Genetic continuity among Uralic-speaking cultures in north-eastern Europe

east-europe-bronze-age

The recent study of Estonian Late Bronze Age/Iron Age samples has shown, as expected, large genetic continuity of Corded Ware populations in the East Baltic area, where West Uralic is known to have been spoken since at least the Early Bronze Age.

The most interesting news was that, unexpectedly for many, the impact of “Siberian ancestry” (whatever that actually means) was small, slow, and gradual, with slight increases found up to the Middle Ages, compatible with multiple contact events in north-eastern Europe. Haplogroup N became prevalent among Finnic populations only through late bottlenecks, as research of modern populations have long suggested, and as ancient DNA research hinted since at least 2015.

I risked to correlate the arrival of chiefs from the south-west with the infiltration of N1c-VL29 subclades during the transition to the Iron Age, coupled with that minimal “Siberian” ancestry (see e.g. here and here). Now we know that the penetration of this non-CW ancestry started, as predicted, in the Iron Age; that it was highly variable in the few samples where it appeared, with ca. 1-4%, while most Iron Age individuals show 0%; and that it was not especially linked to individuals of N1c-Vl29 lineages.

It is also basically confirmed, based on the (ancient and Modern Swedish) N1c-L550 subclades found among Iron Age Estonians, that N1c-VL29 lineages and the so-called “Siberian” ancestry will be found simultaneously around the Baltic coastal areas, and that different lineages must have suffered later founder effects among Finns, which suggests that these alliances through exogamy brought exactly as much language change in Sweden, Lithuania, or Poland, as they did in the East Baltic region…

On the other hand, the paper has also shown a potential movement of Corded Ware-derived peoples, if the change from LBA to IA samples is meaningful; in fact, even more Corded Ware-like than Baltic and Estonian BA populations. The exact origin of that movement is difficult to pinpoint, and it may not be related to the arrival of Akozino warrior-traders from the south-east, since theirs seems to be a minor impact proper of elites in a chiefdom system around the Baltic.

fortified-settlements-lba-ia
Distribution of fortified settlements (filled circles) and other hilltop sites (empty circles) of the Late Bronze Age and Pre-Roman Iron Ages in the East Baltic region. Tentative area of most intensive contacts between Baltic and Balto-Finnic communities marked with a dashed line. Image modified from (Lang 2016).

Also suggesting a potential movement is the ‘southern’ shift observed in the West and East Baltic areas, likely showing the arrival of Proto-East Baltic speakers (such as the Trzciniec outlier), as we have already discussed in this blog. The unexpected increase in Corded Ware-like ancestry in the Eastern Baltic, coupled with the expected large continuity of hg. R1a-Z283 in the homeland of Balto-Finnic expansions, gives even more support to the known complex system of exogamy along the Baltic coasts, and offers another potential reason for the rise of Baltic-speaking territories in the West Baltic: elite domination.

It is nevertheless important to understand that, even among the most “genetic continuous” regions like Estonia, not a single population in Europe is heir of some ancestral, immutable people. Not in terms of haplogroups, and not in terms of admixture. Balto-Finnic speakers, however continuous they might seem (e.g. in Southern Estonians) aren’t an exception.

After all, this blog was (re)born to fight the currently prevalent sheer stupidity surrounding the simplistic “R1a/steppe ancestry=Indo-European” association, so I wouldn’t like to see it replaced with some other stupid continuity or purity ideas within 10 to 20 years…

Late Uralic stems from East Corded Ware groups

With the currently available tools – linguistics, archaeology, and now genetics -, I don’t think there is any argument to date to question the direct connection of the Late Proto-Uralic expansion with all Eastern Corded Ware groups (i.e. Battle Axe, Fatyanovo-Balanovo, and Abashevo), and thus at least with the unifying A-horizon of Corded Ware and the bottlenecks under R1a-Z645.

NOTE. The only out-group among Corded Ware cultures is the Single Grave culture. It appears to be an early Corded Ware offshoot, reflected in their non-unitary cultural traits (distinct from later unifying waves), in their varied patrilineal clans, and in the short-lasting cultural effect in northern Europe before their complete demise under pressure of expanding Yamna/Bell Beaker peoples from the Danube. The culture’s minimal (if any) effects on succeeding peoples might be seen mostly in the (mainly phonetic) Uralic substrate found in Balto-Slavic – although this may also stem from a more eastern influence, close to the Baltic – and in the contacts of Celtic with Uralic. The huge time depth between this early hypothetic Uralic layer in northern Europe and the emergence of peoples inhabiting these territories in recorded history have no doubt been erroneously interpreted as a lack of Uralic presence in the area.

1) That connection was evident in the Yamna – CWC differences in archaeology, and especially later, with at least Fatyanovo-Balanovo and Abashevo representing the obvious replacement of the Volosovo culture before further expansions of CWC-related groups west and east of the Urals.

The mythical millennia-long continuity of Volosovo hunter-gatherers, including centuries among Corded Ware peoples, as expected lately by the Copenhagen group (and anyone who doesn’t want to question the 1960s association of Indo-European with CWC) must be rejected today in population genomics, as the recent studies of ancient and modern populations show, and as ancient DNA from the region will confirm.

2) In linguistics, the survival of Volosovo as The Uralic-speaking culture was also hardly believable. From Kallio (2015):

While we can say at least something about Uralic substrates in Northeastern Europe, non-Uralic substrates cannot at all easily be identified, because of multiple language shifts, viz. first from non-Uralic to Uralic and then from Uralic to Russian. Yet the Soviet Uralicist Boris Serebrennikov (1956, 1959) argued that there are some non-Uralic substrate toponyms in the Volga-Oka region, but his idea was never taken seriously in the west (cf. Sauvageot 1958), and it pretty soon also sank into oblivion in Russia, even though it can still occasionally pop up there in non-onomastic circles (cf. Napolskikh 1995: 18–19). However, not all the hypotheses on non-Uralic substrates in Northeastern Europe should be rejected (see e.g. Helimski 2001b).

bronze-age-early-languages-east-europe
Tentative map of the distribution of known languages in Eastern Europe during the Early Bronze Age. See full map.

Helimski (2001) argues for a non-Uralic topo-hydronomy in Northern Russia, whose population may have kept their languages up to the Common Era despite the Corded Ware expansion, which is in line with the survival of some non-Indo-European languages everywhere in Europe after the expansion of Yamna and its offshoots:

It should be borne in mind that these [Uralic] hydronyms reached us mainly through Northern Russian and, accordingly, with a tendency to phonetic-morphological adaptation and unification (for river names it is “natural” to be, like the word ‘river’ itself, feminine and to end in -a). Taking into account this circumstance, it may turn out to be non-useless for etymological identification of at least some of the hydronyms on the Finno-Ugric basis.

On the other hand, I wouldn’t exclude the possibility that some parts of this large geographical area were never (completely) Finno-Ugric. The population that created the most important part of the hydronymy of the Russian North could be finally pushed aside or assimilated only at the end of the 1st – beginning of the 2nd millennium AD, during the Russian colonization, retaining the memory of the White-Eyed Chude in its own memory.

NOTE. For more on this non-IE substrate in (especially West) Uralic, see e.g. Zhivlov (2015),

The same non-Uralic substrate is most likely behind most of the shared traits by Mordvinic and Balto-Finnic (see below).

3) In genetics, I don’t think the picture could get any clearer. I don’t know what “Steppe ancestry = Indo-European” proponents expected from 2019, if they expected anything at all (I haven’t seen any coherent model, proposal, or prediction for a long time now), but I doubt the recent results are compatible with any of their implied expectations.

corded-ware-pca-sub-neolithic-europe
Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Notice, from the PCA above, how this Baltic Late Neolithic group shows actually a shift from Sredni Stog (see PCA with Sredni Stog) towards typical Khvalynsk-Urals-related ancestry, i.e. populations from eastern European forested regions, derived from hunter-gatherer pottery groups, as I have proposed for a very long time, since the first time a Baltic LN “outlier” appeared. It’s amazing how some amateurs can find 0.1% of any Siberian outlier’s ancestry among Uralians 4,000 years later, but fail to see the direct connection here. The esoteric uses of qpAdm, I guess…

Especially noticeable is the extra WHG-like ancestry and corresponding shift, seen especially marked in late Polish CWC samples, but also in Baltic CWC and especially in one Sweden Battle Axe sample, all of them shifting apparently closer to Pitted Ware and SHG. While that may have been interpreted as an in situ admixture in Scandinavia before, the late Polish CWC samples show likely a resurgence of local populations, so we can assume that both shifts (to SHG- and EHG-like populations) of available CWC samples around the Baltic are clearly part of the WHG:EHG continuum that will be found in the eastern European sub-Neolithic cultures, from Narva to Volosovo.

This WHG-related ancestry is clearly predominant in groups with which Battle Axe peoples admixed, based on the shift towards Pitted Ware, which – I can only guess based on modern Volga Finns – is different from the shift we will see in Netted Ware, more towards the Khvalynsk-Urals cluster. This is in line with the expansion of Battle Axe eastward through coastal areas (West to East Baltic and Finland into Sweden), while Fatyanovo peoples probably emerged from a slightly different route, but also a northern one, if one is to follow archaological similarities and their chronology.

bronze-age-europe-baltic
Detail of the PCA of European Bronze Age populations. See full PCA and more related files.

During the Iron Age, the only peoples that probably shifted strongly (based on modern populations) are West Baltic ones, getting closer to the available Late Trzciniec samples, and even closer to the Trzciniec outlier, i.e. away from the earlier Eastern Corded Ware cluster, and towards Central European groups like Czech EBA or Poland EBA, both of them clearly derived from Bell Beakers, but also admixed with (and thus shifted toward) CW-like populations.

If one looks carefully at the previous PCA on Bronze Age populations, and the next one on Iron Age clusters, it is evident that adding the Swedish LN outlier to East Baltic BA (both strongly related to Battle Axe populations) essentially gives us the continuity of East Baltic BA into the Iron Age. This cluster is continued also in two outliers from Sigtuna, a Viking town close to the Gulf of Finland, known to be an important trading site, 1,500 years later. Not much of a change around the Gulf of Finland, then:

iron-age-eastern-europe
Detail of the PCA of East and North European Iron Age populations. See full PCA and more related files.

Based on the two simplistic Uralic clines one might see described (among the many that certainly existed, from Corded Ware to different Eurasian populations), and just like BOO was for some months fashionable as “Samic”, some may be tempted to say that certain Sintashta or Srubna outliers close to the Urals mark the True Uralic™ peoples. Because, of course they do. Ghost haplogroup N and stuff. And Corded Ware never ever Uralic. Because Gimbutas, and my IE R1a grandfather.

NOTE. Funny thing here: there might be Corded Ware, Iranian, Slavic, Germanic, etc… outliers or out-groups, and they might form the widest genetic clusters ever seen, but they are all of one language, because archaeology and linguistics; however, one “outlier” (also, put your own definition of “outlier” here, let’s say 1% of whatever, and strontium isotope potentially from 100 km away) ca. 600 BC in the Baltic who (surprise!) happens to show hg. N, and he signals the first incoming True Uralic™ speaker from wherever… It won’t be the first or the last time some people resort to “the complexity of Uralic-speaking peoples” in ancestry, just to look for “hg. N = Uralic” like crazy. You only need common sense to understand that this is not how this works. Amateur genomics can’t get more embarrassing than the current “let’s look for ‘Siberian ancestry’ in every individual of haplogroup N” trend. Or maybe it can, and it will, but I can’t see it yet.

If one were to insist on looking for ‘foreign’ contributions among Iron Age Estonians, though, I think one should also check out first archaeology, and then the PC3 (or, more graphically, a 3D plot), to understand what might be happening with the many Uralic clines derived from Corded Ware, before starting to play around with bioinformatic tools to discover a teeny tiny 1% admixture of the wrong population, and rushing to build far-fetched narratives. Apparently, one of the different clines formed roughly between southern (steppe – forest-steppe) and northern (tundra-taiga) populations in Uralians is also seen in some Iron Age Estonian individuals – especially in some late samples from Ingria…This is not my main interest, so I will leave this here for others to keep wasting their time chasing the white whale of the 0.5% of True Uralic™ ancestry in ancient Baltic samples of hg. N.

pca-3d-estonians-iron-age-boo-samic
Still images of the 3D plot of Eurasian samples. Typical PC1 vs. PC2 visualization to the left, and shift of the view to PC3 on the right image. See full PCA and more related files.

An exclusive Volga-Kama homeland for Disintegrating Uralic?

Since I don’t believe in macro-regions of largely continuous ethnolinguistic communities, as I have often said about Slavic (naively associated with prehistoric tribes of Eastern Europe) or Germanic (absurdly considered to be represented by Battle Axe), it is difficult for me to believe that Battle Axe-derived cultures remained of the same Finno-Samic dialects since the Corded Ware expansion…unless we live in Westeros, where everything happens “for thousands of years”.

I have to admit, then, that the now prevalent identification among Uralicists has become quite attractive:

  • Fatyanovo-Balanovo as Finno-Permic:
    • Fatyanovo/Netted Ware with West Uralic (also called Finno-Mordvinic).
    • Balanovo/Chirkovo-Kazan with Central Uralic (Mari-Permic).
  • Abashevo, into the Andronovo-like Horizon through the Seima-Turbino phenomenon, with East Uralic (also Ugro-Samoyedic).

Exactly like the identification of Yamna Hungary – Bell Beaker transition as the North-West Indo-European homeland, it gives us simplicity and small and late ethnolinguistic communities, away from the traditionally overused big and early language territories.

This late homeland would be supported, among others, by:

  • The presence of Indo-Iranian loanwords in Finno-Permic and Ugric (probably also in Samoyedic, either lost, or – much more likely – underresearched), compatible with the immediate contact between Abashevo – Sintashta-Potapovka-Filatovka and Fatyanovo-Balanovo.
  • The supposed expansion of Netted Ware from Fatyanovo to the north-west, which may be explained as the split and expansion of Balto-Finnic and Samic ca. 1900 BC.
  • A longer-lasting Finno-Permic (West+Central Uralic) community contrasting with the early separation of East Uralic.
  • The compatibility of this late expansion with the late expansion of Pre-Germanic from Denmark with the Dagger Period, and of Balto-Slavic with Trzciniec, which puts all three dialects reaching the Baltic Sea in the EBA.

NOTE. I meant to update the linguistic text to include the most recently favoured phylogenetic tree of Uralic languages after Häkkinen (2007, 2009, 2014), which has very quickly become the new normal among Uralicists, but I don’t think I will have enough time to review the necessary papers for that. I am rushing to publish a printed edition, so the text will wind up being a mixture of “traditional” (meaning, basically, pre-2010s) description of Uralic dialects but using modern divisions; say, “West Uralic” instead of “Finno-Samic”. By the way, I am still amazed that none of my reader-haters (or any online user discussing Uralic migrations, for that matter) have come up with the questions that the new division pose, and it supports my suspicion about the complete lack of interest in linguistics of most (a)DNA fans, except for the occasional use of old and free PDFs Googled to support new narratives invented expressly for some qpAdm results…

textile-ceramics-europe-bronze-age
Textile ceramic styles and influence of Bronze Age cultures divided in clusters.

Problems with this Parpola-Carpelan’s (2012-2018) interpretation include:

  • The differentiation between Fennoscandian Textile Ceramics vs. Netted Ware, which is not warranted in archaeology. The assumption that Netted Ware expanded to the Baltic Sea (as Kallio does, following the traditional view) is thus weak, and it was probably a question of cultural contacts coupled with short-distance population movements/exchange in both directions (from the Baltic to the Volga and vice versa). In fact, the culture division relies on some fairly common and technically simple ornamentation patterns, widespread all over northern Europe, even before the Corded Ware expansion, and it is very difficult to separate certain neighboring Textile Ceramics from Netted Ware groups in southern Finland (i.e. Sarsa-Tomitsa groups).
  • The strict and radical direction described for the Netted Ware by Carpelan, as an eastward and northward expansion, within a very short time frame (ca. 1900-1800 BC), based on few radiocarbon dates, which seems to me like a very risky assumption. We know how this kind of descriptions of direction of culture expansion based on radiocarbon dates has turned out in much more complex “packages”, like the Bell Beaker culture… In fact, the earliest dates for Textile Ware are from the East Baltic, earlier than those of Netted Ware.
  • The assumption that Balto-Finnic traits shared with Mordvinic are a) late and b) meaningful for dialectalization of two closely related dialects, when it is clear that both dialects separated quite early. Phonologically Finnic is more conservative, morphologically less so, and the shared traits include a handful of non-Uralic substrate words which can’t be traced to a single common source, hence they were adopted when both languages had already separated… All in all, Finnic – Mordvinic correspondances are not even close to Italo-Celtic ones, which is clearly fully incompatible with a proposal of a Finnic separation from Mordvinic coinciding with the LBA-IA transition.

Especially problematic for Parpola’s model is the lack of genetic impact in Bronze Age or Iron Age Estonians, not reaching a significant level under any possible statistical threshold – which I am sure was quite disappointing for some of my readers -, but is in line with major archaeological continuity of groups the from region, only disturbed in cultural (and Y-chromosome) terms by the expansion of Akozino warrior-traders all over the Baltic Sea. Any proposed population movement will be very difficult to support in genetics, given the Corded Ware-derived populations that we will see in both regions, and the continued Baltic-Volga contacts since the Corded Ware expansion.

Problems with an interpretation of such a small impact in population genomics includes the similarly weak impacts and haplogroup infiltrations that can be seen among populations basically everywhere in Eurasia, during any given period, and much greater genetic impacts that are supposed to be (or that were certainly) followed by ethnolinguistic continuity.

akozino-malar-axes-fennoscandia
Distribution of the Akozino-Mälar axes according to Sergej V. Kuz’minykh (1996: 8, Abb. 2).

The Battle Axe question

From Kallio (2015), about choosing a tentative homeland for Proto-Uralic:

(…) linguistically uniform Proto-Uralic would have been spoken in the Volga-Oka region until the mid-third millennium BC when the Proto-Uralic-speaking area would have expanded to the Volga-Kama region as well. By the end of the same millennium, this expansion would have led to the earliest dialectal splits within Uralic into Finno-Mordvin, Mari-Permic, and Ugro-Samoyed. The splitting up of these three soon followed during the early second millennium BC when the Uralic-speaking area finally stretched from the Baltic Sea in the west to the Altai mountains in the east. Indeed, no matter where Proto-Uralic was spoken, the branching into the nine well-attested subgroups (viz. Finnic, Saami, Mordvin, Mari, Permic, Hungarian, Mansi, Khanty, and Samoyed) must have taken less than a millennium, because their shared phonological and morphosyntactic isoglosses are rather limited (see Salminen 2002). The traditional view that all this branching would have taken several millennia violates everything linguistic typology teaches us about the rate of language change.

The basic problem of this identification of Fatyanovo-Balanovo as West-Central Uralic and Abashevo as East Uralic is the nature of the Battle Axe culture, including the Bronze Age East Baltic and Gulf of Finland area. Even if it is accepted that Fatyanovo-Balanovo represented all Western groups, Battle Axe must have represented West Uralic-like dialects.

The ethnolinguistic identification of Battle Axe depends ultimately on the nature of contacts of Fatyanovo/Netted Ware with Battle Axe/Textile Ceramics. If both groups were close and interacted profusely, as it seems, it doesn’t seem granted that we will be able to distinguish a close Para-West Uralic dialect of Scandinavia from the actual expanding Balto-Finnic and Samic dialects, if they were actually linked to the Netted Ware expansion. Also from Kallio (2015):

No doubt the most convincing substrate theory has recently been put forward by the Saami Uralicist Ante Aikio (2004), who has not only rehabilitated but also improved the old idea of a non-Uralic substrate in Saami. His study shows that there were still non-Uralic languages spoken in Northern Fennoscandia as recently as the first millennium AD. Most of all, they were not only genetically non-Uralic but also typologically non-Uralic-looking, bearing a closer resemblance to the so-called Palaeo-European substrates (for which see e.g. Schrijver 2001; Vennemann 2003).

In comparison, the case of Finnic is much more difficult. The fact that Proto-Uralic was not spoken in the East Baltic region means that this area must have originally been non-Uralic-speaking, but so far the evidence for a non-Uralic substrate in Finnic has consisted of appellatives and proper names with no etymology (cf. Ariste 1971; Saarikivi 2004a). Contrary to the proposed substrate words in Saami, those in Finnic show no structural non-Uralisms, as if they had indeed been borrowed from some genetically related or at least typologically similar languages, as I suggested above. Also none of them is more recent than the Middle Proto-Finnic stage, which makes them at least two millennia old. All this agrees with archaeological evidence discussed earlier that the Uralicization of the East Baltic region occurred during the Bronze Age (ca. 1900–500 BC).

The discussion of the paper continues with an unsuccessful attempt to find a hypothetical ancient Indo-European substrate that Kallio believes must be associated with the expansion of Corded Ware, in line with the traditional belief. For example, the often mentioned – almost folk etymology-like, unsurprisingly popular among amateurs – ‘Neva’ as derived from IE “young” is logically rejected…Unlike Parpola, Kallio’s view seems to be confident that Netted Ware (as Textile Ware) expanded into the East Baltic, on both sides of the Gulf of Finland, already during the Bronze Age.

As it has become apparent in population genomics, none of them was right, and Textile Ceramics will essentially show – like Netted Ware – a large genetic continuity of Corded Ware peoples in the whole north-eastern Europe – despite small regional population movements, obviously -, which necessarily implies that the whole Corded Ware culture – and not only Fatyanovo-Balanovo and Abashevo – were Uralic-speaking territories.

The similarities in terms of culture and Y-DNA bottlenecks between Battle Axe and Fatyanovo-Balanovo also imply that the linguistic differences between these groups were probably not many, and became strongly divided only after their territorial division. Continued contacts between Battle Axe- and Fatyanovo-derived groups can explain the proposed contacts (Finnic with Samic, Finnic with Mordvinic) after their linguistic-but-not-physical separation.

east-european-fatyanovocwc
East European movement directions (arrows) of the representatives of the Central European Corded Ware Culture (according to I.I. Artemenko).

Battle Axe spoke “Para-Balto-Finnic”?

The Balto-Finnic-speaking nature of Battle Axe is thus supported by:

  • The lack of non-Uralic substrates in Balto-Finnic territory (Kallio 2015).
  • The early separation of Samic and Finnic from Mordvinic, and the virtual identity of Proto-West-Uralic and Proto-Uralic, which suggests that Proto-Uralic spread fast (Parpola 2012).
  • The scarce non-Uralic topo-hydronymy in the East Baltic and around the Gulf of Finland (Saarikivi 2004), comparable to that on the Upper Volga region.
  • The strong influence of a Balto-Finnic-like substrate on Pre-Germanic (or, in Kallio’s opinion, the same Scandinavian substrate influencing both Germanic and Balto-Finnic at the same time), and the continued influence of Balto-Finnic on Proto-Baltic and Proto-Slavic.
  • The continued influence of Corded Ware-derived groups in central-east Sweden in Finland and the East Baltic in terms of agricultural innovations appearing in the LBA, compatible with Schrijver’s proposal of intermediate Germanic-shifted Balto-Finnic groups and Balto-Finnic groups influenced by their pronunciation.
  • The intense Palaeo-Germanic and late Balto-Slavic / early Proto-Baltic superstrate on Balto-Finnic, which place all three dialects around the Baltic Sea since the Early Bronze Age.
  • The easy replacement of a hypothetic Para-Balto-Finnic dialect by incoming Proto-Balto-Finnic-speaking peoples (say, with textile ceramics), without much linguistic impact.

In fact, the continuous contacts of the East Baltic with the Volga, and especially the close interaction with Akozino warrior-traders just before the Tarand-grave period, could be the actual origin of the recent (if any) Finnic-Mordvinic connections that need to be traced back to the LBA-IA (maybe here the number ‘ten’), since most of them can be related to a Pit-Comb Ware culture substrate and earlier contacts through the forest zone, which Samic (due to its early split and presence to the north of the Gulf of Finland during the BA) does not share. In fact, some of them can be traced back to Balto-Finnic first

These are the most often mentioned, in order of descending relevance for a shared ancient community:

  • Noun paradigms and the form and function of individual cases.
  • The geminate *mm (foreign to Proto-Uralic before the development of Fennic under Germanic influence) and other non-Uralic consonant clusters.
  • The change of numeral *luka ‘ten’ with (non-Uralic) *kümmen.
  • The presence of loanwords of non-Uralic origin, related to farming and trees, potentially Palaeo-European in nature.

It’s not only a question of quantity. Are these shared Mordvinic – Balto-Finnic traits really more relevant than, say, those between Italo-Celtic, which are supposed to have formed a community for a very short period at the end of the 3rd millennium around the Alps? Are these traits even sufficient to propose a common early Mordvinic-Finnic group within West Uralic, rather than loose Mordvinic – Balto-Finnic contacts, i.e. contacts between East Baltic (Textile Ceramics) and Volga-Kama (Netted Ware)?

Based on the alternative (Kallio’s) view of continued contacts between Textile Ceramics groups, even without knowing anything about linguistics, you can guess that Parpola is spinning very thin when assuming that these changes suggest that Balto-Finnic may have expanded with Akozino warrior-traders, separating thus ca. 800 BC from Mordvinic…

Genetic findings now clearly help dismiss any meaningful population impact in the LBA-IA transition, although any linguist can obviously argue for linguistic change in spite of major genetic continuity. But then we are stuck in the pre-ancient DNA era, so what’s ancient DNA for.

netted-ware-textile-ceramics
Middle Bronze Age cultures of Eastern Europe.

Genetic continuity = language continuity?

In the end, it’s very difficult to say how much language continuity there is around Estonia since the arrival of Corded Ware peoples. Looking at Modern Estonians, they have been clearly influenced by recent contacts with Baltic- and Germanic-speaking peoples clustering to the south-west in the PCA. They seem to have also received contacts from north(-east)ern peoples, likely from Finland, evidenced by their shifts toward the modern Estonian cluster during and after the Middle Ages, with a slight increase in Siberian ancestry and N1c subclades associated with Lovozero Ware. How much language change did these contacts bring? Maybe an expansion of Gulf of Finland Finnic (Northern Estonian) over Inland Finnic (Southern Estonian) and Gulf of Riga Finnic (Livonian)? Difficult to know, exactly, but, in the traditional view of Balto-Finnic dialectal distribution among Uralicists like Kallio, possibly no change at all.

So, if the obvious changes in the Estonia_MA cluster relative to Estonia_IA cluster and Estonia_Modern relative to Estonia_MA do not represent radical language change…Why would Estonia_IA represent a change relative to Estonia_BA, when it is statistically basically the same? Or Estonia_BA relative to CWC_Baltic? Because of the infiltration of haplogroup N1c around the whole Baltic? Because of the occasional 1% “Siberian” ancestry in some non-locals of varied haplogroups across the whole Baltic area?

In spite of all this, the amount of special pleading we are seeing among openly Nordicist amateurs when discussing the Uralic homeland relative to the Indo-European question in genetics has become a matter of plain willful ignorance. Like the living corpses of the Anatolian homeland, the Armenian homeland, the OIT proponents, or the nativist Basque R1b association, the personal involvement in the revival of “R1a=Indo-European” and “N=Uralic” trends is just painful to watch.

[Next post in this line, if I manage to make time for it: “Genetic (dis)continuity in Central Europe“. Let’s see if early Balts and early Slavs, as well as Germanic peoples, show a cluster closer to Danubian EBA (viz. Maros), Hungary-Balkans BA, and Urnfield-related samples than their predecessors in their areas, i.e. away from East Corded Ware groups… If you want, you can enjoy for the moment the new PCAs I could get done and the tentative map of languages in the Early Bronze Age, that will probably give you the right idea about early Indo-European and Uralic population movements]

bronze-age-early-indo-european
European Early Bronze Age: tentative language map based on linguistics, archaeology, and genetics. See full map.

Related

Złota a GAC-CWC transitional group…but not the origin of Corded Ware peoples

koszyce-gac-zlota-cwc

Open access Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave, by Schroeder et al. PNAS (2019).

Interesting excerpts of the paper and supplementary materials, about the Złota group variant of Globular Amphora (emphasis mine):

A special case is the so-called Złota group, which emerged around 2,900 BCE in the northern part of the Małopolska Upland and existed until 2,600-2,500 BCE. Originally defined as a separate archaeological “culture” (15), this group is mainly defined by the rather local introduction of a distinct form of burial in the area mentioned. Distinct Złota settlements have not yet been identified. Nonetheless, because of the character of its burial practices and material culture, which both retain many elements of the GAC and yet point forward to the Corded Ware tradition, and because of its geographical location, the Złota group has attracted significant archaeological attention (15, 16).

The Złota group buried their dead in a new, distinct type of funerary structure; so-called niche graves (also called catacomb graves). These structures featured an entrance shaft or pit and, below that, a more or less extensive niche, sometimes connected to the entrance area by a narrow corridor. Local limestone was used to seal off the entrance shaft and to pave the floor of the niche, on which the dead were usually placed along with grave goods. This specific and relatively sophisticated form of burial probably reflects contacts between the northern Małopolska Upland and the steppe and forest-steppe communities further to the east, who also buried their dead in a form of catacomb graves. Individual cases of the use of ochre and of deformation of skulls in Złota burials provide further indications of such a connection (15). At the same time, the Złota niche grave practice also retains central elements of the GAC funerary tradition, such as the frequent practice of multiple burials in one grave, often entailing redeposition and violation of the anatomical order of corpses, and thus differs from the catacomb grave customs found on the steppes which are strongly dominated by single graves. Nonetheless, at Złota group cemeteries single burial graves appear, and even in multiple burial graves the identity of each individual is increasingly emphasized, e.g. by careful deposition of the body and through the personal nature of grave goods (16).

globular-amphorae-corded-ware-zlota-amphorae
Correspondence analysis of amphorae from the Złota-graveyards reveals that there is no typological break between Globular Amphorae and Corded Ware Amphorae, including ‘Strichbündelamphorae’ (after Furholt 2008)

Just like its burial practices, the material culture and grave goods of the Złota group combine elements of the GAC, such as amber ornaments and central parts of the ceramic inventory, with elements also found in the Corded Ware tradition, such as copper ornaments, stone shaft-hole axes, bone and shell ornaments, and other stylistic features of the ceramic inventory. In particular, Złota group ceramic styles have been seen as a clear transitional phenomenon between classical GAC styles and the subsequent Corded Ware ceramics, probably playing a key role in the development of the typical cord decoration patterns that came to define the latter (17).

As briefly summarized above, the Złota group displays a distinct funerary tradition and combination of material culture traits, which give the clear impression of a cultural “transitional situation”. While the group also appears to have had long-distance contacts directed elsewhere (e.g. to Baden communities to the south), it is the combination of Globular Amphora traits, on the one hand, and traits found among late Yamnaya or Catacomb Grave groups to the east as well as the closely related Corded Ware groups that emerged around 2,800 BCE, on the other hand, that is such a striking feature of the Złota group and which makes it interesting when attempting to understand cultural and demographic dynamics in Central and Eastern Europe during the early 3rd millennium BCE.

catacomb-grave-ksiaznice
Catacomb grave no. 2a/06 from Książnice, Złota culture (acc. to Wilk 2013). Image from Włodarczak (2017)

Książnice (site 2, grave 3ZC), Świętokrzyskie province. This burial, a so-called niche grave of the Złota type (with a vertical entrance shaft and perpendicularly situated niche), was excavated in 2006 and contained the remains of 8 individuals, osteologically identified as three adult females and five children, positioned on limestone pavement in the niche part of the grave. Radiocarbon dating of the human remains indicates that the grave dates to 2900-2630 BCE, 95.4% probability (Dataset S1). The grave had an oval entrance shaft with a diameter of 60 cm and depth of 130 cm; the depth of the niche reached to 170 cm (both measured from the modern surface), and it also contained a few animal bones, a few flint artefacts and four ceramic vessels typical of the Złota group. Książnice is located in the western part of the Małopolska Upland, which only has a few Złota group sites but a stronger presence of other, contemporary groups (including variants of the Baden culture).

Wilczyce (site 90, grave 10), Świętokrzyskie province. A rescue excavation in 2001 uncovered a niche grave of the Złota type, which had a round entrance shaft measuring 90 cm in diameter. The grave was some 60-65 cm deep below the modern surface and the bottom of the niche was paved with thin limestone plates, on which remains of three individuals had been placed; two adults, one female and one male, and one child. Four ceramic vessels of Złota group type were deposited in the niche along with the bodies. Wilczyce is located in the Sandomierz Upland, an area with substantial presence of both the Globular Amphora culture and Złota group, as well as the Corded Ware culture from 2800 BCE.

zlota-gac-cwc
Genetic affinities of the Koszyce individuals and other GAC groups (here including Złota) analyzed in this study. (A) Principal component analysis of previously published and newly sequenced ancient individuals. Ancient genomes were projected onto modern reference populations, shown in gray. (B) Ancestry proportions based on supervised ADMIXTURE analysis (K = 3), specifying Western hunter-gatherers, Anatolian Neolithic farmers, and early Bronze Age steppe populations as ancestral source populations. LP, Late Paleolithic; M, Mesolithic; EN, Early Neolithic; MN, Middle Neolithic; LN, Late Neolithic; EBA, Early Bronze Age; PWC, Pitted Ware culture; TRB, Trichterbecherkultur/Funnelbeaker culture; LBK, Linearbandkeramik/Linear Pottery culture; GAC, Globular Amphora culture; Złota, Złota culture. Image modified to outline in red GAC and Złota groups.

To further investigate the ancestry of the Globular Amphora individuals, we performed a supervised ADMIXTURE (6) analysis, specifying typical western European hunter-gatherers (Loschbour), early Neolithic Anatolian farmers (Barcın), and early Bronze Age steppe populations (Yamnaya) as ancestral source populations (Fig. 2B). The results indicate that the Globular Amphora/Złota group individuals harbor ca. 30% western hunter-gatherer and 70% Neolithic farmer ancestry, but lack steppe ancestry. To formally test different admixture models and estimate mixture proportions, we then used qpAdm (7) and find that the Polish Globular Amphora/Złota group individuals can be modeled as a mix of western European hunter-gatherer (17%) and Anatolian Neolithic farmer (83%) ancestry (SI Appendix, Table S2), mirroring the results of previous studies.

zlota-steppe-ancestry-cwc
Table S2. qpADM results. The ancestry of most Globular Amphora/Złota group individuals
can be modelled as a two-way mixture of Mesolithic western hunter-gatherers (WHG), and early Anatolian Neolithic farmers (Barcın). The five individuals from Książnice (Złota group) show evidence for additional gene flow, most likely from an eastern source.

The lack of a direct genetic connection of Corded Ware peoples with the Złota group despite their common “steppe-like traits” – shared with Yamna – reveals, once more, how the few “Yamna-like” traits of Corded Ware do not support a direct connection with Indo-Europeans, and are the result of the expansion of the so-called steppe package all over Europe, and particularly among cultures closely related to the Khvalynsk expansion, and later under the influence of expanding Yamna peoples.

The results from Książnice may support that early Corded Ware peoples were in close contact with GAC peoples in Lesser Poland during the complex period of GAC-Trypillia-CWC interactions, and especially close to the Złota group at the beginning of the 3rd millennium BC. Nevertheless, patrilineal clans of Złota apparently correspond to Globular Amphorae populations, with the only male sample available yet being within haplogroup I2a-L801, prevalent in GAC.

NOTE. The ADMIXTURE of Złota samples in common with GAC samples (and in contrast with the shared Sredni Stog – Corded Ware “steppe ancestry”) makes the possibility of R1a-M417 popping up in the Złota group from now on highly unlikely. If it happened, that would complicate further the available picture of unusually diverse patrilineal clans found among Uralic speakers expanding with early Corded Ware groups, in contrast with the strict patrilineal and patrilocal culture of Indo-Europeans as found in Repin, Yamna and Bell Beakers.

Once again the traditional links between groups hypothesized by archaeologists – like Gimbutas and Kristiansen in this case – are wrong, as is the still fashionable trend in descriptive archaeology, of supporting 1) wide cultural relationships in spite of clear-cut inter-cultural differences (and intra-cultural uniformity kept over long distances by genetically-related groups), 2) peaceful interactions among groups based on few common traits, and 3) regional population continuities despite cultural change. These generalized ideas made some propose a steppe language shared between Pontic-Caspian groups, most of which have been proven to be radically different in culture and genetics.

gimbutas-kurgan-indo-european
The background shading indicates the tree migratory waves proposed by Marija Gimbutas, and personally checked by her in 1995. Image from Tassi et al. (2017).

Furthermore, paternal lines show once again marked bottlenecks in expanding Neolithic cultures, supporting their relevance to follow the ethnolinguistic identity of different cultural groups. The steppe- or EHG-related ancestry (if it is in fact from early Corded Ware peoples) in Książnice was thus probably, as in the case of Trypillia, in the form of exogamy with females of neighbouring groups:

The presence of unrelated females and related males in the grave is interesting because it suggests that the community at Koszyce was organized along patrilineal lines of descent, adding to the mounting evidence that this was the dominant form of social organization among Late Neolithic communities in Central Europe. Usually, patrilineal forms of social organization go hand in hand with female exogamy (i.e., the practice of women marrying outside their social group). Indeed, several studies (11, 12) have shown that patrilocal residence patterns and female exogamy prevailed in several parts of Central Europe during the Late Neolithic. (…) the high diversity of mtDNA lineages, combined with the presence of only a single Y chromosome lineage, is certainly consistent with a patrilocal residence system.

funnelbeaker-trypillia-corded-ware
Map of territorial ranges of Funnel Beaker Culture (and its settlement concentrations in Lesser Poland), local Tripolyan groups and Corded Ware Culture settlements (■) at the turn of the 4th/3rd millennia BC.

Since ancient and modern Uralians show predominantly Corded Ware ancestry, and Proto-Uralic must have been in close contact with Proto-Indo-European for a very long time – given the different layers of influence that can be distinguished between them -, it follows as logical consequence that the North Pontic forest-steppes (immediately to the west of the PIE homeland in the Don-Volga-Ural steppes) is the most likely candidate for the expansion of Proto-Uralic, accompanying the spread of Sredni Stog ancestry and a bottleneck under R1a-M417 lineages.

The early TMRCAs in the 4th millennium BC for R1a-M417 and R1a-Z645 support this interpretation, like the R1a-M417 sample found in Sredni Stog. On the other hand, the resurgence of typical GAC-like ancestry in late Corded Ware groups, with GAC lineages showing late TMRCAs in the 3rd millennium BC, proves the disintegration of Corded Ware all over Europe (except in Textile Ceramics- and Abashevo-related groups) as the culture lost its cohesion and different local patrilineal clans used the opportunity to seize power – similar to how eventually I2a-L621 infiltrated eastern (Finno-Ugrian) groups.

Related

Common Slavs from the Lower Danube, expanding with haplogroup E1b-V13?

late-iron-age-eastern-europe

Florin Curta has published online his draft for Eastern Europe in the Middle Ages (500-1300), Brill’s Companions to European History, Vol. 10 (2019), apparently due to appear in June.

Some interesting excerpts, relevant for the latest papers (emphasis mine):

The Archaeology of the Early Slavs

(…) One of the most egregious problems with the current model of the Slavic migration is that it is not at all clear where it started. There is in fact no agreement as to the exact location of the primitive homeland of the Slavs, if there ever was one. The idea of tracing the origin of the Slavs to the Zarubyntsi culture dated between the 3rd century BC and the first century AD is that a gap of about 200 years separates it from the Kiev culture (dated between the 3rd and the 4th century AD), which is also attributed to the Slavs. Furthermore, another century separates the Kiev culture from the earliest assemblages attributed to the Prague culture. It remains unclear as to where the (prehistoric) Slavs went after the first century, and whence they could return, two centuries later, to the same region from which their ancestors had left. The obvious cultural discontinuity in the region of the presumed homeland raises serious doubts about any attempts to write the history of the Slavic migration on such a basis. There is simply no evidence of the material remains of the Zarubyntsi, Kiev, or even Prague culture in the southern and southwestern direction of the presumed migration of the Slavs towards the Danube frontier of the Roman Empire.

Moreover, the material culture revealed by excavations of 6th- to 7th-century settlements and, occasionally, cremation cemeteries in northwestern Russia, Belarus, Poland, Moravia, and Bohemia is radically different from that in the lands north of the Danube river, which according to the early Byzantine sources were inhabited at that time by Sclavenes: no settlement layout with a central, open area; no wheel-made pottery or pottery thrown on a tournette; no clay rolls inside clay ovens; few, if any clay pans; no early Byzantine coins, buckles, or remains of amphorae; no fibulae with bent stem, and few, if any bow fibulae. Conversely, those regions have produced elements of material culture that have no parallels in the lands north of the river Danube: oval, trough-like settlement features (which are believed to be remains of above-ground, log-houses); exclusively handmade pottery of specific forms; very large settlements, with over 300 houses; fortified sites that functioned as religious or communal centers; and burials under barrows. With no written sources to inform about the names and identities of the populations living in the 6th and 7th centuries in East Central and Eastern Europe, those contrasting material culture profiles could hardly be interpreted as ethnic commonality. In other words, there is no serious basis for attributing to the Sclavenes (or, at least, to those whom early Byzantine authors called so) any of the many sites excavated in Russia, Belarus, Poland, Moravia, and Bohemia.

slavic-expansion-prague-korchak
Common Slavic expanding with Prague-Korchak from the east…or was it from the west?

Migrations

There is of course evidence of migrations in the 6th and 7th centuries, but not in the directions assumed by historians. For example, there are clear signs of settlement discontinuity in northern Germany and in northwestern Poland. German archaeologists believe that the bearers of the Prague culture who reached northern Germany came from the south (from Bohemia and Moravia), and not from the east (from neighboring Poland or the lands farther to the east). At any rate, no archaeological assemblage attributed to the Slavs either in northern Germany or in northern Poland may be dated earlier than ca. 700. In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland. No site of any of the three archaeological cultures in Eastern Europe that have been attributed to the Slavs (Kolochin, Pen’kivka, and Prague/Korchak) has so far been dated earlier than the sites in the Lower Danube region where the 6th century sources located the Sclavenes. Neither the Kolochin, nor the Pen’kivka cultures expanded westwards into East Central or Southeastern Europe; on the contrary, they were themselves superseded in the late 7th or 8th century by other archaeological cultures originating in eastern Ukraine. Meanwhile, there is an increasing body of archaeological evidence pointing to very strong cultural influences from the Lower and Middle Danube to the Middle Dnieper region during the 7th century—the opposite of the alleged direction of Slavic migration.

When did the Slavs appear in those regions of East Central and Eastern Europe where they are mentioned in later sources? A resistant stereotype of the current scholarship on the early Slavs is that “Slavs are Slavonic-speakers; Slavonic-speakers are Slavs.”* If so, when did people in East Central and Eastern Europe become “Slavonic speakers”? There is in fact no evidence that the Sclavenes mentioned by the 6th-century authors spoke Slavic (or what linguists now call Common Slavic). Nor can the moment be established (with any precision), at which Slavic was adopted or introduced in any given region of East Central and Eastern Europe.** To explain the spread of Slavic across those regions, some have recently proposed the model of a koiné, others that of a lingua franca. The latter was most likely used within the Avar polity during the last century of its existence (ca. 700 to ca. 800).

*Ziółkowski, “When did the Slavs originate?” p. 211. On the basis of the meaning of the Old Church Slavonic word ięzyk (“language,” but also “people” or “nation”), Darden, “Who were the Sclaveni?” p. 138 argues that the meaning of the name the Slavs gave to themselves was closely associated with the language they spoke.

**Uncertainty in this respect dominates even in recent studies of contacts between Slavic and Romance languages (particularly Romanian), even though such contacts are presumed to have been established quite early (Paliga, “When could be dated ‘the earliest Slavic borrowings’?”; Boček, Studie). Recent studies of the linguistic interactions between speakers of Germanic and speakers of Slavic languages suggest that the adoption of place names of Slavic origin was directly linked to the social context of language contact between the 9th and the 13th centuries (Klír, “Sociální kontext”).

Avars

During the 6th century, the area between the Danube and the Tisza in what is today Hungary, was only sparsely inhabited, and probably a “no man’s land” between the Lombard and Gepid territories. It is only after ca. 600 that this area was densely inhabited, as indicated by a number of new cemeteries that came into being along the Tisza and north of present-day Kecskemét. There can therefore be no doubt about the migration of the Avars into the Carpathian Basin, even though it was probably not a single event and did not involve only one group of population, or even a cohesive ethnic group.

The number of graves with weapons and of burials with horses is particularly large in cemeteries excavated in southwestern Slovakia and in neighboring, eastern Austria. This was a region of special status on the border of the qaganate, perhaps a “militarized frontier.” From that region, the Avar mores and fashions spread farther to the west and to the north, into those areas of East Central Europe in which, for reasons that are still not clear, Avar symbols of social rank were particularly popular, as demonstrated by numerous finds of belt fittings. Emulating the success of the Avar elites sometimes involved borrowing other elements of social representation, such as the preferential deposition of weapons and ornamented belts. For example, in the early 8th century, a few males were buried in Carinthia (southern Austria) with richly decorated belts imitating those in fashion in the land of the Avars, but also with Frankish weapons and spurs. Much like in the Avar-age cemeteries in Slovakia and Hungary, the graves of those socially prominent men are often surrounded by many burials without any grave goods whatsoever.

early-avar-khaganate
Territory of the early Avar Qaganate and the location of the investigated sites in the Carpathian Basin in Csáky et al. (2019).

Carantanians

Carantania was a northern neighbor of the Lombard duchy of Friuli, which was inhabited by Slavs. According to Paul the Deacon, who was writing in the late 780s, those Slavs called their country Carantanum, by means of a corruption of the name of ancient Carnuntum (a former Roman legionary camp on the Danube, between Vienna and Bratislava). Carantanians were regarded as Slavs by the author of a report known as the Conversion of the Bavarians and Carantanians, and written in ca. 870 in order to defend the position of the archbishop of Salzburg against the claims of Methodius, the bishop of Pannonia.94 According to this text, a duke named Boruth was ruling over Carantania when he was attacked by Avars in ca. 740. He called for the military assistance of his Bavarian neighbors. The Bavarian duke Odilo (737–748) obliged, defeated the Avars, but in the process also subdued the Carantanians to his authority. Once Bavarian overlordship was established in Carantania, Odilo took with him as hostages Boruth’s son Cacatius and his nephew Chietmar (Hotimir). Both were baptized in Bavaria. During the 743 war between Odilo and Charles Martel’s two sons, Carloman and Pepin (the Mayors of the Palace in Austrasia and Neustria, respectively), Carantanian troops fought on the Bavarian side. The Bavarian domination cleared the field for missions of conversion to Christianity sent by Virgil, the new bishop of Salzburg (746–784). Many missionaries were of Bavarian origin, but some were Irish monks.

Moravians

Several Late Avar cemeteries dated to the last quarter of the 8th century are known from the lands north of the middle course of the river Danube, in what is today southern Slovakia and the valley of the Lower Morava [see image below]. By contrast, only two cemeteries have so far been found in Moravia (the eastern part of the present-day Czech Republic), along the middle and upper course of the Morava and along its tributary, the Dyje. In both Dolní Dunajovice and Hevlín, the latest graves may be dated by means of strap ends and belt mounts with human figures to the very end of the Late Avar period. (…)

The archaeological evidence pertaining to burial assemblages dated to the early 9th century is completely different. Shortly before or after 800, all traces of cremation—with or without barrows—disappear from the valley of the Morava river and southwestern Slovakia, two regions in which cremation had been the preferred burial rite during the previous centuries. This dramatic cultural change has often been interpreted as a direct influence of both Avar and Frankish burial rites, but it coincides in time with the adoption of Christianity by local elites. In spite of conversion, however, the representation of status through furnished burial continued well into the 9th century. Unlike Avar-age sites in Hungary and the surrounding regions, many men were buried in 9th-century Moravia together with their spurs, in addition to such weapons as battle axes, “winged” lance heads, or swords with high-quality steel blades of Frankish production.

morvaian-sites
Relevant Moravian sites mentioned in Curta’s new book.

When the Magyars inflicted a crushing defeat on the Bavarians at Bratislava (July 4, 907), the fate of Moravia was sealed as well. Moravia and the Moravians disappear from the radar of the written sources, and historians and archaeologists alike believe that the polity collapsed as a result of the Magyar raids.

Magyars

(…) although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).* However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

* Ivanov, Drevnie ugry-mad’iary; Ivanov and Ivanova, “Uralo-sibirskie istoki”; Boldog et al., “From the ancient homelands,” p. 3; Ivanov, “Similarities.” Ivanov, “Similarities,” p. 562 points out that the migration out of the lands along of the Middle Volga is implied by the disappearance of both cultures (Kushnarenkovo and Karaiakupovo) in the mid-9th century. For the Kushnarenkovo culture, see Kazakov, “Kushnarenkovskie pamiatniki.” For the Karaiakupovo culture, see Mogil’nikov, “K probleme.”

Given that the Magyars are first mentioned in relation to events taking place in the Lower Danube area in the 830s, the Magyar sojourn in Etelköz must have been no longer than 60 years or so—a generation. (…)

arrival-of-hungarians-feszty-slavs
A detail of the Arrival of the Hungarians, Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. This specific detail is probably based on the account on The Annals of Fulda, which narrates under the year 894 that the Hungarians crossed the Danube into Pannonia where they “killed men and old women outright and carried off the young women alone with them like cattle to satisfy their lusts and reduced the whole” province “to desert”.

It has become obvious by now that one’s impression of the Magyars as “Easterners” and “steppe-like” was (and still is) primarily based on grave finds, while the settlement material is considerably more aligned with what is otherwise known from other contemporary settlement sites in Central and Southeastern Europe. The dominant feature on the 10th- and 11th-century settlements in Hungary is the sunken-floored building of rectangular plan, with a stone oven in a corner. Similarly, the pottery resulting from the excavation of settlement sites is very similar to that known from many other such sites in Eastern Europe. Moreover, while clear changes taking place in burial customs between ca. 900 and ca. 1100 are visible in the archaeological record from cemeteries, there are no substantial differences between 10th- and the 11th-century settlements in Hungary. (…)

As a matter of fact, the increasing quantity of paleobotanical and zooarchaeological data from 10th-century settlements strongly suggests that the economy of the first generations of Magyars in Hungary was anything but nomadic. To call those Magyars “half-nomad” is not only wrong, but also misleading, as it implies that they were half-way toward civilization, with social changes taking place that must have had material culture correlates otherwise visible in the burial customs.

Comments

The origin of “Slavs” (i.e. that of “Slavonic” as a language, whatever the ancestral Proto-Slavic ethnic make-up was) is almost as complicated as the origin of Albanians, Basques, Balts, or Finns. Their entry into history is very recent, with few reliable sources available until well into the Middle Ages. If you add our ignorance of their origin with the desire of every single researcher or amateur out there to connect them to the own region (or, still worse, to all the regions where they were historically attested), we are bound to find contradictory data and a constantly biased selection of information.

Furthermore, it is extremely complicated to connect any recent population to its ancestral (linguistic) one through haplogroups prevalent today, and just absurd to connect them through ancestral components. This, which was already suspected for many populations, has been confirmed recently for Basques in Olalde et al. (2019) and will be confirmed soon for Finns with a study of the Proto-Fennic populations in the Gulf of Finland.

NOTE. Yes, the “my parents look like Corded Ware in this PCA” had no sense. Ever. Why adult people would constantly engage in that kind of false 5,000-year-old connections instead of learning history – or their own family history – escapes all comprehension. But if something is certain about human nature, is that we will still see nativism and ancestry/haplogroup fetishism for any modern region or modern haplogroups and their historically attested ethnolinguistic groups.

balto-slavic-pca
Genetic structure of modern Balto-Slavic populations within a European context according to the three genetic systems. Image from Kushniarevich et al. (2015)

As you can see from my maps and writings, I prefer neat and simple concepts: in linguistics, in archaeology, and in population movements. Hence my aversion to this kind of infinite proto-historical accounts (and interpretations of them) necessary to ascertain the origins of recent peoples (Slavs in this case), and my usual preference for:

  • Clear dialectal classifications, whether or not they can be as clear cut as I describe them. The only thing that sets Slavic apart from other recent languages is its connection with Baltic, luckily for both. Even though this connection is disputed by some linguists, and the question is always far from being resolved, a homeland of Proto-Balto-Slavic would almost necessarily need to be set to the north of the Carpathian Mountains in the Bronze Age (or at least close to them).
  • NOTE. A dismissal of a connection with Baltic would leave Slavic a still more complicated orphan, and its dialectal classification within Late PIE more dubious. Its union with Balto-Slavic locates it close to Germanic, and thus as a Bronze Age North-West Indo-European dialect close to northern Germany. So bear with me in accepting this connection, or enter the linguistic hell of arguing for Indo-Slavonic of R1a-Z93 mixed with Temematic….

  • A priori “pots = people” assumption, which may lead to important errors, but fewer than the usual “pots != people” of modern archaeologists. The traditional identification of the Common Slavic expansion with the Prague-Korchak culture – however undefined this culture may be – has clear advantages: it may be connected (although admittedly with many archaeological holes) with western cultures expanding east during the Bronze Age, and then west again after the Iron Age, and thus potentially also with Baltic.
  • A simplistic “haplogroup expansion = ethnolinguistic expansion”, which is quite useful for prehistoric migrations, but enters into evident contradictions as we approach the Iron Age. Common Slavs may be speculatively (for all we know) associated with an expansion of recent R1a-M458 lineages – among other haplogroups – from the east, and possibly Balto-Slavic as an earlier expansion of older subclades from the west, as I proposed in A Clash of Chiefs.
r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

NOTE. The connection of most R1a-Z280 lineages is more obviously done with ancient Finno-Ugric peoples, as it is clear now (see here and here).

Slavs appeared first in the Danube?

No matter what my personal preference is, one can’t ignore the growing evidence, and it seems that Florin Curta‘s long-lasting view of a Danubian origin of expansion for Common Slavic, including its condition as a lingua franca of late Avars, won’t be easy to reject any time soon:

1) Theories concerning Chernyakhov as a Slavic homeland will apparently need to be fully rejected, due to the Germanic-like ancestry that will be reported in the study by Järve et al. (2019).

EDIT (3 MAY 2019). From their poster Shift in the genetic landscape of the western Eurasian Steppe not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths) (download PDF):

(…) the transition from the Scythian to the Chernyakhov culture (~2,100–1,700 cal BP) does mark a shift in the Ponto-Caspian genetic landscape. Our results agree well with the Ostrogothic origins of the Chernyakhov culture and support the hypothesis that Scythian dominance was cultural rather than achieved through population replacement.

scythians-chernyakhov-ostrogoths-jarve
PCA of novel and published ancient samples from Scythian/Sarmatian and related groups on the background of modern samples presented as population medians. Δ – ref. 1, ○ – ref. 2, □ – ref. 3, ◊ – this study. Embedded are the locations of some of the samples. Notice the wide cluster formed by the three samples, from Hungarian Scythians in the west to steppe-like peoples in the east.

2) Therefore, unless Przeworsk shows the traditionally described mixture of populations in terms of ancestry and/or haplogroups, it will also be a sign of East Germanic peoples expanding south (and potentially displacing the ancestors of Slavs in either direction, east or south).

It would seem we are stuck in a Danubian vs. Kievan homeland for Common Slavs, then:

3) About the homeland in the Kiev culture, two early Avar females from Szólád have been commented to cluster “among Modern Slavic populations” based on some data in Amorim et al. (2018).

Rather than supporting an origin of Slavs in common with modern Russians, Poles, and Ukranians as observed in the PCA, though, the admixture of AV1 and AV2 (ca. AD 540-640) paradoxically supports an admixture of Modern Slavs of Eastern Europe in common with early Avar peoples (an Altaic-speaking population) and other steppe groups with an origin in East Asia… So this admixture would actually support a western origin of the Common Slavs with which East Asian Avars may have admixed, and whose descendants are necessarily sampled at later times.

pca-medieval-avar-longobards
Procrustes transformed PCA of medieval ancient samples against POPRES imputed SNP dataset. AV1 and Av2 samples have been circled in red. Color coding of medieval samples is same as in Figs 1 and 2. Two letter and three codes for POPRES samples: AL=Albania, AT=Austria, BA=Bosnia-Herzegovina, BE=Belgium, BG=Bulgaria, CH=Switzerland, CY=Cyprus, CZ=Czech Republic, DE=Germany, DK=Denmark, ES=Spain, FI=Finland, FR=France, GB=United Kingdom, GR, Greece, HR=Croatia, HU=Hungary, IE=Ireland, IT=Italy, KS=Kosovo, LV=Latvia, MK=Macedonia, NO=Norway, NL=Netherlands, PL=Poland, PT=Portugal, RO=Romania, SM=Serbia and Montenegro, RU=Russia, Sct=Scotland, SE=Sweden, SI=Slovenia, SK=Slovakia, TR=Turkey, UA=Ukraine.

4) Favouring Curta’s Danubian origin (or even an origin near Bohemia) at the moment are thus:

  • The “western” cluster of Early Slavs from Brandýsek, Bohemia (ca. AD 600-900).
  • Two likely Slavic individuals from Usedom, in Mecklenburg-Vorpommern (AD 1200) show hg. R1a-M458 and E1b-M215 (Freder 2010).
  • An early West Slav individual from Hrádek nad Nisou in Northern Bohemia (ca. AD 1330) also shows E1b-M215 (Vanek et al. 2015).
  • One sample from Székkutas-Kápolnadülő (SzK/239) among middle or late Avars (ca. AD 650-710), a supposed Slavonic-speaking polity, of hg. E1b-V13.
  • Two samples from Karosc (K1/13, and K2/6) among Hungarian conquerors (ca. AD 895-950), likely both of hg. E1b-V13, probably connected to the alliance with Moravian elites.
  • Possibly a West Slavic sample from Poland in the High Middle Ages (see below).

A later Hungarian sample (II/53) from the Royal Basilica, where King Béla was interred, of hg. E1b1, supports the importance of this haplogroup among elite conquerors, although its original relation to the other buried individuals is unknown.

NOTE. You can see all ancient samples of haplogroup E to date on this Map of ancient E samples, with care to identify the proper subclades related to south-eastern Europe. About the ancestral origin of the haplogroup in Europe, you may read Potential extra Iberomaurusian-related gene flow into European farmers, by Chad Rohlfsen.

Even assuming that the R1a sample reported from the late Avar period is of a subclade typically associated with Slavs (I know, circular reasoning here), which is not warranted, we would have already 6 E1b1b vs. 1-2 R1a-M458 in populations that can be actually assumed to represent early Slavonic speakers (unlike many earlier cultures potentially associated with them), clearly earlier than other Slavic-speaking populations that will be sampled in eastern Europe. It is more and more likely that Early Slavs are going to strengthen Curta’s view, and this may somehow complicate the link of Proto-Slavic with eastern European BA cultures like Trzciniec or Lusatian.

NOTE. I am still expecting a clear expansion associated with Prague-Korchak, though, including a connection with bottlenecks based on R1a-M458 in the Middle Ages, whether the expansion is eventually shown to be from the west (i.e. Bohemia -> Prague -> Korchak), or from the east (i.e. Kiev -> Korchack -> Prague), and whether or not this cultural community was later replaced by other ‘true’ Slavonic-speaking cultures through acculturation or population movements.

slavic-origins
Common theories on Slavic origins.. After “The Early Slavs. Culture and Society in Early Medieval Europe” by P. M. Barford, Cornell University Press (2001). Image by Hxseek at Wikipedia.

5) Back to Przeworsk and the “north of the Carpathians” homeland (i.e. between the Upper Oder and the Upper Dniester), but compatible with Curta’s view: Even if Common Slavic is eventually evidenced to be driven by small migrations north and south of the Danube during the Roman Iron Age, before turning into a mostly “R1a-rich” migration or acculturation to the north in Bohemia and then east (which is what this early E1b-V13 connection suggests), this does not dismiss the traditional idea that Late Bronze Age – Iron Age central-eastern Europe was the Proto-Slavic homeland, i.e. likely the Pomeranian culture disturbed by the East Germanic migrations first (in Przeworsk), and the migrations of steppe nomads later (around the Danube).

Even without taking into account the connection with Baltic, the relevance of haplogroup E1b-V13 among Early Slavs may well be a sign of an ancestral population from the northern or eastern Carpathian region, supported by the finding of this haplogroup among the westernmost Scythians. The expansion of some modern E1b-CTS1273 lineages may link Slavic ancestrally with the Lusatian culture, which is an eastern (very specific) Urnfield culture group, stemming from central-east Europe.

An important paper in this respect is the upcoming Zenczak et al., where another hg. E1b1 will be added to the list above: such a sample is expected from Poland (from Kowalewko, Maslomecz, Legowo or Niemcza), either from the Roman Iron Age or Early Middle Ages, close to an early population of likely Scandinavian origin (eight I1 samples), apart from other varied haplogroups, with little relevance of R1a. Whether this E-V13 sample is an Iron Age one (justifying the bottleneck under E-V13 to the south) or, maybe more likely, a late one from the Middle Ages (maybe supporting a connection of the Gothic/Slavic E1b bottleneck with southern Chernyakhov or further west along the Danube) is unclear.

The finding of south-eastern European ancestry and lineages in both, Early Slavs and East Germanic tribes* suggests therefore a Slavonic homeland near (or within) the Przeworsk culture, close to the Albanoid one, as proposed based on topohydronymy. This may point to a complex process of acculturation of different eastern European populations which formed alliances, as was common during the Iron Age and later periods, and which cannot be interpreted as a clear picture of their languages’ original homeland and ancestral peoples (in the case of East Germanic tribes, apparently originally expanding from Scandinavia under strong I1 bottlenecks).

* Iberian samples of the Visigothic period in Spain show up to 25% E1b-V13 samples, with a mixture of haplogroups including local and foreign lineages, as well as some more E1b-V13 samples later during the Muslim period. Out of the two E1b samples from Longobards in Amorim et al. (2018), only SZ18 from Szólád (ca. AD 412-604) is within E1b-V13, in a very specific early branch (SNP M35.2), further locating the expansion of hg. E1b-V13 near the Danube. Samples of haplogroup J (maybe J2a) or G2a among Germanic tribes (and possibly in Poland’s Roman Iron Age / Early Middle Ages) are impossible to compare with early Hungarian ones without precise subclades.

east-slavic-expansion
East Slavic expansion in topo-hydronymy. Image from (Udolph 1997, 2016).

I already interpreted the earlier Slavic samples we had as a sign of a Carpathian origin and very recent bottlenecks under R1a lineages among Modern Slavs:

The finding of haplogroup E1b1b-M215 in two independent early West Slavic individuals further supports that the current distribution of R1a1a1b1a-Z282 lineages in Slavic populations is the product of recent bottlenecks. The lack of a precise subclade within the E1b1b-M215 tree precludes a proper interpretation of a potential origin, but they are probably under European E1b1b1a1b1-L618 subclade E1b1b1a1b1a-V13 (formed ca. 6100 BC, TMRCA ca. 2800 BC), possibly under the mutation CTS1273 (formed ca. 2600 BC, TMRCA ca. 2000 BC), in common with other ancient populations around the Carpathians (see below §viii.11. Thracians and Albanians). This gross geographic origin would support the studies of the Common Slavic homeland based on toponymy (Figure 66), which place it roughly between the Upper Oder and the Upper Dniester, north of the Carpathians (Udolph 1997, 2016).

EDIT (8 APR 2019): Another interesting data is the haplogroup distribution among Modern Slavs and neighbouring peoples (see Wikipedia). For example, the bottleneck seen in Modern Albanians, under Z5017 subclade, also points to an origin of the expansion of E1b-V13 subclades among multiethnic groups around the Lower Danube coinciding with the Roman Iron Age, given the estimates for the arrival of Proto-Albanian close to the Latin and Greek linguistic frontier.

Remarkable is also its distribution among Rusyns, East Slavs from the Carpathians not associated with the Kievan Rus’, isolated thus quite soon from East Slavic expansions to the east. They were reported to show ca. 35% hg. E1b-V13 globally in FTDNA, with a frequency similar to or higher than R1a, in common with South Slavic peoples*, reflecting thus a situation similar to the source of East Slavs before further R1a-based bottlenecks (and/or acculturation events) to the east:

* Although probably due in part to founder effects and biased familial sampling, this should be assumed to be common to all FTDNA sampling, anyway.

rusyns-map
Map showing the full geographic extent of the Rusyn people in Central Europe, prior to World War I (Carpatho Rusyn Society).

Repeating what should be already evident: in complex organizations and/or demographically dense populations (more common since the Iron Age), we can’t expect language change to happen in the same way as during the known Neolithic or Chalcolithic population replacements, be it in Finland, Hungary, Iberia, or Poland. For example, no matter whether Romans (2nd c. BC) brought some R1b-U152 and other Mediterranean lineages to Iberia; Germanic peoples entering Hispania (AD 5th c.) were of typically Germanic lineages or not; Muslims who spoke mainly Berber (AD 8th c.) and were mainly of hg. E1b-M81 (and J?) brought North African ancestry; etc. the language or languages of Iberia changed (or not) with the political landscape: neither with radical population replacements (or full population continuity), nor with the dominant haplogroups’ ancestral language.

Y-chromosome haplogroups are, in those cases, useful for ascertaining a more recent origin of the population. Like the finding of certain R1a-Z645, I2a-L621 & N-L392 lineages among Hungarians shows a recent origin near the Trans-Urals forest-steppes, or the finding of I1, R1b-U106 & E1b-V13 among Visigoths shows a recent origin near the Danube, the finding of Early Slavs (ca. AD 6th-7th c.) originally with small elite groups of hg. R1a-M458 & E1b-V13 from the Lower/Middle Danube – if strengthened with more Early Slavic samples, with Slavonic partially expanding as a lingua franca in some regions – is not necessarily representative of the Proto-Slavic community, just as it is clearly not representative of the later expansion of Slavic dialects. It would be representative, though, of the same processes of acculturation repeated all over Eurasia at least since the Iron Age, where no genetic continuity can be found with ancestral languages.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

Scytho-Siberians of Aldy-Bel and Sagly, of haplogroup R1a-Z93, Q1b-L54, and N

iron-age-sakas-aldy-bel-scythians

Recently, a paper described Eastern Scythian groups as “Uralic-Altaic” just because of the appearance of haplogroup N in two Pazyryk samples.

This simplistic identification is contested by the varied haplogroups found in early Altaic groups, by the early link of Cimmerians with the expansion of hg. N and Q, by the link of N1c-L392 in north-eastern Europe with Palaeo-Laplandic, and now (paradoxically) by the clear link between early Mongolic expansion and N1c-L392 subclades.

A new paper (behind paywall) offers insight into the prevalent presence of R1a-Z93 among eastern Scytho-Siberian groups (most likely including Samoyedic speakers in the forest-steppes), and a new hint to the westward expansion of haplogroups Q and N (probably coupled with the so-called “Siberian ancestry”) from the east with different groups of Iron Age steppe nomads:

Genetic kinship and admixture in Iron Age Scytho-Siberians, by Mary et al. Human Genetics (2019).

Interesting excerpts (emphasis mine):

From an archeological and historical point of view, the term “Scythians” refers to Iron Age nomadic or seminomadic populations characterized by the presence of three types of artifacts in male burials: typical weapons, specific horse harnesses and items decorated in the so-called “Animal Style”. This complex of goods has been termed the “Scythian triad” and was considered to be characteristic of nomadic groups belonging to the “Scythian World” (Yablonsky 2001). This “Scythian World” includes both the Classic (or European) Scythians from the North Pontic region (7th–3th century BC) and the Southern Siberian (or Asian) populations of the Scythian period (also called Scytho-Siberians). These include, among others, the Sakas from Kazakhstan, the Tagar population from the Minusinsk Basin (Republic of Khakassia), the Aldy-Bel population from Tuva (Russian Federation) and the Pazyryk and Sagly cultures from the Altai Mountains.

mtdna-scytho-siberians
Proportions of Scythian mtDNA haplogroups. Western (blue) and eastern (pink) Eurasian lineages are equally distributed in the Arzhan Scytho-Siberian sample. The U5a2a1 haplogroup shared between the two Scythian groups studied is in bold

In this work, we first aim to address the question of the familial and social organization of Scytho-Siberian groups by studying the genetic relationship of 29 individuals from the Aldy-Bel and Sagly cultures using autosomal STRs. (…) were obtained from 5 archeological sites located in the valley of the Eerbek river in Tuva Republic, Russia (Fig. 1). All the mounds of this archeological site were excavated but DNA samples were not collected from all of them. 14C dates mainly fall within the Hallstatt radiocarbon calibration plateau (ca. 800–400 cal BC) where the chronological resolution is poor. Only one date falls on an earlier segment of calibration curve: Le 9817–2650 ± 25 BP, i.e. 843–792 cal BC with a probability of 94.3% (using the OxCal v4.3.2 program). This sample (Bai-Dag 8, Kurgan 1, grave 10) is not from one of the graves studied but was used to date the kurgan as a whole.

Y-chromosome haplogroups were first assigned using the ISOGG 2018 nomenclature. In order to improve the precision of haplogroup definition, we also analyzed a set of Y-chromosome SNP (Supplementary Table 2). Nine samples belonged to the R1a-M513 haplogroup (defined by marker M513) and two of these nine samples were characterized as belonging to the R1a1a1b2-Z93 haplogroup or one of its subclades. Six samples belonged to the Q1b1a-L54 haplogroup and five of these six samples belonged to the Q1b1a3-L330 subclade. One sample belonged to the N-M231 haplogroup.

haplogroups-scythian-siberians

The distribution of these haplogroups in the population must be confronted with the prevalence of kinship among the samples. Although five individuals belonged to haplogroup Q1b1a3-L330, three of them (ARZ-T18, ARZ-T19 and ARZ-T20) were paternally related (Fig. 2). It must, therefore, be considered that haplogroup Q1b1a3-L330 is present in three independent instances (given that the remaining two instances exhibit no close familial relationship with other samples or one another). All five were buried on the Eki-Ottug 1 archaeological site (although in two different kurgans).

In the same way, although two groups, of two and three individuals, shared haplotypes belonging to the R1a-M513 haplogroup, these groups likely include a father/son pair (ARZ-T2 and ARZ-T12). Therefore, among nine R1a-M513 men, we found six independent haplotypes, one being present in two independent instances. All R1a-M513 haplotypes, however, including those attributed to the R1a1a1b2-Z93 subclade, only differed by one-step mutations, across 5 loci at most. All R1a-M513 individuals were buried on the same site, Eki-Ottug 2, in a single Kurgan.

y-haplogroups-r1a-n-q1b

Haplogroup R1a-M173 was previously reported for 6 Scytho-Siberian individuals from the Tagar culture (Keyser et al. 2009) and one Altaian Scytho-Siberian from the Sebÿstei site (Ricaut et al. 2004a), whereas haplogroup R1a1a1b2-Z93 (or R1a1a1b-S224) was described for one Scythian from Samara (Mathieson et al. 2015) and two Scytho-Siberians from Berel and the Tuva Republic (Unterländer et al. 2017). On the contrary, North Pontic Scythians were found to belong to the R1b1a1a2 haplogroup (Krzewińska et al. 2018), showing a distinction between the two groups of Scythians. (…) The absence of R1b lineages in the Scytho-Siberian individuals tested so far and their presence in the North Pontic Scythians suggest that these 2 groups had a completely different paternal lineage makeup with nearly no gene flow from male carriers between them.

The seven other male individuals studied in this work were found to carry Eastern Eurasian Y haplogroups Q1b1a and one of its subclades (n = 6) and N (n = 1). Haplogroup Q1b1a-L54 was previously described in four males from the Bronze Age in the Altai Mountains (Hollard et al. 2014, 2018) and was clearly associated with Siberian populations (Regueiro et al. 2013).

The N-M231 haplogroup emerged from haplogroup K in Southern Asia around 21,000 years BCE, maybe in Southern China (Shi et al. 2013; Ilumäe et al. 2016). Previous studies attested to its presence in samples from Neolithic and Bronze Age in China (Li et al. 2011; Cui et al. 2013). Waves of northwestern expansion of this haplogroup are described as beginning during the Paleolithic period (Derenko et al. 2006; Shi et al. 2013) but traces of this expansion in archeological samples were reported only in two Scytho-Siberian males from the Altai (Pilipenko et al. 2015).

The sample of haplogroup N comes from the Aldy-Bel culture (ARZ-T15), from the Eerbek site, but has no radiocarbon date. All Q1b-L330 samples come from the Sagly culture, and three are paternally related. The other Q1b-L54 sample is from other tombs in one kurgan at Aldy Bel.

It seems that – exactly as expected – different waves of steppe nomads brought different lineages at a time (the Iron Age) when many regions incorporated different eastern lineages without necessarily changing language. Just like the expansion of N among Ugrians and Samoyeds, and N1c among Finno-Permic peoples, and like many other lineages expanding with federation-like groups in eastern, central, and western Europe

Related

R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

How the genocidal Yamnaya men loved to switch cultures

yamnaya-expansion-bell-beaker

After some really interesting fantasy full of arrows, it seems Kristiansen & friends are coming back to their most original idea from 2015, now in New Scientist’s recent clickbait Story of most murderous people of all time revealed in ancient DNA (2019):

Teams led by David Reich at Harvard Medical School and Eske Willerslev at the University of Copenhagen in Denmark announced, independently, that occupants of Corded Ware graves in Germany could trace about three-quarters of their genetic ancestry to the Yamnaya. It seemed that Corded Ware people weren’t simply copying the Yamnaya; to a large degree they actually were Yamnayan in origin.

If you think you have seen that movie, it’s because you have. They are at it again, Corded Ware from Yamna, and more “steppe ancestry” = “more Indo-European. It seems we haven’t learnt anything about “Steppe ancestry” since 2015. But there’s more:

Genocidal peoples who “switch cultures”

Burial practices shifted dramatically, a warrior class appeared, and there seems to have been a sharp upsurge in lethal violence. “I’ve become increasingly convinced there must have been a kind of genocide,” says Kristian Kristiansen at the University of Gothenburg, Sweden.

The collaboration revealed that the origin and initial spread of Bell Beaker culture had little to do – at least genetically – with the expansion of the Yamnaya or Corded Ware people into central Europe. “It started in It is in that region that the earliest Bell Beaker objects – including arrowheads, copper daggers and distinctive Bell-shaped pots – have been found, in archaeological sites carbon-dated to 4700 years ago. Then, Bell Beaker culture began to spread east, although the people more or less stayed put. By about 4600 years ago, it reached the most westerly Corded Ware people around where the Netherlands now lies. For reasons still unclear, the Corded Ware people fully embraced it. “They simply take on part of the Bell Beaker package and become Beaker people,” says Kristiansen.

The fact that the genetic analysis showed the Britons then all-but disappeared within a couple of generations might be significant. It suggests the capacity for violence that emerged when the Yamnaya lived on the Eurasia steppe remained even as these people moved into Europe, switched identity from Yamnaya to Corded Ware, and then switched again from Corded Ware to Bell Beaker.

Notice what Kristiansen did there? Yamnaya men “switched identities” into Corded Ware, then “switched identities” into Bell Beakers…So, the most aggresive peoples who have ever existed, exterminating all other Europeans, were actually not so violent when embracing wholly different cultures whose main connection is that they built kurgans (yes, Gimbutas lives on).

NOTE. By the way, just so we are clear, only Indo-Europeans are “genocidal”. Not like Neolithic farmers, or Palaeolithic or Mesolithic populations, or more recent Bronze Age or Iron Age peoples, who also replaced Y-DNA from many regions…

yamnaya-corded-ware-bell-beaker

In fact, there is much stronger evidence that these Yamnaya Beakers were ruthless. By about 4500 years ago, they had pushed westwards into the Iberian Peninsula, where the Bell Beaker culture originated a few centuries earlier. Within a few generations, about 40 per cent of the DNA of people in the region could be traced back to the incoming Yamnaya Beakers, according to research by a large team including Reich that was published this month. More strikingly, the ancient DNA analysis reveals that essentially all the men have Y chromosomes characteristic of the Yamnaya, suggesting only Yamnaya men had children.

“The collision of these two populations was not a friendly one, not an equal one, but one where the males from outside were displacing local males and did so almost completely,” Reich told New Scientist Live in September. This supports Kristiansen’s view of the Yamnaya and their descendants as an almost unimaginably violent people. Indeed, he is about to publish a paper in which he argues that they were responsible for the genocide of Neolithic Europe’s men. “It’s the only way to explain that no male Neolithic lines survived,” he says.

So these unimaginably violent Yamnaya men had children exclusively with their Y chromosomes…but not Dutch Single Grave peoples. These great great steppe-like northerners switched culture, cephalic index…and Y-chromosome from R1a (and others) to R1b-L151 to expand Italo-Celtic From The West™.

It’s hilarious how (exactly like their latest funny episode of PIE from south of the Caucasus) this new visionary idea copied by Copenhagen from amateur friends (or was it the other way around?) had been already rejected before this article came out, in Olalde et al. (2019), and that “Corded Ware=Indo-European” fans have become a parody of themselves.

What’s not to love about 2019 with all this back-and-forth hopping between old and new pet theories?

NOTE. I would complain (again) that the obsessive idea of the Danes is that Denmark CWC is (surprise!) the Pre-Germanic community, so it has nothing to do with “steppe ancestry = Indo-European” (or even with “Corded Ware = Indo-European”, for that matter), but then again you have Koch still arguing for Celtic from the West, Kortlandt still arguing for Balto-Slavic from the east, and – no doubt worst of all – “R1a=IE / R1b=Vasconic / N1c=Uralic” ethnonationalists arguing for whatever is necessary right now, in spite of genetic research.

So prepare for the next episode in the nativist and haplogroup fetishist comedy, now with western and eastern Europeans hand in hand: Samara -> Khvalynsk -> Yamnaya -> Bell Beaker spoke Vasconic-Tyrsenian, because R1b. Wait for it…

Vanguard Yamnaya groups

On a serious note, interesting comment by Heyd in the article:

A striking example of this distinction is a discovery made near the town of Valencina de la Concepción in southern Spain. Archaeologists working there found a Yamnaya-like kurgan, below which was the body of a man buried with a dagger and Yamnaya-like sandals, and decorated with red pigment just as Yamnaya dead were. But the burial is 4875 years old and genetic information suggests Yamnaya-related people didn’t reach that far west until perhaps 4500 years ago. “Genetically, I’m pretty sure this burial has nothing to do with the Yamnaya or the Corded Ware,” says Heyd. “But culturally – identity-wise – there is an aspect that can be clearly linked with them.” It would appear that the ideology, lifestyle and death rituals of the Yamnaya could sometimes run far ahead of the migrants.

NOTE. I have been trying to find which kurgan is this, reviewing this text on the archaeological site, but didn’t find anything beyond occasional ochre and votive sandals, which are usual. Does some reader know which one is it?

yamna-expansion-bell-beakers
Yamna expansion and succeeding East Bell Beaker expansion, without color on Bell Beaker territories. Notice vanguard Yamna groups in blue where East Bell Beakers later emerge. See original image with Bell Beaker territories.

Notice how, if you add all those vanguard Yamna findings of Central and Western Europe, including this one from southern Spain, you begin to get a good idea of the territories occupied by East Bell Beakers expanding later. More or less like vanguard Abashevo and Sintashta finds in the Zeravshan valley heralded the steppe-related Srubna-Andronovo expansions in Turan…

It doesn’t seem like Proto-Beaker and Yamna just “crossed paths” at some precise time around the Lower Danube, and Yamna men “switched cultures”. It seems that many Yamna vanguard groups, probably still in long-distance contact with Yamna settlers from the Carpathian Basin, were already settled in different European regions in the first half of the 3rd millennium BC, before the explosive expansion of East Bell Beakers ca. 2500 BC. As Heyd says, there are potentially many Yamna settlements along the Middle and Lower Danube and tributaries not yet found, connecting the Carpathian Basin to Western and Northern Europe.

These vanguard groups would have more easily transformed their weakened eastern Yamna connections with the fashionable Proto-Beaker package expanding from the west (and surrounding all of these loosely connected settlements), just like the Yamna materials from Seville probably represent a close cultural contact of Chalcolithic Iberia with a Yamna settlement (the closest known site with Yamna traits is near Alsace, where high Yamna ancestry is probably going to be found in a Bell Beaker R1b-L151 individual).

This does not mean that there wasn’t a secondary full-scale migration from the Carpathian Basin and nearby settlements, just like Corded Ware shows a secondary (A-horizon?) migration to the east with R1a-Z645. It just means that there was a complex picture of contacts between Yamna and European Chalcolithic groups before the expansion of Bell Beakers. Doesn’t seem genocidal enough for a popular movie, tho.

Related

Yekaterinovsky Cape, a link between the Samara culture and early Khvalynsk

ekaterinovsky-cape

We already had conflicting information about the elite individual from the Yekaterinovsky Cape and the materials of his grave, which seemed quite old:

For the burial of 45 in the laboratory of the University of Pennsylvania, a 14C date was obtained: PSUAMS-2880 (Sample ID 16068)> 30 kDa gelatin Russia. 12, Ekaterinovka Grave 45 14C age (BP) 6325 ± 25 δ 13C (‰) –23.6 δ15 N (‰) 14.5. The results of dating suggest chronological proximity with typologically close materials from Yasinovatsky and Nikolsky burial grounds (Telegini et al. 2001: 126). The date obtained also precedes the existing dates for the Khvalynsk culture (Morgunova 2009: 14–15), which, given the dominance of Mariupol traits of the burial rite and inventory, confirms its validity. However, the date obtained for human bones does not exclude the possibility of a “reservoir effect” when the age can increase three or more centuries (Shishlin et al. 2006: 135–140).

Now the same date is being confirmed by the latest study published on the site, by Korolev, Kochkina, and Stachenkov (2019) and it seems it is really going to be old. Abstract (in part the official one, in part newly translated for clarity):

For the first time, pottery of the Early Eneolithic burial ground Ekaterinovsky Cape is published. Ceramics were predominantly located on the sacrificial sites in the form of compact clusters of fragments. As a rule, such clusters were located above the burials, sometimes over the burials, some were sprinkled with ocher. The authors have identified more than 70 vessels, some of which have been partially reconstructed. Ceramic was made with inclusion of the crushed shell into molding mass. The rims of vessels had the thickened «collar»; the bottoms had a rounded shape. The ornament was located on the rims and the upper part of the potteries. Fully decorated vessels are rare. The vessels are ornamented with prints of comb and rope stamps, with small pits. A particularity of ceramics ornamentation is presented by the imprints of soft stamps (leather?) or traces of leather form for the making of vessels. The ornamentation, made up of «walking comb» and incised lines, was used rarely as well as the belts of pits made decoration under «collar» of a rim. Some features of the ceramics decoration under study relate it with ceramics of the Khvalynsk culture. The ceramics of Ekaterinovsky Cape burial ground is attributed by the authors to the Samara culture. The ceramic complex under study has proximity to the ceramics from Syezzhe burial ground and the ceramics of the second phase of Samara culture. The chronological position is determined by the authors as a later period than the ceramics from the Syezzhe burial ground, and earlier than the chronological position of ceramics of the Ivanovka stage of the Samara culture and the Khvalynsk culture.

ekaterinovsky-cape-pottery
Ceramics from Ekaterinovsky Cape burial ground. 1–2, 4–5, 7–11 – ceramics from aggregations; 3, 6 – ceramics from the cultural layer.

More specifically:

Based on ceramic fragments from a large vessel from a cluster of sq.m. 14, the date received was: SPb-2251–5673 ± 120 BP. The second date was obtained in fragments from the aggregation [see picture above] from the cluster of sq.m. 45–46: SPb-2252–6372 ± 100 BP. The difference in dating indicates that the process of determining the chronology of the burial ground is far from complete, although we note that the earlier date almost coincided with the date obtained from the human bone from individual 45 (Korolev, Kochkina, Stashenkov, 2018, p. 300).

Therefore, the ceramics of the burial ground Ekaterinovsky Cape possess an originality that determines the chronological position of the burial ground between the earliest materials of the burial type in Syezzhe and the Khvalynsk culture. Techno-typological features of dishes make it possible to attribute it to the Samara culture at the stage preceding the appearance of Ivanovska-Khvalynsk ceramics.

It seems that this site showed cultural influences from the upstream region near the Kama-Vyatka interfluve, too, according to Korolev, Kochkina, Stashenkov, and Khokhlov (2018):

In 2017, excavation of burial ground Ekaterinovsky Cape were continued, located in the area of the confl uence of the Bezenchuk River in the Volga River. During the new excavations, 14 burials were studied. The skeleton of the buried were in a position elongated on the back, less often – crooked on the back with knees bent at the knees. In one burial (No. 90), a special position of the skeleton was recorded. In the burial number 90 in the anatomical order, parts of the male skeleton. This gave grounds for the reconstruction of his original position in a semi-sitting position with the support of elbows on the bottom of the pit. Noteworthy inventory: on the pelvic bones on the left lay a bone spoon, near the right humerus, the pommel of a cruciform club was found. A conclusion is made about the high social status of the buried. The results of the analysis of the burial allow us to outline the closest circle of analogies in the materials of Khvalynsky I and Murzikhinsky burial grounds.

Important sites mentioned in both papers and in this text:

To sum up, it seems that the relative dates we have used until now have to be corrected: older Khvalynsk I Khvalynsk II individuals, supposedly dated ca. 5200-4000 BC (most likely after 4700 BC), and younger Yekaterinovsky individuals, supposedly of the fourth quarter of the 5th millennium (ca. 4250-4000 BC), are possibly to be considered, in fact, roughly reversed, if not chronologically, at least culturally speaking.

Interestingly, this gives a new perspective to the presence of a rare fish- or reptile-headed pommel-scepter, which would be natural in a variable period of expansion of the horse and horse-related symbolism, a cultural trait rooted in the Samara culture attested in Syezzhe before the unification of the symbol of power under the ubiquitous Khvalynsk-Suvorovo horse-headed scepters and related materials.

ekaterinovsky-cape-pommel-mace
Ekaterinovsky Cape Burial Ground. Inventory of the burial no 90: 1, 2 – stone pommel of the mace; 3, 4 – bone article.

The Khvalynsk chieftain

If the reported lineages from Yekaterinovsky Cape are within the R1b-P297 tree, but without further clades, as Yleaf comparisons may suggest, there is not much change to what we have, and R1b-M269 could actually represent a part of the local population, but also incomers from the south (e.g. the north Caspian steppe hunter-gatherers like Kairshak), the east (with hunter-gatherer pottery), or the west near the Don River (in contact with Mariupol-related cultures, as the authors inferred initially from material culture).

Just like R1a-M417 became incorporated into the Sredni Stog groups after the Novodanilovka-Suvorovo expansion, probably as incoming hunter-gatherer pottery groups from the north admixing with peoples of “Steppe ancestry”, R1b-M269 lineages might have expanded explosively only during the Repin expansion, and maybe (like R1b-L51 later) they formed just a tiny part of the clans that dominated the steppe during the Khvalynsk-Novodanilovka community.

On the other hand, the potential finding of various R1b-M269/L23 samples in Yekaterinovsky Cape (including an elite individual) would suggest now, as it was supported in the original report by Mathieson et al. (2015), that these ancient R1b lineages found in the Volga – Ural region are in fact most likely all R1b-M269 without enough coverage to obtain proper SNP calls, which would simplify the picture of Neolithic expansions (yet again). From the supplementary materials:

10122 / SVP35 (grave 12). Male (confirmed genetically), age 20-30, positioned on his back with raised knees, with 293 copper artifacts, mostly beads, amounting to 80% of the copper objects in the combined cemeteries of Khvalynsk I and II. Probably a high-status individual, his Y-chromosome haplotype, R1b1, also characterized the high-status individuals buried under kurgans in later Yamnaya graves in this region, so he could be regarded as a founder of an elite group of patrilineally related families. His MtDNA haplotype H2a1 is unique in the Samara series.

khvalynsk-cemetery
Khvalynsk cemetery and grave gifts. Grave 90 contained copper beads and rings, a harpoon, flint blades, and a bird-bone tube. Both graves (90 and 91) were partly covered by Sacrificial Deposit 4 with the bones from a horse, a sheep, and a cow. Center: grave goods from the Khvalynsk cemetery-copper rings and bracelets, polished stone mace heads, polished stone bracelet, Cardium shell ornaments, boars tusk chest ornaments, flint blades, and bifiacial projectile points. Bottom: shell-tempered pottery from the Khvalynsk cemetery. After Agapov, Vasiliev, and Pestrikova 1990; and Ryndina 1998, Figure 31. Modified from Anthony (2007).

This remarkable Khvalynsk chieftain, whose rich assemblage may correspond to the period of domination of the culture all over the Pontic-Caspian steppes, has been consistently reported as of hg. R1b-L754 in all publications, including Wang et al. (2018/2019) tentative SNP calls in the supplementary materials (obtained with Yleaf, as the infamous Narasimhan et al. 2018 samples), but has been variously reported by amateurs as within the R1b-M73, R1b-V88, or (lately) R1b-V1636 trees, which makes it unlikely that quality of the sample is allowing for a proper SNP call.

The fact that Mathieson et al. (2015) considered it a member of the R1b-M269 clans appearing later in Yamna seems on point right now, especially if samples from Yekaterinovka are all within this tree. The relevance of R1b-L23 in the expansion of Repin and Yamna is reminiscent of the influence of successful clans among Yamna offshoots, such as Bell Beakers, and among Bell Beaker offshoots during the Bronze Age all over Europe.

Taking these younger expansions as example, it seems quite likely based on cultural links that (at least part of) the main clans of Khvalynsk were of R1b-M269 lineage, stemming from a R1b-dominated Samara culture, in line with the known succeeding expansions and the expected strictly patriarcal and patrilineal society of Proto-Indo-Europeans, which would have exacerbated the usual reduction in Y-chromosome haplogroup variability that happens during population expansions, and the aversion towards foreign groups while the culture lasted.

pontic-steppe-neolithic
Cultures of the Pontic-Caspian steppes and forest-steppes and surrounding areas during the Neolithic.

The finding of R1b-L23 in Yekaterinovka, associated with the Samara culture, before or during the Khvalynsk expansion, and close to the Khvalynsk site, would make this Khvalynsk chieftain most likely a member of the M269 tree (paradoxically, the only R1b-L754 branch amateurs have not yet reported for it). Similarly, the sample of a “Samara hunter-gatherer” of Lebyazhinka, of hg. R1b-P297, could also be under this tree, just like most R1b-M269 from Yamna are downstream from R1b-L23, and most reported R1b-M269 or R1b-L23 from Bell Beakers are under R1b-L151.

On the other hand, we know of the shortcomings of attributing a haplogroup expansion to the best known rulers, such as the famous lineages previously wrongly attributed to Niall of the Nine Hostages or Genghis Khan. The known presence of R1b-V1636 up to modern Greeks would be in line with an ancient steppe expansion that we know will show up during the Neolithic, although it could also be a sign of a more recent migration from the Caucasus. The presence of a sister clade of R1b-L23, R1b-PF7562, among modern Balkan populations, may also be attributed to a pre-Yamna steppe expansion.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

On SNP calls

I reckon that even informal reports on SNP calls, like any other analyses, should be offered in full: not only with a personal or automatic estimation of the result, but with a detailed explanation of the good, dubious, and bad calls, alternatives to that SNP estimation, and a motivated reasoning of why one branch should be preferred over others. Downloading a sample and giving an instruction using a free software tool is never enough, as it became crystal clear recently for the hilariously biased and flawed qpAdm reports on Dutch Bell Beakers as the ‘missing link’ between Corded Ware and Bell Beakers…

Another example I can recall is the report of a R1a-Z93 subclade in the R1a-M417 sample ca. 4000 BC from Alexandria, which seems rather unlikely, seeing how this subclade must have split and expanded explosively with R1a-Z645 to the east with eastern Corded Ware groups, i.e. 1,000 years later, just like Z282 lineages expanded mainly to the north-east. But then again, as with the Khvalynsk chieftain, I have only seen indirect reports of that supposed SNP (including Y26+!), so we should just stick with its officially reported R1a-M417 lineage. This upstream haplogroup was, in fact, repeated with Yleaf’s tentative estimates in Wang et al. (2019) supplementary materials…

The combination of inexperienced, biased, or simply careless design, analyses, and reports, including SNP calls and qpAdm analyses (whether in forums or publications), however well-intentioned (or not) they might be, are hindering a proper analysis of data, adding to the difficulties we already have due to the scarcity of samples, their limited coverage, and the lack of proper context.

Some people like to repeat ad nauseam that archaeology and/or linguistics are ‘not science’ whenever they don’t fit their beliefs and myths based on haplogroup and/or ancestry. But it’s becoming harder and harder to rely on certain genetic data, too, and on their infinite changing interpretations, much more than it is to rely on linguistic and archaeological research, including data, assessments, and discussions that are open for anyone to review…if one is truly interested in them.