The expansion of Indo-Europeans in Y-chromosome haplogroups

yamnaya-corded-ware-y-dna-haplogroups

I have been playing around a little more with GIS tools and haplogroups, and I managed to get some interesting outputs.

I made a video with a timeline of the evolution of Indo-European speakers, according to what is known today about reconstructed languages, prehistoric cultures and ancient DNA:

yamnaya-expansion

NOTE. The video is best viewed in HD 1080p (1920×1080) with a display that allows for this or greater video quality, and a screen big enough to see haplogroup symbols, i.e. tablet or greater. The YouTube link is here. The Facebook link is here.

Based on the results of the past 5 years or so, which have been confirming this combined picture every single time, I doubt there will be much need to change it in any radical way, as only minor details remain to be clarified.

Haplogroup maps

I wanted to publish a GIS tool of my own for everyone to have an updated reference of all data I use for my books.

The most complex GIS tools consume too many resources when used online in a client-server model, so I have to keep that to myself, but there are some ways to publish low quality outputs.

The files below include the possibility to zoom some levels to be able to see more samples, and also to check each one for more information on their ID, attributed culture and label, archaeological site, source paper, subclade (and people responsible for SNP inferences if any), etc.

Some usage notes:

  • Files are large (ca. 20 Mb), so they still take some time to load.
  • For the meaning of symbols and colors (for Y-DNA haplogroups), if there is any doubt, check the video above.
  • Pop-ups with sample information will work on desktop browsers by clicking on them, apparently not on smartphone and related tactile OS. I have changed the settings to show pop-ups on hover, so that it now works (to some extent) on tactile OS.
  • The search tool can look for specific samples according to their official ID, and works by highlighting the symbol of the selected individual (turning it into a bright blue dot), and leading the layer view to the location, but it seems to work best only with some browser and OS settings – in other browsers, you need to zoom out to see where the dot is located. The specific sample with its information could paradoxically disappear in search mode, so you might need to reload and look again for the same site that was highlighted.
  • Latitude and longitude values have been randomly modified to avoid samples overcrowding specific sites, so they are not the original ones.

Y-DNA

There are three versions:

  1. Labels with more specific subclades (including negative SNPs), using YTree for R1b samples (whenever it conflicts with YFull).
  2. Labels with YFull nomenclature.
  3. Simbols without labels (more symbols visible per layer).

y-dna-haplogroups

mtDNA

There are two versions:

  1. Symbols with labels.
  2. Symbols without labels.

NOTE. Because there are too many samples at the starting view, depending on the file you should zoom some levels to start seeing symbols.

mtdna-haplogroups

ADMIXTURE

I have tried running supervised ADMIXTURE models by selecting distant populations based on PCA and qpAdm results, but it seems to work fine only for a small K number, being easily improved when running it unsupervised.

Adding distant populations seems to improve or mess up with the results in unpredictable ways, too, so at this point I doubt ADMIXTURE (or anything other than qpAdm) is actually useful to obtain anything precise in terms of ancestry evolution, although it can give a good overall idea of rough ancestry changes, if K is kept small enough.

Anyway, I will keep trying to find a simple way to show the actual evolution and expansion of “Steppe ancestry”. Since every single run for thousands of samples takes days, I don’t really know if and when I will find something interesting to show…

See also

“Steppe ancestry” step by step (2019): Mesolithic to Early Bronze Age Eurasia

yamnaya-gac-maykop-corded-ware-bell-beaker

The recent update on the Indo-Anatolian homeland in the Middle Volga region and its evolution as the Indo-Tocharian homeland in the Don–Volga area as described in Anthony (2019) has, at last, a strong scientific foundation, as it relies on previous linguistic and archaeological theories, now coupled with ancient phylogeography and genomic ancestry.

There are still some inconsistencies in the interpretation of the so-called “Steppe ancestry”, though, despite the one and a half years that have passed since we first had access to the closest Pontic–Caspian steppe source populations. Even my post “Steppe ancestry” step by step from a year ago is already outdated.

Admixture

The population selection process for models shown below included (1) plausibility of potential influences in the particular geographic and archaeological context; (2) looking for their clusters or particular samples in the PCA; and (3) testing with qpAdm for potential source populations that might have been involved in their development.

The results and graphics posted are therefore intended to simplistically show potential admixture events between populations potentially close to the actual sources of the target samples, whenever such mating networks could be supported by archaeology.

NOTE. This is an informal post and I am not a geneticist, so I am turning this flexibility to my advantage. If any reader is – for some strange reason – looking for a strict hypothesis testing, for the use of a full set of formal stats (as used e.g. in Ning et al. 2019 for Proto-Tocharians), and correctly redacted and peer-reviewed text, this is not the right place to find them.

spatial-pedigree-geographic-admixture
An example pedigree (a) of a focal individual sampled in the modern day, placed in its geographic context to make the spatial pedigree (b). Dashed lines denote matings, and solid lines denote parentage, with red hues for the maternal ancestors and blue hues for the paternal ancestors. In the spatial pedigree, each plane represents a sampled region in a discrete (nonoverlapping) generation, and each dot shows the birth location of an individual. The pedigree of the focal individual is highlighted back through time and across space. Image modified from Bradburd and Ralph (2019).

Despite the natural impulse to draw straight mixture trajectories (see e.g. Wang et al. 2019), simply adding or subtracting samples used for a PCA shows how the plot is affected by different variables (see e.g. what happens by including more South Asian samples to the PCA below), hence the need to draw curved arrows – not necessarily representing a sizable drift; at least not in recent prehistoric admixture events for which we have a reasonable chronological transect.

reich-arrows-admixture-neolithic-bronze-age
Representation of mixture events between European prehistoric peoples in the PCA. Image modified from David Reich‘s Who We Are and How We Got Here (2018).

Ethnolinguistic identification is a risky business that brings back memories of an evil use of cultural history and its consequences (at least in Western Europe, where this tradition was discontinued after WWII), but it seems necessary for those of us who want to find some confirmation of proposed dialectal schemes and language contacts.

Eneolithic Steppe vs. Steppe Maykop

First things first: I tested Bronze Age Eurasian peoples for the only two true steppe populations sampled to date, as potential sources of their “Steppe ancestry” – conventionally described as an EHG:CHG admixture, similar to that found in the first sampled Yamnaya individuals. I used the rightpops of Wang et al. (2018), but with a catch: since authors used WHG as a leftpop and Villabruna as a rightpop, and I find that a little inconsequential*, I preferred the strategy in Ning et al. (2019), contrasting as outgroup Eneolithic_Steppe (ca. 4300 BC) vs. Steppe_Maykop (ca. 3500 BC) when testing for WHG as a source population.

*WHG usually includes samples from a ‘western’ cluster (Loschbour and La Braña) and an ‘eastern’ cluster (Villabruna and Koros), see Lipson et al. (2017). Therefore, it doesn’t make much sense to include the same (or a very similar) population as a source AND an outgroup.

NOTE. For all other qpAdm analyses below, where WHG was not used as leftpop, I have used Villabruna as rightpop following Wang et al. (2019).

greater-caucasus-steppe-ancestry
Map of samples and sites mentioned in Wang et al. (2019), modified from the original to include labels of Eneolithic_Steppe and Steppe_Maykop samples. See PCA and ADMIXTURE grahpic for the identification of specific samples.

Results are not much different from what has been reported. In general, Yamnaya and related groups such as Bell Beakers and Steppe-related Chalcolithic/Bronze Age populations show good fits for Eneolithic_Steppe as their closest source for Steppe ancestry, and bad fits for Steppe_Maykop, whereas Corded Ware groups show the opposite, supporting their known differences.

This trend seems to be tempered in some groups, though, most likely due the influence of Samara_LN-like admixture in Circum-Baltic Late Neolithic and Eastern Corded Ware groups, and the influence of Anatolia_N/EEF-like admixture in Balkan and late European CWC or BBC groups. In fact, the more EEF-related ancestry in a populatoin, the less reliable these generic models (and even specific ones) seem to become when distinguishing the Steppe-related source.

NOTE. For more on this, see the discussion on Circum-Baltic Corded Ware peoples, and the discussion on Mycenaeans and their potential source populations.

These are just broad strokes of what might have happened around the Pontic–Caspian steppes before and during the Early Bronze Age expansions. The most relevant quest right now for Indo-European studies is to ascertain the chain of admixture events that led to the development and expansion of Indo-Uralic and its offshoots, Indo-European and Uralic.

mesolithic-eastern-europe-post-swiderian
Eastern European Mesolithic with the expansion of Post-Swiderian cultures. See full map.

A history of Steppe ancestry

This post is divided in (more or less accurate) chronological developments as follows:

  1. Hunter-gatherer pottery and the steppes
  2. Khvalynsk and Sredni Stog
  3. Post-Stog and Proto-Corded Ware
  4. Yamnaya and Afanasievo

1. Hunter-gatherer pottery and the steppes

I laid out in the ASOSAH book series the general idea – based on attempts to reconstruct the linguistic ancestor of Indo-Uralic – that Eurasiatic speakers might have expanded with the North-Eastern Techno-Complex that spread through north-eastern Europe during the warm period represented by the transition of the Palaeolithic to the Mesolithic.

If one were to trust the traditional migrationist view, a post-Swiderian population expanded from central-eastern Europe (potentially related originally to Epi-Gravettian peoples, represented by WHG ancestry) into north-eastern Europe, and then further east into the Trans-Urals, to then reappear in eastern Europe as a back-migration represented by the spread of hunter-gatherer pottery.

The marked shift from WHG-like towards EHG-related ancestry from Baltic Mesolithic (ca. 30%) to Combed Ware cultures (ca. 65%-100%) supports this continuous westward expansion, that is possibly best represented in the currently available sampling by the ‘south-eastern’ shift (CHG:ANE-related) of the hunter-gatherer from Lebyazhinka IV (5600 BC) relative to the older one from Sidelkino (9300 BC), both from the Samara region in the Middle Volga:

Mesolithic-Neolithic transition ca. 7000-6000 BC, with hunter-gatherer pottery groups spreading westwards. See full map.

From Anthony (2019):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair-Shak III and Varfolomievka, they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

Given the lack of a proper geographical and chronological transect of ancient DNA from eastern European groups, and the discontinuous appearance of both R1b-M73 and R1b-M269 lineages on both sides of the Urals within the WHG:ANE cline, where EHG appears to have formed, it is impossible at this point to assert anything with enough degree of certainty. For simplicity purposes, though, I risked to equate the expansion of R1b-M73 in West Siberia as potentially associated with Micro-Altaic, and the expansion of hg. R1b-M269 with the spread of Indo-Uralic on both sides of the Urals.

NOTE. For incrementally speculative associations of languages with prehistoric cultures and their potential link to ancestry ± haplogroup expansions, you can check sections on Early Indo-Europeans and Uralians, Indo-Uralians, Altaic peoples, Eurasians, or Nostratians. I explained why I made these simplistic choices here.

While this identification of the Indo-Uralic expansion with hg. R1b is more or less straightforward for the Cis-Urals, given the available ancient DNA samples, it will be very difficult (if at all possible) to trace the migration of these originally R1b-M269-rich populations into Trans-Uralian groups that could eventually be linked to Yukaghir speakers. The sheer number of potential admixture events and bottlenecks in Siberian forest, taiga, and tundra regions since the Mesolithic until Yukaghirs were first attested is guaranteed to give more than one headache in upcoming years…

neolithic-steppes-samara-mariupol
Spread of hunter-gatherer pottery in eastern Europe ca. 6000-5000 BC. See full map.

The slight increase in WHG-related ancestry in Ukraine Neolithic groups relative to Mesolithic ones questions the arrival of this eastern influence in the north Pontic area, or at least its relevance in genomic terms, although the cluster formed is similar to the previous one and to Combed Ware groups – despite the Central European and Baltic influences in the north Pontic region – with some samples showing 0% change relative to Mesolithic groups.

ukraine-samara-mesolithic-neolithic-evolution
Structure and change in hunter-gatherer-related populations, from Mathieson et al. (2018). Inferred ancestry proportions for populations modelled as a mixture of WHG, EHG and CHG. Dashed lines show populations from the same geographic region. Percentages indicate proportion of WHG + EHG ancestry. Standard errors range from 1.5 to 8.3%.

NOTE. For more on Indo-Uralic and its reconstruction from a linguistic point of view, check out its dedicated section on ASOSAH, or the recently published (behind paywall) The Precursors of Proto-Indo-European, edited by Kloekhorst and Pronk, Brill (2019). Authors of specific chapters have posted their contributions to Academia.edu, where they can be downloaded for free.

2. Khvalynsk and Sredni Stog

The cluster formed by the three available samples of the Khvalynsk culture (early 5th millennium BC) might be described, as expected from its position in the PCA, as a mixture of EHG-like populations of the Middle Volga with CHG-like ancestry close to that represented by samples from Progress-2 and Vonyuchka, in the North Caucasus Piedmont (ca. 4300 BC):

This variable CHG-like admixture shown in the wide cluster formed by the available Khvalynsk-related samples support the interpretation of a recently created CHG mating network in Anthony (2019):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

steppe-ancestry-pca-neolithic-khvalynsk
Detail of the PCA of Eurasian samples, including Neolithic clusters with the hypothesized gene flows related to (1) the formation and (2) expansion of Khvalynsk and the (3) emergence of late Sredni Stog. See full image.

The richest copper assemblage found in all Khvalynsk burials belongs to an individual of hg. R1b-V1636 and intermediate Samara_HG:Eneolithic_Steppe ancestry, while full Eneolithic_Steppe-like admixture in the Middle Volga is represented by the commoner of Khvalynsk II, of hg. Q1. The finding of hg. R1b-V1636 in the North Caucasus Piedmont – and R1b-P297 in the Samara region (probably including Yekaterinovka) begs the question of the origin of hg. R1b-V1636 in the Khvalynsk community. Based on its absence in ancient samples from the forest zone, it is tempting to assign it to steppe hunter-gatherers down the Lower Volga and possibly to the east of it, who infiltrated the Samara region precisely during these population movements described by Anthony (2019).

Suvorovo-related samples from the Balkans, including the Varna and Smyadovo outliers of Steppe ancestry, are closely related to the Khvalynsk expansion:

Similarly, the ancestry of late Sredni Stog samples from Dereivka seem to be directly related to the expansion of Mariupol-like individuals over populations of Suvorovo-Novodanilovka-like admixture, as suggested by the resurgence of typical Ukraine Neolithic haplogroups, the shift in the PCA, and the models of Eneolithic_Steppe vs. Steppe_Maykop above:

#EDIT (11 Nov 2019): In fact, the position of the unpublished Greece_Neolithic outlier that appeared in the Wang et al. (2018) preprint (see full PCA and ADMIXTURE) show that the expanding Suvorovo chiefs from the Balkans formed a tight cluster close to the two published outliers with Steppe ancestry from Bulgaria.

The Ukraine_Neolithic outlier, possibly a Novodanilovka-related sample suggests, based on its position in the PCA close to the late Trypillian outlier of Steppe-related ancestry, that Ukraine_Eneolithic samples from Dereivka are a mixture of Ukraine_Neolithic and a Novodanilovka-like community similar to Suvorovo.

The Trypillian_Eneolithic-like admixture found among Proto-Corded Ware peoples (see below) would then feature potentially a small Steppe_Eneolithic-like component already present in the north Pontic area, too.

pca-suvorovo-novodanilovka-khvalynsk-trypillia-greece-ukraine-neolithic-outlier
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Furthermore, whereas Anthony (2019) mentions a long-lasting predominance of hg. R1b in elite graves of the Eneolithic Volga basin, not a single sample of hg. R1a is mentioned supporting the community formed by the Alexandria individual, supposedly belonging to late Sredni Stog groups, but with a Corded Ware-like genetic profile (suggesting yet again that it is possibly a wrongly dated sample).

NOTE. A lack of first-hand information rather than an absence of R1a-M417 samples in the north Pontic forest-steppes would not be surprising, since Anthony is involved in the archaeology of the Middle Volga, but not in that of the north Pontic area.

eneolithic-pontic-caspian-steppe-khvalynsk-novodanilovka-suvorovo
Khvalynsk expansion through the Pontic–Caspian steppes in the early 5th millennium BC. See full map.

3. Post-Stog and Proto-Corded Ware

The origin of the Pre-Corded Ware ancestry is still a mystery, because of the heterogeneity of the sampled groups to date, and because the only ancestral sample that had a compatible genetic profile – I6561 from Alexandria – shows some details that make its radiocarbon date rather unlikely.

The most likely explanation for the closest source population of Corded Ware groups, found in the three core samples of Steppe_Maykop and in Trypillian Eneolithic samples from the first half of the 4th millennium BC, is still that a population of north Pontic forest-steppe hunter-gatherers hijacked this kind of ancestry, that was foreign to the north Pontic region before the Late Eneolithic period, later expanding east and west through the Podolian–Volhynian upland, due to the complex population movements of the Late Eneolithic.

NOTE. The idea of Trypillia influencing the formation of the Steppe_MLBA ancestry proper of Uralic peoples has been around for quite some time already, since the publication of Narasimhan et al. (2018) (see here or here).

steppe-ancestry-pca-corded-ware-bronze-age
Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers, with hypothesized gene flows related to the (1) formation and (2) initial expansion of Pre-Corded Ware ancestry, as well as (3) later regional admixture events. See full image.

The specifics of how the Proto-Corded Ware community emerged remain unclear at this point, despite the simplistic description by Rassamakin (1999) of the Late Eneolithic north Pontic population movements as a two-stage migration of 1) late Trypillian groups (Usatovo) west → east, and (2) Late Maykop–Novosvobodnaya east → west. So, for example, Manzura (2016) on the Zhivotilovka “cultural-historical horizon” (emphasis mine):

Indeed, the very complex combination of different cultural traits in the burial sites of the Zhivotilovka type is able to generate certain problems in the search for the origins of this phenomenon. The only really consistent attribute is the burial rite in contracted position on the left or right side. Yu. Rassamakin is correct in asserting that this position of the deceased can be considered as new in the North Pontic region (Rassamakin 1999, 97). However, this opinion can be accepted only partially for the territory between Dniester and Lower Don. This position is well known in the Usatovo culture in the Northwest Pontic region, although skeletons on the right side are evidenced there only in double burials, whereas single burials contain the deceased only in a contracted position on the left side. On the other hand, the southern and western orientation of the deceased, which is one of the main burial traits of the Zhivotilovka type, is not characteristic of the Usatovo culture. Nevertheless, it is possible to suppose that at least part of the Usatovo population could have played a part in the formation of the cultural type under consideration here. One aspect of this cultural tradition, for instance, could be represented by skeletons on the left side and oriented in north-eastern and eastern directions.

Especially close ties can be traced between the Zhivotilovka and Maykop-Novosvobodnaya traditions, as exemplified by similar burial customs and various grave goods. It is beyond any doubt that the Maykop-Novosvobodnaya population was actively involved in the spread of the main Zhivotilovka cultural traits. The influence of North Caucasian traditions can be well observed, at least as far as the Dnieper Basin, but farther west influence is not manifested pronouncedly. The role of cultural units situated between the Dniester and Don rivers in the process of emergence of the Zhivotilovka type looks somewhat vague. Now, it can be quite confidently asserted that at the end of the 4th millennium BC this territory was settled by migrants from the North Caucasus and Carpathian-Dniester region. This event in theory had to stimulate cultural transformations in the Azov-Black Sea steppes and, thus, bearers of local cultural traditions perhaps could have participated in forming the culture under consideration. In any event, the Zhivotilovka type can be regarded as a complex phenomenon that emerged within the regime of intensive cultural dialogue and that it absorbed totally diff erent cultural traditions. The spread of the Zhivotilovka graves across the Pontic steppes from the Carpathians to the Lower Don or even to the Kuban Basin clearly signalizes a rapid dissolution of former cultural borders and the beginning of active movements of people, things and ideas over vast territories.

zhivotilovka-horizon-north-pontic-area

What were the factors or reasons that could have provoked this event? In the beginning of the second half of the 4th millennium BC two advanced cultural centers emerged in the south of Eastern Europe. These were the Maykop-Novosvobodnaya and Usatovo cultures, which in spite of their separation by great distances were structurally very alike. This is expressed in similar monumental burial architecture, complex burial rites, even the composition of grave goods, developed bronze metallurgy, high standards of material culture, etc. Both cultures in a completely formed state exemplify prosperous societies with a high level of economic and social organization, which can correspond to the type of ranked or early complex societies. Normally, the social elite in such polities tends to rigidly control basic domains social, economic and spiritual life using different mechanisms, even open compulsion (Earle 1987, 294-297). To some extent similar social entities can be found at this moment in the forest-steppe zone of the Carpathian-Dniester region, as reflected by the well organized settlement of Brânzeni III and the Vykhatitsy cemetery (Маркевич 1981; Дергачев 1978). In spite of their complex character, such societies represent rather friable structures, which could rapidly disintegrate due to unfavourable inner or external factors.

The societies in question emerged and existed during a time of favourable natural climatic conditions, which is considered to be a transitional period from the Atlantic to the Subboreal period, lasting approximately from 3600 to 3300 cal BC, or a climatic optimum for the steppe zone (Иванова и др. 2011, 108; Спиридонова, Алешинская 1999, 30-31). These conditions to a large degree could guarantee a stable exploitation of basic resources and support existing social hierarchies. However, after 3300 cal BC significant climatic changes occurred, accompanied by an increasing aridization and fall in temperature. This event is usually termed the “Piora oscillation” or “Rapid Climatic Event”, and is regarded as having been of global character (Magny, Haas 2004). These rapid changes could have seriously disturbed existing economic and social relations and finally provoked a similar rapid disintegration of complex social structures. In this case the sites of the Zhivotilovka type could represent mere fragments of former prosperous societies, which under conditions of the absence of centralized social control and stable cultural borders tried to recombine social and economic ties. However, the population possessed the necessary social experience and important technological resources, such as developed stock-breeding based on the breeding of small cattle and wheeled transport, so they were ready for opening new territories in their search for a better life.

maykop-trypillia-intrusion-steppes
Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

For more on chronology and the potentially larger, longer-lasting Zhivotilovka–Volchansk–Gordineşti cultural horizon and its expansion through the Podolian–Volhynian upland, read e.g. on the Yampil Complex in the latest volume 22 of Baltic-Pontic Studies (2017):

In the forest-steppe zone of the North-West Pontic area, important data concerning the chronological position of the Zhivotilovka-Volchansk group have been produced by the exploration of the Bursuceni kurgan, which is still awaiting full publication [Yarovoy 1978; cf. also Demcenko 2016; Manzura 2016]. Burials linked with the mentioned group were stratigraphically the eldest in the kurgan, and pre-dated a burial in the extended position and [Yamnaya culture] graves. Two of these burials (features 20 and 21) produced radiocarbon dates falling around 3350-3100 BC [Petrenko, Kovaliukh 2003: 108, Tab. 7]. Similar absolute age determinations were obtained for Podolia kurgans at Prydnistryanske [Goslar et al. 2015]. These dates, falling within the Late Eneolithic, mark the currently oldest horizon of kurgan burials in the forest-steppe zone of the North-West Pontic area. The Podolia graves linked with other, older traditions of the steppe Eneolithic seem to represent a slightly later horizon dated to the transition between the Late Eneolithic and Early Bronze Age.

The presence on the left bank of the Dniester River of kurgans associated with the Eneolithic tradition, which at the same time reveals connections with the Gordineşti-Kasperovce-Horodiştea complex, raises questions about the western range of the new trend in funerary rituals, and its potential connection with the expansion of the late Trypilia culture to the West Podolia and West Volhynia Regions. The data potentially suggesting the attribution of kurgans from the upper Dniester basin to this period is patchy and difficult to verify [e.g. Liczkowce – see Sulimirski 1968: 173]. In this context, the discovery of vessels in the Gordineşti style in a kurgan at Zawisznia near Sokal is inspiring [Antoniewicz 1925].

zhivotilovka-volchansk-burial-podolia
Burials representing funerary traditions of Zhivotilovka-Volchansk group in Podolie kurgans: 1 – Porohy, grave 3A/7, 2 – Kuzmin, grave 2/2 [after Klochko et al. 2015b, Bubulich, Khakhey 2001]

Another interesting aspect of potential source populations, in combination with those above for Eneolithic_Steppe vs. Steppe_Maykop, are groups with worse fits for Steppe_Maykop_core, which include Potapovka and Srubnaya, as reported by Wang et al. (2018), but also Sintastha_MLBA (although not Andronovo). This is compatible with the long-term admixture of Abashevo chiefs dominating over a majority of Poltavka-like herders in the Don-Volga-Ural steppes during the formation of the Sintashta-Potapovka-Filatovka community, also visible in the typical Yamnaya lineages and Yamnaya-like ancestry still appearing in the region centuries after the change in power structures had occurred.

NOTE. If you feel tempted to test for mixtures of Khvalynsk_EN, Eneolithic_Steppe, Yamnaya, etc. as a source population for Corded Ware, go for it, but it’s almost certain to give similar ‘good’ fits – whatever the model – in some Corded Ware groups and not in others. It is still unclear, as far as I know, how to formally distinguish a mixture of Corded Ware-related from a Yamnaya-related source in the same model, and the results obtained with a combination of Steppe_Maykop-related + Eneolithic_Steppe-related sources will probably artificially select either one or the other source, as it probably happened in Ning et al. (2019) with Proto-Tocharian samples (see qpAdm values) that most likely had a contribution of both, based on their known intense interactions in the Tarim Basin.

eneolithic-pontic-caspian-steppes-east-europe
Expansion of north Pontic cultures and related groups during the Late Eneolithic. See full map.

#EDIT (22 NOV 2019): New preprint Gene-flow from steppe individuals into Cucuteni-Trypillia associated populations indicates long-standing contacts and gradual admixture, by Immel et al. bioRxiv (2019), on Gordinești samples from Moldova ca. 3500-3100 BC. Relevant excerpts (emphasis mine):

A principal component analysis of the four Moldova females together with previously published data sets of ancient Eurasians showed that Gordinești, Pocrovca 1 and Pocrovca 3 grouped with later dating Bell Beakers from Germany and Hungary close to the four CTC males from Verteba, while Pocrovca 2 fell into the LBK cluster next to Neolithic farmers from Anatolia and Starčevo individual.

When looking at various proxies for steppe-related ancestry (Yamnaya Samara, Ukraine Mesolithic, Caucasian hunter-gatherer (CHG), Eastern hunter gatherer (EHG)), we did not observe any significant difference in genetic influx from either Yamnaya Samara, EHG or Ukraine Mesolithic. However, relative to CHG, we detected a substantial shift towards Yamnaya Samara steppe-related ancestry. Consequently, Yamnaya Samara, Ukraine Mesolithic and EHG appear to be equally suitable proxies for steppe-related ancestry in the Moldovan CTC individuals.

We did not obtain feasible models when running qpAdm on the X-chromosome in order to test for male-biased admixture from hunter-gatherers or individuals with steppe-related ancestry.

It is not surprising that Gordinești, Pocrovca 1 and Pocrovca 3 showed genetic affinities with later dating Bronze Age or Bell Beaker individuals. The common link among them is the considerable steppe-related ancestry, which each group likely received independently from different parental populations.

pca-trypillia-verteba-pocrovka-gordinesti
Principal component analysis of the CTC individuals from Moldova (Gordinești, Pocrovca 1, Pocrovca 2, Pocrovca 3) in red and the CTC individuals from Verteba Cave (I1926, I2110, I2111, I3151) in blue together with 23 selected ancient populations/individuals projected onto a basemap of 58 modern-day West Eurasian populations (not shown). HG=hunter-gatherer, LBK=Linearbandkeramik, PU=Proto-Unetice, TRB=Trichterbecher (Funnel Beaker Culture, FBC). PC1 is shown on the x-axis and PC2 on the y-axis.

4. Yamnaya and Afanasievo

I don’t think it makes much sense to test for GAC (or Iberia_CA, for that matter) as Wang et al. (2019) did, given the implausibility of them taking part in the formation of late Repin during the mid-4th millennium BC around the Don-Volga interfluve (represented by its offshoots Yamnaya and Afanasievo), whether these or other EEF-related populations show ‘better’ fits or not. Therefore, I only tested for more or less straightforward potential source populations:

steppe-ancestry-pca-yamnaya-hungary-bulgaria-vucedol
Detail of the PCA of Eurasian samples, including Yamnaya groups and related clusters, as well as outliers, with hypothesized gene flows related to its (1) formation and (2) expansion. Also included is the inferred position of the admixed sample Yamnaya_Hungary_EBA1. See full image.

Quite unexpectedly – for me, at least – it appears that Afanasievo and Yamnaya invariably prefer Khvalynsk_EN as the closest source rather than a combination including Eneolithic_Steppe directly. In other words, late Repin shows largely genetic continuity with the Steppe ancestry already shown by the three sampled individuals from the Khvalynsk II cemetery, in line with the known strong bottlenecks of Khvalynsk-related groups under R1b lineages, visible also later in Afanasievo and Yamnaya and derived Indo-European-speaking groups under R1b-L23 subclades.

NOTE. This explains better the reported bad fits of models using directly Eneolithic_Steppe instead of Khvalynsk_EN for Afanasievo and Yamnaya Kalmykia, as is readily evident from the results above, instead of a rejection of an additional contribution to an Eneolithic_Steppe-like population, as I interpreted it, based on Anthony (2019).

repin-zhivotilovka-north-pontic-steppe
Map of major sites of the Zhivotilovka-Volchansk group (A) and Repin culture (B), by Rassamakin (see 1994 and 2013). (A) 1 – Primorskoye; 2 – Vasilevka; 3 – Aleksandrovka; 4 – Boguslav; 5 – Pavlograd; 6 – Zhivotilovka; 7 – Podgorodnoye; 8 – Novomoskovsk; 9- Sokolovo; 10 – Dneprelstan; 11- Razumovka; 12 – Pologi; 13 – Vinogradnoye; 14 – Novo-Filipovka; 15 – Volchansk; 16 – Yuryevka; 17 – Davydovka; 18 – Novovorontsovka; 19 – Ust-Kamenka; 20 – Staroselye; 21- Velikaya Aleksandrovka; 22- Kovalevka; 23 – Tiraspol; 24 – Cura-Bykuluy; 25 – Roshkany; 26 – Tarakliya; 27 – Kazakliya; 28 – Bolgrad; 29 – Sarateny; 30 – Bursucheny; 31 – Novye Duruitory; 232 – Kosteshty. (B) 1 – Podgorovka; 2 – Aleksandria; 3 – Volonterovka; 4 – Zamozhnoye; 5 – Kremenevka; 6 – Ogorodnoye; 7 – Boguslav; 8 – Aleksandrovka; 9 – Verkhnaya Mayevka; 10 – Duma Skela; 11 – Zamozhnoye; 12 – Mikhailovka II.

This might suggest that the Steppe ancestry visible in samples from Progress-2 and Vonyuchka, sharing the same cluster with the Khvalynsk II cemetery commoner of hg. Q1, most likely represents North Caspian or Black Sea–Caspian steppe hunter-gatherer ancestry that increased as Khvalynsk settlers expanded to the south-west towards the Greater Caucasus, probably through female exogamy. That would mean that Steppe_Maykop potentially represents the ‘original’ ancestry of steppe hunter-gatherers of the North Caucasus steppes, which is also weakly supported by the available similar admixture of the Lola culture. The chronology, geographical location and admixture of both clusters seemed to indicate the opposite.

eneolithic-steppe-maykop-ehg-chg-ag2
Modelling results for the Steppe and Caucasus cluster. Additional ‘eastern’ AG-Siberian gene flow in Steppe Maykop relative to Eneolithic Steppe. From Wang et al. (2019).

Due to the limitations of the currently available sampling and statistical tools, and barring the dubious Alexandria outlier, it is unclear how much of the late Trypillian-related admixture of late Repin (as reflected in Yamnaya and Afanasievo) corresponds to late Trypillian, Post-Stog, or Proto-Corded Ware groups from the north Pontic area. A mutual exchange suggestive of a common mating network (also supported by the mixed results obtained when including Khvalynsk_EN as source for early Corded Ware groups) seem to be the strongest proof to date of the Late Proto-Indo-European – Uralic contacts reflected in the period when post-laryngeal vocabulary was borrowed (with some samples predating the merged laryngeal loss), before the period of intense borrowing from Pre- and Proto-Indo-Iranian.

Between-group differences of Yamnaya samples are caused – like those between Corded Ware groups – by the admixture of a rapidly expanding society through exogamy with regional populations, evidenced by the inconstant affinities of western or southern outliers for previous local populations of the west Pontic or Caucasus area. This explanation for the gradual increase in local admixture is also supported by the strong, long-term patrilineal system and female exogamy practiced among expanding Proto-Indo-Europeans.

chalcolithic-early-bronze-yamnaya-corded-ware-vucedol
Groups of the Yamnaya culture and its western expansion after ca. 3100 BC, and Corded Ware after ca. 2900 BC See full map.

Bell Beakers and Mycenaeans

This Eneolithic_Steppe ancestry is also found among Bell Beaker groups (see above). More specifically, all Bell Beaker groups prefer a source closest to a combination of Yamnaya from the Don and Baden LCA individuals from Hungary, rather than with Corded Ware and GAC, despite the quite likely admixture of western Yamnaya settlers with (1) south-eastern European (west Pontic, Balkan) Chalcolithic populations during their expansion through the Lower Danube and with (2) late Corded Ware groups (already admixed with GAC-like populations) during their expansion as East Bell Beakers:

Similarly, Mycenaeans show good fits for a source close to the Yamnaya outlier from Bulgaria:

steppe-ancestry-pca-bell-beakers-mycenaeans
Detail of the PCA of Eurasian samples, including Bell Beaker and Balkan EBA groups and related clusters, as well as outliers, including ancestral Yamnaya samples from Hungary (position inferred) and Bulgaria. Also marked are Minoans, Mycenaeans and Armenian BA samples. See full image.

You can read more on Yamnaya-related admixture of Bell Beakers and Mycenaeans, and on Afanasievo-related admixture of Iron Age Proto-Tocharians.

Conclusion

The use of the concept of “Yamnaya ancestry”, then “Steppe ancestry” (and now even “Yamnaya Steppe ancestry“?) has already permeated the ongoing research of all labs working with human population genomics. Somehow, the conventional use of Yamnaya_Samara samples opposed to a combination of other ancient samples – alternatively selected among WHG, EHG, CHG/Iran_N, Anatolia_N, or ANE – has spread and is now unquestionably accepted as one of the “three quite distinct” ancestral groups that admixed to form the ancestry of modern Europeans, which is a rather odd, simplistic and anachronistic description of prehistory…

It has now become evident that authors involved with the Proto-Indo-European homeland question – and the tightly intertwined one of the Proto-Uralic homeland – are going to dedicate a great part of the discussion of many future papers to correct or outright reject the conclusions of previous publications, instead of simply going forward with new data.

The most striking argument to mistrust the current use of “Steppe ancestry” (as an alternative name for Yamnaya_Samara, and not as ancestry proper of steppe hunter-gatherers) is not the apparent difference in direct Eneolithic sources of Steppe ancestry for Corded Ware and Yamnaya-related peoples – closer to the available samples classified as Steppe_Maykop and Eneolithic_Steppe, respectively – or their different evolution under marked Y-DNA bottlenecks.

It is not even the lack of information about the distant origin of these Pontic–Caspian steppe hunter-gatherers of the 5th and 4th millennium BC, with their shared ancestral component potentially separated during the warmer Palaeolithic-Mesolithic transition, when the steppes were settled, without necessarily sharing any meaningful recent history before the formation of the Proto-Indo-Uralic community.

NOTE. I have raised this question multiple times since 2017 (see e.g. here or here).

The most striking paradox about simplistically misinterpreting “Steppe ancestry” as representative of Indo-European expansions is that those sub-Neolithic Pontic–Caspian steppe hunter-gatherers that had this ancestry in the 6th millennium BC were probably non-Indo-European-speaking communities, most likely related to the North(West) Caucasian language family, based on the substrate of Indo-Anatolian that sets it apart from Uralic within the Indo-Uralic trunk, and on later contacts of Indo-Tocharian with North-West Caucasian and Kartvelian, the former probably represented by Maykop and its contact with the Repin and early Yamnaya cultures.

NOTE. For more on this, see Allan Bomhard’s recent paper on the Caucasian substrate hypothesis and its ongoing supplement Additional Proto-Indo-European/Northwest Caucasian Lexical Parallels.

steppe-ancestry-racimo
“Spatiotemporal kriging of YAM steppe ancestry during the Holocene, using 5000 spatial grid points. The colors represent the predicted ancestry proportion at each point in the grid.” Image with evolution from ca. 2800 BC until the present day, modified from Racimo et al. (2019). The Copenhagen group considers the expansion of this component as representative of expanding Indo-Europeans…

This kind of error happens because we all – hence also authors, peer reviewers, and especially journal editors – love far-fetched conclusions and sensational titles, forgetting what a paper actually shows and – always more importantly in scientific reports – what it doesn’t show. This is particularly true when more than one field is involved and when extraordinary claims involve aspects foreign to the journal’s (and usually the own authors’) main interests. One would have thought that the glottochronological fiasco published in Science in 2012 (open access in PMC) should have taught an important lesson to everyone involved. It didn’t, because apparently no one has felt the responsibility or the shame to retract that paper yet, even in the age of population genomics.

If anything, the excesses of mathematical linguistics – using computational methods to try and reconstruct phylogenetic trees – have perpetuated a form of misunderstood Scientism which blindly relies on a simple promise made by authors in the Materials and Method section (rarely if ever kept beyond it) to use statistics rather than resorting to the harder, well-informed, comprehensive reasoning that is needed in the comparative method. After all, why should anyone invest hundreds of hours (or simply show an interest in) learning about historical linguistics, about ancient Indo-European or Uralic languages, carefully argumenting and discussing each and every detail of the reconstruction, when one can simply rely on the own guts to decide what is Science and what isn’t? When one can trust a promise that formulas have been used?

The conservative, null hypothesis when studying prehistoric Eurasian samples related to evolving cultures was universally understood as no migration, or “pots not people” (as most western archaeologists chose to believe until recently), whereas the alternative one should have been that there were in fact migration events, some of them potentially related to the expansion of Eurasian languages ancestral to the historically attested ones. Beyond this migrationist view there were obviously dozens of thorough theories concerning potential linguistic expansions associated with specific prehistoric cultures, and a myriad of less developed alternatives, all of which deserved to be evaluated after the null hypothesis had been rejected.

Despite the shortcomings of the 2015 papers and their lack of testing or discussion of different language expansion models, the spread of the so-called “Yamnaya ancestry” – an admixture especially prevalent (after the demise of the Yamnaya) among the most likely ancient Uralic-speaking groups as well as among modern Uralic speakers and recently acculturated groups from Eastern Europe – has been nevertheless invariably concluded by each lab to support the theories of their leading archaeologist, often combined with pre-aDNA theories of geneticists based on modern haplogroup distributions. This is as evident a case of confirmation bias, circular reasoning, and jumping to conclusions as it gets.

Why many researchers of other labs have chosen to follow such conclusions instead of challenging or simply ignoring them is difficult to understand.

Related

Yamnaya replaced Europeans, but admixed heavily as they spread to Asia

narasimhan-spread-yamnaya-ancestry

Recent papers The formation of human populations in South and Central Asia, by Narasimhan, Patterson et al. Science (2019) and An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers, by Shinde et al. Cell (2019).

NOTE. For direct access to Narasimhan, Patterson et al. (2019), visit this link courtesy of the first author and the Reich Lab.

I am currently not on holidays anymore, and the information in the paper is huge, with many complex issues raised by the new samples and analyses rather than solved, so I will stick to the Indo-European question, especially to some details that have changed since the publication of the preprint. For a summary of its previous findings, see the book series A Song of Sheep and Horses, in particular the sections from A Clash of Chiefs where I discuss languages and regions related to Central and South Asia.

I have updated the maps of the Preshistory Atlas, and included the most recently reported mtDNA and Y-DNA subclades. I will try to update the Eurasian PCA and related graphics, too.

NOTE. Many subclades from this paper have been reported by Kolgeh (download), Pribislav and Principe at Anthrogenica on this thread. I have checked some out for comparison, but even if it contradicted their analyses mine would be the wrong ones. I will upload my spreadsheets and link to them from this page whenever I find the time.

caucasus-cline-narasimhan
Ancestry clines (1) before and (2) after the advent of farming. Colour modified from the original to emphasize the CHG cline: notice the apparent relevance of forest-steppe groups in the formation of this CHG mating network from which Pre-Yamnaya peoples emerged.

Indo-Europeans

I think the Narasimhan, Patterson et al. (2019) paper is well-balanced, and unexpectedly centered – as it should – on the spread of Yamnaya-related ancestry (now Western_Steppe_EMBA) as the marker of Proto-Indo-European migrations, which stretched ca. 3000 BC “from Hungary in the west to the Altai mountains in the east”, spreading later Indo-European dialects after admixing with local groups, from the Atlantic to South Asia.

I. Afanasievo

I.1. East or West PIE?

I expected Afanasievo to show (1) R1b-L23(xZ2103, xL51) and (2) R1b-L51 lineages, apart from (3) the known R1b-Z2103 ones, pointing thus to an ancestral PIE community before the typical Yamnaya bottlenecks, and with R1b-L51 supporting a connection with North-West Indo-European. The presence of some samples of hg. Q pointed in this direction, too.

However, Afanasievo samples show overwhelmingly R1b-Z2103 subclades (all except for those with low coverage), all apparently under R1b-Z2108 (formed ca. 3500 BC, TMRCA ca. 3500 BC), like most samples from East Yamnaya.

This necessarily shifts the split and spread of R1b-L23 lineages to Khvalynsk/early Repin-related expansions, in line with what TMRCA suggested, and what advances by Anthony (2019) and Khokhlov (2018) on future samples from the Reich Lab suggest.

Given the almost indistinguishable ancestry between Afanasievo and Early Yamnaya, there seems to be as of yet little potential information to support in population genomics that Pre-Tocharians were more closely related to North-West Indo-Europeans than to Graeco-Aryans, as it is proposed in linguistics based on the few shared traits between them, and the lack of innovations proper of the Graeco-Aryan community.

NOTE. A new issue of Wekʷos contains an abstract from a relevant paper by Blažek on vocabulary for ‘word’, including the common NWIE *wrdʰo-/wordʰo-, but also a new (for me, at least) Northern Indo-European one: *rēki-/*rēkoi̯-, shared by Slavic and Tocharian.

The fact that bottlenecks happened around the time of the late Repin expansion suggests that we might be able to see different clans based on the predominant lineages developing around the Don-Volga area in the 4th millennium BC. The finding of Pre-R1b-L51 in Lopatino (see below), and of a Catacomb sample of hg. R1b-Z2103(Z2105-) in the North Caucasus steppe near Novoaleksandrovskij also support a star-like phylogeny of R1b-L23 stemming from the Don-Volga area.

NOTE. Interestingly, a dismissal of a common trunk between Tocharian and North-West Indo-European would mean that shared similarities between such disparate groups could be traced back to a Common Late PIE trunk, and not to a shared (western) Repin community. For an example of such a ‘pure’ East-West dialectal division, see the diagram of Adams & Mallory (2007) at the end of the post. It would thus mean a fatal blow to Kortlandt’s Indo-Slavonic group among other hypothetical groupings (remade versions of the ancient Centum-Satem division), as well as to certain assumptions about laryngeal survival or tritectalism that usually accompany them. Still, I don’t think this is the case, so the question will remain a linguistic one, and maybe some similarities will be found with enough number of samples that differentiate Northern Indo-Europeans from the East Yamna/Catacomb-Poltavka-Balkan_EBA group.

afanasievo-y-dna
Y-chromosome haplogroups of Afanasievo samples and neighbouring groups. See full maps.

I.2. Expansion or resurgence of hg. Q1b?

Haplogroup Q1b-Y6802(xY6798) seems to be the main lineage that expanded with Afanasievo, or resurged in their territory. It’s difficult to tell, because the three available samples are family, and belong to a later period.

NOTE. I have finally put some order to the chaos of Q1a vs. Q1b subclades in my spreadsheet and in the maps. The change of ISOGG 2016 to 2017 has caused that many samples reported as of Q1 subclades from papers prepared during the 2017-2018 period, and which did not provide specific SNP calls, were impossible to define with certainty. By checking some of them I could determine the specific standard used.

In favour of the presence of this haplogroup in the Pre-Yamnaya community are:

  • The statement by Anthony (2019) that Q1a [hence maybe Q1b in the new ISOGG nomenclature] represented a significant minority among an R1b-rich community.
  • The sample found in a Sintastha WSHG outlier (see below), of hg. Q1b-Y6798, and the sample from Lola, of hg. Q1b-L717, are thus from other lineage(s) separated thousands of years from the Afanasievo subclade, but might be related to the Khvalynsk expansion, like R1b-V1636 and R1b-M269 are.

These are the data that suggest multiple resurgence events in Afanasievo, rather than expanding Q1b lineages with late Repin:

  • Overwhelming presence of R1b in early Yamnaya and Afanasievo samples; one Q1(xQ1b) sample reported in Khvalynsk.
  • The three Q1b samples appear only later, although wide CI for radiocarbon dates, different sites, and indistinguishable ancestry may preclude a proper interpretation of the only available family.
    • Nevertheless, ancestry seems unimportant in the case of Afanasievo, since the same ancestry is found up to the Iron Age in a community of varied haplogroups.
  • Another sample of hg. Q1b-Y6802(xY6798) is found in Aigyrzhal_BA (ca. 2120 BC), with Central_Steppe_EMBA (WSHG-related) ancestry; however, this clade formed and expanded ca. 14000 BC.
  • The whole Altai – Baikal area seems to be a Q1b-L54 hotspot, although admittedly many subclades separated very early from each other, so they might be found throughout North Eurasia during the Neolithic.
  • One Afanasievo sample is reported as of hg. C in Shin (2017), and the same haplogroup is reported by Hollard (2014) for the only available sample of early Chemurchek to date, from Kulala ula, North Altai (ca. 2400 BC).
afanasievo-chemurchek-y-dna
Y-chromosome haplogroups of late Afanasievo – early Chemurchek samples and neighbouring groups. See full maps.

I.3. Agricultural substrate

Evidence of continuous contacts of Central_Steppe_MLBA populations with BMAC from ca. 2100 BC on – visible in the appearance of Steppe ancestry among BMAC samples and BMAC ancestry among Steppe pastoralists – supports the close interaction between Indo-Iranian pastoralists and BMAC agriculturalists as the origin of the Asian agricultural substrate found in Proto-Indo-Iranian, hence likely related to the language of the Oxus Civilization.

Similar to the European agricultural substrate adopted by West Yamnaya settlers (both NWIE and Palaeo-Balkan speakers), Tocharian shows a few substrate terms in common with Indo-Iranian, which can be explained by contacts in different dialectal stages through phonetic reconstruction alone.

The recent Hermes et al. (2019) supports the early integration of pastoralism and millet cultivation in Central Asia (ca. 2700 BC or earlier), with the spread of agriculture to the north – through the Inner Asian Mountain Corridor – being thus unrelated to the Indo-Iranian expansions, which might support independent loans.

However, compared to the huge number of parallel shared loans between NWIE and Palaeo-Balkan languages in the European substratum, Indo-Iranians seem to have been the first borrowers of vocabulary from Asian agriculturalists, while Proto-Tocharian shows just one certain related word, with phonetic similarities that warrant an adoption from late Indo-Iranian dialects.

chemurchek-sintashta-bmac
Y-chromosome haplogroups of Sintashta, Central Asia, and neighbouring groups in the Early Bronze Age. See full maps.

The finding of hg. (pre-)R1b-PH155 in a BMAC sample from Dzharkutan (to the west of Xinjiang) together with hg. R1b in a sample from Central Mongolia previously reported by Shin (2017) support the widespread presence of this lineage to the east and west of Xinjiang, which means it might have become incorporated to Indo-Iranian migrants into the Xiaohe horizon, to the Afanasievo-Chemurchek-derived groups, or the later from the former. In other words, the Island Biogeography Theory with its explanation of founder effects might be, after all, applicable to the whole Xinjiang area, not only during the Chemurchek – Tianshan-Beilu – Xiaohe interaction.

Of course, there is no need for too complicated models of haplogroup resurgence events in Central and South Asia, seeing how the total amount of hg. R1a-L657 (today prevalent among Indo-Aryan speakers from South Asia) among ancient Western/Central_Steppe_MLBA-related samples amounts to a total of 0, and that many different lineages survived in the region. Similar cases of haplogroup resurgence and Y-DNA bottleneck events are also found in the Central and Eastern Mediterranean, and in North-Eastern Europe. From the paper:

[It] could reflect stronger ecological or cultural barriers to the spread of people in South Asia than in Europe, allowing the previously established groups more time to adapt and mix with incoming groups. A second difference is the smaller proportion of Steppe pastoralist– related ancestry in South Asia compared with Europe, its later arrival by ~500 to 1000 years, and a lower (albeit still significant) male sex bias in the admixture (…).

Y-chromosome haplogroups of samples from the Srubna-Andronovo and Andronovo-related horizon, Xiaohe, late BMAC, and neighbouring groups. See full maps.

II. R1b-Beakers replaced R1a-CWC peoples

II.1. R1a-M417-rich Corded Ware

Newly reported Corded Ware samples from Radovesice show hg. R1a-M417, at least some of them xZ645, ‘archaic’ lineages shared with the early Bergrheinfeld sample (ca. 2650 BC) and with the coeval Esperstedt family, hence supporting that it eventually became the typical Western Corded Ware lineage(s), probably dominating over the so-called A-horizon and the Single Grave culture in particular. On the other hand, R1a-Z645 was typical of bottlenecks among expanding Eastern Corded Ware groups.

Interestingly, it is supported once again that known bottlenecks under hg. R1a-M417 happened during the Corded Ware expansion, evidenced also by the remarkable high variability of male lineages among early Corded Ware samples. Similarly, these Corded Ware samples from Bohemia form part of the typical ‘Central European’ cluster in the PCA, which excludes once again not only the ‘official’ Espersted outlier I1540, but also the known outlier with Yamnaya ancestry.

NOTE. The fact that Esperstedt is closely related geographically and in terms of ancestry to later Únětice samples further complicates the assumption that Únětice is a mixture of Bell Beakers and Corded Ware, being rather an admixture of incoming Bell Beakers with post-Yamnaya vanguard settlers who admixed with Corded Ware (see more on the expansion of Yamnaya ancestry). In other words, Únětice is rather an admixture of Yamnaya+EEF with Yamnaya+(CWC+EEF).

Y-chromosome haplogroups of samples from Catacomb, Poltavka, Balkan EBA, and Bell Beaker, as well as neighbouring groups. See full maps.

On Ukraine_Eneolithic I6561

If the bottlenecks are as straightforward as they appear, with a star-like phylogeny of R1a-M417 starting with the Pre-Corded Ware expansion, then what is happening with the Alexandria sample, so precisely radiocarbon dated to ca. 4045-3974 BC? The reported hg. R1a-M417 was fully compatible, while R1a-Z645 could be compatible with its date, but the few positive SNPs I got in my analysis point indeed to a potential subclade of R1a-Z94, and I trust more experienced hobbyists in this ‘art’ of ascertaining the SNPs of ancient samples, and they report hg. R1a-Z93 (Z95+, Y26+, Y2-).

Seeing how Y-DNA bottlenecks worked in Yamnaya-Afanasievo and in Corded Ware and related groups, and if this sample really is so deep within R1a-Z93 in a region that should be more strongly affected by the known Neolithic Y-chromosome bottlenecks and forest-steppe ecotone, someone from the lab responsible for this sample should check its date once again, before more people keep chasing their tails with an individual that (based on its derived SNPs’ TMRCA) might actually be dated to the Bronze Age, where it could make much more sense in terms of ancestry and position in the PCA.

EDIT (14 SEP 2019): … and with the fact that he is the first individual to show the genetic adaptation for lactase persistence (I3910-T), which is only found later among Bell Beakers, and much later in Sintashta and related Steppe_MLBA peoples (see comments below).

This is also evidenced by the other Ukraine_Eneolithic (likely a late Yamnaya) sample of hg. R1b-Z2103 from Dereivka (ca. 2800 BC) and who – despite being in a similar territory 1,000 years later – shows a wholly diluted Yamnaya ancestry under typically European HG ancestry, even more so than other late Sredni Stog samples from Dereivka of ca. 3600-3400 BC, suggesting a decrease in Steppe ancestry rather than an increase – which is supposedly what should be expected based on the ancestry from Alexandria…

Like the reported Chalcolithic individual of Hajji Firuz who showed an apparently incompatible subclade and Yamnaya ancestry at least some 1,000 years before it should, and turned out to be from the Iron Age (see below), this may be another case of wrong radiocarbon dating.

NOTE. It would be interesting, if this turns out to be another Hajji Firuz-like error, to check how well different ancestry models worked in whose hands exactly, and if anyone actually pointed out that this sample was derived, and not ancestral, to many different samples that were used in combination with it. It would also be a great control to check if those still supporting a Sredni Stog origin for PIE would shift their preference even more to the north or west, depending on where the first “true” R1a-M417 samples popped up. Such a finding now could be thus a great tool to discover whether haplogroup-based bias plays a role in ancestry magic as related to the Indo-European question, i.e. if it really is about “pure statistics”, or there is something else to it…

II.1. R1b-L51-rich Bell Beakers

The overwhelming majority of R1b-L51 lineages in Radovesice during the Bell Beaker period, just after the sampled Corded Ware individuals from the same site, further strengthen the hypothesis of an almost full replacement of R1a-M417 lineages from Central Europe up to southern Scandinavia after the arrival of Bell Beakers.

Yet another R1b-L151* sample has popped up in Central Europe, in the individual classified as Bilina_BA (ca. 2200-800 BC), which clusters with Bell Beakers from Bohemia, with the outlier from Turlojiškė, and with Early Slavs, suggesting once again that a group of central-east European Beakers represented the Pre-Proto-Balto-Slavic community before their spread and admixture events to the east.

The available ancient distribution of R1b-L51*, R1b-L52* or R1b-L151* is getting thus closer to the most likely origin of R1b-L51 in the expansion of East Bell Beakers, who trace their paternal ancestors to Yamnaya settlers from the Carpathian Basin:

NOTE. Some of these are from other sources, and some are samples I have checked in a hurry, so I may have missed some derived SNPs. If you send me a corrected SNP call to dismiss one of these, or more ‘archaic’ samples, I’ll correct the map accordingly. See also maps of modern distributionof R1b-M269 subclades.

r1b-l51-ancient-europe
Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

III. Proto-Indo-Iranian

Before the emergence of Proto-Indo-Iranian, it seems that Pre-Proto-Indo-Iranian-speaking Poltavka groups were subjected to pressure from Central_Steppe_EMBA-related peoples coming from the (south-?)east, such as those found sampled from Mereke_BA. Their ‘kurgan’ culture was dated correctly to approximately the same date as Poltavka materials, but their ancestry and hg. N2(pre-N2a) – also found in a previous sample from Botai – point to their intrusive nature, and thus to difficulties in the Pre-Proto-Indo-Iranian community to keep control over the previous East Yamnaya territory in the Don-Volga-Ural steppes.

We know that the region does not show genetic continuity with a previous period (or was not under this ‘eastern’ pressure) because of an Eastern Yamnaya sample from the same site (ca. 3100 BC) showing typical Yamnaya ancestry. Before Yamnaya, it is likely that Pre-Yamnaya ancestry formed through admixture of EHG-like Khvalynsk with a North Caspian steppe population similar to the Steppe_Eneolithic samples from the North Caucasus Piedmont (see Anthony 2019), so we can also rule out some intermittent presence of a Botai/Kelteminar-like population in the region during the Khvalynsk period.

It is very likely, then, that this competition for the same territory – coupled with the known harsher climate of the late 3rd millennium BC – led Poltavka herders to their known joint venture with Abashevo chiefs in the formation of the Sintashta-Potapovka-Filatovka community of fortified settlements. Supporting these intense contacts of Poltavka herders with Central Asian populations, late ‘outliers’ from the Volga-Ural region show admixture with typical Central_Steppe_MLBA populations: one in Potapovka (ca. 2220 BC), of hg. R1b-Z2103; and four in the Sintashta_MLBA_o1 cluster (ca. 2050-1650 BC), with two samples of hg. R1b-L23 (one R1b-Z2109), one Q1b-L56(xL53), one Q1b-Y6798.

central-steppe-pastoralists
Outlier analysis reveals ancient contacts between sites. We plot the average of principal component 1 (x axis) and principal component 2 (y axis) for the West Eurasian and All Eurasian PCA plots (…). In the Middle to Late Bronze Age Steppe, we observe, in addition to the Western_Steppe_MLBA and Central_Steppe_MLBA clusters (indistinguishable in this projection), outliers admixed with other ancestries. The BMAC-related admixture in Kazakhstan documents northward gene flow onto the Steppe and confirms the Inner Asian Mountain Corridor as a conduit for movement of people.

Similar to how the Sintashta_MLBA_o2 cluster shows an admixture with central steppe populations and hg. R1a-Z645, the WSHG ancestry in those outliers from the o1 cluster of typically (or potentially) Yamnaya lineages show that Poltavka-like herders survived well after centuries of Abashevo-Poltavka coexistence and admixture events, supporting the formation of a Proto-Indo-Iranian community from the local language as pronounced by the incomers, who dominated as elites over the fortified settlements.

The Proto-Indo-Iranian community likely formed thus in situ in the Don-Volga-Ural region, from the admixture of locals of Yamnaya ancestry with incomers of Corded Ware ancestry – represented by the ca. 67% Yamnaya-like ancestry and ca. 33% ancestry from the European cline. Their community formed thus ca. 1,000 years later than the expansion of Late PIE ca. 3500 BC, and expanded (some 500 years after that) a full-fledged Proto-Indo-Iranian language with the Srubna-Andronovo horizon, further admixing with ca. 9% of Central_Steppe_EMBA (WSHG-related) ancestry in their migration through Central Asia, as reported in the paper.

IV. Armenian

The sample from Hajji Firuz, of hg. R1b-Z2103 (xPF331), has been – as expected – re-dated to the Iron Age (ca. 1193-1019 BC), hence it may offer – together with the samples from the Levant and their Aegean-like ancestry rapidly diluted among local populations – yet another proof of how the Late Bronze Age upheaval in Europe was the cause of the Armenian migration to the Armenoid homeland, where they thrived under the strong influence from Hurro-Urartian.

middle-east-armenia-y-dna
Y-chromosome haplogroups of the Middle East and neighbouring groups during the Late Bronze Age / Iron Age. See full maps.

Indus Valley Civilization and Dravidian

A surprise came from the analysis reported by Shinde et al. (2019) of an Iran_N-related IVC ancestry which may have split earlier than 10000 BC from a source common to Iran hunter-gatherers of the Belt Cave.

For the controversial Elamo-Dravidian hypothesis of the Muscovite school, this difference in ancestry between both groups (IVC and Iran Neolithic) seems to be a death blow, if population genomics was even needed for that. Nevertheless, I guess that a full rejection of a recent connection will come down to more recent and subtle population movements in the area.

EDIT (12 SEP): Apparently, Iosif Lazaridis is not so sure about this deep splitting of ‘lineages’ as shown in the paper, so we may be talking about different contributions of AME+ANE/ENA, which means the Elamo-Dravidian game is afoot; at least in genomics:

I shared the idea that the Indus Valley Civilization was linked to the Proto-Dravidian community, so I’m inclined to support this statement by Narasimhan, Patterson, et al. (2019), even if based only on modern samples and a few ancient ones:

The strong correlation between ASI ancestry and present-day Dravidian languages suggests that the ASI, which we have shown formed as groups with ancestry typical of the Indus Periphery Cline moved south and east after the decline of the IVC to mix with groups with more AASI ancestry, most likely spoke an early Dravidian language.

india-steppe-indus-valley-andamanese-ancestry
Natural neighbour interpolation of qpAdm results – Maximum A Posteriori Estimate from the Hierarchical Model (estimates used in the Narasimhan, Patterson et al. 2019 figures) for Central_Steppe_MLBA-related (left), Indus_Periphery_West-related (center) and Andamanese_Hunter-Gatherer-related ancestry (right) among sampled modern Indian populations. In blue, peoples of IE language; in red, Dravidian; in pink, Tibeto-Burman; in black, unclassified. See full image.

I am wary of this sort of simplistic correlation with modern speakers, because we have seen what happened with the wrong assumptions about modern Balto-Slavic and Finno-Ugric speakers and their genetic profile (see e.g. here or here). In fact, I just can’t differentiate as well as those with deep knowledge in South Asian history the social stratification of the different tribal groups – with their endogamous rules under the varna and jati systems – in the ancestry maps of modern India. The pattern of ancestry and language distribution combined with the findings of ancient populations seem in principle straightforward, though.

Conclusion

The message to take home from Shinde et al. (2019) is that genomic data is fully at odds with the Anatolian homeland hypothesis – including the latest model by Heggarty (2014)* – whose relevance is still overvalued today, probably due in part to the shift of OIT proponents to more reasonable Out-of-Iran models, apparently more fashionable as a vector of Indo-Aryan languages than Eurasian steppe pastoralists?
*The authors listed this model erroneously as Heggarty (2019).

The paper seems to play with the occasional reference to Corded Ware as a vector of expansion of Indo-European languages, even after accepting the role of Yamnaya as the most evident population expanding Late PIE to western Europe – and the different ancestry that spread with Indo-Iranian to South Asia 1,000 years later. However, the most cringe-worthy aspect is the sole citation of the debunked, pseudoscientific glottochronological method used by Ringe, Warnow, and Taylor (2002) to support the so-called “steppe homeland”, a paper and dialectal scheme which keeps being referenced in papers of the Reich Lab, probably as a consequence of its use in Anthony (2007).

On the other hand, these are the equivalent simplistic comments in Narasimhan, Patterson et al. (2019):

The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the unique features shared between Indo-Iranian and Balto-Slavic languages. (…), which despite their vast geographic separation share the “satem” innovation and “ruki” sound laws.

mallory-adams-tree
Indo-European dialectal relationships, from Mallory and Adams (2006).

The only academic closely related to linguistics from the list of authors, as far as I know, is James P. Mallory, who has supported a North-West Indo-European dialect (including Balto-Slavic) for a long time – recently associating its expansion with Bell Beakers – opposed thus to a Graeco-Aryan group which shared certain innovations, “Satemization” not being one of them. Not that anyone needs to be a linguist to dismiss any similarities between Balto-Slavic and Indo-Iranian beyond this phonetic trend, mind you.

Even Anthony (2019) supports now R1b-rich Pre-Yamnaya and Yamnaya communities from the Don-Volga region expanding Middle and Late Proto-Indo-European dialects.

So how does the underlying Corded Ware ancestry of eastern Europe (where Pre-Balto-Slavs eventually spread to from Bell Beaker-derived groups) and of the highly admixed (“cosmopolitan”, according to the authors) Sintashta-Potapovka-Filatovka in the east relate to the similar-but-different phonetic trends of two unrelated IE dialects?

If only there was a language substrate that could (as Shinde et al. put it) “elegantly” explain this similar phonetic evolution, solving at the same time the question of the expansion of Uralic languages and their strong linguistic contacts with steppe peoples. Say, Eneolithic populations of mainly hunter-fisher-gatherers from the North Pontic forest-steppes with a stronger connection to metalworking

Related

Predictions about the genetic change from Single Grave to the Late Neolithic in Denmark

germanic-early-bronze-age

New open access paper Mapping human mobility during the third and second millennia BC in present-day Denmark by Frei et al. PLOS One (2019), from the Copenhagen group (including Allentoft, Sikora, and Kristiansen) of samples whose genomic profile will probably be published soon.

Interesting excerpts (emphasis mine):

We present results of the largest multidisciplinary human mobility investigation to date of skeletal remains from present-day Denmark encompassing the 3rd and 2nd millennia BC. Through a multi-analytical approach based on 88 individuals from 37 different archaeological localities in which we combine strontium isotope and radiocarbon analyses together with anthropological investigations, we explore whether there are significant changes in human mobility patterns during this period. Overall, our data suggest that mobility of people seems to have been continuous throughout the 3rd and 2nd millennia BC. However, our data also indicate a clear shift in mobility patterns from around 1600 BC onwards, with a larger variation in the geographical origin of the migrants, and potentially including more distant regions. This shift occurred during a transition period at the beginning of the Nordic Bronze Age at a time when society flourished, expanded and experienced an unprecedented economic growth, suggesting that these aspects were closely related.

denmark-late-neolithic-bronze-age-sites
Map of present-day Denmark illustrating locations of the burial sites.
The dashed black line marks the maximum advance stage of the last glaciation (Weichselian). Drafted with public domain data from Natural Earth (https://www.naturalearthdata.com).

Strontium isotope analyses

The results of our strontium isotope analyses are presented in Table 2 and listed in chronological order according to the radiocarbon dates (in sites with multiple individuals we start with the oldest radiocarbon individual). The strontium isotope data set reveals a wide range of values from 87Sr/86Sr = 0.70871 (RISE 23, from the site of Debel) to 87Sr/86Sr = 0.71788 (RISE 20, from the site of Karlstrup). Despite the difficulties of establishing the baseline range some of the herein investigated individuals may be classified as non-locals. A few individuals have tooth enamel signatures that lie just above the upper baseline limit of 87Sr/86Sr = 0.711 and therefore, the classification of these humans as non-locals should be considered with caution. Nevertheless, the significant proportion of individuals with relatively radiogenic values suggest that about a quarter of the individuals studied herein seem to have originated from other places than from those they were buried, and hence implying a continuous degree of mobility during the 3rd and 2nd millennia BC.

strontium-isotope-denmark-neolithic-bronze-age
Diagram plotting results of strontium isotope ratios versus calibrated radiocarbon dates of the individuals investigated. The grey band shows the “local” baseline.

Middle Neolithic

From the Single Grave Culture (SGC) which is closely related to the Corded Ware Complex in central and eastern Europe and dates from c. 2800 BC to 2200 BC, we analyzed seven of the at least ten individuals who were buried at the site of Gjerrild in eastern Jutland (Fig 1). Gjerrild is a key SGC site, as to date it has provided the most substantial skeletal material pertaining to this culture from present-day Denmark. However, it is not a typical SGC grave, but a megalithic chamber of the so-called “Bøstrup type”. The SGC pottery was decorated with cord or stamp impressions and the stone battle axes were a common feature of male equipment. Such shared traits in the Corded Ware Complex probably reflected shared occupational, social and religious characteristics. Apart from one individual who yielded a Bronze Age date, five individuals date within the period that spans from c. 2600 BC to 2200 BC, hence representing the middle and late SGC phases (Table 1 and S1 File). Of the seven individuals, three males, one female, two infants and one adult (only represented by a disarticulated mandible, and dated to the Bronze Age), all but one yielded strontium isotope signatures that fall within the local baseline range. Only the female (RISE 1283) has a more radiogenic strontium isotope signature of 87Sr/86Sr = 0.7127, which is similar to that of the male from Kyndeløse and might indicate non-local provenance. One of the individuals at Gjerrild, a mature-old adult male, who yielded a local signature (RISE 432) was accompanied by a D-type arrowhead and an amber bead which lay on his right side. He showed signs of inflammation on his lower legs, in particular on the left one. He had a healed trepanation (Fig 2). Another individual (RISE 73a, 1282), an adult male, was found with a type D arrowhead in the sternum (Fig 3).

denmark-late-neolithic-bronze-age
Strontium isotope, 14C results and sex and age determinations from individuals from the 3rd and 2nd millennia BC from Denmark presented in chronological order. Modified from the paper, see full image.

Late Neolithic I

We sampled individuals from a total of twelve different sites that date to the Late Neolithic period (2300/2250-1700 BC).

One of these sites is Hellested on Zealand (Fig 1 and S1 File), with four flat graves containing five individuals, four young males and one mature adult female. We conducted strontium isotope analyses of enamel from all five individuals, and our results point to two individuals being characterized by local strontium isotope values. One of these individuals, the female, was buried with no grave goods (RISE 53, grave B) while the other, a young male, was buried with a fragmented bone pin (RISE 56, grave F). The other three male individuals (RISE 54, 55, 57) yielded similar strontium isotopic values that lie slightly above the local baseline range. All these individuals had been buried with early flint daggers (type I and II), and one of them (RISE 57, grave A) additionally had a ring-headed pin (Ringkopfnadel) [56]. On the basis of the presence of this ring-headed pin, Lomborg [56] suggested that these individuals had connections with the Únětice culture. Furthermore, three of them have radiocarbon dates that overlap (RISE 55, 56 and 57; Table 1).

Another Late Neolithic site is Juelsberg on the island of Funen (central Denmark, Fig 1 and S1 File) which is a gallery grave that contained at least 19 individuals. We conducted strontium isotope analyses of tooth enamel on 8 out of the 19 individuals and two of them, a male and female, yielded ratios that suggest a non-local origin (RISE 30 and 32). The grave goods comprise a (Lomborg) type I flint dagger but also some non-local type of artefacts. These consist of an early type of bone pin (type 7) mainly found in south-eastern Scandinavia, and a barbed and tanged flint arrowhead of the west-European Bell Beaker type suggesting western connections. The middle adult female (RISE 32) yielded an 87Sr/86Sr = 0.7121 and the mature to old adult male (RISE 30) yielded a 87Sr/86Sr = 0.7112. The different Sr isotope signatures of these individuals imply that they might have originated from different areas, albeit their radiocarbon dates are very similar.

The gallery grave of Marbjerg, Zealand (Fig 1), yielded 17 individuals (S1 File), and we conducted strontium isotope analyses of tooth enamel on 11 of them. The majority of the individuals were males, but females and children, too, were present. Anthropological investigations of the individuals from this site, males as well as females, indicate a relatively high life expectancy with respect to that typical for this period (S1 Table). Our radiocarbon dates revealed that this grave was in use for several hundred years from the Early Late Neolithic (2210–2030 cal BC, RISE 39) to the Late Neolithic /Early Nordic Bronze Age Period (1770–1620 cal BC, RISE 41). Despite the long-term use of this grave, 10 of the 11 individuals studied herein yielded a very narrow and overlapping range of strontium isotope values between 87Sr/86Sr = 0.7096–0.7101. Their values suggest not only that these individuals were local but that their food sources were derived from the same area over the course of several centuries. Only the tooth enamel sample of one individual, a middle to mature adult male (RISE 40), yielded a higher value of 87Sr/86Sr = 0.7117, which seems to suggest a non-local origin.

Predictions about these samples

Strontium isotope analyses only show potential movements during an individual’s lifetime, which is normally useless to assess relevant migrations if the sampling is not big enough (see more on investigating population movements). Still, if a sampling like this one shows many potentially non-local individuals from different parts of Denmark deviating from the baseline at a certain period, you can infer that something is happening within Denmark and in nearby regions.

strontium-isotope-denmark-late-neolithic-bronze-age
Strontium isotope results of the 88 investigated individuals including Late Bronze Age individuals investigated previously. The grey band shows the “local” baseline.

Based on what we know now, I bet these are the most likely events in Denmark that marked the Nordic Late Neolithic with its Bell Beaker-related Dagger Period ca. 2400/2300 BC on:

  1. Sudden appearance of R1b-L23 lineages (probably R1b-U106 among them), originally from the Northern European Plain, ultimately from the Danube River Basin. R1a-M417 subclades, possibly prevalent in the previous period, disappear or appear rarely, to resurge later during the Bronze Age probably mostly as hg R1a-Z284, originally from the Battle Axe culture in Sweden, together with I1 – these resurgence events might be shifted to a later phase, though, and there might be some isolated R1a cases in the Danish LN, too.
  2. Shift of Middle Neolithic to Late Neolithic in the PCA away from the Corded Ware cluster and closer to the Bell Beaker cluster – whatever that means exactly for Danish SGC relative to Northern European Beakers, visible especially when enough samples are available.
  3. Evident sign of new incoming ancestry ultimately from Yamnaya-related populations, compared to earlier peoples of Corded Ware ancestry. Yes, even this far north, despite heavy admixture of Yamnaya-like Bell Beakers through exogamy with Corded Ware-like populations all the way to the north from the Danube Basin.

All this will support, once again, the expansion of Bell Beakers from Yamnaya settlers of Central-East Europe. That is probably what I will be reporting about the data as related to the Pre-Proto-Germanic homeland of the Northern European Plain, unless there is some big surprise, for example that R1b-U106 expanded later from Northern Germany, more clearly associated with later Barbed Wire Beakers or even Únětice movements, although I find this very unlikely at this point.

The above predictions are more or less evident to everyone, despite the current mistrust in the Yamnaya – Bell Beaker expansion route of North-West Indo-European, due to the prevalent nativist and/or reactionary trends in hobby population genomics and among academics. My main prediction is therefore about human behaviour:

(1) Seeing how the Copenhagen group started to describe recently South Scandinavian genetic and linguistic prehistory, their conclusions are predictable. From the introduction of this paper:

The 3rd millennium BC stands out as a period of migrations in western Eurasia, as pastoral steppe populations settled in temperate Europe after 2800 BC e.g. [1, 2]. This was also a period of cultural and genetic admixture e.g. [3]. From 1600 BC onwards, southern Scandinavia became more closely linked to the existing European metal trade networks (…)

See what they did there? No mention of the radical change that the Dagger Period brought to Scandinavia, in cultural or genetic terms (see e.g. here or here). Strange how the only thing that Kristiansen has changed since the 1980s – and only after the 2015 genetic papers – is his previous emphasis on the Dagger Period as the most relevant unifying cultural and population movement in Scandinavia, responsible for the formation of a common Nordic language, which is suddenly given as little weight as possible in all his publications, to support some imaginary continuity with the Corded Ware culture (see e.g. here or here).

(2) Only a few males from the Single Grave period are described in this sampling, and they are quite close to the arrival of Bell Beakers, so if someone is looking for closure about the “R1b from Corded Ware”, I bet there won’t be any. As with conspiracy theories of native Vasconic R1b-L51 hidden somewhere in Western Europe even after Olalde et al. (2018) and Olalde et al. (2019), the mythic native Nordic R1b-U106 of Corded Ware will remain hidden in some unsampled Corded Ware group in the minds of many, despite being already found in Bell Beaker-derived European EBA cultures of Bohemia and possibly of Hungary, too (ca. 2500-2200 BC, see SNP calls), apart from the Late Neolithic sample from Lilla Beddinge in Scania (ca. 2275-2032 BC, see SNP calls)

I hope that I am wrong, and that some scholar in the Danish group is capable of reporting the data as it is, even if it contradicts the theories of its leading archaeologist, Kristian Kristiansen. The apparent downplay of the increase in non-local origins of individuals during the Late Neolithic I period as they appear in this paper, as well as their summary of foreign migrations into Denmark which mysteriously stop with the arrival of “Steppe ancestry” ca. 2800 BC, make me think that a change in their narrative is not very likely. The cons of working with academic divos, I guess…

Related

North-West Indo-Europeans of Iberian Beaker descent and haplogroup R1b-P312

iron-age-early-mediterranean

The recent data on ancient DNA from Iberia published by Olalde et al. (2019) was interesting for many different reasons, but I still have the impression that the authors – and consequently many readers – focused on not-so-relevant information about more recent population movements, or even highlighted the least interesting details related to historical events.

I have already written about the relevance of its findings for the Indo-European question in an initial assessment, then in a more detailed post about its consequences, then about the arrival of Celtic languages with hg. R1b-M167, and later in combination with the latest hydrotoponymic research.

This post is thus a summary of its findings with the help of natural neighbour interpolation maps of the reported Germany_Beaker and France_Beaker ancestry for individual samples. Even though maps are not necessary, visualizing geographically the available data facilitates a direct comprehension of the most relevant information. What I considered key points of the paper are highlighted in bold, and enumerated.

NOTE. To get “more natural” maps, extrapolation for the whole Iberian Peninsula is obtained by interpolation through the use of external data from the British Isles, Central Europe, and Africa. This is obviously not ideal, but – lacking data from the corners of the Iberian Peninsula – this method gives a homogeneous look to all maps. Only data in direct line between labelled samples in each map is truly interpolated for the Iberian Peninsula, while the rest would work e.g. for a wider (and more simplistic) map of European Bronze Age ancestry components.

Chalcolithic

iberia-chalcolithic
Iberian Chalcolithic groups and expansion of the Proto-Beaker package. See full map.

The Proto-Beaker package may or may not have expanded into Central Europe with typical Iberia_Chalcolithic ancestry. A priori, it seems a rather cultural diffusion of traits stemming from west Iberia roughly ca. 2800 BC.

iberia-y-dna-map-chalcolithic
Map of Y-DNA haplogroups among Iberia Chalcolithic samples. See full map.

The situation during the Chalcolithic is only relevant for the Indo-European question insofar as it shows a homogeneous Iberia_Chalcolithic-like ancestry with typical Y-chromosome (and mtDNA) haplogroups of the Iberian Neolithic dominating over the whole Peninsula until about 2500 BC. This might represent an original Basque-Iberian community.

iberia-mtdna-map-chalcolithic
Map of mtDNA haplogroups among Iberia Chalcolithic samples. See full map.

Bell Beaker period

iberia-bell-beaker-period
Iberian Bell Beaker groups and potential routes of expansion. See full map.

The expansion of the Bell Beaker folk brought about a cultural and genetic change in all Europe, to the point where it has been rightfully considered by Mallory (2013) – the last one among many others before him – the vector of expansion of North-West Indo-European languages. Olalde et al. (2019) proved two main points in this regard, which were already hinted in Olalde et al. (2018):

(1) East Bell Beakers brought hg. R1b-L23 and Yamnaya ancestry to Iberia, ergo the Bell Beaker phenomenon was not a (mere) local development in Iberia, but involved the expansion of peoples tracing their ancestry to the Yamnaya culture who eventually replaced a great part of the local population.

iberia-ancestry-bell-beaker-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Bell Beaker period (ca. 2600-2250 BC). See full map.

(2) Classical Bell Beakers have their closest source population in Germany Beakers, and they reject an origin close to Rhine Beakers (i.e. Beakers from the British Isles, the Netherlands, or northern France), ergo the Single Grave culture was not the origin of the Bell Beaker culture, either (see here).

iberia-y-dna-map-bell-beaker-period
Map of Y-DNA haplogroups among Iberian Bell Beaker samples. See full map.
iberia-mtdna-map-bell-beaker-period
Map of mtDNA haplogroups among Iberian Bell Beaker samples. See full map.

Early Bronze Age

iberia-early-bronze-age
Iberian Early Bronze Age groups and likely population and culture expansions. See full map.

Interestingly, the European Early Bronze Age in Iberia is still a period of adjustments before reaching the final equilibrium. Unlike the situation in the British Isles, where Bell Beakers brought about a swift population replacement, Iberia shows – like the Nordic Late Neolithic period – centuries of genomic balancing between Indo-European- and non-Indo-European-speaking peoples, as could be suggested by hydrotoponymic research alone.

(3) Palaeo-Indo-European-speaking Old Europeans occupied first the whole Iberian Peninsula, before the potential expansion of one or more non-Indo-European-speaking groups, which confirms the known relative chronology of hydrotoponymic layers of Iberia.

iberia-ancestry-early-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Early Bronze Age period (ca. 2250-1750 BC). See full map.

This balancing is seen in terms of Germany_Beaker vs. Iberia_Chalcolithic ancestry, but also in terms of Y-chromosome haplogroups, with the most interesting late developments happening in southern Iberia, around the territory where El Argar eventually emerged in radical opposition to the Bell Beaker culture.

iberia-y-dna-map-early-bronze-age
Map of Y-DNA haplogroups among Iberia Early Bronze Age samples. See full map.

(4) Bell Beakers and descendants expanded under male-driven migrations, proper of the Indo-European patrilineal tradition, seen in Yamnaya and even earlier in Khvalynsk:

We obtained lower proportions of ancestry related to Germany_Beaker on the X-chromosome than on the autosomes (Table S14), although the Z-score for the differences between the estimates is 2.64, likely due to the large standard error associated to the mixture proportions in the X-chromosome.

germany-beaker-x-chromosome

iberia-mtdna-map-early-bronze-age
Map of mtDNA haplogroups among Iberia Early Bronze Age samples. See full map.

Regarding the PCA, Iberia Bronze Age samples occupy an intermediate cluster between Iberia Chalcolithic and Bell Beakers of steppe ancestry, with Yamnaya-rich samples from the north (Asturias, Burgos) representing the likely source Old European population whose languages survived well into the Roman Iron Age:

iberia-pca-bronze-age
PCA of ancient European samples. Marked and labelled are Bronze Age groups and relevant samples. See full image.

Middle Bronze Age

iberia-middle-bronze-age
Iberian Middle Bronze Age groups and likely population and culture expansions. See full map.

During the Middle Bronze Age, the equilibrium reached earlier is reversed, with a (likely non-Indo-European-speaking) Argaric sphere of influence expanding to the west and north featuring Iberia Chalcolithic and lesser amount of Germany_Beaker ancestry, present now in the whole Peninsula, although in varying degrees.

iberia-ancestry-middle-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Middle Bronze Age period (ca. 1750-1250 BC). See full map.

All Iberian groups were probably already under a bottleneck of R1b-DF27 lineages, although it is likely that specific subclades differed among regions:

iberia-y-dna-map-middle-bronze-age
Map of Y-DNA haplogroups among Iberia Middle Bronze Age samples. See full map.
iberia-mtdna-map-middle-bronze-age
Map of mtDNA haplogroups among Iberia Middle Bronze Age samples. See full map.

Late Bronze Age

iberia-late-bronze-age
Iberian Late Bronze Age groups and likely population and culture expansions. See full map.

The Late Bronze Age represents the arrival of the Urnfield culture, which probably expanded with Celtic-speaking peoples. A Late Bronze Age transect before their genetic impact still shows a prevalent Germany_Beaker-like Steppe ancestry, probably peaking in north/west Iberia:

iberia-ancestry-late-bronze-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Late Bronze Age period (ca. 1250-750 BC). See full map.

(5) Galaico-Lusitanians were descendants of Iberian Beakers of Germany_Beaker ancestry and hg. R1b-M269. Autosomal data of samples I7688 and I7687, of the Final Bronze (end of the reported 1200-700 BC period for the samples), from Gruta do Medronhal (Arrifana, Coimbra, Portugal) confirms this.

In the 1940s, human bones, metallic artifacts (n=37) and non-human bones were discovered in the natural cave of Medronhal (Arrifana, Coimbra). All these findings are currently housed in the Department of Life Sciences of the University of Coimbra and are analyzed by a multidisciplinary team. The artifacts suggest a date at the beginning of the 1st millennium BC, which is confirmed by radiocarbon date of a human fibula: 890–780 cal BCE (2650±40 BP, Beta–223996). This natural cave has several rooms and corridors with two entrances. No information is available about the context of the human remains. Nowadays these remains are housed mixed and correspond to a minimum number of 11 individuals, 5 adults and 6 non-adults.

In particular, sample I7687 shows hg. R1b-M269, with no available quality SNPs, positive or negative, under it (see full report). They represent thus another strong support of the North-West Indo-European expansion with Bell Beakers.

iberia-y-dna-map-late-bronze-age
Map of Y-DNA haplogroups among Iberian Late Bronze Age samples. See full map.
iberia-mtdna-map-late-bronze-age
Map of mtDNA haplogroups among Iberian Late Bronze Age samples. See full map.

NOTE. To understand how the region around Coimbra was (Proto-)Lusitanian – and not just Old European in general – until the expansion of the Turduli Oppidani, see any recent paper on Bronze Age expansion of warrior stelae, hydrotoponymy, anthroponymy, or theonymy (see e.g. about Spear-vocabulary).

Iron Age

iberia-iron-age-early
Iberian Pre-Roman Iron Age groups and likely population and culture expansions. See full map.

In a complex period of multiple population movements and language replacements, the temporal transect in Olalde et al. (2019) offers nevertheless relevant clues for the Pre-Roman Iron Age:

(6) The expansion of Celtic languages was associated with the spread of France_Beaker-like ancestry, most likely already with the LBA Urnfield culture, since a Tartessian and a Pre-Iberian samples (both dated ca. 700-500 BC) already show this admixture, in regions which some centuries earlier did not show it. Similarly, a BA sample from Álava ca. 910–840 BC doesn’t show it, and later Celtiberian samples from the same area (ca. 4th c. BC and later) show it, depicting a likely north-east to west/south-west routes of expansion of Celts.

iberia-ancestry-iron-age-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

(7) The distribution of Germany_Beaker ancestry peaked, by the Iron Age, among Old Europeans from west Iberia, including Galaico-Lusitanians and probably also Astures and Cantabri, in line with what was expected before genetic research:

iberia-ancestry-iron-age-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Pre-Roman Iron Age period (ca. 750-250 BC). See full map.

A probably more precise picture of the Final Bronze – Early Iron Age transition is obtained by including the Final Bronze samples I2469 from El Sotillo, Álava (ca. 910-875 BC) as Celtic ancestry buffer to the west, and the sample I3315 from Menorca (ca. 904-861 BC), lacking more recent ones from intermediate regions:

iberia-ancestry-ia-germany_beaker
Natural neighbor interpolation of Germany_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.
iberia-ancestry-ia-france_beaker
Natural neighbor interpolation of France_Beaker ancestry in Iberia during the Final Bronze Age – Early Iron Age transition. See full map.

In terms of Y-DNA and mtDNA haplogroups, the situation is difficult to evaluate without more samples and more reported subclades:

iberia-y-dna-map-iron-age
Map of Y-DNA haplogroups among Iberian Iron Age samples. See full map.
iberia-mtdna-map-iron-age
Map of mtDNA haplogroups among Iberian Iron Age samples. See full map.

In the PCA, Proto-Lusitanian samples occupy an intermediate cluster between Iberian Bronze Age and Bronze Age North (see above), including the Final Bronze sample from Álava, while Celtic-speaking peoples (including Pre-Iberians and Iberians of Celtic descent from north-east Iberia) show a similar position – albeit evidently unrelated – due to their more recent admixture between Iberian Bronze Age and Urnfield/Hallstatt from Central Europe:

iberia-pca-iron-age
PCA of ancient European samples. Marked and labelled are Iron Age groups and relevant samples. See full image.

(8) Iberian-speaking peoples in north-east Iberia represent a recent expansion of the language from the south, possibly accompanied by an increase in Iberia_Chalcolithic/Germany_Beaker admixture from east/south-east Iberia.

(9) Modern Basques represent a recent isolation + Y-DNA bottlenecks after the Roman Iron Age population movements, probably from Aquitanians migrating south of the Pyrenees, admixing with local peoples, and later becoming isolated during the Early Middle Ages and thereafter:

[Modern Basques] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

Assuming that France_Beaker ancestry is associated with the Urnfield culture (spreading with Celtic-speaking peoples), Vasconic speakers were possibly represented by some population – most likely from France – whose ancestry is close to Rhine Beakers (see here).

Alternatively, a Vasconic language could have survived in some France/Iberia_Chalcolithic-like population that got isolated north of the Pyrenees close to the Atlantic Façade during the Bronze Age, and who later admixed with Celtic-speaking peoples south of the Pyrenees, such as the Vascones, to the point where their true ancestry got diluted.

In any case, the clear Celtic Steppe-like admixture of modern Basques supports for the time being their recent arrival to Aquitaine before the proto-historical period, which is in line with hydrotoponymic research.

Conclusion

The most interesting aspects to discuss after the publication of Olalde et al. (2019) would have been thus the nature of controversial Palaeohispanic peoples for which there is not much linguistic data, such as:

  • the Astures and the Cantabri, usually considered Pre-Celtic Indo-European (see here);
  • the Vaccaei, usually considered Celtic;
  • the Vettones, traditionally viewed as sharing the same language as Lusitanians due to their apparent shared hydrotoponymic, anthroponymic, and/or theonymic layers, but today mostly viewed as having undergone Celticization and helped the westward expansion of Celtic languages (and archaeologically clearly divided from Old European hostile neighbours to the west by their characteristic verracos);
  • the Pellendones or the Carpetani, who were once considered Pre-Celtic Indo-Europeans, too;
  • the nature of Tartessian as Indo-European, or maybe even as “Celtic”, as defended by Koch;
  • or the potential remote connection of Basque and Iberian languages in a common trunk featuring Iberian/France_Chalcolithic ancestry (also including Palaeo-Sardo).
pre-roman-palaeohispanic-languages-peoples-iberia-300bc
Pre-Roman Palaeohispanic peoples ca. 300 BC. See full map. Image modified from the version at Wikipedia, a good example of how to disseminate the wrong ideas about Palaeohispanic languages.

Despite these interesting questions still open for discussion, the paper remarked something already known for a long time: that modern Basques had steppe ancestry and Y-DNA proper of the Yamnaya 5,000 years ago, and that Bell Beakers had brought this steppe ancestry and R1b-P312 lineages to Iberia. This common Basque-centric interpretation of Iberian prehistory is the consequence of a 19th-century tradition of obsessively imagining Vasconic-speaking peoples in their medieval territories extrapolated to Cro-Magnons and Atapuerca (no, really), inhabiting undisturbed for millennia a large territory encompassing the whole Iberia and France, “reduced” or “broken” only with the arrival of Celts just before the Roman conquests. A recursive idea of “linguistic autochthony” and “genetic purity” of the peoples of Iberia that has never had any scientific basis.

Similarly, this paper offered the Nth proof already in population genomics that traditional nativist claims for the origin of the Bell Beaker folk in Western Europe were wrong, both southern (nativist Iberian origin) and northern European (nativist Lower Rhine origin). Both options could be easily rejected with phylogeography since 2015, they were then rejected in Olalde et al. and Mathieson et al (2017), then again with the update of many samples in Olalde et al. (2018) and Mathieson et al (2018), and it has most clearly been rejected recently with data from Wang et al. (2018) and its Yamnaya Hungary samples. Findings from Olalde et al. (2019) are just another nail to coffins that should have been well buried by now.

Even David Anthony didn’t have any doubt in his latest model (2017) about the Carpathian Basin origin of North-West Indo-Europeans (see here), and his latest update to the Proto-Indo-European homeland question (2019) shows that he is convinced now about R1b bottlenecks and proper Pre-Yamnaya ancestry stemming from a time well before the Bell Beaker expansion. This won’t be the last setback to supporters of zombie theories: like the hypotheses of an Anatolian, Armenian, or OIT origin of the PIE homeland, other mythical ideas are so entrenched in nationalist and/or nativist tradition that many supporters will no doubt prefer them to die hard, under the most numerous and shameful rejections of endlessly remade reactionary models.

Related

European hydrotoponymy (IV): tug of war between Balto-Slavic and West Uralic

germanic-balto-slavic-expansion

In his recent paper on Late Proto-Indo-European migrations, when citing Udolph to support his model, Frederik Kortlandt failed to mention that the Old European hydrotoponymy in northern Central-East Europe evolved into Baltic and Slavic layers, and both take part in some Northern European (i.e. Germanic – Balto-Slavic) commonalities.

Proto-Slavic

From Expansion slavischer Stämme aus namenkundlicher und bodenkundlicher sicht, by Udolph, Onomastica (2016), translated into English (emphasis mine):

NOTE. An archived version is available here. The DOI references for Onomastica do not work.

(…) there is a clear center of Slavic names in the area north of the Carpathians. Among them are root words of the Slavic languages such as reka / rzeka, potok u. a. m.

Even more important than this mapping is the question of how the dispersion of ancient Slavic names happened. What is meant by ancient Slavic names? I elaborated on this in this journal years ago (Udolph, 1997):

(1)Ancient suffixes that are no longer productive today.

This clearly includes Slavic *-(j)ava as in Vir-ava, Vod-ava, Il-ava, Glin-iawa, Breg-ava, Ljut-ava, Mor-ava, Orl-java among others. It has clear links to the ancient common Indo-European language (Lupawa, Morava-March-Moravia, Orava, Widawa). They have a center north of the Carpathians.

ava-slavic

(2) Unproductive appellatives (water words), which have disappeared from the language, are certain witnesses of ancient Slavic settlements. A nice example of this is Ukr. bahno, Pol. bagno ‘swamp, bog, morass’ etc. The word has long been missing in South Slavic, although it appears in South Slavic names, but only in very specific areas (see Udolph, 1979, pp. 324-336).

(3) Names that go back to different sound shifts. [Examples:]

  • (…) the Slavic clan around Old Sorbian brna ‘feces, earth’, Bulgarian OCS brьnije ‘feces, loam’, OCS brъna ‘feces’, Slovenian brn, ‘river mud’, etc. is solved with the inclusion of onomastic materials (Udolph, 1979, p. 499-514). (…) Toponymic mapping shows important details.
  • bryn-slavic
    Karte 4. brъn < *brŭn und bryn- < *brūn- in slavischen Namen
  • (…)We also have an ablauting *krŭn-:*krūn- in front of us. Map 5 shows the distribution of both variants in Slavic names.
  • The next case is quite similar. It concerns Russ. appellative grjaz’ ‘dirt, feces, mud’, (…) for which an Old Slavic form *gręz exists. Slavic also knows the ablauting variant *grǫz.

    These maps (see Map 6, p. 222) show that a homeland of Slavic tribes can only be inferred north of the Carpathians.

    (4) Place-names formed by Slavic suffixes of Pre-Slavic nature, i.e. derived from Old European hydronyms.

    (a) The largest river in Poland, the Wisła, German Vistula, bears a clearly Pre-Slavic name, no matter how one explains it (Babik, 2001, pp. 311-315; Bijak, 2013, p. 34, Udolph, 1990 , Pp. 303-311).

    (b) With the same suffix are formed Sanok, place on the southwest of Przemyśl; Sanoka, a no longer known waters name, 1448 as fluvium Szanoka, near the place Sanoka and with a diminutive suffix -ok- a tributary of the Sanok, which is called Sanoczek (for details see Udolph, 1990, pp. 264-270; Rymut / Majtan, 1998, p. 222). The San also has a single-language name, but that does not change anything about the right etymology. The suffix variant -očь also includes Liwocz and Liwoczka, river names near Cracow; also a mountain range of the Beskydy is mentioned at Długosz as Lywocz.

    According to the opinion of the “Słownik prasłowiański” (Sławski (red.), 1974, p. 92), the suffix -ok- represents a Proto-Slavic archaism. It appears, for example, in sъvědokъ, snubokъ, vidokъ, edok, igrok, inok among others, but its antiquity also shows, among other things, that it started at archaic athematic tribes.

    east-slavic-language-expansion
    Mapping of older and younger East Slavic place-names and translation into settlement evolution.

    Slavonic Urheimat

    If we apply this to the loess distribution in western Ukraine and south-eastern Poland, it is very noticeable that the center of the Old Slavic place names lies in the area where loess dispersal is gradually “frayed out”, i.e. for example, in the area west of Kiev between Krakow in the west and Winnycja and Moldavia in the east. In short, the distribution of good soils coincides with ancient Slavic names. If that is correct, we can expect a homeland in the Pre-Carpathian region, or better, a core landscape of Slavic settlement.

    The existence of Pre-Slavic Indo-European place names and water names whose structure indicates that they originated from an Indo-European basis, but then also developed Slavic peculiarities, can now – as stated above – only be understood to mean that the language group that we call today Slavic emerged in a century-long process from an Indo-European dialectal area.

    Loess areas between Poland and Ukraine. Image from Jary et al. (2018).

    From a genetic point of view, the scarce data published to date show a clear shift of central-east populations from more Corded Ware-like groups in the EBA towards more BBC-derived ancestry in the common era, to the point where ancient DNA samples from East Germany, Poland and Lithuania evolve from clustering between Corded Ware and Sub-Neolithic peoples to clustering close to Bell Beaker-derived groups, such as West Germanic peoples, Tollense samples, etc. (see below)

    Furthermore, sampled Early Slavs show bottlenecks under “Dinaric” I2a-L621 and central-eastern E1b-V13, which – in combination with the known phylogeography of Únětice and Urnfield – is compatible with its late expansion from a central-east European Slavonic homeland, such as the Pomeranian culture, in turn likely derived from Lusatian culture groups.

    This doesn’t preclude a more immediate expansion of Common Slavic in Antiquity closer to the northern Carpathians, which is also supported by the available Early Slavic sampling, apart from samples from the Avar and Hungarian polities.

    pca-balto-slavic-iron-age
    Likely Baltic (yellow-green) and Slavic (orange) groups ca. 500 AD on, with Finnic (cyan) and Mordvinic (blue) groups roughly divided through hydrotoponymy line ca. 1000 AD Top Left: Late Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Baltic / Proto-Slavic

    Northern European hydronymy

    From Alteuropäische Hydronymie und urslavische Gewässernamen, by Udolph, Onomastica (1997), translated into English (emphasis mine):

    NOTE. An HTML version is available at Jurgen Udolph’s personal site.

    Because of the already striking similarities as the well-known “-m-case”, the number-words for ‘1000’, ’11’ and ’12’ and so on, J. Grimm had already assumed a close relationship between Germanic and Baltic and Slavic. (…)

    In my own search, I approached this trinity from the nomenclature side. In doing so, I noticed some name groups that can speak for a certain common context:

    1.* bhelgh-, *bholgh-.

    Map 10, p. 64, shows that a root * bhelgh- occurs in the name material of a region from which later Germanic, Baltic and Slavic originated. The Balkans play no role in this.

    bholgh-germanic-balto-slavic

    2. *dhelbh-, *dholbh-, *dhl̥bh-

    The proof of the three ablauting * dhelbh, * dholbh, * dhl̥bh- within a limited area shows the close relationship that this root has with the Indo-European basis. Again it is significant in which area the names meet (…)

    dhelbh-germanic-balto-slavic

    3. An Indo-European root extension *per-s- with the meaning ‘spray, splash, dust, drop’ is detectable in several languages (…). From a Baltic-Slavic-Germanic peculiarity cannot therefore be spoken from the toponymic point of view. The picture changes, however, if one includes the derived water names.

    4. The root extension *pel-t-, *pol-t-, *pl̥-t- of a tribe widely spread in the Indo-European languages around *pel-, pol- ‘pour, flow, etc.’, whose reflexes are found Armenian through Baltic and Slavic to the Celtic area, is found in the Baltic toponymy, cf. Latv. palts, palte ‘puddle, pool’.

    trzciniec-riesenbecher-culture
    The dynamics of stylistic changes of the form of the “Trzciniec pot” in the lowland regions of Central Europe, and spreading routes of the Trzciniec package in Central Europe. A good proxy for contacts through the Northern European Plain during the Early Bronze Age. Modified from Czebreszuk (1998).

    Early Balto-Finnic

    In order to properly delimit (geographically and chonologically) the Proto-Baltic and Proto-Slavic expansions, it is necessary to understand where the late Balto-Finnic homeland was located during the Bronze Age. The following are excerpts from the comprehensive hydrotoponymic study by Pauli Rahkonen (2013):

    In any case, Finnic probably had its origin somewhere around the Gulf of Finland. Names of large and central rivers such as Vuoksi (< Finnic vuo ‘stream’) and Neva (< Finnic neva ‘marsh, river’) must be very old and might represent Proto-Finnic hydronyms. In the southern coastal area of Finland, the names Kymi and Nietoo < *Niet|oja (id. later Porvoonjoki) may also be of Finnic origin and derive from, respectively, kymi ‘stream’ (see SSA I s.v. *kymi; see however SPK s.v. Kemijärvi; Rahkonen 2013: 24) and nieto(s) ‘heap of snow’ (SSA II s.v. nietos), in hydronyms probably ‘high (snowy?) banks of a river’. Mustion|joki is clearly a Finnish name < *must|oja ‘black river’. The river name Vantaa remains somewhat obscure, although Nissilä (see SPK s.v. Vantaanjoki) has derived it from the Finnic word vana ‘water route’. In western Finland the names of large rivers, such as Aura and Eura, are supposedly of Germanic origin (Koivulehto 1987).

    In Estonia the names of many of the most important rivers might be of Finnic origin: e.g. Ema|jõgi Est. ema ‘mother’ [Tartu district] (?? cf. the Lake Piiga|ndi < Est. piiga ‘maiden’), Pärnu [Pärnu district] < Est. pärn ‘linden’, Valge|jõgi [Loksa district] < Est. valge ‘white’, Must|jõgi [Võru district] < Est. must ‘black’. It is possible that Emajogi and especially Piigandi are the result of later folk etymologizing of a name with some unknown origin. However, as a naming motif there exist in Finland numerous toponyms with the stems Finnic *emä (e.g. 3 Emäjoki), *neit(V)- ‘maiden’ (e.g. Neitijärvi, Neittävänjoki, Neittävänjärvi) and Saami stems that can be derived from Proto Saami *nejte̮ ‘id’ (GT2000; NA).

    finnic-toponyms
    The historical southern boundary of Finnic hydronyms, excluding hydronyms produced by the Karelian refugees of the 17th century.

    These seemingly very old names of relatively large rivers in southern Finland, modern Leningrad oblast and Estonia support the hypothesis that Proto-Finnic was spoken for a long time on both sides of the Gulf of Finland and it thus basically corresponds to the hypothesis of Terho Itkonen (see below). In the Novgorod, Tver or Vologda oblasts of Russia, Finnic names for large rivers cannot be found (Rahkonen 2011: 229). For this reason, it is likely that the Late Proto-Finnic homeland was the area around the Gulf of Finland.

    Beyond the southeastern boundary of the modern or historically known Finnic-speaking area, there exists a toponymic layer belonging to the supposedly non-Finnic Novgorodian Čudes (see Rahkonen 2011). In theory it is possible that Proto-Finnic and Proto-Čudian separated from each other at an early stage or it is even possible that Proto-Čudian was identical with Proto-Finnic. However, this cannot be proven, because there is not enough material available describing what Novgorodian Čudic was like exactly.

    finno-saamic-mordvin
    Yakhr-, -khra, yedr-, -dra and yer-/yar, -er(o), -or(o) names of lakes in Central and North Russia and the possible boundary of the proto-language words *jäkra/ä and *järka/ä. Rahkonen (2013)

    A summary of the data is then:

    • The Daugava River and the Gulf of Livonia formed the most stable south-western Balto-Finnic border (up until ca. 1000 AD): the Daugava shows a likely Indo-European etymology, while some of its tributaries are best explained as derived from Uralic.
    • The first layer of “Early Baltic” loans in Early Balto-Finnic are of a non-attested Baltic dialect closest to Proto-Balto-Slavic (read more about this early layer).
    • The latest samples of the Trzciniec culture (or derived Iron Age group) from its easternmost group in Turlojiškė (ca. 1000-800 BC?) show a western shift towards Bell Beaker, although they show a majority of hg. R1a-Z280; while the earliest sample from Gustorzyn (ca. 1900 BC), likely from Trzciniec/Iwno, from the westernmost area of the culture, shows a Corded Ware-like ancestry (and hg. R1a-Z280, likely S24902+) among a BA sampling from Poland clearly derived from Bell Beaker groups.

    One can therefore infer that the expansion of the Trzciniec culture – as the earliest expansion of central-west European peoples into the Baltic after the Bell Beaker period – represented either the whole disintegrating Balto-Slavic community, or at least an Early Baltic-speaking community expanding from the West Baltic area to the east.

    The similarity of Early Slavs and the Trzciniec outlier with the Czech BA cluster, formed by samples from Bohemia (ca. 2200–1700 BC), and the varied haplogroups found among Early Slavs – reminiscent of the variability of the Unetice/Urnfield sampling – may help tentatively connect the early Proto-Slavic homeland more strongly with a Proto-Lusatian community immediately to the south-west of the Iwno/Proto-Trzciniec core.

    pca-late-bronze-age-balto-slavic-finnic
    Top Left:Likely Baltic, Slavic, and Balto-Finnic-speaking territories (asynchronous), overlaid over Late Bronze Age cultures. Balto-Slavic in green: West(-East?) Baltic (B1), unattested early Baltic (B2), and Slavic (S). Late Balto-Finnic (F) in cyan. In red, Tollense and Turlojiškė sampling. Dashed black line: Balto-Slavic/West Uralic hydrotoponymy border until ca. 1000 AD. Top right: PCA of groups from the Early Bronze Age to the Late Bronze Age. Marked are Iwno/Pre-Trzciniec of Gustorzyn (see below), Late Trzciniec/Iron Age samples from Turlojiškė, and in dashed line approximate extent of Tollense cluster; Y-DNA haplogroups during the Late Bronze Age (Bottom left) and during the Early Iron Age (Bottom right). Notice a majority non-R1a lineages among sampled Early Slavs. See full maps and PCAs.

    Proto-Balto-Slavic homeland

    Disconnected western border: Germanic

    The common Balto-Slavic – Germanic community must necessarily be traced back to the West Baltic. From Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994), translated from German (emphasis mine):

    My work [Namenkundliche Studien zum Germanenproblem] has shown how strong the Germanic toponymy is related to the East, less to Slavic, much more to Baltic. It confirms the recent thesis by W.P. Schmid on the special relationship Germanic and Baltic, according to which “the formation of the typical Germanic linguistic characteristics…must have taken place in the neighborhood of Baltic“.

    If one starts from a Germanic core area whose eastern boundary is to be set on the middle Elbe between the Erzgebirge and Altmark, there are little more than 400 km. to the undoubtedly Baltic settlement area east of the Vistula. Stretching the Baltic area westwards over the Vistula (as far as the much-cited Persante), the distance is reduced to less than 300 km. Assuming further that Indo-European tribes between the developing Germanic and the Baltic groups represent the connection between the two language groups, so can one understand well the special relationship proposed by W.P. Schmid between Germanic and Baltic. In an earlier period shared Slavic evidently the same similarities (Baltic-Slavic-Germanic peculiarities).

    balto-slavic-balto-finnic-homeland
    Top: Palaeo-Germanic (G2, blue area), Proto-Balto-Slavic/Pre-Baltic (PBSL, green area) and Early Proto-Balto-Finnic (PBF, cyan area) homelands superimposed over Early Bronze Age cultures. Persante hydronym and Gustorzyn ancient DNA sample location marked. Y-DNA haplogroups during the Early Bronze Age (Bottom left) and during the Middle Bronze Age (Bottom right). Notice a mix of R1b-L151 samples from the west and the process of integration of R1a-Z645 lineages from the the north-east. See full maps and PCAs.

    Substrate and immediate eastern border: Early Balto-Finnic

    While Balto-Finnic shows a late Balto-Slavic adstrate, Balto-Slavic has a Balto-Finnic(-like) substrate, also found later in Baltic and Slavic, which implies that Balto-Slavic (and later Baltic and Slavic) replaced the language of peoples who spoke Balto-Finnic(-like) languages, influencing at the same time the language of neighbouring peoples, who still spoke Balto-Finnic (or were directly connected to the Balto-Finnic community).

    For more on this relative chronology in Balto-Slavic – Balto-Finnic contacts, see e.g. the recent posts on Kallio (2003), Olander (2019), or a summary of this substrate.

    While Rahkonen (2013) entertains Parpola’s theory of a West-Uralic-speaking Netted Ware area (ca. 1900-500 BC), due to the Uralic-like hydrotoponymy of its territory, he also supports Itkonen’s idea of the ancient presence of almost exclusively Balto-Finnic place and river names in the Eastern Baltic and the Gulf of Finland since at least the Corded Ware period, due to the lack of Indo-European layers there:

    NOTE. This idea was also recently repeated by Kallio (2015), who can’t find a non-Uralic layer of hydrotoponymy in Balto-Finnic-speaking areas.

    It should be observed that the territory between the historical Finnic and Mordvin-speaking areas matches quite well with the area of the so-called Textile Ceramics [circa 1900–800 BC] (cf. Parpola 2012: 288). The culture of Textile Ceramics could function as a bridge between these two extreme points. Languages that were spoken later in this vast territory between Finland–Estonia and Mordovia seem to derive from Western Uralic (WU) as well. I have called those languages Meryan-Muroma, Eastern and Western Čudian and an unknown “x” language spoken in inland Finland, Karelia and the Lake Region of the Russian North (Rahkonen 2011; 241; 2012a: 19–27; 2013: 5– 43). This might mean that the territory of the Early Textile Ceramics reflects to some extent the area of late Western Uralic.

    The archaeologically problematic area is Estonia, Livonia and Coastal Finland – the area traditionally assumed to have been populated by the late Proto-Finns. The Textile Ceramics culture was absent there. It is very difficult to believe that the Textile Ware population in inland Finland migrated or was even the main factor bringing the Pre- or Early Proto-Finnic language to Estonia or Livonia. There are no archaeological or toponymic signs of it. Therefore, I am forced to believe that Textile Ceramics did not bring Uralic-speaking people to those regions. This makes it possible, but not absolutely proven, to assume that some type of Uralic language was spoken in the region of the Gulf of Finland already before Textile Ceramics spread to the northwest (circa 1900 BC).

    corded-ware-west-uralic
    Top Left: Corded Ware culture expansion. Top right: PCA of Corded Ware and Sub-Neolithic groups. Y-DNA haplogroups during the Corded Ware expansion (Bottom left) and during the subsequent Bell Beaker expansion (Bottom right). Notice the rapid population replacement of typical Corded Ware R1a-Z645 lineages by expanding Bell Beakers of hg. R1b-L23 in central-east Europe, while they show continuity in the described ancestral Fennoscandian West-Uralic-speaking territory. See full maps and PCAs.

    The Corded Ware population in Finland is thought to have been NW Indo-European by many scholars (e.g. Koivulehto 2006: 154–155; Carpelan & Parpola 2001: 84). At least, it is probable that the Corded Ware culture was brought to Finland by waves of migration, because the representatives of the former Late Comb Ceramics partially lived at the same time side by side with the Corded Ware population. However, it is possible that the immigrants were a population that spoke Proto-Uralic, who had adopted the Corded Ware culture from their Indo-European neighbors, possibly from the population of the Fatjanovo culture, e.g. in the Valdai region. This was suggested by Terho Itkonen (1997: 251) as well. In that case the population of the Typical and Late Comb Ceramics may have spoken some Paleo European language (see Saarikivi 2004a). In the Early Bronze Age, the Baltic Pre-Finnic language that I have suggested must have been very close to late WU and therefore no substantial linguistic differences existed between the Baltic Pre-Finns and the population of Textile Ceramics in inland Finland. I admit that this model is difficult to prove, but I have presented it primarily in order to offer new models of thinking.16 At least, there is no archaeological or linguistic reason against this idea.

    This dubitative attribution of Proto-Uralic to the expansion of Corded Ware groups in eastern Europe, which is what hydrotoponymic data suggests in combination with archaeology, has to be understood as a consequence of how striking Rahkonen finds the results of his research, despite Itkonen’s previous proposal, in the context of an overwhelming majority of Indo-Europeanists who, until very recently, simplistically associated Corded Ware with the Indo-European expansion.

    Conclusion

    Even Kortlandt accepts at this point the identification of expanding East Bell Beakers from the Carpathian Basin as those who left the Alteuropäische layer reaching up to the Baltic. However, he identified Udolph’s data solely with West Indo-European, forgetting to mention the commonly agreed upon western Proto-Balto-Slavic homeland, most likely because it contradicts two of his main tenets:

    1. that Balto-Slavic split from a hypothetical Indo-Slavonic (i.e. Satem) group expanding from the east; and
    2. that laryngeals can be reconstructed for Balto-Slavic – unlike for North-West Indo-European.
    old-european-asian-hydro-toponymy
    Indo-European hydrotoponymy in Europe and the Middle East (scarce Central Asian data). Baltic data compensated, statistical method RBF: intermediate regions devoid of Indo-European toponyms are inferred to have them; it compensates thus e.g. for the scarce Indo-European hydrotoponyms in Poland by assuming ‘soft’ continuity from West Germany to the Baltic.

    A hypothetic “Pre-Indo-Slavonic” laryngeal Indo-European layer reaching Fennoscandia and the Forest Zone with Corded Ware is fully at odds with all known data:

    • in comparative grammar, since the one feature that characterizes Graeco-Aryan is precisely its set of innovations relative to Northern Indo-European, which presupposes a longer contact (and further laryngeal loss) once Tocharian and North-West Indo-European had separated – hence probably represented by Palaeo-BalkanCatacomb-Poltavka contacts once Afanasevo and Yamna settlers from the Carpathian Basin / East Bell Beakers had become isolated;
    • in hydrotoponymy, because of the prehistoric linguistic areas that can be inferred from (1) the distribution of Old European hydrotoponymy; (2) Udolph’s work on Germanic and the likely non-Indo-European substrate in Scandinavia and land contacts with Balto-Finnic; (3) from the Northern European traits in the Northern European Plain; or (4) from the decreasing proportion of Indo-European place and river names from central Europe towards the east and north.
    • NOTE. An alternative explanation of Old European/Balto-Slavic layers, e.g. by a ‘Centum’ Temematic – even if one obviates the general academic rejection to Holzer’s proposal – couldn’t account for the absolute lack of an ancestral layer of Indo-European hydrotoponymy in North-Eastern Europe (i.e. the longest-lasting Corded Ware territory), in sharp contrast with Western Europe, South-Eastern Europe, and South Asia. All of that contradicts an Eastern Indo-European community, even without a need to recall that the oldest hydrotoponymic layers common to Fennoscandia and the Forest Zone are of Uralic nature.

    • in archaeology, because cultural expansions of the Eastern European Early Bronze Age province since the Bell Beaker period (viz. Mierzanowice, Trzciniec, Lusatian, Pomeranian, West Baltic Culture of Cairns) suggest once and again west-east movements, most (if not all) of which – based on the presence of Indo-European speakers during the common era – were likely associated with Indo-European-speaking communities replacing or displacing previous ones.
    • in palaeogenomics, because of the late and different association of Corded Ware ancestry and haplogroups among Balto-Slavic and Indo-Iranian communities, in turn corresponding to the different satemization processes found in both dialects, which may have actually been related to the Uralic substrate that is found in both (read more on Uralic influences on Balto-Slavic and on Indo-Iranian).

    On the other hand, a careful combination of Uralic and Indo-European comparative grammar, hydrotoponymic data, and population genomics fits perfectly well Itkonen’s and Rahkonen’s association of Corded Ware in Eastern Europe with Uralic languages, as well as the traditional mainstream view of Uralic before Indo-European in Fennoscandia and in the Forest Zone, as I explained in a recent post about genetic continuity in the East Baltic area.

    Population genomics is not the main reason to reject the Indo-European Corded Ware theory – or any other prehistoric ethnolinguistic identification, for that matter. It can’t be. This new field offers just the occasional confirmation of a well-founded theory or, alternatively, another nail in the coffin of fringe theories that were actually never that likely, but seemed impossible to fully dismiss on purely theoretical grounds.

    The problem with Corded Ware was that we couldn’t see how unlikely its association with Indo-European languages was until we had ancient DNA to corroborate archaeological models, because few (if any) Indo-Europeanists really cared about the linguistic prehistory of eastern and northern Europe, or about Uralic languages in general (contrary to the general trend among Uralicists to be well-versed in Indo-European studies). Now they will.

    Related

    European hydrotoponymy (III): from Old European to Palaeo-Germanic and the Nordwestblock

    nordic-bronze-age-cultures

    The study of hydrotoponymy shows a prevalent initial Old European layer in central and northern Germany, too, similar to the case in Iberia, France, Italy, and the British Isles.

    The recent paper on Late Proto-Indo-European migrations by Frederik Kortlandt relies precisely on this ancestral layer as described by Jürgen Udolph to support a Danubian expansion of North-West Indo-European with East Bell Beakers, identified as the Alteuropäische (Old European) layer that was succeeded by Germanic in the North European Plain.

    The Proto-Germanic homeland

    The following are excerpts are translated from the German original (emphasis mine) in Udolph’s Namenkundliche Studien zum Germanenproblem, de Gruyter (1994):

    udolph-namenkunde
    Buy the book at De Gruyter’s site or at Amazon.

    The following is a concise compilation of the investigation into nine points, which will be subsequently discussed: there are Brink (in the north brekk-), -by (on the Elbe), the name of the Elbe itself, germ, haugaz and blaiw, klint, malm / melm, the name of the Rhön, and the place name element -wedel.

    I want to briefly summarize the results:

    1. Brink has toponymically a clear focus in Germany between the Rhine and the Weser; in Schleswig-Holstein and Denmark it is almost completely missing, the Scandinavian place name documents show an accumulation in eastern Sweden. The English Brink names can not be associated with the Scandinavian ones. The “real” Scandinavian variant brekka, brekke, however, also appear on the Shetland and Orkney Islands and in central England.

    2. The Central Elbian –by-place names have nothing to do with the Danish and Scandinavian -by-names.

    3. The name of the Elbe has been carried from south to north and has become an appellative in Scandinavia. This clearly proves that a south-north migration has taken place.

    4. The distribution of haugaz does not support a Nordic origin of the word. K. Bischoff in his thorough investigation never asked whether the reverse path from south to north would be possible. However, in comparison with the results of the study of other toponyms, this second option will be much more likely to be accepted. On the “problem of the gap” in the distribution (between Aller and northern Holstein) see page 910.

    hlaiwaz-germanisch

    5. Completely missing is the assumption of Nordic origin in the case of hlaiwaz. A look at Map 67 shows this clearly.

    6. Even in the case of klint, Denmark and Scandinavia are only marginally involved in the distribution of names. This contradicts the thesis that the English Klint names are of Nordic origin. On the other hand, Map 68 (Klit- / Klett-) shows how Nordic place names can have an influence on the British Isles.

    klint-germanisch

    7. Even in the case of germ, melm (ablauting malm, mulm), everything speaks for a continental Germanic starting point: here are all ablaut stages in the appellative vocabulary and in the toponymy, which shows together with the name Melmer perhaps the most ancient -r-derivations, which are unknown to the Nordic area, while the Nordic names, in turn, have a distinct tendency to spread to eastern Sweden, towards the Baltic Sea.

    8. The name of the Rhön can only be interpreted with the aid of the Nord Germanic apellative hraun “boulder field, stony ground, lava field”. This does not mean that Nord Germanic peoples have given this name, but that the Common or Proto-Germanic peoples knew the appelative still. The Rhön owes its name to this language stage.

    9. The spread of the fronds names in Germany, classified by E. Schröder as “North Germanic invasion”, can be explained differently: more important than the often younger names north of the Elbe in Schleswig-Holstein (type Wedelboek) are the place names near Braunschweig, Büren (Westphalia), and in the Netherlands, in which case a south-north spread is more convincing than the assumption of a Nordic expansion.

    wedel-germanisch

    If you take the similar distribution maps 15 (wik), 31 (fenn), 36 (slk), 39 (büttel), 47 (live), 49 (quem), 50 (thing), 61 (brink) and 66 (haugaz) It can be seen from this (page 72, page 908) that there are parts of Germany which, to a lesser degree, are more heavily involved than others in Old Germanic place name formations: that applies to southern Thuringia, the Area between Werra and Fulda, the Magdeburger Börde and its western foothills to the Weser at the Porta Westfalica). On the other hand, the areas north of the Aller, Hanoverian Wendland and wide areas between the Lower Weser and the Lower Elbe (apart from the area around Osterholz-Scharmbeck as well as Kehdingen and Hadeln) are little and hardly affected.

    There is no question that the reasons for the different dispersion can not lie in the name itself, but have other causes. H. Kuhn has considered the natural conditions of the landscape with the fronds. Comparing the place name expansion outlined here with a bog map of Lower Saxony, as found in numerous publications (Map 73, page 910), solves the problems: even today’s bog distribution of Lower Saxony, diminished through cultivation and drainage (albeit still considerable), reflects the fact that the early colonization and naming of northern Germany has been shaped and, to a certain extent, controlled by settler-friendly and not-settler-friendly conditions.

    moorkarte-deutschland
    Distribution of bogs in Germany. Source: M. Sommer, Institut für Bodenlandschaftsforschung, ZALF, Müncheberg.

    On the location of the Germanic Urheimat

    According to the space briefly outlined by the present study, the Old Germanic settlement area in toponymic terms is roughly to be located between the Erzgebirge, Thüringerwald, Elbe, Aller and an open border in Westphalia, for the following reasons:

    • High proportion of old European names. This is a basic requirement, which of course is also fulfilled by other areas, but not by Schleswig-Holstein, Denmark and Scandinavia. (…)
    • Of particular importance was the discussion about relations with the north (the generally accepted ancient Germanic settlement area, section L, p. 830-917). I believe that the detailed study of the geographical names no longer allows one to assume a Scandinavian homeland of Germanic tribes. Too many arguments speak against it. It is much more likely to start with a northward migration (…).
    bell-beaker-germanic
    Bell Beaker expansion ca. 2600-2200 BC. Top Left: Tentative location of the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border). Top right: PCA of the Bell Beaker period, with Netherlands EBA cluster (population west of the Germanic Urheimat) in red, and Battle Axe/Baltic CWC (population east and north of the Urheimat) in cyan. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Western border: Nordwestblock

    Recently, W. Meid has once more dealt in detail with Kuhn’s thesis. After that, the most important criteria for the approach of this thesis are the following:

    1. -p- (and other shutter sounds) are partly not shifted in North German names;
    2. the existence of a -sí-suffix;
    3. -apa in river names;
    4. the suffix -andr-;
    5. certain words u. Name strains, e.g. Veneter, Belgian.
    6. Above-average relations of the northwestern block to Italic (Latin, Osco-Umbrian).

    W. Meid agrees with Kuhn’s theses, but with limitations: “These evidences seem to indicate that the NW-space did not belong to the original settlement area of ​​the Teutons, but that the Germanization of this area or larger parts of it did not take place until relatively late, namely – as Kuhn thinks – after the Germanic sound shift or during its last phase. According to Kuhn’s own words this “space… appears as a block that has long defied Germanization”.

    Udolph continues explaining why most of these non-Germanic examples are “optic illusions”, since he can explain most of them as from Old European to Old Germanic stages, which is mostly in agreement with the known features of Old European hydrotoponymy. For example, -apa- and -andra-names as Old European; -p- as before the Germanic sound shift; -st- and -s-formations as Northern European; -ithi- also unrelated to a hypothetic “Venetic” substrate.

    I think that the point to discuss should not be the similarity with Old European or the oldest reconstructible Proto-Germanic stage (i.e. the closest to North-West Indo-European), or the appearance of these traits also in neighbouring Germanic territory, but the proportion of “more archaic” features contrasting with the proper Germanic area, and thus differences in frequency with the Germanic core territories.

    Just as Udolph can’t accept the non-Indo-European nature of most cases, one can’t simply accept his preference for a Pre-Proto-Germanic nature either, for the same reason one can’t accept the relationship of Western European “Pre-Celtic” hydrotoponymy with Celtic peoples because of some shared appellatives whose Celtic nature is not proven.

    NOTE. If there is something missing from this huge book is certainly statistical analyses with GIS, which would make this case much easier to discuss in graphical and numerical terms. Let’s hope Udolph can update the data in the near future, because he is still (fortunately) active.

    In any case, the Nordwestblock remains a likely Old European hydrotoponymic area partially shared by Germanic, which doesn’t lie at the core of the spread of Old European place names and has a potential non-Indo-European substrate shared with Northern European groups. Combined with comparative grammar and with results of population genomics supporting the spread of East Bell Beakers of Yamna descent from the Carpathian Basin, this essentially renders interpretations of Old European expansion from Northern Europe devoid of support in linguistics.

    Palaeo-Germanic expansion

    To the north, the settlement movement depends on the location and spread of settlement-deficient areas, such as the moors northeast of Wolfsburg, north of Gifhorn, south of Fallingbostel, etc. As soon as this belt has been breached, the place name frequency in the eastern Lüneburg Heath indicates where more favorable settlement conditions are to be found: the Altmark in Saxony-Anhalt, the Jeetzel lowlands and especially the Ilmenau area near Uelzen, Bevensen and Lüneburg (it is difficult not to recall the name Jastorf here).

    If one combines these findings with the dispersion of ancient Germanic place names, one will find that above all the section of the river east from Hamburg to about Lauenburg was particularly favorable for crossing. The onomastic data speaks in favour of this aspect, e.g. the following names lying north and south of this area.

    brink-germanisch

    1. Delvenau = Elbe-Lübeck Canal.

    2. Neetze north of Lüneburg (-d-/-t-change).

    3. Wipperau north of Lüneburg (-p-/-b- change).

    4. The dispersion of the -wik places (Bardowik), cf. Map 15, p. 106.

    5. The dissemination of the -r formations (Map 24, p. 191).

    6. The -ithi formations Geesthacht, Bleckede u.a. south of the Elbe, Eckede north of the stream (see Map 28, p.272).

    7. Fenn south of the Elbe in the north of Lüneburg (Map 31, p.315).

    8. The distribution of the Hor name (Harburg) and northeast of it in Holstein (Map 32, p.328).

    9. Germ, sik- with clear clusters southeast. and northeastern. from Hamburg (Map 36, p. 409).

    10. Also the -büttel names show a concentration east of Hamburg on the one hand and a second accumulation at the estuary of the Elbe (Brunsbüttel) (map 39, p.438).

    11. Gorleben and other places in Hann. Wendland south of the river (Map 47, p.503).

    12. Werber-names southeast from Hamburg and in eastern Holstein (Map 53, p.742).

    13. The scattering of brink names (Map 61, p. 843).

    The place name distributions also make it possible to track the settlement movement north of the Elbe. It has been repeatedly emphasized that Schleswig-Holstein has little share in old Germanic toponymy. One tries to explain this fact, which reaches into the realm of the Old European hydronyms, by saying that, according to archeology, “large parts of Schleswig-Holstein in the 5th to 7th centuries were sparsely populated”.

    scandinavia-neolithic-dagger-period
    Close contacts in Fennoscandia. The distribution of Scandinavian flint daggers (A) in the east and south Baltic region and possible trends of “down the line” trade (B). Good size and quality flint zone in the south-west Baltic region is hatched (C). According to: Wojciechowski 1976; Olausson 1983, fig. 1; Madsen 1993, 126; Libera 2001; Kriiska & Tvauri 2002, 86. Image modified from Piličiauskas (2010).

    If one summarizes these synoptically (Map 74, p.914) and also takes into account the not-included -leben-names (Map 47, p.503), then it is quite clear that Denmark by no means shares these types of names. The most important points are, in my opinion:

    1. North of today’s German-Danish border, the quantity of old place names drops rapidly and even tends towards zero. West Jutland in particular is rarely involved in the dispersion.
    2. Within Jutland there is a clear orientation to the east. The connection with southern Sweden is established via Funen and Zeeland.
    3. Disputed is in my opinion, whether the spread of toponymy followed a roughly direct line Fehmarn and Lolland/Falster. This is not to be excluded, but the maps of toponymy distribution do not give a clear indication in this direction.

    The synoptic map makes it clear that both western Schleswig-Holstein and western Jutland are not to be regarded as Old Germanic settlement areas. Rather, East Jutland and the Danish islands were reached by Germanic tribes.

    pca-bronze-age-germanic
    Bronze Age groups ca. 2200-1750 BC. Top Left: Tentative location of (1) the Pre-Proto-Germanic homeland (earliest stage), in the North European Plain between the Elbe and the the Aller (open border), (2) the Pre-Proto-Germanic expansion area, coinciding with the Nordic Dagger Period, and (3) the Pre-Proto-Germanic-like Nord-West-Block. Top right: PCA of European Bronze Age groups. Bottom left: ADMIXTURE analysis of ancient DNA samples. Bottom right: Y-DNA haplogroup map. See full maps and PCAs.

    Absolute chronology and Balto-Finnic

    It is imprecise to estimate the age of settlement movements from toponymic research. I do not want to be involved in speculation, but I think that Klingberg’s estimate could have some arguments in its favor. In the approximate dating, however, it is important to include a fact that has already been briefly mentioned above and should be treated here in more detail: the fact of Germanic-Finnic relations.

    W.P. Schmid has emphatically pointed out the difficulty that arises when one considers the unfolding of Germanic too far from the Baltic Sea settlement areas. Among other things, it draws attention to the fact that a Germanic homeland that were postulated too far west could not explain how Germanic loanwords might appear in the Finnic names of Northern Russia. These will be mentioned with reference to M. Vasmer: Randale to Finn. ranta “beach”, Pel’doza and Nimpel’da to Finn. pelto, Justozero to Finn. juusto “cheese”, Tervozero to Finn. terva “tar” and Rovdina Gora to Finn. rauta “ore”.

    I think it is possible that the clear spread of Old and North Germanic toponyms, as described in the synoptic map 74 (p. 914) and in the already mentioned -ing, -lösa, -by, -sta(d) and -säter-maps (19, 46, 63-65), can offer some help: quite early the Germanic tribes reached the Swedish east coast. It is also clear that there have previously been contacts with Slavic and Finno-Ugric tribes by sea. However, intensive German-Finnic relations can, in my opinion, have come about only through close contacts on the mainland.

    Pre-Indo-European substrate

    In my investigation, I have repeatedly come up with suggestions to explain a hard-to-interpret North Germanic name from a Pre-Germanic, possibly Non-Indo-European substrate. Most of these were views of H. Kuhn, which he also used to support his so-called “Nord-West block”.

    On one point H. Kuhn may have been right with an assumption of a Pre-Germanic substrate that did not provide the basis for further development in Germanic terms: he very clearly argued that Scandinavia too was Pre-Germanic, even Pre-Indo-European A substrate that stands out above all because of the lack of Lautverschiebung : “In the Nordic countries, we have to reckon with non-Germanic, non-Indo-European prehistoric names scarcely less than in the other Germanic languages”. In light of the results of the present work that makes a relatively late Germanization of Scandinavia very likely, this sentence should not be set aside in the future, but carefully examined on the basis of the material.

    Both data, the known long-lasting Palaeo-Germanic – Finno-Samic contacts, and the underresearched presence of non-Indo-European vocabulary in Scandinavia, are likely related to the presence of a West Uralic(-like) substrate in Scandinavia and most likely also in Northern Europe, based on the disputed non-Indo-European components shared through the North European Plain (see above), and on the scarce ancient Indo-European hydrotoponymy in central-east Europe to the north of the Carpathians.

    Population genomics

    Although there is yet scarce genetic data from northern European territories, the haplogroup distribution among sampled peoples from the Germanic migration period and during the Viking expansion suggests a prevalence of R1b-U106 in the North European Plain (also found in Barbed Wire Beakers), and thus a later integration of typically Neolithic (I1) and CWC-related (R1a) subclades to the Germanic-speaking community during the expansion into Southern Scandinavia.

    This is compatible with the described development of maritime elites by Bell Beakers, representing maritime mobility and trade, and an appealing ideology, similar to the prevalence of Athens over Sparta (Corded Ware in this analogy). It is also supported by the bottlenecks under R1b-U106 to the north of Schleswig-Holstein.

    NOTE. Nevertheless, other R1b-L151 may have been part of the Germanic-speaking communities, especially during its earliest stage, and also R1b-U106 (and other R1b-L161) subclades may appear all the way from the Carpathians to Northern Europe, including the Eastern European Early Bronze Age.

    germanic-iron-age
    Common Germanic expansions ca. 500 BC on. Top Left: Early Iron Age cultures. Top right: PCA of groups from the Iron Age to the Middle Ages. Y-DNA haplogroups during the Germanic migrations (Bottom left) and during the Middle Ages (Bottom right). Notice a majority of R1b-U106 (practically absent from previous Bronze Age populations of Central Europe) among sampled Germanic tribes. See full maps and PCAs.

    Archaeology

    This sudden population bust to the south and predominance of a Southern Scandinavian maritime society in the Nordic circle seems to be also supported by inferences from archaeological data, too. For example, from the recent Human impact and population dynamics in the Neolithic and Bronze Age: Multi-proxy evidence from north-western Central Europe, by Feeser et al. The Holocene (2019):

    The second boom between c. 3000 and 2900 cal. BC relates to increases in the palynological proxy and the binned all site SCDPD curve. From an archaeological point of view, this time reflects the transition from the Funnelbeaker to the Single Grave Culture. The emergence of this new cultural phenomenon is often regarded to have been associated with a shift in subsistence practices, that is, a shift from sedentary agricultural to mobile pastoral subsistence (Hinz, 2015; Hübner, 2005; Iversen, 2013; Sangmeister, 1972).

    denmark-demography-bronze-age
    Left: Map with pollen sites. Right: Bin sensitivity plots based on summed calibrated date probability distributions (SPD) using different degrees of binning on-site level (h = 0 no binning; h = 1000 high binning) and Kernel density plots (KDE) of available radiocarbon dates from the settlement context (settlement sites). Modified from the paper to include a red arrow showing Corded Ware bust and subsequent boom with the Dagger Period..

    (…) there is palynological evidence for increased importance of cereal cultivation during the Young Neolithic in comparison to the Early Neolithic (Feeser et al., 2012). This, however, does not rule out an increased importance of pastoralism, as grazing on grasslands and extensive cereal cultivation are difficult to distinguish and to disentangle in the palynological record. Generally however, human impact on the environment and population levels, respectively, did not reach Funnelbeaker times maxima values during this boom phase at the beginning of the Younger Neolithic. The similar short-term synchronous developments in both the pollen profiles during 2800–2300 cal. BC could point to large-scale, over-regional uniform development during the Younger Neolithic in our study area (cf. also Feeser et al., 2016).

    Between c. 2400 and 2300 cal. BC, the palynological proxy and the binned all site SCDPD curve show a similar distinct decrease (Figure 6), and we define a second bust phase accordingly. The soil erosion record, however, indicates elevated values at around this time but declines, although not very well defined, to a minimum at around 2200 cal. BC. Due to the generally low number of colluvial deposits recorded for the Younger Neolithic, this is not regarded to contradict our interpretation, as low sample sizes generally minimize the chances of identifying a robust pattern. A strong increase in all the three proxies between 2200 and 2100 cal. BC defines our third boom phase.

    Bronze Age evolution

    Candidate homelands for the succeeding (Palaeo-Germanic) stages of the language are shifted also in archaeology to the south, due to the economic influence of demographically stronger Nordic Bronze Age cultural groups of northern Germany over Southern Scandinavia.

    A good description of societal changes in the Palaeo-Germanic stages is offered by the recent paper Cultural change and population dynamics during the Bronze Age: Integrating archaeological and palaeoenvironmental evidence for Schleswig-Holstein, Northern Germany, by Kneisel et al. The Holocene (2019):

    schleswig-holstein-culture-demography
    Qualitative data from material culture and demography in Schleswig-Holstein and Mecklenburg-Western Pomerania. Modified from the original to remark periods of likely demographic decrease (red square) and growth (blue square).

    At each beginning of a boom phase and each end of a bust phase, changes in the material culture could be observed.

    When the pressure on the landscape is at its lowest around 1500 BC and shortly before it rises again, the type of burial changes, hoards and bronzes increase, and monumental burial mounds are erected again. Vice versa, when the pressure on the landscape reaches its maximum value around 1250 BC, tools and hoard depositions decrease again and only the monumental burial and prestige goods are maintained. The ‘elite’ are continuing with their way of burial. The reduction in house surface area and the number of hoards takes place earlier, possibly because of material scarcity as could also be proven in Thy, northern Jutland (Bech and Rasmussen 2018).

    Again, the human impact decreases, and at its lowest point at the beginning of Period IV ca. 1100 BC, the monumental burial custom and the addition of prestige goods also end. The number of hoards and graves begins to rise again, and cooking pits appear. Exchange networks shift with the beginning of Period V, while axes increase again together with a slight decrease in the human impact curve. The appearance of certain artefacts or burial rites at the beginning of such a period of upheaval seems to suggest the role of a trigger. With this analysis, we have defined several likely indicators for social change in the less distinct phases and societal change in the strongly pronounced phases around 1500 BC and 1100 BC and the most important triggers for the Schleswig-Holstein Bronze Age.

    soegel-wohlde-nordic-bronze-age
    Distribution of burials with Valsømagle, Sögel and Wohlde blades with provenance known to parish. q = Valsømagle blades; s = Wohlde blades (small = one grave with a blade; medium = two graves with a blade); l = Sögel blades (small = one grave with a blade, medium = two graves with a blade, large = three graves with a blade). From Bergerbrant (2007).

    While population movements can’t be really understood without a proper genetic transect proving or disproving archaeological theories, it seems that the intermediate zone of the Nordic circle was subjected to at least two demographic busts and succeeding booms during the Middle and Late Bronze Age periods, which not only affected the hydrotoponymy of Schleswig-Holstein (see above), but probably served as dynamic changes in the linguistic evolution of Palaeo-Germanic-speaking communities up to the Common Germanic expansion.

    Read more on the Northern Early Bronze Age province.

    Related

    Sea Peoples behind Philistines were Aegeans, including R1b-M269 lineages

    New open access paper Ancient DNA sheds light on the genetic origins of early Iron Age Philistines, by Feldman et al. Science Advances (2019) 5(7):eaax0061.

    Interesting excerpts (modified for clarity, emphasis mine):

    Here, we report genome-wide data from human remains excavated at the ancient seaport of Ashkelon, forming a genetic time series encompassing the Bronze to Iron Age transition. We find that all three Ashkelon populations derive most of their ancestry from the local Levantine gene pool. The early Iron Age population was distinct in its high genetic affinity to European-derived populations and in the high variation of that affinity, suggesting that a gene flow from a European-related gene pool entered Ashkelon either at the end of the Bronze Age or at the beginning of the Iron Age. Of the available contemporaneous populations, we model the southern European gene pool as the best proxy for this incoming gene flow. Last, we observe that the excess European affinity of the early Iron Age individuals does not persist in the later Iron Age population, suggesting that it had a limited genetic impact on the long-term population structure of the people in Ashkelon.

    philistines-pca
    Ancient genomes (marked with color-filled symbols) projected onto the principal components inferred from present-day west Eurasians (gray circles). The newly reported Ashkelon populations are annotated in the upper corner.

    Genetic discontinuity between the Bronze Age and the early Iron Age people of Ashkelon

    In comparison to ASH_LBA, the four ASH_IA1 individuals from the following Iron Age I period are, on average, shifted along PC1 toward the European cline and are more spread out along PC1, overlapping with ASH_LBA on one extreme and with the Greek Late Bronze Age “S_Greece_LBA” on the other. Similarly, genetic clustering assigns ASH_IA1 with an average of 14% contribution from a cluster maximized in the Mesolithic European hunter-gatherers labeled “WHG” (shown in blue in Fig. 2B) (15, 22, 26). This component is inferred only in small proportions in earlier Bronze Age Levantine populations (2 to 9%).

    In agreement with the PCA and ADMIXTURE results, only European hunter-gatherers (including WHG) and populations sharing a history of genetic admixture with European hunter-gatherers (e.g., as European Neolithic and post-Neolithic populations) produced significantly positive f4-statistics (Z ≥ 3), suggesting that, compared to ASH_LBA, ASH_IA1 has additional European-related ancestry.

    We find that the PC1 coordinates positively correlate with the proportion of WHG ancestry modeled in the Ashkelon individuals, suggesting that WHG reasonably tag a European-related ancestral component within the ASH_IA1 individuals.

    philistines-admixture
    We plot the ancestral proportions of the Ashkelon individuals inferred by qpAdm using Iran_ChL, Levant_ChL, and WHG as sources ±1 SEs. P values are annotated under each model. In cases when the three-way model failed (χ2P < 0.05), we plot the fitting two-way model. The WHG ancestry is necessary only in ASH_IA1.

    The best supported one (χ2P = 0.675) infers that ASH_IA1 derives around 43% of ancestry from the Greek Bronze Age “Crete_Odigitria_BA” (43.1 ± 19.2%) and the rest from the ASH_LBA population.

    (…) only the models including “Sardinian,” “Crete_Odigitria_BA,” or “Iberia_BA” as the candidate population provided a good fit (χ2P = 0.715, 49.3 ± 8.5%; χ2P = 0.972, 38.0 ± 22.0%; and χ2P = 0.964, 25.8 ± 9.3%, respectively). We note that, because of geographical and temporal sampling gaps, populations that potentially contributed the “European-related” admixture in ASH_IA1 could be missing from the dataset.

    The transient impact of the “European-related” gene flow on the Ashkelon gene pool

    The ASH_IA2 individuals are intermediate along PC1 between the ASH_LBA ones and the earlier Bronze Age Levantines (Jordan_EBA/Lebanon_MBA) in the west Eurasian PCA (Fig. 2A). Notably, despite being chronologically closer to ASH_IA1, the ASH_IA2 individuals position closer, on average, to the earlier Bronze Age individuals.

    philistines-y-dna
    See more information on Y-DNA SNP calls, including ASH067 as R1b-M269 (xL151).

    The transient excess of European-related genetic affinity in ASH_IA1 can be explained by two scenarios. The early Iron Age European-related genetic component could have been diluted by either the local Ashkelon population to the undetectable level at the time of the later Iron Age individuals or by a gene flow from a population outside of Ashkelon introduced during the final stages of the early Iron Age or the beginning of the later Iron Age.

    By modeling ASH_IA2 as a mixture of ASH_IA1 and earlier Bronze Age Levantines/Late Period Egyptian, we infer a range of 7 to 38% of contribution from ASH_IA1, although no contribution cannot be rejected because of the limited resolution to differentiate between Bronze Age and early Iron Age ancestries in this model.

    Hg. R1b-M269 and the Aegean

    I already predicted this relationship of Philistines and Aegeans (Greeks in particular) months ago, based on linguistics, archaeology, and phylogeography, although it was (and still is) yet unclear if these paternal lineages might have come from other nearby populations which might be descended from Common Anatolians instead, given the known intense contacts between Helladic and West Anatolian groups.

    luwian-civilization-sea-peoples
    The alternative view: The Sea Peoples can be traced back to the Aegean, so they could also have consisted of Luwian petty kingdoms, who had formed an alliance and attacked Hatti from the south.

    The deduction process for the Greek connection was quite simple:

    Palaeo-Balkan populations

    We know that R1b-Z2103 expanded with Yamna, including West Yamna settlers: they appear in Vučedol, which means they formed part of the earliest expansion waves of Yamna settlers into the Carpathian Basin, and they also appear scattered among Bell Beakers (apart from dominating East Yamna and Afanasevo), which suggests that they were possibly one of the most successful lineages during the late Repin/early Yamna expansion.

    The “Steppe ancestry” associated with I2a-L699 samples among Balkan BA peoples may have also been associated with recent Bronze Age expansions, and this haplogroup’s presence among modern Balkan peoples may also suggest that it expanded with Palaeo-Balkan languages. Nevertheless, we don’t know which specific lineages and “Steppe ancestry” they represent, sadly.

    These samples may well be related to remnants of previous Balkan populations like Cernavodă or Ezero, because there has been no peer-reviewed attempt at distinguishing Khvalynsk-/Novodanilovka- from Sredni Stog- from Yamnaya-related populations (see here), and some groups that are associated with this ancestry, like Corded Ware, are known to be culturally distinct from Yamna.

    In any case, Proto-Greeks from the southern Balkans (say, Sitagroi IV and related groups) are probably going to show, based on Palaeo-Balkan substrate and Pre-Greek substrate and on the available Mycenaean samples, a process of decreasing proportion of R1b-Z2103 lineages relative to local ones, and a relatively similar cline of Yamna:EEF ancestry from northern to southern areas, at least in the periods closest to the Yamna expansion.

    NOTE. The finding of “archaic” R1b-L389 (R1b-V1636) and R1a-M198 subclades among modern Greeks and the likely Neolithic origin of these paternal lineages around the Caucasus suggest that their presence in Greece may be from any of the more recent migrations that have happened between Anatolia and the Balkans, especially during the Common Era, rather than Indo-Anatolian migrations; probably very very recently.

    -chalcolithic-late-balkans
    Bronze Age cultures in the Balkans and the Aegean. See full map including ancient samples with Y-DNA, mtDNA, and ADMIXTURE.

    Minoans and haplogroup J

    In the Aegean, it is already evident that the population changed language partly through cultural diffusion, probably through elite domination of Proto-Greek speakers. Whether that happened before the invasion into the Greek Peninsula or after it is unclear, as we discussed recently, because we only have one reported Y-chromosome haplogroup among Mycenaeans, and it is J (probably continuing earlier lineages).

    Now we have more samples from the so-called Emporion 2 cluster in Olalde et al. (2019), which shows Mycenaean-like eastern Mediterranean ancestry and 3 (out of 3) samples of haplogroup J, which – given the origin of the colony in Phocea – may be interpreted as the prevalence of West Anatolian-like ancestry and lineages in the eastern part of the Aegean (and possibly thus south Peloponnese), in line with the modern situation.

    NOTE. It does not seem likely that those R or R1b-L23 samples from the Emporion 1 cluster are R1b-Z2103, based on their West European-like ancestry, although they still may be, because – as we know – ancestry (unlike haplogroup) changes too easily to interpret it as an ancestral ethnolinguistic marker.

    anatolia-greek-aegean
    PCA of ancient samples related to the Aegean, with Minoans, Mycenaeans (including the Emporion 2 cluster in the background) Anatolia N-Ch.-BA and Levantine BA-LBA populations, including Tel Shadud samples. See more PCAs of ancient Eurasian populations.

    Greeks and haplogroup R1b-M269

    Therefore, while the presence of R1b-Z2103 among ancient Balkan peoples connected to the Yamna expansion is clear, one might ask if R1b-Z2103 really spread up to the Peloponnese by the time of the Mycenaean Civilization. That has only one indirect answer, and it’s most likely yes.

    We already had some R1b-Z2103 among Thracians and around the Armenoid homeland, which offers another clue at the migration of these lineages from the Balkans. The distribution of different “archaic” R1b-Z2103 subclades among modern Balkan populations and around the Aegean offered more support to this conclusion.

    But now we have two interesting ancient populations that bear witness to the likely intrusion of R1b-M269 with Proto-Greeks:

    An Ancient Greek of hg. R1b

    A single ancient sample supports the increase in R1b-Z2103 among Greeks during the “Dorian” invasions that triggered the Dark Ages and the phenomenon of the Aegean Sea Peoples. It comes from a Greek lab study, showing R1b1b (i.e. R1b-P297 in the old nomenclature) as the only Y-chromosome haplogroup obtained from the sampling of the Gulf of Amurakia ca. 470-30 BC, i.e. before the Roman foundation of Nikopolis, hence from people likely from Anaktorion in Ancient Acarnania, of Corinthian origin.

    ancient-greeks-y-dna-mtdna

    Even with the few data available – and with the caution necessary for this kind of studies from non-established labs, which may be subject to many different kinds of errors – one could argue that the western Greek areas, which received different waves of migrants from the north and shows a higher distribution of R1b-Z2103 in modern times, was probably more heavily admixed with R1b-Z2103 than southern and eastern areas, which were always dominated by Greek-speaking populations more heavily admixed with locals.

    The Dorian invasion and the Greek Dark Ages may thus account for a renewed influx of R1b-Z2103 lineages accompanying the dialects that would eventually help form the Hellenic Koiné. In a sense, it is only natural that demographically stronger populations around the Bronze Age Aegean would suffer a limited (male) population replacement with the succeeding invasions, starting with a higher genetic impact in the north-west and diminishing as they progressed to the south and the east, coupled with stepped admixture events with local populations.

    This would be therefore the late equivalent of what happened at the end of the 3rd millennium BC, with Mycenaeans and their genetic continuity with Minoans.

    pre-greek-ssos
    Distribution of Pre-Greek place-names ending in -ssos/-ssa or -sos/-sa. See original images and more on the south/east cline distribution of Pre-Greek place-names here.

    Sea peoples of hg. R1b-M269

    Thanks to Wang et al. (2018) supplementary materials we knew that one of the two Levantine LBA II samples from Tel Shadud (final 13th–early 11th c. BC) published in van den Brink (2017) was of hg. R1b-M269 – in fact, the one interpreted as a Canaanite official residing at this site and emulating selected funerary aspects of Egyptian mortuary culture.

    Both analyzed samples, this elite individual and a commoner of hg. J buried nearby, were genetically similar and indistinguishable from local populations, though:

    Principal Components Analysis of L112 and L126 was carried out within the framework described in Lazaridis et al. (2016). This analysis showed that the two individuals cluster genetically, with similar estimated proportions of ancestry from diverse West Eurasian ancestral sources. These results are consistent with the hypothesis that they derive from the same population, or alternatively that they derive from two quite closely related populations.

    We know that ancestry changes easily within a few generations, so there was not much information to go on, except for the fact that – being R1b-M269 – this individual could trace his paternal ancestor at some point to Proto-Indo-Europeans.

    One might think that, because many haplogroups in this spreadsheet were wrong, this is also wrong; nevertheless, many haplogroups are correctly identified by Yleaf, and finding R1b-M269 in the Levant after the expansion of Sea Peoples could not be that surprising, because they were most likely related to populations of the Aegean Sea. Any other related hg. R1b (R1b-M73, R1b-V88, even R1b-V1636) wouldn’t fit as well as R1b-M269.

    sea-peoples-egypt-rameses-iii

    However, the early expansion of Proto-Indo-Aryans into the Middle East, as well as the later expansion of Armenians from the Balkans through Anatolia and of West Iranians from the east may have all potentially been related to this sample. But still, the previous linguistic and archaeological theories concerning the Philistines and the expansion of Sea Peoples in the Levant made this sample a likely (originally) Greek “Dorian” lineage, rather than the other (increasingly speculative) alternatives.

    In any case, it was obvious to anyone – that is, to anyone with a minimum knowledge of how population genomics works – that just the two samples from van den Brink (2017) couldn’t be used to get to any conclusions about the ancestral origin of these individuals (or their differences) beyond Levantine peoples, because their ancestry was essentially (i.e. statistically) the same as the other few available ancient samples from nearby regions and similar periods.

    If anything, the PCA suggested an origin of the R1b sample closer to Aegean populations relative to the J individual (see PCA above), and this should have been supported also by amateur models, without any possible confirmation (as with the ASH_IA2 cluster in this paper). However, if you have followed online discussions of Tel Shadud R1b-M269 sample since it was mentioned first on Eupedia months ago – including another wave of misguided speculation based on the ancestry of both individuals triggered by a discussion on this blog -, you have once more proof of how misleading ancestry analyses can be in the wrong hands.

    NOTE. This is the Nth proof (and that only in 2019) of how it’s best to just avoid amateur analyses and interpretations altogether, as I did in the recent publication of the books. All those who didn’t take into account whatever was commented about the ancestry of these samples haven’t lost a single bit of relevant information on Levantine peoples, and have had more time for useful reads, compared to those dedicated to endless void speculation, once again gone awfully wrong, as does everything related to cocky ancient DNA crackpottery 😉

    bronze-age-late-aegean
    Late Bronze Age population movements in the Eastern Mediterranean and the Middle East. See full map including ancient DNA samples with Y-DNA, mtDNA, and ADMIXTURE.

    Admittedly, though, even accepting the evident Mediterranean origin of this lineage, one could have argued that this sample may have been of R1b-L151 subclade, if one were inclined to support the theory that Italic peoples were behind Sea Peoples expanding east – and consequently that the ancestors of Etruscans had migrated eastward into the Aegean (e.g. into Lemnos), so that it could be asserted that Tyrsenian might have been a remnant language of an ancient population of northern Italy.

    Philistines

    Fortunately, some of the samples recovered in Feldman et al. (2019) that could be analyzed (those of the cluster ASH_IA1) offer a very specific time frame where European ancestry appeared (ca. 1250 BC) before it subsequently became fully diluted (as seen in cluster ASH_IA2) among the prevalent Levantine ancestry of the area.

    Also fortunately, this precise cluster shows another R1b-M269 sample, likely R1b-Z2103 (because it is probably xL151), and this sample together with others from the same cluster prove that the ancestry related to the original southern European incomers was:

    1. Recent, related thus to LBA population movements, as expected; and
    2. More closely related to coeval Aegeans, including Mycenaeans with Steppe-related ancestry.

    NOTE. I say “fortunately” because, as you can imagine if you have dealt with amateurish discussions long enough, without this cluster with evident Aegean ancestry and the R1b-M269 (Z2103) sample precisely associated to it, some would enter again in endless comment loops created by ancestry magicians, showing how Aegean peoples were not behind Sea Peoples, or not behind Philistines, or not behind the R1b-M269 among Philistines, depending on their specific agendas.

    aegean-sea-peoples
    Map of the Sea People invasions in the Aegean Sea and Eastern Mediterranean at the end of the Late Bronze Age (blue arrows).. Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows. From Kaniewski et al. (2011). Some of the major cities impacted by the raids are denoted with historical dates. Inland invasions are represented by purple arrows.

    The results of the paper don’t solve the question of the exact origin of all Sea Peoples (not even that of Philistines), but it is quite clear that most of those forming this seafaring confederation must have come from sites around the Aegean Sea. This supports thus the traditional origin attributed to them, including a hint at the likely expansion of Eastern Mediterranean ancestry and lineages into the Italian Peninsula precisely from the Aegean, as some oral communications have already disclosed.

    As an indirect conclusion from the findings in this paper, then, we can now more confidently support that Tyrsenian speakers most likely expanded into the Appenines and the Alps originally from a Tyrsenian-speaking LBA population from Lemnos, due to the social unrest in the whole Aegean region, and might have become heavily admixed with local Italic peoples quite quickly, as it happened with Philistines, resulting in yet another case of language expansion through (the simplistically called) elite domination.

    Conclusion

    Even more interesting than these specific findings, this paper confirms yet another hypothesis based on phylogeography, and proves once again two important starting points for ancient DNA interpretation that I have discussed extensively in this blog:

    • The rare R1b-M269 Y-chromosome lineage of Tel Shadud offered ipso facto the most relevant clue about the ancestral geographical origin of this Canaanite elite male’s paternal family, most likely from the north-west based on ancient phylogeography, which indirectly – in combination with linguistics and archaeology – supported the ancestral ethnolinguistic identification of Philistines with the Aegean and thus with (a population closest to) Ancient Greeks.
    • Ancestry analyses are often fully unreliable when assessing population movements, especially when few samples from incomplete temporal-geographical transects are assessed in isolation, because – unlike paternal (and maternal) haplogroups – ancestry might change fully within a few generations, depending on the particular anthropological setting. Their investigation is thus bound by many limitations – of design, statistical, and anthropological (i.e. archaeological and linguistic) – which are quite often not taken into account.

    These cornerstones of ancient DNA interpretation have been already demonstrated to be valid not only for Levantine populations, as in this case, but also for Balkan peoples, for Bell Beakers, for steppe populations (like Khvalynsk, Sredni Stog, Yamna, Corded Ware), for Basques, for Balto-Slavs, for Ugrians and Samoyeds, and for many other prehistoric peoples.

    I rest my case.

    Related