Corded Ware and Bell Beaker related groups defined by patrilocality and female exogamy

tumulus-culture-eba-danube

Two new interesting papers concerning Corded Ware and Bell Beaker peoples appeared last week, supporting yet again what is already well-known since 2015 about West Uralic and North-West Indo-European speakers and their expansion.

Below are relevant excerpts (emphasis mine) and comments.

NOTE. I will add analyses of ancestry, renewed Y-DNA maps, etc. if and when I find the time.

I. Corded Ware and Battle Axe cultures

Open access The genomic ancestry of the Scandinavian Battle Axe Culture people and their relation to the broader Corded Ware horizon, by Malmström, Günther, et al. Philos. Trans. R. Soc. (2019).

I.1. Origins of Corded Ware peoples

The discovery of the Alexandria outlier represented a clear support for a long-lasting genomic difference between the two distinct cultural groups, Yamnaya and Corded Ware, already visible in an opposition Khvalynsk vs. late Sredni Stog ca. 4000 BC, i.e. well before the formation of both Late Eneolithic/Early Bronze Age groups.

However, the realization that it may not have been an Eneolithic individual, but rather a (Middle?) Bronze Age one, suggests that Sredni Stog was possibly not directly related to Corded Ware, and a potential direct connection with Yamnaya might have to be reevaluated, e.g. through the Carpathian Basin, as Anthony (2017) proposed.

pca-yamnaya-corded-ware-oblaczkowo
Principal component analysis of modern Europeans (grey) and projected ancient Europeans.

This new paper shows two early Corded Ware individuals from Obłaczkowo, Poland (ca. 2900-2600 BC) – hence close to the supposed original Proto-Corded Ware community – with an apparently (almost) full “Steppe-like” ancestry, clustering (almost) with Yamnaya individuals:

Similar to the BAC individuals, the newly sequenced individuals from the present-day Karlova in Estonia and Obłaczkowo in Poland appear to have strong genetic affinities to other individuals from BAC and CWC contexts across the Baltic Sea region. Some individuals from CWC contexts, including the two from Obłaczkowo, cluster closely with the potential source population of steppe-related ancestry, the Yamnaya herders. Notably, these individuals appear to be those with the earliest radiocarbon dates among all genetically investigated individuals from CWC contexts. Overall, for CWC-associated individuals, there is a clear trend of decreasing affinity to Yamnaya herders with time.

NOTE. Interestingly, this sample is almost certainly attributed to the skeleton E8-A, which had been supposedly already investigated by the Copenhagen group as the RISE1 sample:

We note that RISE1 is also described as the individual from Obłaczkowo feature E8-A. However, their genetic results differ from ours. They present this individual as a molecularly determined male that belongs to Y-chromosomal haplogroup (hg) R1b and to mtDNA hg K1b1a1 while our results show this individual to be female, carrying a mtDNA hg U3a’c profile

Since the typical Steppe_MLBA ancestry of Corded Ware groups does not show good fits for (Pre-)Yamnaya-derived ancestry, it is almost certain that these individuals will show no (or almost no) direct Yamnaya-related contribution, but rather a contribution of East European sub-Neolithic groups, more or less close to the steppe-forest region.

NOTE. They might show contributions from Pre-Yamnaya-influenced Sredni Stog, though, but if they show a contribution of Yamnaya, then they are probably outliers, related to Yamnaya vanguard groups (see image below). And for them to show it, then both sources, Yamnaya and Corded Ware, should be clearly distinguishable from each other and their relative contribution quantifiable in formal stats, something difficult (if not impossible) to ascertain today.

Their position in the published PCA – a plot apparently affected by projection bias – suggests a cluster in common with early Baltic samples, which are known to show contributions from East European sub-Neolithic populations (see qpAdm values for Baltic CWC samples).

NOTE. Results for previous samples labelled as Poland CWC are unreliable due to their low coverage.

The most interesting aspect about the ancestry shown by these early samples is their further support for an origin of the culture different than Sredni Stog, and for a rejection of the Alexandria outlier as ancestral to them, hence for a Volhynian-Podolian homeland of Proto-Corded Ware peoples, with an ancestry probably more closely related to the late Maykop Steppe- and Trypillian/GAC groups admixed with sub-Neolithic populations of the Eastern European Late Eneolithic.

NOTE. That is, unless there is a reason for the apparent increase in so-called “Steppe-ancestry” during the northward and westward migration of CWC peoples that represents another thing entirely…

trypillian-yamnaya-influence-baltic
Trypillian routes of influence and Yamnaya culture influences in Central and Central-East Europe during the Late Eneolithic / Early Bronze Age. Images by Klochko (2009).

I.2. CWC expansion under R1a bottlenecks

The two males in our dataset (ber1 and poz81) belonged to Y-chromosome R1a haplogroups, as do the majority of males (16/24) from the previously published CWC contexts, while a smaller fraction belonged to R1b [3/24] or I2a [3/24] lineages. The R1a haplogroup has not been found among Neolithic farmer populations nor in hunter–gatherer groups in central and western Europe, but it has been reported from eastern European hunter–gatherers and Eneolithic groups. Individuals from the Pontic–Caspian steppe, associated with the Yamnaya Culture, carry mostly R1b and not R1a haplotypes.

Sample poz81 is of basal hg. R1a-CTS4385*, an R1a-M417 subclade, supporting once again that most Corded Ware individuals from western and central European groups expanded under R1a-M417 (xZ645) lineages. The Battle Axe sample from Bergsgraven (ca. 2620-2470 BC) shows a basal hg. R1a-Y2395*, a R1a-Z283 subclade leading to the typically Fennoscandian R1a-Z284.

Both findings further support that typical lineages of West CWC groups, including R1a-M417 (xZ645) subclades, were fully replaced by incoming East Bell Beakers, and that the limited expansion of R1a-Z284 and I1 (the latter found in one newly reported Late Neolithic sample from Sweden) was the outcome of later regional bottlenecks within Scandinavia, after the creation of a maritime dominion by the Bell Beaker elites during the Dagger Period.

I.3. CWC and lactase persistence

(…) one of these individuals (kar1) carried at least one allele (-13910 C->T) associated with lactose tolerance, while the other two individuals (ber1 and poz81) carried at least one ancestral variant each, consistent with previous observations of low levels of lactose tolerance variants in the Neolithic and a slight increase among individuals from CWC contexts.

The fact that two early CWC individuals carry ancestral variants could be said to support the improbability of the individual from Alexandria representing a community ancestral to the Corded Ware community. On the other hand, the late CWC individual from Estonia carries one allele, but it still seems that only Bell Beakers and Steppe-related groups show the necessary two alleles during the Early Bronze Age, which is in line with a late Repin/early Yamnaya-related origin of the successful selection of the trait, consistent with the expansion of their specialized semi-nomadic cattle-breeding economy through the steppe biome during the Late Eneolithic.

rs4988235-lactase-persistence-history
Maps part of the public data used for the post by Iain Mathieson on Lactase Persistence. “By 2500 BP, the allele is present over a band stretching from Ireland to Central Asia at around 50 degrees latitude. This probably reflects the spread of Steppe ancestry populations in which the allele originated. However, the allele is still rare (say less than 1% frequency) over this entire range. It does not become common anywhere until some time in the past 2500 years – when it reaches its present-day high frequency in Britain and Central Europe”.

I.4. West Uralic spread from the East

The BAC groups fit as a sister group to the CWC-associated group from Estonia but not as a sister group to the CWC groups from Poland or Lithuania (|Z| > 3), indicating some differences in ancestry between these CWC groups and BAC. Supervised admixture modelling suggests that BAC may be the CWC-related group with the lowest YAM-related ancestry and with more ancestry from European Neolithic groups.

While the results of the paper are compatible with a migration from either the Eastern or the Western Baltic into Scandinavia, phylogeography and archaeology support that Battle Axe peoples emerged as a Baltic Corded Ware group close to the Vistula that expanded first to the north-east, and then to the west from Finland, continuing mostly unscathed during the whole Bronze Age mostly in eastern Fennoscandia with the development of Balto-Finnic- and Samic-speaking communities.

corded-ware-culture-ancestry-over-time
Correlation between f4(Chimp, LBK, YAM, X), where X is a CWC or BAC individual, and the date (BCE) of each individual. This statistic measures shared drift between CWC and Linear Pottery Culture (LBK) as opposed to YAM and should increase with the higher proportion of Neolithic farmer ancestry in CWC and BAC.

Radiocarbon dating showed that the three individuals from the Öllsjö megalithic tomb derived from later burials, where oll007 (2860–2500 cal BCE) overlaps with the time interval of the BAC, and oll009 and oll010 (1930–1650 cal BCE) fall within the Scandinavian Late Neolithic and Early Bronze Age

For more on how the Pitted Ware culture may have influenced Uralic-speaking Battle Axe peoples earlier than Indo-European-speaking Bell Beakers in Scandinavia, read more about Early Bronze Age Scandinavia and about the emergence of the Pre-Proto-Germanic community.

II. Bell Beakers through the Bronze Age

New paper (behind paywall) Kinship-based social inequality in Bronze Age Europe, by Mittnik et al. Science (2019).

II.1. Yamnaya vanguard settlers

In my last post, I showed how the ancestry of Corded Ware from Esperstedt is consistent with influence by incoming Yamnaya vanguard settlers or early Bell Beakers, stemming ultimately from the Carpathian Basin, something that could be inferred from the position of the Esperstedt outlier in the PCA, and by the knowledge of Yamnaya archaeological influences up to Saxony-Anhalt.

Yamnaya settlers are strongly suspected to have migrated in small so-called vanguard groups to the west and north of the Carpathians in the first half of the 3rd millennium BC, well before the eventual adoption of the Proto-Beaker package and their expansion ca. 2500 BC as East Bell Beakers.

Tauber Valley infiltration

As I mentioned in the books, one of the known – among the many more unknown – sites displaying Yamnaya-related traits and suggesting the expansion of Yamnaya settlers into Central Europe is Lauda-Königshofen, in the Tauber Valley.

From Diet and Mobility in the Corded Ware of Central Europe, by Sjögren, Price, & Kristiansen PLoS One (2017):

A series of CW cemeteries have been excavated in the Tauber valley. There are three large cemeteries known and some 30 smaller sites. The larger ones are Tauberbischofsheim-Dittingheim with 62 individuals, Tauberbischofsheim-Impfingen with 40 individuals, and Lauda-Königshofen with 91 individuals. The cemeteries are dispersed rather regularly along the Tauber valley, on both sides of the river, suggesting a quite densely settled landscape.

The Lauda-Königshofen graves consisted mostly of single inhumations in contracted position, usually oriented E-W or NE-SW. A total of 91 individuals were buried in 69 graves. At least 9 double graves and three graves with 3–4 individuals were present. In contrast to the common CW pattern, sexes were not distinguished by body position, only by grave goods. This trait is common in the Tauber valley and suggests a local burial tradition in this area. Stone axes were restricted to males, pottery to females, while other artifacts were common to both sexes. About a third of the graves were surrounded by ring ditches, suggesting palisade enclosures and possibly over-plowed barrows.

In particular, Frînculeasa, Preda, & Heyd (2015) used Lauda-Königshofen as representative of the mobility of horse-riding Yamnaya nomadic herders migrating into southern Germany, referring to the findings in Trautmann (2012) about the nomadic herders from the Tauber Valley, and their already known differences with other Corded Ware groups.

The likely influence of Yamnaya in the region has been reported at least since the 2000s, repeatedly mentioned by Jozef Bátora (2002, 2003, 2006), who compiled Yamnaya influences in a map that has been copied ever since, with little improvement over time. Heyd believes that there are potentially many Yamnaya remains along the Middle and Lower Danube and tributaries not yet found, though.

NOTE. Looking for this specific site, I realized that Bátora (and possibly many after him who, like me, copied his map) located Lauda-Königshofen in a more south-western position within Baden-Württemberg than its actual location. I have now corrected it in the maps of Chalcolithic migrations.

yamnaya-corded-ware-europe
Yamnaya influences in Central Europe suggestive of vanguard settlements, contemporary with Corded Ware groups. See full map.

Althäuser Hockergrab…Bell Beakers

Unfortunately, though, it is very difficult to attribute the reported R1b-L51 sample from the Tauber valley to a population preceding the arrival of East Bell Beakers in the region, so there is no uncontroversial smoking gun of Yamnaya vanguard settlers – yet. Reasons to doubt a Pre-Beaker origin are as follows:

1. This family of the Tauber valley shows a late radiocarbon date (ca. 2500 BC), i.e. from a time where East Bell Beakers are known to have been already expanding in all directions from the Middle and Upper Danube and its tributaries.

tauber-valley-althauser-hockergrab
Crouched burial from Althausen (Althäuser Hockergrab), dated ca. 2500 BC.

2. Archaeological information is scarce. Remains of these four individuals were discovered in 1939 and officially reported together with other findings in 1950, without any meaningful data that could distinguish between Bell Beakers and Corded Ware individuals.

This site is located in the Tauber valley, ca. 100 km to the northwest of the Lech valley. The site was discovered during the construction of a sports field in 1939 and was subsequently excavated by G. Müller and O. Paret. Four individuals in crouched position were found in the burial pit of a flat grave. The burial did not contain any grave goods, but due to the type of grave and positioning of the bodies (with heads pointing towards southwest) the site was attributed to the Corded Ware complex.

The classification of this burial as of CWC and not BBC seems to have been based entirely on the numerous CWC findings in the Tauber valley, rather than on its particular burial orientation following a regional custom (foreign to the described standard of both cultures), and on its grave type that was also found among Bell Beaker groups. Like many human remains recovered in dubious circumstances in the 20th century, these samples should have probably been labelled (at least in the genetic paper) more properly as Tauber_LN or Tauber_EBA.

yamnaya-bias-tauber-lech-valley
Changes in ancestry over time. (A) Median ages of individuals plotted against z scores of f4 (Mbuti, Test; Yamnaya_Samara, Anatolia_Neolithic) show increase of Anatolian farmer-related ancestry (indicated by more positive z-scores) and decrease of variation in ancestry over time. Grey shading indicates significant z scores, red line shonw near correlation (r = -0.35971; P = 0.003) and dotted lines the 95% confidence interval. (B) ancestry proportions on autosomes calculated with qpAdm. (C) Sex-bias z scores between autosomes and X chromosomes show significant male bias for steppe-related ancestry in the Tauber samples. Image modified from the paper: Surrounded with a blue circle in (A) are females with more Steppe-related ancestry, and in (C) surrounded by squares are the distinct sex biases found in the earliest BBC from the Tauber valley vs. later groups from the Lech valley.

3. In terms of ancestry, there seem to be no gross differences between the Lech Valley BBC individuals and previously reported South German Beakers, originally Yamnaya-like settlers admixing through exogamy with locals, including Corded Ware peoples, as the sex bias of the Lech Valley Beakers proves (see PCA plot below). In other words, northern and eastern Beakers admixed with regional (Epi-)Corded Ware females during their respective expansions, similar to how southern and western Beakers admixed with regional EEF-related females.

The two available Tauber Valley samples (“Tauber_CWC”) show the same pattern: a quite recent Steppe-related male bias and Anatolia_Neolithic-related female bias. Nevertheless, the male sample clusters ‘to the south’ in the PCA relative to all sampled Corded Ware individuals (see PCA plot below), and shows less Yamnaya-like ancestry than what is reported (or can be inferred) for Yamnaya from Hungary or early Bell Beakers of elevated Steppe-related ancestry.

The ancestry and position of the Althäuser male in the PCA is thus fully compatible with recently incoming East Bell Beakers admixing with local peoples (including Corded Ware) through exogamy, but not so much with a sample that would be expected from Yamanaya vanguard + Corded Ware-related ancestry (more like the Esperstedt outlier or the early France Beaker). Compared to the more ‘northern’ (fully Corded Ware-like) position of his female counterpart, there is little to support that both are part of the same native Tauber valley community after generations of ancestry levelling…

yamnaya-ancestry-tauber-cwc-bbc-lech-eba-mba
Table S9. Three-way qpAdm admixture model for European MN/Chalcolithic group+Yamnaya_Samara. P-values greater than 0.05 (model is not rejected) marked in green.

4. The haplogroup inference is also unrevealing: whereas the paper reports that it is R1b-P310* (xU106, xP312), there is no data to support a xP312 call, so it may well be even within the P312 branch, like most sampled Bell Beaker males. Similarly, the paper also reports that HUGO_180Sk1 (ca. 2340 BC) shows a positive SNP for the U106 trunk, which would make it the earliest known U106 sample and originally from Central Europe, but there is no clear support for this SNP call, either. At least not in their downloadable BAM files, as far as I can tell. Even if both were true, they would merely confirm the path of expansion of Yamnaya / East Bell Beakers through the Danube, already visible in confirmed genomic data:

r1b-l51-archaic-yamnaya-bell-beakers
Distribution of ‘archaic’ R1b-L51 subclades in ancient samples, overlaid over a map of Yamnaya and Bell Beaker migrations. In blue, Yamnaya Pre-L51 from Lopatino (not shown) and R1b-L52* from BBC Augsburg. In violet, R1b-L51 (xP312,xU106) from BBC Prague and Poland. In maroon, hg. R1b-L151* from BBC Hungary, BA Bohemia, and (not shown) a potential sample from the Tauber Valley and one from BBC at Mondelange, which is certainly xU106, maybe xP312. Interestingly, the earliest sample of hg. R1b-U106 (a lineage more proper of northern Europe) has been found in a Bell Beaker from Radovesice (ca. 2350 BC), between two of these ‘archaic’ R1b-L51 samples; and a sample possibly of hg. R1b-ZZ11+ (ancestral to DF27 and U152) was found in a Bell Beaker from Quedlinburg, Germany (ca. 2290 BC), to the north-west of Bohemia. The oldest R1b-U152 are logically from Central Europe, too.

II.2. Proto-Celts and the Tumulus culture

The most interesting data from Mittnik et al. (2019) – overshadowed by the (at first sight) striking “CWC” label of the Althäuser male – is the finding that the most likely (Pre-)Proto-Celtic community of Southern Germany shows, as expected, major genetic continuity over time with Yamnaya/East Bell Beaker-derived patrilineal families, which suggests an almost full replacement of other Y-chromosome haplogroups in Southern German Bronze Age communities, too.

Sampled families form part of an evolving Bell Beaker-derived European BA cluster in common with other Indo-European-speaking cultures from Western, Southern, and Northern Europe, also including early Balto-Slavs, clearly distinct from the Corded Ware-related clusters surviving in the Eastern Baltic and the forest zone.

This Central European Bronze Age continuity is particularly visible in many generations of different patrilocal families practising female exogamy, showing patrilineal inheritance mainly under R1b-P312 (mostly U152+) lineages proper of Central European bottlenecks, all of them apparently following a similar sociopolitical system spanning roughly a thousand years, since the arrival of East Bell Beakers in the region (ca. 2500 BC) until – at least – the end of the Middle Bronze Age (ca. 1300 BC):

Here, we show a different kind of social inequality in prehistory, i.e., complex households that consisted of i) a higher-status core family, passing on wealth and status to descendants, ii) unrelated, wealthy and high-status non-local women and iii) local, low-status individuals. Based on comparisons of grave goods, several of the high-status non-local females could have come from areas inhabited by the Unetice culture, i.e., from a distance of at least 350 km. As the EBA evidence from most of Southern Germany is very similar to the Lech valley, we suggest that social structures comparable to our microregion existed in a much broader area. The EBA households in the Lech valley, however, seem similar to the later historically known oikos, the household sphere of classic Greece, as well as the Roman familia, both comprising the kin-related family and their slaves.

pca-lech-valley-bell-beaker-eba
Genetic structure of Late Neolithic and Bronze Age individuals from southern Germany. (A) Ancient individuals (covered at 20,000 or more SNPs) projected onto principal components defined by 1129 present day west Eurasians (shown in fig. S6); individuals in this study shown with outlines corresponding to their 87Sr/86Sr isotope value (black: consistent with local values, orange: uncertain/intermediate, red: inconsistent with local values). Selected published ancient European individuals are shown without outlines. Image modified from the paper. Surrounded by triangles in cyan, Corded Ware-like females; with a blue triangle, Yamnaya/Early BBC-like sample from the Tauber valley.

NOTE. For those unfamiliar with the usual clusters formed by the different populations in the PCA, you can check similar graphics: PCA with Bell Beaker communities, PCA with Yamnaya settlers from the Carpathians, a similar one from Wang et al. (2019) showing the Yamnaya-Hungary cline, or the chronological PCAs prepared by me for the books.

The gradual increase in local EEF-like ancestry among South Germany EBA and MBA communities over the previous BBC period offers a reasonable explanation as to how Italic and Celtic communities remained in loose contact (enough to share certain innovations) despite their physical separation by the Alps during the Early Bronze Age, and probably why sampled Bell Beakers from France were found to be the closest source of Celts arriving in Iberia during the Urnfield period.

Furthermore, continued contacts with Únětice-related peoples through exogamy also show how Celtic-speaking communities closer to the Danube might have influenced (and might have been influenced by) Germanic-speaking communities of the Nordic Late Neolithic and Bronze Age, helping explain their potentially long-lasting linguistic exchange.

Like other previous Neolithic or Chalcolithic groups that Yamnaya and Bell Beakers encountered in Europe, ancestry related to the Corded Ware culture became part of Bell Beaker groups during their expansion and later during the ancestry levelling in the European Early Bronze Age, which helps us distinguish the evolution of Indo-European-speaking communities in Europe, and suggests likely contacts between different cultural groups separated by hundreds of km. from each other.

All in all, there is nothing to support that (epi-)Corded Ware groups might have survived in any way in Central or Western Europe: whether through their culture, their Y-chromosome haplogroups, or their ancestry, they followed the fate of other rapidly expanding groups before them, viz. Funnelbeaker, Baden, or Globular Amphorae cultural groups. This is very much unlike the West Uralic-speaking territory in the Eastern Baltic and the Russian forests, where Corded Ware-related cultures thrived during the Bronze Age.

lech-valley-yamnaya-ancestry-over-time
f4-statistics showing differences in ancestry in populations grouped by period. An increase in affinity to ancestry related to Anatolia Neolithic over time. Males and females grouped together shown as upward and downward pointing triangles, respectively.

Conclusion

It was about time that geneticists caught up with the relevance of Y-DNA bottlenecks when assessing migrations and cultural developments.

From Malmström et al. (2019):

The paternal lineages found in the BAC/CWC individuals remain enigmatic. The majority of individuals from CWC contexts that have been genetically investigated this far for the Y-chromosome belong to Y-haplogroup R1a, while the majority of sequenced individuals of the presumed source population of Yamnaya steppe herders belong to R1b. R1a has been found in Mesolithic and Neolithic Ukraine. This opens the possibility that the Yamnaya and CWC complexes may have been structured in terms of paternal lineages—possibly due to patrilineal inheritance systems in the societies — and that genetic studies have not yet targeted the direct sources of the expansions into central and northern Europe.

From Gibbons (2019), a commentary to Mittnik et al. (2019):

Some of the early farmers studied were part of the Neolithic Bell Beaker culture, named for the shape of their pots. Later generations of Bronze Age men who retained Bell Beaker DNA were high-ranking, buried with bronze and copper daggers, axes, and chisels. Those men carried a Y chromosome variant that is still common today in Europe. In contrast, low-ranking men without grave goods had different Y chromosomes, showing a different ancestry on their fathers’ side, and suggesting that men with Bell Beaker ancestry were richer and had more sons, whose genes persist to the present.

There was no sign of these women’s daughters in the burials, suggesting they, too, were sent away for marriage, in a pattern that persisted for 700 years. The only local women were girls from high-status families who died before ages 15 to 17, and poor, unrelated women without grave goods, probably servants, Mittnik says. Strontium levels from three men, in contrast, showed that although they had left the valley as teens, they returned as adults.

Also, from Scientific American:

(…) it has long been assumed that prior to the Athenian and Roman empires,—which arose nearly 2,500 and more than 2,000 years ago, respectively—human social structure was relatively straightforward: you had those who were in power and those who were not. A study published Thursday in Science suggests it was not that simple. As far back as 4,000 years ago, at the beginning of the Bronze Age and long before Julius Caesar presided over the Forum, human families of varying status levels had quite intimate relationships. Elites lived together with those of lower social classes and women who migrated in from outside communities. It appears early human societies operated in a complex, class-based system that propagated through generations.

It seems wrong (to me, at least) that the author and – as he believes – archaeologists and historians had “assumed” a different social system for the European Bronze Age, which means they hadn’t read about how Indo-European societies were structured. For example, long ago Benveniste (1969) already drew some coherent picture of these prehistoric peoples based on their reconstructed language alone: regarding their patrilocal and patrilineal family system; regarding their customs of female exogamy and marriage system; and regarding the status of foreigners and slaves as movable property in their society.

A long-lasting and pervasive social system of Bronze Age elites under Yamnaya lineages strikingly similar to this Southern German region can be easily assumed for the British Isles and Iberia, and it is likely to be also found in the Low Countries, Northern Germany, Denmark, Italy, France, Bohemia and Moravia, etc., but also (with some nuances) in Southern Scandinavia and Central-East Europe during the Bronze Age.

Therefore, only the modern genetic pool of some border North-West Indo-European-speaking communities of Europe need further information to describe a precise chain of events before their eventual expansion in more recent times:

  1. the relative geographical isolation causing the visible regional founder effects in Scandinavia, proper of the maritime dominion of the Nordic Late Neolithic (related thus to the Island Biogeography Theory); and
  2. the situation of the (Pre-)Proto-Balto-Slavic community close to the Western Baltic which, I imagine, will be shown to be related to a resurge of local lineages, possibly due to a shift of power structures similar to the case described for Babia Góra.

NOTE. Rumour has it that R1b-L23 lineages have already been found among Mycenaeans, while they haven’t been found among sampled early West European Corded Ware groups, so the westward expansion of Indo-European-speaking Yamnaya-derived peoples mainly with R1b-L23 lineages through the Danube Basin merely lacks official confirmation.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Proto-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1b (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a (potentially Q1b in the newer nomenclature) will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1b, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1b, and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related