identification of expanding East Bell Beakers from the Carpathian Basin as those who left the Alteuropäische layer reaching up to the Baltic. However, he identified Udolph’s data solely with West Indo-European, forgetting to mention the commonly agreed upon western Proto-Balto-Slavic homeland, most likely because it contradicts two of his main tenets:

    1. that Balto-Slavic split from a hypothetical Indo-Slavonic (i.e. Satem) group expanding from the east; and
    2. that laryngeals can be reconstructed for Balto-Slavic – unlike for North-West Indo-European.
    Indo-European hydrotoponymy in Europe and the Middle East (scarce Central Asian data). Baltic data compensated, statistical method RBF: intermediate regions devoid of Indo-European toponyms are inferred to have them; it compensates thus e.g. for the scarce Indo-European hydrotoponyms in Poland by assuming ‘soft’ continuity from West Germany to the Baltic.

    A hypothetic “Pre-Indo-Slavonic” laryngeal Indo-European layer reaching Fennoscandia and the Forest Zone with Corded Ware is fully at odds with all known data:

    • in comparative grammar, since the one feature that characterizes Graeco-Aryan is precisely its set of innovations relative to Northern Indo-European, which presupposes a longer contact (and further laryngeal loss) once Tocharian and North-West Indo-European had separated – hence probably represented by Palaeo-BalkanCatacomb-Poltavka contacts once Afanasevo and Yamna settlers from the Carpathian Basin / East Bell Beakers had become isolated;
    • in hydrotoponymy, because of the prehistoric linguistic areas that can be inferred from (1) the distribution of Old European hydrotoponymy; (2) Udolph’s work on Germanic and the likely non-Indo-European substrate in Scandinavia and land contacts with Balto-Finnic; (3) from the Northern European traits in the Northern European Plain; or (4) from the decreasing proportion of Indo-European place and river names from central Europe towards the east and north.
    • NOTE. An alternative explanation of Old European/Balto-Slavic layers, e.g. by a ‘Centum’ Temematic – even if one obviates the general academic rejection to Holzer’s proposal – couldn’t account for the absolute lack of an ancestral layer of Indo-European hydrotoponymy in North-Eastern Europe (i.e. the longest-lasting Corded Ware territory), in sharp contrast with Western Europe, South-Eastern Europe, and South Asia. All of that contradicts an Eastern Indo-European community, even without a need to recall that the oldest hydrotoponymic layers common to Fennoscandia and the Forest Zone are of Uralic nature.

    • in archaeology, because cultural expansions of the Eastern European Early Bronze Age province since the Bell Beaker period (viz. Mierzanowice, Trzciniec, Lusatian, Pomeranian, West Baltic Culture of Cairns) suggest once and again west-east movements, most (if not all) of which – based on the presence of Indo-European speakers during the common era – were likely associated with Indo-European-speaking communities replacing or displacing previous ones.
    • in palaeogenomics, because of the late and different association of Corded Ware ancestry and haplogroups among Balto-Slavic and Indo-Iranian communities, in turn corresponding to the different satemization processes found in both dialects, which may have actually been related to the Uralic substrate that is found in both (read more on Uralic influences on Balto-Slavic and on Indo-Iranian).

    On the other hand, a careful combination of Uralic and Indo-European comparative grammar, hydrotoponymic data, and population genomics fits perfectly well Itkonen’s and Rahkonen’s association of Corded Ware in Eastern Europe with Uralic languages, as well as the traditional mainstream view of Uralic before Indo-European in Fennoscandia and in the Forest Zone, as I explained in a recent post about genetic continuity in the East Baltic area.

    Population genomics is not the main reason to reject the Indo-European Corded Ware theory – or any other prehistoric ethnolinguistic identification, for that matter. It can’t be. This new field offers just the occasional confirmation of a well-founded theory or, alternatively, another nail in the coffin of fringe theories that were actually never that likely, but seemed impossible to fully dismiss on purely theoretical grounds.

    The problem with Corded Ware was that we couldn’t see how unlikely its association with Indo-European languages was until we had ancient DNA to corroborate archaeological models, because few (if any) Indo-Europeanists really cared about the linguistic prehistory of eastern and northern Europe, or about Uralic languages in general (contrary to the general trend among Uralicists to be well-versed in Indo-European studies). Now they will.


    European hydrotoponymy (III): from Old European to Palaeo-Germanic and the Nordwestblock


    The study of hydrotoponymy shows a prevalent initial Old European layer in central and northern Germany, too, similar to the case in Iberia, France, Italy, and the British Isles.

    The recent paper on Late Proto-Indo-European migrations by Frederik Kortlandt relies precisely on this ancestral layer as described by Jürgen Udolph to support a Danubian expansion of North-West Indo-European with East Bell Beakers, identified as the Alteuropäische (Old European) layer that was succeeded by Germanic in the North European Plain.

    The Proto-Germanic homeland

    The following are excerpts are translated from the German original (emphasis mine) in Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994):

    Buy the book at De Gruyter’s site or at Amazon.

    The following is a concise compilation of the investigation into nine points, which will be subsequently discussed: there are Brink (in the north brekk-), -by (on the Elbe), the name of the Elbe itself, germ, haugaz and blaiw, klint, malm / melm, the name of the Rhön, and the place name element -wedel.

    I want to briefly summarize the results:

    1. Brink has toponymically a clear focus in Germany between the Rhine and the Weser; in Schleswig-Holstein and Denmark it is almost completely missing, the Scandinavian place name documents show an accumulation in eastern Sweden. The English Brink names can not be associated with the Scandinavian ones. The “real” Scandinavian variant brekka, brekke, however, also appear on the Shetland and Orkney Islands and in central England.

    2. The Central Elbian –by-place names have nothing to do with the Danish and Scandinavian -by-names.

    3. The name of the Elbe has been carried from south to north and has become an appellative in Scandinavia. This clearly proves that a south-north migration has taken place.

    4. The distribution of haugaz does not support a Nordic origin of the word. K. Bischoff in his thorough investigation never asked whether the reverse path from south to north would be possible. However, in comparison with the results of the study of other toponyms, this second option will be much more likely to be accepted. On the “problem of the gap” in the distribution (between Aller and northern Holstein) see page 910.


    5. Completely missing is the assumption of Nordic origin in the case of hlaiwaz. A look at Map 67 shows this clearly.

    6. Even in the case of klint, Denmark and Scandinavia are only marginally involved in the distribution of names. This contradicts the thesis that the English Klint names are of Nordic origin. On the other hand, Map 68 (Klit- / Klett-) shows how Nordic place names can have an influence on the British Isles.


    7. Even in the case of germ, melm (ablauting malm, mulm), everything speaks for a continental Germanic starting point: here are all ablaut stages in the appellative vocabulary and in the toponymy, which shows together with the name Melmer perhaps the most ancient -r-derivations, which are unknown to the Nordic area, while the Nordic names, in turn, have a distinct tendency to spread to eastern Sweden, towards the Baltic Sea.

    8. The name of the Rhön can only be interpreted with the aid of the Nord Germanic apellative hraun “boulder field, stony ground, lava field”. This does not mean that Nord Germanic peoples have given this name, but that the Common or Proto-Germanic peoples knew the appelative still. The Rhön owes its name to this language stage.

    9. The spread of the fronds names in Germany, classified by E. Schröder as “North Germanic invasion”, can be explained differently: more important than the often younger names north of the Elbe in Schleswig-Holstein (type Wedelboek) are the place names near Braunschweig, Büren (Westphalia), and in the Netherlands, in which case a south-north spread is more convincing than the assumption of a Nordic expansion.


    If you take the similar distribution maps 15 (wik), 31 (fenn), 36 (slk), 39 (büttel), 47 (live), 49 (quem), 50 (thing), 61 (brink) and 66 (haugaz) It can be seen from this (page 72, page 908) that there are parts of Germany which, to a lesser degree, are more heavily involved than others in Old Germanic place name formations: that applies to southern Thuringia, the Area between Werra and Fulda, the Magdeburger Börde and its western foothills to the Weser at the Porta Westfalica). On the other hand, the areas north of the Aller, Hanoverian Wendland and wide areas between the Lower Weser and the Lower Elbe (apart from the area around Osterholz-Scharmbeck as well as Kehdingen and Hadeln) are little and hardly affected.

    There is no question that the reasons for the different dispersion can not lie in the name itself, but have other causes. H. Kuhn has considered the natural conditions of the landscape with the fronds. Comparing the place name expansion outlined here with a bog map of Lower Saxony, as found in numerous publications (Map 73, page 910), solves the problems: even today’s bog distribution of Lower Saxony, diminished through cultivation and drainage (albeit still considerable), reflects the fact that the early colonization and naming of northern Germany has been shaped and, to a certain extent, controlled by settler-friendly and not-settler-friendly conditions.

    Distribution of bogs in Germany. Source: M. Sommer, Institut für Bodenlandschaftsforschung, ZALF, Müncheberg.

    On the location of the Germanic Urheimat

    According to the space briefly outlined by the present study, the Old Germanic settlement area in toponymic terms is roughly to be located between the Erzgebirge, Thüringerwald, Elbe, Aller and an open border in Westphalia, for the following reasons:

    • High proportion of old European names. This is a basic requirement, which of course is also fulfilled by other areas, but not by Schleswig-Holstein, Denmark and Scandinavia. (…)
    • Of particular importance was the discussion about relations with the north (the generally accepted ancient Germanic settlement area, section L, p. 830-917). I believe that the detailed study of the geographical names no longer allows one to assume a Scandinavian homeland of Germanic tribes. Too many arguments speak against it. It is much more likely to start with a northward migration (…).
    Bell Beaker expansion ca. 2600-2200 BC. Top Left: Tentative location of the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border). Top right: PCA of the Bell Beaker period, with Netherlands EBA cluster (population west of the Germanic Urheimat) in red, and Battle Axe/Baltic CWC (population east and north of the Urheimat) in cyan. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Western border: Nordwestblock

    Recently, W. Meid has once more dealt in detail with Kuhn’s thesis. After that, the most important criteria for the approach of this thesis are the following:

    1. -p- (and other shutter sounds) are partly not shifted in North German names;
    2. the existence of a -sí-suffix;
    3. -apa in river names;
    4. the suffix -andr-;
    5. certain words u. Name strains, e.g. Veneter, Belgian.
    6. Above-average relations of the northwestern block to Italic (Latin, Osco-Umbrian).

    W. Meid agrees with Kuhn’s theses, but with limitations: “These evidences seem to indicate that the NW-space did not belong to the original settlement area of ​​the Teutons, but that the Germanization of this area or larger parts of it did not take place until relatively late, namely – as Kuhn thinks – after the Germanic sound shift or during its last phase. According to Kuhn’s own words this “space… appears as a block that has long defied Germanization”.

    Udolph continues explaining why most of these non-Germanic examples are “optic illusions”, since he can explain most of them as from Old European to Old Germanic stages, which is mostly in agreement with the known features of Old European hydrotoponymy. For example, -apa- and -andra-names as Old European; -p- as before the Germanic sound shift; -st- and -s-formations as Northern European; -ithi- also unrelated to a hypothetic “Venetic” substrate.

    I think that the point to discuss should not be the similarity with Old European or the oldest reconstructible Proto-Germanic stage (i.e. the closest to North-West Indo-European), or the appearance of these traits also in neighbouring Germanic territory, but the proportion of “more archaic” features contrasting with the proper Germanic area, and thus differences in frequency with the Germanic core territories.

    Just as Udolph can’t accept the non-Indo-European nature of most cases, one can’t simply accept his preference for a Pre-Proto-Germanic nature either, for the same reason one can’t accept the relationship of Western European “Pre-Celtic” hydrotoponymy with Celtic peoples because of some shared appellatives whose Celtic nature is not proven.

    NOTE. If there is something missing from this huge book is certainly statistical analyses with GIS, which would make this case much easier to discuss in graphical and numerical terms. Let’s hope Udolph can update the data in the near future, because he is still (fortunately) active.

    In any case, the Nordwestblock remains a likely Old European hydrotoponymic area partially shared by Germanic, which doesn’t lie at the core of the spread of Old European place names and has a potential non-Indo-European substrate shared with Northern European groups. Combined with comparative grammar and with results of population genomics supporting the spread of East Bell Beakers of Yamna descent from the Carpathian Basin, this essentially renders interpretations of Old European expansion from Northern Europe devoid of support in linguistics.

    Palaeo-Germanic expansion

    To the north, the settlement movement depends on the location and spread of settlement-deficient areas, such as the moors northeast of Wolfsburg, north of Gifhorn, south of Fallingbostel, etc. As soon as this belt has been breached, the place name frequency in the eastern Lüneburg Heath indicates where more favorable settlement conditions are to be found: the Altmark in Saxony-Anhalt, the Jeetzel lowlands and especially the Ilmenau area near Uelzen, Bevensen and Lüneburg (it is difficult not to recall the name Jastorf here).

    If one combines these findings with the dispersion of ancient Germanic place names, one will find that above all the section of the river east from Hamburg to about Lauenburg was particularly favorable for crossing. The onomastic data speaks in favour of this aspect, e.g. the following names lying north and south of this area.


    1. Delvenau = Elbe-Lübeck Canal.

    2. Neetze north of Lüneburg (-d-/-t-change).

    3. Wipperau north of Lüneburg (-p-/-b- change).

    4. The dispersion of the -wik places (Bardowik), cf. Map 15, p. 106.

    5. The dissemination of the -r formations (Map 24, p. 191).

    6. The -ithi formations Geesthacht, Bleckede u.a. south of the Elbe, Eckede north of the stream (see Map 28, p.272).

    7. Fenn south of the Elbe in the north of Lüneburg (Map 31, p.315).

    8. The distribution of the Hor name (Harburg) and northeast of it in Holstein (Map 32, p.328).

    9. Germ, sik- with clear clusters southeast. and northeastern. from Hamburg (Map 36, p. 409).

    10. Also the -büttel names show a concentration east of Hamburg on the one hand and a second accumulation at the estuary of the Elbe (Brunsbüttel) (map 39, p.438).

    11. Gorleben and other places in Hann. Wendland south of the river (Map 47, p.503).

    12. Werber-names southeast from Hamburg and in eastern Holstein (Map 53, p.742).

    13. The scattering of brink names (Map 61, p. 843).

    The place name distributions also make it possible to track the settlement movement north of the Elbe. It has been repeatedly emphasized that Schleswig-Holstein has little share in old Germanic toponymy. One tries to explain this fact, which reaches into the realm of the Old European hydronyms, by saying that, according to archeology, “large parts of Schleswig-Holstein in the 5th to 7th centuries were sparsely populated”.

    Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

    If one summarizes these synoptically (Map 74, p.914) and also takes into account the not-included -leben-names (Map 47, p.503), then it is quite clear that Denmark by no means shares these types of names. The most important points are, in my opinion:

    1. North of today’s German-Danish border, the quantity of old place names drops rapidly and even tends towards zero. West Jutland in particular is rarely involved in the dispersion.
    2. Within Jutland there is a clear orientation to the east. The connection with southern Sweden is established via Funen and Zeeland.
    3. Disputed is in my opinion, whether the spread of toponymy followed a roughly direct line Fehmarn and Lolland/Falster. This is not to be excluded, but the maps of toponymy distribution do not give a clear indication in this direction.

    The synoptic map makes it clear that both western Schleswig-Holstein and western Jutland are not to be regarded as Old Germanic settlement areas. Rather, East Jutland and the Danish islands were reached by Germanic tribes.

    Bronze Age groups ca. 2200-1750 BC. Top Left: Tentative location of (1) the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border), (2) the Pre-Proto-Germanic expansion area, coinciding with the Nordic Dagger Period, and (3) the Pre-Proto-Germanic-like Nord-West-Block. Top right: PCA of European Bronze Age groups. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Absolute chronology and Balto-Finnic

    It is imprecise to estimate the age of settlement movements from toponymic research. I do not want to be involved in speculation, but I think that Klingberg’s estimate could have some arguments in its favor. In the approximate dating, however, it is important to include a fact that has already been briefly mentioned above and should be treated here in more detail: the fact of Germanic-Finnic relations.

    W.P. Schmid has emphatically pointed out the difficulty that arises when one considers the unfolding of Germanic too far from the Baltic Sea settlement areas. Among other things, it draws attention to the fact that a Germanic homeland that were postulated too far west could not explain how Germanic loanwords might appear in the Finnic names of Northern Russia. These will be mentioned with reference to M. Vasmer: Randale to Finn. ranta “beach”, Pel’doza and Nimpel’da to Finn. pelto, Justozero to Finn. juusto “cheese”, Tervozero to Finn. terva “tar” and Rovdina Gora to Finn. rauta “ore”.

    I think it is possible that the clear spread of Old and North Germanic toponyms, as described in the synoptic map 74 (p. 914) and in the already mentioned -ing, -lösa, -by, -sta(d) and -säter-maps (19, 46, 63-65), can offer some help: quite early the Germanic tribes reached the Swedish east coast. It is also clear that there have previously been contacts with Slavic and Finno-Ugric tribes by sea. However, intensive German-Finnic relations can, in my opinion, have come about only through close contacts on the mainland.

    Pre-Indo-European substrate

    In my investigation, I have repeatedly come up with suggestions to explain a hard-to-interpret North Germanic name from a Pre-Germanic, possibly Non-Indo-European substrate. Most of these were views of H. Kuhn, which he also used to support his so-called “Nord-West block”.

    On one point H. Kuhn may have been right with an assumption of a Pre-Germanic substrate that did not provide the basis for further development in Germanic terms: he very clearly argued that Scandinavia too was Pre-Germanic, even Pre-Indo-European A substrate that stands out above all because of the lack of Lautverschiebung : “In the Nordic countries, we have to reckon with non-Germanic, non-Indo-European prehistoric names scarcely less than in the other Germanic languages”. In light of the results of the present work that makes a relatively late Germanization of Scandinavia very likely, this sentence should not be set aside in the future, but carefully examined on the basis of the material.

    Both data, the known long-lasting Palaeo-Germanic – Finno-Samic contacts, and the underresearched presence of non-Indo-European vocabulary in Scandinavia, are likely related to the presence of a West Uralic(-like) substrate in Scandinavia and most likely also in Northern Europe, based on the disputed non-Indo-European components shared through the North European Plain (see above), and on the scarce ancient Indo-European hydrotoponymy in central-east Europe to the north of the Carpathians.

    Population genomics

    Although there is yet scarce genetic data from northern European territories, the haplogroup distribution among sampled peoples from the Germanic migration period and during the Viking expansion suggests a prevalence of R1b-U106 in the North European Plain (also found in Barbed Wire Beakers), and thus a later integration of typically Neolithic (I1) and CWC-related (R1a) subclades to the Germanic-speaking community during the expansion into Southern Scandinavia.

    This is compatible with the described development of maritime elites by Bell Beakers, representing maritime mobility and trade, and an appealing ideology, similar to the prevalence of Athens over Sparta (Corded Ware in this analogy). It is also supported by the bottlenecks under R1b-U106 to the north of Schleswig-Holstein.

    NOTE. Nevertheless, other R1b-L151 may have been part of the Germanic-speaking communities, especially during its earliest stage, and also R1b-U106 (and other R1b-L161) subclades may appear all the way from the Carpathians to Northern Europe, including the Eastern European Early Bronze Age.

    Common Germanic expansions ca. 500 BC on. Top Left: Early Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority of R1b-U106 (practically absent from previous Bronze Age populations of Central Europe) among sampled Germanic tribes. See full maps and PCAs.


    This sudden population bust to the south and predominance of a Southern Scandinavian maritime society in the Nordic circle seems to be also supported by inferences from archaeological data, too. For example, from the recent Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe, by Feeser et al. The Holocene (2019):

    The second boom between c. 3000 and 2900 cal. BC relates to increases in the palynological proxy and the binned all site SCDPD curve. From an archaeological point of view, this time reflects the transition from the Funnelbeaker to the Single Grave Culture. The emergence of this new cultural phenomenon is often regarded to have been associated with a shift in subsistence practices, that is, a shift from sedentary agricultural to mobile pastoral subsistence (Hinz, 2015; Hübner, 2005; Iversen, 2013; Sangmeister, 1972).

    Left: Map with pollen sites. Right: Bin sensitivity plots based on summed calibrated date probability distributions (SPD) using different degrees of binning on-site level (h = 0 no binning; h = 1000 high binning) and Kernel density plots (KDE) of available radiocarbon dates from the settlement context (settlement sites). Modified from the paper to include a red arrow showing Corded Ware bust and subsequent boom with the Dagger Period..

    (…) there is palynological evidence for increased importance of cereal cultivation during the Young Neolithic in comparison to the Early Neolithic (Feeser et al., 2012). This, however, does not rule out an increased importance of pastoralism, as grazing on grasslands and extensive cereal cultivation are difficult to distinguish and to disentangle in the palynological record. Generally however, human impact on the environment and population levels, respectively, did not reach Funnelbeaker times maxima values during this boom phase at the beginning of the Younger Neolithic. The similar short-term synchronous developments in both the pollen profiles during 2800–2300 cal. BC could point to large-scale, over-regional uniform development during the Younger Neolithic in our study area (cf. also Feeser et al., 2016).

    Between c. 2400 and 2300 cal. BC, the palynological proxy and the binned all site SCDPD curve show a similar distinct decrease (Figure 6), and we define a second bust phase accordingly. The soil erosion record, however, indicates elevated values at around this time but declines, although not very well defined, to a minimum at around 2200 cal. BC. Due to the generally low number of colluvial deposits recorded for the Younger Neolithic, this is not regarded to contradict our interpretation, as low sample sizes generally minimize the chances of identifying a robust pattern. A strong increase in all the three proxies between 2200 and 2100 cal. BC defines our third boom phase.

    Bronze Age evolution

    Candidate homelands for the succeeding (Palaeo-Germanic) stages of the language are shifted also in archaeology to the south, due to the economic influence of demographically stronger Nordic Bronze Age cultural groups of northern Germany over Southern Scandinavia.

    A good description of societal changes in the Palaeo-Germanic stages is offered by the recent paper Cultural change and population dynamics during the Bronze Age: Integrating archaeological and palaeoenvironmental evidence for Schleswig-Holstein, Northern Germany, by Kneisel et al. The Holocene (2019):

    Qualitative data from material culture and demography in Schleswig-Holstein and Mecklenburg-Western Pomerania. Modified from the original to remark periods of likely demographic decrease (red square) and growth (blue square).

    At each beginning of a boom phase and each end of a bust phase, changes in the material culture could be observed.

    When the pressure on the landscape is at its lowest around 1500 BC and shortly before it rises again, the type of burial changes, hoards and bronzes increase, and monumental burial mounds are erected again. Vice versa, when the pressure on the landscape reaches its maximum value around 1250 BC, tools and hoard depositions decrease again and only the monumental burial and prestige goods are maintained. The ‘elite’ are continuing with their way of burial. The reduction in house surface area and the number of hoards takes place earlier, possibly because of material scarcity as could also be proven in Thy, northern Jutland (Bech and Rasmussen 2018).

    Again, the human impact decreases, and at its lowest point at the beginning of Period IV ca. 1100 BC, the monumental burial custom and the addition of prestige goods also end. The number of hoards and graves begins to rise again, and cooking pits appear. Exchange networks shift with the beginning of Period V, while axes increase again together with a slight decrease in the human impact curve. The appearance of certain artefacts or burial rites at the beginning of such a period of upheaval seems to suggest the role of a trigger. With this analysis, we have defined several likely indicators for social change in the less distinct phases and societal change in the strongly pronounced phases around 1500 BC and 1100 BC and the most important triggers for the Schleswig-Holstein Bronze Age.

    Distribution of burials with Valsømagle, Sögel and Wohlde blades with provenance known to parish. q = Valsømagle blades; s = Wohlde blades (small = one grave with a blade; medium = two graves with a blade); l = Sögel blades (small = one grave with a blade, medium = two graves with a blade, large = three graves with a blade). From Bergerbrant (2007).

    While population movements can’t be really understood without a proper genetic transect proving or disproving archaeological theories, it seems that the intermediate zone of the Nordic circle was subjected to at least two demographic busts and succeeding booms during the Middle and Late Bronze Age periods, which not only affected the hydrotoponymy of Schleswig-Holstein (see above), but probably served as dynamic changes in the linguistic evolution of Palaeo-Germanic-speaking communities up to the Common Germanic expansion.

    Read more on the Northern Early Bronze Age province.


    Sea Peoples behind Philistines were Aegeans, including R1b-M269 lineages

    New open access paper Ancient DNA sheds light on the genetic origins of early Iron Age Philistines, by Feldman et al. Science Advances (2019) 5(7):eaax0061.

    Interesting excerpts (modified for clarity, emphasis mine):

    Here, we report genome-wide data from human remains excavated at the ancient seaport of Ashkelon, forming a genetic time series encompassing the Bronze to Iron Age transition. We find that all three Ashkelon populations derive most of their ancestry from the local Levantine gene pool. The early Iron Age population was distinct in its high genetic affinity to European-derived populations and in the high variation of that affinity, suggesting that a gene flow from a European-related gene pool entered Ashkelon either at the end of the Bronze Age or at the beginning of the Iron Age. Of the available contemporaneous populations, we model the southern European gene pool as the best proxy for this incoming gene flow. Last, we observe that the excess European affinity of the early Iron Age individuals does not persist in the later Iron Age population, suggesting that it had a limited genetic impact on the long-term population structure of the people in Ashkelon.

    Ancient genomes (marked with color-filled symbols) projected onto the principal components inferred from present-day west Eurasians (gray circles). The newly reported Ashkelon populations are annotated in the upper corner.

    Genetic discontinuity between the Bronze Age and the early Iron Age people of Ashkelon

    In comparison to ASH_LBA, the four ASH_IA1 individuals from the following Iron Age I period are, on average, shifted along PC1 toward the European cline and are more spread out along PC1, overlapping with ASH_LBA on one extreme and with the Greek Late Bronze Age “S_Greece_LBA” on the other. Similarly, genetic clustering assigns ASH_IA1 with an average of 14% contribution from a cluster maximized in the Mesolithic European hunter-gatherers labeled “WHG” (shown in blue in Fig. 2B) (15, 22, 26). This component is inferred only in small proportions in earlier Bronze Age Levantine populations (2 to 9%).

    In agreement with the PCA and ADMIXTURE results, only European hunter-gatherers (including WHG) and populations sharing a history of genetic admixture with European hunter-gatherers (e.g., as European Neolithic and post-Neolithic populations) produced significantly positive f4-statistics (Z ≥ 3), suggesting that, compared to ASH_LBA, ASH_IA1 has additional European-related ancestry.

    We find that the PC1 coordinates positively correlate with the proportion of WHG ancestry modeled in the Ashkelon individuals, suggesting that WHG reasonably tag a European-related ancestral component within the ASH_IA1 individuals.

    We plot the ancestral proportions of the Ashkelon individuals inferred by qpAdm using Iran_ChL, Levant_ChL, and WHG as sources ±1 SEs. P values are annotated under each model. In cases when the three-way model failed (χ2P < 0.05), we plot the fitting two-way model. The WHG ancestry is necessary only in ASH_IA1.

    The best supported one (χ2P = 0.675) infers that ASH_IA1 derives around 43% of ancestry from the Greek Bronze Age “Crete_Odigitria_BA” (43.1 ± 19.2%) and the rest from the ASH_LBA population.

    (…) only the models including “Sardinian,” “Crete_Odigitria_BA,” or “Iberia_BA” as the candidate population provided a good fit (χ2P = 0.715, 49.3 ± 8.5%; χ2P = 0.972, 38.0 ± 22.0%; and χ2P = 0.964, 25.8 ± 9.3%, respectively). We note that, because of geographical and temporal sampling gaps, populations that potentially contributed the “European-related” admixture in ASH_IA1 could be missing from the dataset.

    The transient impact of the “European-related” gene flow on the Ashkelon gene pool

    The ASH_IA2 individuals are intermediate along PC1 between the ASH_LBA ones and the earlier Bronze Age Levantines (Jordan_EBA/Lebanon_MBA) in the west Eurasian PCA (Fig. 2A). Notably, despite being chronologically closer to ASH_IA1, the ASH_IA2 individuals position closer, on average, to the earlier Bronze Age individuals.

    See more information on Y-DNA SNP calls, including ASH067 as R1b-M269 (xL151).

    The transient excess of European-related genetic affinity in ASH_IA1 can be explained by two scenarios. The early Iron Age European-related genetic component could have been diluted by either the local Ashkelon population to the undetectable level at the time of the later Iron Age individuals or by a gene flow from a population outside of Ashkelon introduced during the final stages of the early Iron Age or the beginning of the later Iron Age.

    By modeling ASH_IA2 as a mixture of ASH_IA1 and earlier Bronze Age Levantines/Late Period Egyptian, we infer a range of 7 to 38% of contribution from ASH_IA1, although no contribution cannot be rejected because of the limited resolution to differentiate between Bronze Age and early Iron Age ancestries in this model.

    Hg. R1b-M269 and the Aegean

    I already predicted this relationship of Philistines and Aegeans (Greeks in particular) months ago, based on linguistics, archaeology, and phylogeography, although it was (and still is) yet unclear if these paternal lineages might have come from other nearby populations which might be descended from Common Anatolians instead, given the known intense contacts between Helladic and West Anatolian groups.

    The alternative view: The Sea Peoples can be traced back to the Aegean, so they could also have consisted of Luwian petty kingdoms, who had formed an alliance and attacked Hatti from the south.

    The deduction process for the Greek connection was quite simple:

    Palaeo-Balkan populations

    We know that R1b-Z2103 expanded with Yamna, including West Yamna settlers: they appear in Vučedol, which means they formed part of the earliest expansion waves of Yamna settlers into the Carpathian Basin, and they also appear scattered among Bell Beakers (apart from dominating East Yamna and Afanasevo), which suggests that they were possibly one of the most successful lineages during the late Repin/early Yamna expansion.

    The “Steppe ancestry” associated with I2a-L699 samples among Balkan BA peoples may have also been associated with recent Bronze Age expansions, and this haplogroup’s presence among modern Balkan peoples may also suggest that it expanded with Palaeo-Balkan languages. Nevertheless, we don’t know which specific lineages and “Steppe ancestry” they represent, sadly.

    These samples may well be related to remnants of previous Balkan populations like Cernavodă or Ezero, because there has been no peer-reviewed attempt at distinguishing Khvalynsk-/Novodanilovka- from Sredni Stog- from Yamnaya-related populations (see here), and some groups that are associated with this ancestry, like Corded Ware, are known to be culturally distinct from Yamna.

    In any case, Proto-Greeks from the southern Balkans (say, Sitagroi IV and related groups) are probably going to show, based on Palaeo-Balkan substrate and Pre-Greek substrate and on the available Mycenaean samples, a process of decreasing proportion of R1b-Z2103 lineages relative to local ones, and a relatively similar cline of Yamna:EEF ancestry from northern to southern areas, at least in the periods closest to the Yamna expansion.

    NOTE. The finding of “archaic” R1b-L389 (R1b-V1636) and R1a-M198 subclades among modern Greeks and the likely Neolithic origin of these paternal lineages around the Caucasus suggest that their presence in Greece may be from any of the more recent migrations that have happened between Anatolia and the Balkans, especially during the Common Era, rather than Indo-Anatolian migrations; probably very very recently.

    Bronze Age cultures in the Balkans and the Aegean. See full map including ancient samples with Y-DNA, mtDNA, and ADMIXTURE.

    Minoans and haplogroup J

    In the Aegean, it is already evident that the population changed language partly through cultural diffusion, probably through elite domination of Proto-Greek speakers. Whether that happened before the invasion into the Greek Peninsula or after it is unclear, as we discussed recently, because we only have one reported Y-chromosome haplogroup among Mycenaeans, and it is J (probably continuing earlier lineages).

    Now we have more samples from the so-called Emporion 2 cluster in Olalde et al. (2019), which shows Mycenaean-like eastern Mediterranean ancestry and 3 (out of 3) samples of haplogroup J, which – given the origin of the colony in Phocea – may be interpreted as the prevalence of West Anatolian-like ancestry and lineages in the eastern part of the Aegean (and possibly thus south Peloponnese), in line with the modern situation.

    NOTE. It does not seem likely that those R or R1b-L23 samples from the Emporion 1 cluster are R1b-Z2103, based on their West European-like ancestry, although they still may be, because – as we know – ancestry (unlike haplogroup) changes too easily to interpret it as an ancestral ethnolinguistic marker.

    PCA of ancient samples related to the Aegean, with Minoans, Mycenaeans (including the Emporion 2 cluster in the background) Anatolia N-Ch.-BA and Levantine BA-LBA populations, including Tel Shadud samples. See more PCAs of ancient Eurasian populations.

    Greeks and haplogroup R1b-M269

    Therefore, while the presence of R1b-Z2103 among ancient Balkan peoples connected to the Yamna expansion is clear, one might ask if R1b-Z2103 really spread up to the Peloponnese by the time of the Mycenaean Civilization. That has only one indirect answer, and it’s most likely yes.

    We already had some R1b-Z2103 among Thracians and around the Armenoid homeland, which offers another clue at the migration of these lineages from the Balkans. The distribution of different “archaic” R1b-Z2103 subclades among modern Balkan populations and around the Aegean offered more support to this conclusion.

    But now we have two interesting ancient populations that bear witness to the likely intrusion of R1b-M269 with Proto-Greeks:

    An Ancient Greek of hg. R1b

    A single ancient sample supports the increase in R1b-Z2103 among Greeks during the “Dorian” invasions that triggered the Dark Ages and the phenomenon of the Aegean Sea Peoples. It comes from a Greek lab study, showing R1b1b (i.e. R1b-P297 in the old nomenclature) as the only Y-chromosome haplogroup obtained from the sampling of the Gulf of Amurakia ca. 470-30 BC, i.e. before the Roman foundation of Nikopolis, hence from people likely from Anaktorion in Ancient Acarnania, of Corinthian origin.


    Even with the few data available – and with the caution necessary for this kind of studies from non-established labs, which may be subject to many different kinds of errors – one could argue that the western Greek areas, which received different waves of migrants from the north and shows a higher distribution of R1b-Z2103 in modern times, was probably more heavily admixed with R1b-Z2103 than southern and eastern areas, which were always dominated by Greek-speaking populations more heavily admixed with locals.

    The Dorian invasion and the Greek Dark Ages may thus account for a renewed influx of R1b-Z2103 lineages accompanying the dialects that would eventually help form the Hellenic Koiné. In a sense, it is only natural that demographically stronger populations around the Bronze Age Aegean would suffer a limited (male) population replacement with the succeeding invasions, starting with a higher genetic impact in the north-west and diminishing as they progressed to the south and the east, coupled with stepped admixture events with local populations.

    This would be therefore the late equivalent of what happened at the end of the 3rd millennium BC, with Mycenaeans and their genetic continuity with Minoans.

    Distribution of Pre-Greek place-names ending in -ssos/-ssa or -sos/-sa. See original images and more on the south/east cline distribution of Pre-Greek place-names here.

    Sea peoples of hg. R1b-M269

    Thanks to Wang et al. (2018) supplementary materials we knew that one of the two Levantine LBA II samples from Tel Shadud (final 13th–early 11th c. BC) published in van den Brink (2017) was of hg. R1b-M269 – in fact, the one interpreted as a Canaanite official residing at this site and emulating selected funerary aspects of Egyptian mortuary culture.

    Both analyzed samples, this elite individual and a commoner of hg. J buried nearby, were genetically similar and indistinguishable from local populations, though:

    Principal Components Analysis of L112 and L126 was carried out within the framework described in Lazaridis et al. (2016). This analysis showed that the two individuals cluster genetically, with similar estimated proportions of ancestry from diverse West Eurasian ancestral sources. These results are consistent with the hypothesis that they derive from the same population, or alternatively that they derive from two quite closely related populations.

    We know that ancestry changes easily within a few generations, so there was not much information to go on, except for the fact that – being R1b-M269 – this individual could trace his paternal ancestor at some point to Proto-Indo-Europeans.

    One might think that, because many haplogroups in this spreadsheet were wrong, this is also wrong; nevertheless, many haplogroups are correctly identified by Yleaf, and finding R1b-M269 in the Levant after the expansion of Sea Peoples could not be that surprising, because they were most likely related to populations of the Aegean Sea. Any other related hg. R1b (R1b-M73, R1b-V88, even R1b-V1636) wouldn’t fit as well as R1b-M269.


    However, the early expansion of Proto-Indo-Aryans into the Middle East, as well as the later expansion of Armenians from the Balkans through Anatolia and of West Iranians from the east may have all potentially been related to this sample. But still, the previous linguistic and archaeological theories concerning the Philistines and the expansion of Sea Peoples in the Levant made this sample a likely (originally) Greek “Dorian” lineage, rather than the other (increasingly speculative) alternatives.

    In any case, it was obvious to anyone – that is, to anyone with a minimum knowledge of how population genomics works – that just the two samples from van den Brink (2017) couldn’t be used to get to any conclusions about the ancestral origin of these individuals (or their differences) beyond Levantine peoples, because their ancestry was essentially (i.e. statistically) the same as the other few available ancient samples from nearby regions and similar periods.

    If anything, the PCA suggested an origin of the R1b sample closer to Aegean populations relative to the J individual (see PCA above), and this should have been supported also by amateur models, without any possible confirmation (as with the ASH_IA2 cluster in this paper). However, if you have followed online discussions of Tel Shadud R1b-M269 sample since it was mentioned first on Eupedia months ago – including another wave of misguided speculation based on the ancestry of both individuals triggered by a discussion on this blog -, you have once more proof of how misleading ancestry analyses can be in the wrong hands.

    NOTE. This is the Nth proof (and that only in 2019) of how it’s best to just avoid amateur analyses and interpretations altogether, as I did in the recent publication of the books. All those who didn’t take into account whatever was commented about the ancestry of these samples haven’t lost a single bit of relevant information on Levantine peoples, and have had more time for useful reads, compared to those dedicated to endless void speculation, once again gone awfully wrong, as does everything related to cocky ancient DNA crackpottery 😉

    Late Bronze Age population movements in the Eastern Mediterranean and the Middle East. See full map including ancient DNA samples with Y-DNA, mtDNA, and ADMIXTURE.

    Admittedly, though, even accepting the evident Mediterranean origin of this lineage, one could have argued that this sample may have been of R1b-L151 subclade, if one were inclined to support the theory that Italic peoples were behind Sea Peoples expanding east – and consequently that the ancestors of Etruscans had migrated eastward into the Aegean (e.g. into Lemnos), so that it could be asserted that Tyrsenian might have been a remnant language of an ancient population of northern Italy.


    Fortunately, some of the samples recovered in Feldman et al. (2019) that could be analyzed (those of the cluster ASH_IA1) offer a very specific time frame where European ancestry appeared (ca. 1250 BC) before it subsequently became fully diluted (as seen in cluster ASH_IA2) among the prevalent Levantine ancestry of the area.

    Also fortunately, this precise cluster shows another R1b-M269 sample, likely R1b-Z2103 (because it is probably xL151), and this sample together with others from the same cluster prove that the ancestry related to the original southern European incomers was:

    1. Recent, related thus to LBA population movements, as expected; and
    2. More closely related to coeval Aegeans, including Mycenaeans with Steppe-related ancestry.

    NOTE. I say “fortunately” because, as you can imagine if you have dealt with amateurish discussions long enough, without this cluster with evident Aegean ancestry and the R1b-M269 (Z2103) sample precisely associated to it, some would enter again in endless comment loops created by ancestry magicians, showing how Aegean peoples were not behind Sea Peoples, or not behind Philistines, or not behind the R1b-M269 among Philistines, depending on their specific agendas.

    Map of the Sea People invasions in the Aegean Sea and Eastern Mediterranean at the end of the Late Bronze Age (blue arrows).. Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows. From Kaniewski et al. (2011). Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows.

    The results of the paper don’t solve the question of the exact origin of all Sea Peoples (not even that of Philistines), but it is quite clear that most of those forming this seafaring confederation must have come from sites around the Aegean Sea. This supports thus the traditional origin attributed to them, including a hint at the likely expansion of Eastern Mediterranean ancestry and lineages into the Italian Peninsula precisely from the Aegean, as some oral communications have already disclosed.

    As an indirect conclusion from the findings in this paper, then, we can now more confidently support that Tyrsenian speakers most likely expanded into the Appenines and the Alps originally from a Tyrsenian-speaking LBA population from Lemnos, due to the social unrest in the whole Aegean region, and might have become heavily admixed with local Italic peoples quite quickly, as it happened with Philistines, resulting in yet another case of language expansion through (the simplistically called) elite domination.


    Even more interesting than these specific findings, this paper confirms yet another hypothesis based on phylogeography, and proves once again two important starting points for ancient DNA interpretation that I have discussed extensively in this blog:

    • The rare R1b-M269 Y-chromosome lineage of Tel Shadud offered ipso facto the most relevant clue about the ancestral geographical origin of this Canaanite elite male’s paternal family, most likely from the north-west based on ancient phylogeography, which indirectly – in combination with linguistics and archaeology – supported the ancestral ethnolinguistic identification of Philistines with the Aegean and thus with (a population closest to) Ancient Greeks.
    • Ancestry analyses are often fully unreliable when assessing population movements, especially when few samples from incomplete temporal-geographical transects are assessed in isolation, because – unlike paternal (and maternal) haplogroups – ancestry might change fully within a few generations, depending on the particular anthropological setting. Their investigation is thus bound by many limitations – of design, statistical, and anthropological (i.e. archaeological and linguistic) – which are quite often not taken into account.

    These cornerstones of ancient DNA interpretation have been already demonstrated to be valid not only for Levantine populations, as in this case, but also for Balkan peoples, for Bell Beakers, for steppe populations (like Khvalynsk, Sredni Stog, Yamna, Corded Ware), for Basques, for Balto-Slavs, for Ugrians and Samoyeds, and for many other prehistoric peoples.

    I rest my case.


    Yamna the likely source of modern horse domesticates; the closest lineage, from East Bell Beakers

    Open access Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series, by Fages et al. Cell (2019).

    Interesting excerpts (emphasis mine):

    The earliest archaeological evidence of horse milking, harnessing, and corralling is found in the ∼5,500-year-old Botai culture of Central Asian steppes (Gaunitz et al., 2018, Outram et al., 2009; see Kosintsev and Kuznetsov, 2013 for discussion). Botai-like horses are, however, not the direct ancestors of modern domesticates but of Przewalski’s horses (Gaunitz et al., 2018). The genetic origin of modern domesticates thus remains contentious, with suggested candidates in the Pontic-Caspian steppes (Anthony, 2007), Anatolia (Arbuckle, 2012, Benecke, 2006), and Iberia (Uerpmann, 1990, Warmuth et al., 2011). Irrespective of the origins of domestication, the horse genome is known to have been reshaped significantly within the last ∼2,300 years (Librado et al., 2017, Wallner et al., 2017, Wutke et al., 2018). However, when and in which context(s) such changes occurred remains largely unknown.

    To clarify the origins of domestic horses and reveal their subsequent transformation by past equestrian civilizations, we generated DNA data from 278 equine subfossils with ages mostly spanning the last six millennia (n = 265, 95%) (Figures 1A and 1B; Table S1; STAR Methods). Endogenous DNA content was compatible with economical sequencing of 87 new horse genomes to an average depth-of-coverage of 1.0- to 9.3-fold (median = 3.3-fold; Table S2). This more than doubles the number of ancient horse genomes hitherto characterized. With a total of 129 ancient genomes, 30 modern genomes, and new genome-scale data from 132 ancient individuals (0.01- to 0.9-fold, median = 0.08-fold), our dataset represents the largest genome-scale time series published for a non-human organism (Tables S2, S3, and S4; STAR Methods).

    Genetic Affinities.
    Principal Component Analysis (PCA) of 159 ancient and modern horse genomes showing at least 1-fold average depth-of-coverage. The overall genetic structure is shown for the first three principal components, which summarize 11.6%, 10.4% and 8.2% of the total genetic variation, respectively. The two specimens MerzlyYar_Rus45_23789 and Dunaujvaros_Duk2_4077 discussed in the main text are highlighted. See also Figure S7 and Table S5 for further information.
    (B) Visualization of the genetic affinities among individuals, as revealed by the struct-f4 algorithm and 878,475 f4 permutations. The f4 calculation was conditioned on nucleotide transversions present in all groups, with samples were grouped as in TreeMix analyses (Figure 3). In contrast to PCA, f4 permutations measure genetic drift along internal branches. They are thus more likely to reveal ancient population substructure.

    Discovering Two Divergent and Extinct Lineages of Horses

    Domestic and Przewalski’s horses are the only two extant horse lineages (Der Sarkissian et al., 2015). Another lineage was genetically identified from three bones dated to ∼43,000–5,000 years ago (Librado et al., 2015, Schubert et al., 2014a). It showed morphological affinities to an extinct horse species described as Equus lenensis (Boeskorov et al., 2018). We now find that this extinct lineage also extended to Southern Siberia, following the principal component analysis (PCA), phylogenetic, and f3-outgroup clustering of an ∼24,000-year-old specimen from the Tuva Republic within this group (Figures 3, 5A and S7A). This new specimen (MerzlyYar_Rus45_23789) carries an extremely divergent mtDNA only found in the New Siberian Islands some ∼33,200 years ago (Orlando et al., 2013) (Figure 6A; STAR Methods) and absent from the three bones previously sequenced. This suggests that a divergent ghost lineage of horses contributed to the genetic ancestry of MerzlyYar_Rus45_23789. However, both the timing and location of the genetic contact between E. lenensis and this ghost lineage remain unknown.

    Population modeling of the demographic changes and admixture events in extant and extinct horse lineages. The two models presented show best fitting to the observed multi-dimensional SFS in momi2. The width of each branch scales with effective size variation, while colored dashed lines indicate admixture proportions and their directionality. The robustness of each model was inferred from 100 bootstrap pseudo-replicates. Time is shown in a linear scale up to 120,000 years ago and in a logarithmic scale above.

    Modeling Demography and Admixture of Extinct and Extant Horse Lineages

    Phylogenetic reconstructions without gene flow indicated that IBE differentiated prior to the divergence between DOM2 and Przewalski’s horses (Figure 3; STAR Methods). However, allowing for one migration edge in TreeMix suggested closer affinities with one single Hungarian DOM2 specimen from the 3rd mill. BCE (Dunaujvaros_Duk2_4077), with extensive genetic contribution (38.6%) from the branch ancestral to all horses (Figure S7B).This, and the extremely divergent IBE Y chromosome (Figure 6B), suggest that a divergent but yet unidentified ghost population could have contributed to the IBE genetic makeup.

    Rejecting Iberian Contribution to Modern Domesticates

    The genome sequences of four ∼4,800- to 3,900-year-old IBE specimens characterized here allowed us to clarify ongoing debates about the possible contribution of Iberia to horse domestication (Benecke, 2006, Uerpmann, 1990, Warmuth et al., 2011). Calculating the so-called fG ratio (Martin et al., 2015) provided a minimal boundary for the IBE contribution to DOM2 members (Cahill et al., 2013) (Figure 7A). The maximum of such estimate was found in the Hungarian Dunaujvaros_Duk2_4077 specimen (∼11.7%–12.2%), consistent with its TreeMix clustering with IBE when allowing for one migration edge (Figure S7B). This specimen was previously suggested to share ancestry with a yet-unidentified population (Gaunitz et al., 2018). Calculation of f4-statistics indicates that this population is not related to E. lenensis but to IBE (Figure 7B; STAR Methods). Therefore, IBE or horses closely related to IBE, contributed ancestry to animals found at an Early Bronze Age trade center in Hungary from the late 3rd mill. BCE. This could indicate that there was long-distance exchange of horses during the Bell Beaker phenomenon (Olalde et al., 2018). The fG minimal boundary for the IBE contribution into an Iron Age Spanish horse (ElsVilars_UE4618_2672) was still important (~9.6%–10.1%), suggesting that an IBE genetic influence persisted in Iberia until at least the 7th century BCE in a domestic context. However, fG estimates were more limited for almost all ancient and modern horses investigated (median = ~4.9%–5.4%; Figure 7A).

    TreeMix Phylogenetic Relationships. The tree topology was inferred using a total of ∼16.8 million transversion sites and disregarding migration. The name of each sample provides the archaeological site as a prefix, and the age of the specimen as a suffix (years ago). Name suffixes (E) and (A) denote European and Asian ancient horses, respectively. See Table S5 for dataset information. Image modified to include the likely ancestor of domesticates in a red circle, represented by Yamna, the most likely direct ancestor of the Dunaujvarus specimen.

    Iron Age horses

    Y chromosome nucleotide diversity (π) decreased steadily in both continents during the last ∼2,000 years but dropped to present-day levels only after 850–1,350 CE (Figures 2B and S2E; STAR Methods). This is consistent with the dominance of an ∼1,000- to 700-year-old oriental haplogroup in most modern studs (Felkel et al., 2018, Wallner et al., 2017). Our data also indicate that the growing influence of specific stallion lines post-Renaissance (Wallner et al., 2017) was responsible for as much as a 3.8- to 10.0-fold drop in Y chromosome diversity.

    We then calculated Y chromosome π estimates within past cultures represented by a minimum of three males to clarify the historical contexts that most impacted Y chromosome diversity. This confirmed the temporal trajectory observed above as Byzantine horses (287–861 CE) and horses from the Great Mongolian Empire (1,206–1,368 CE) showed limited yet larger-than-modern diversity. Bronze Age Deer Stone horses from Mongolia, medieval Aukštaičiai horses from Lithuania (C9th–C10th [ninth through the tenth centuries of the Common Era]), and Iron Age Pazyryk Scythian horses showed similar diversity levels (0.000256–0.000267) (Figure 2A). However, diversity was larger in La Tène, Roman, and Gallo-Roman horses, where Y-to-autosomal π ratios were close to 0.25. This contrasts to modern horses, where marked selection of specific patrilines drives Y-to-autosomal π ratios substantially below 0.25 (0.0193–0.0396) (Figure 2A). The close-to-0.25 Y-to-autosomal π ratios found in La Tène, Roman, and Gallo-Roman horses suggest breeding strategies involving an even reproductive success among stallions or equally biased reproductive success in both sexes (Wilson Sayres et al., 2014).

    Lineage is used in this paper, as in many others in genetics, as defined by a specific ancestry. I keep that nomenclature below. It should not be confused with the “lineages” or “lines” referring to Y-chromosome (or mtDNA) haplogroups.

    Supporting the “archaic” nature of the Hungarian BBC horses expanding from the Pontic-Caspian steppes are:

    • Among Y-chromosome lines, the common group formed by Botai-Borly4 (closely related to DOM2), Scythian horses from Aldy Bel (Arzhani), Iron Age horses from Estonia (Ridala), horses from the Xiongnu culture (Uushgiin Uvur), and Roman horses from Autricum (Chartres).
    • Among mtDNA lines, the common group formed by Botai samples, LebyazhinkaIV NB35, and different Eurasian domesticates, including many ancient Western European ones, which reveals a likely expansion of certain subclades east and west with the Repin culture.
    • (…) DOM2 contributed 22% to the ancestor of Przewalski’s horses ca. 9.47 kya, suggesting the Holocene optimum, rather than the Eneolithic Botai culture (∼5.5 kya), as a period of population contact. This pre-Botai introgression could explain the Y chromosome topology, where Botai horses were reported to carry two different segregating haplogroups: one occupied a basal position in the phylogeny while the other was closely related to DOM2. Multiple admixture pulses, however, are known to have occurred along the divergence of DOM2 and the Botai-Borly4 lineage, including 2.3% post-Borly4 contribution to DOM2, and a more recent 6.8% DOM2 intogression into Przewalski’s horses (Gaunitz et al., 2018). Model C2 parameters accommodate all these as a single admixture pulse, likely averaging the contributions of all these multiple events.

      Tip labels are respectively composed of individual sample names, their reference number as well as their age (years ago, from 2017). Red, orange, light green, green, dark green and blue refer to modern horses, ancient DOM2, Botai horses, Borly4 horses, Przewalski’s horses and E. lenensis, respectively. Black refers to wild horses not yet identified to belong to any particular cluster in absence of sufficient genome-scale data. Clades composed of only Przewalski’s horses or ancient DOM2 horses were collapsed to increase readability.

      (A) Best maximum likelihood tree retracing the phylogenetic relationships between 270 mitochondrial genomes.

      B) Best Y chromosome maximum likelihood tree (GTRGAMMA substitution model) excluding outgroup. Node supports are indicated as fractions of 100 bootstrap pseudoreplicates. Bootstrap supports inferior to 90% are not shown. The root was placed on the tree midpoint. See also Table S5 for dataset information.

      Image modified from the paper, including a red square in archaic groups that contain the Hungarian sample, and a red circle around the most likely common ancestral stallion and mare from the Pontic-Caspian steppes.

      The paper cannot offer a detailed picture of ancient horse domestication, but it is yet another step in showing how Repin/Yamna is the most likely source of expansion of horse domesticates in Eurasia. Even more interestingly, Yamna settlers in Hungary probably expanded an ancient lineage of that horse at the same time as they spread with the Classical Bell Beaker culture. Remarkable parallels are thus found between:

      The expansion of an ancient line of horse domesticates related to Yamna Hungary/East Bell Beakers seems to be confirmed by the pre-Iberian sample from Vilars I, Els Vilars4618 2672 (ca. 700-550 BC), likely of Iberian Beaker descent, showing a lineage older than the Indo-Iranian ones, which later replaced most European lines.

      NOTE. For known contacts between Yamna and Proto-Beakers just before the expansion of East Bell Beakers, see a recent post on Vanguard Yamna groups.

      The findings of the paper confirm the expansion of the horse firstly (and mainly) through the steppe biome, mimicking the expansion of Proto-Indo-Europeans first, and then replaced gradually (or not so gradually) by lines brought to Europe during westward expansions of Bronze Age, Iron Age, and later specialized horse-riding steppe cultures. The expansion also correlates well with the known spread of animal traction and pastoralism before 2000 BC:

      Top image: Map with evidence of animal traction before ca. 2000 BC. Bottom image: frequency of finds of evidence for animal traction (orange), cylinder seals (purple) and potter’s wheels (green) in the 4th and 3rd millennium BC (query from the Digital Atlas of Innovations). The data points to an early peak in the expansion of this innovation at the turn of the 4th–3rd millennium BC, while direct evidence supports a radical increase from around the mid–3th millennium BC until the early 2nd millennium, coinciding with the expansion of East Bell Beakers and related European Early Bronze Age cultures. Data and image modified from Klimscha (2017).

      EDIT (3 MAY 2019): A recent reminder of these parallel developments by David Reich in Insights into language expansions from ancient DNA:

      • Yamna expansion to the west “with horses and wagons”, with a more homogeneous ancestry in modern Europeans due to later migrations from the east (and north):
      • “Descendants” of Yamna (once the culture was already “dead”), expanding to the east mainly with Corded Ware ancestry:

      Another recent open access paper on horse domestication is The horse Y chromosome as an informative marker for tracing sire lines, by Felkel et al. Scientific Reports (2019).


    R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

    Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

    Avars of haplogroup N1c-Tat

    Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

    Interesting excerpts (emphasis mine):

    After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

    Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

    The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

    Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

    Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

    A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

    Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

    Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

    EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

    One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

    Apparently, then, results are consistent with what was already known from studies of modern populations:

    According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

    Geographic-Distribution Map of hg N3 from Ilumäe et al.

    Finno-Ugrians share haplogroup R1a-Z280

    Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

    Interesting excerpts (emphasis mine):

    Y‑chromosome diversity

    The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

    In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

    Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

    Genetic structure

    (..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

    Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

    Phylogenetic analysis

    Median-joining networks were constructed for:

    N-P43 (earlier N1b):

    (…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.


    (…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

    Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

    R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

    The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

    Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

    R1a-Z93 as isolated lineages among Permic and Ugric populations:

    Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

    Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
    16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)


    The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

    EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

    On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

    I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

    Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

    Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

    Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.


    Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

    ❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

    ✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

    ❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

    ✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

    ❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

    ✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

    Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

    Another true story whose rejection in genetics could not be predicted, like, not at all.

    Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.