European hydrotoponymy (II): Basques and Iberians after Lusitanians and “Ligurians”

bronze-age-languages-western-europe

The first layer in hydrotoponymy of Iberia is clearly Indo-European, in territories that were occupied by Indo-Europeans when Romans arrived, but also in most of those occupied by non-Indo-Europeans.

Among Indo-European peoples, the traditional paradigm – carried around in Wikipedia-like texts until our days – has been to classify their languages as “Pre-Celtic” despite the non-Celtic phonetics (especially the initial -p-), because the same toponyms appear in areas occupied by Celts (e.g. Parisii, Pictones, Pelendones, Palantia); or – even worse – just as “Celtic”, because of the famous -briga and related components. This was evidently not tenable at the end of the 20th century, and it is simply anachronistic today.

NOTE. Since Indo-Europeans and non-Indo-Europeans of Western Europe show strong Y-chromosome bottlenecks under R1b-P312 lineages, maps below show the evolution of cultural groups side by side with ADMIXTURE of ancient DNA samples instead. The map series on prehistorical migrations contains also Y-DNA and mtDNA maps.

Most excerpts below (emphasis mine) are translated from Spanish (see the original text here):

iberia-bell-beakers-steppe
Top Left: Arrival of Indo-European-speaking East Bell Beakers and likely disruption of the Basque-Iberian community (ca 2500 BC on). Top Right: corresponding (unsupervised) ADMIXTURE map of ancient DNA samples. Arrival of Central European ancestry (“Steppe ancestry”, roughly represented by the blue color), with other components still prevalent, roughly including Anatolia Neolithic (brown), WHG (red), and sporadically Northern African (violet). Notice the high proportion of Central European ancestry in central and north-western Iberia. See full maps including Y-DNA and mtDNA. Bottom: PCA of Bell Beaker and contemporaneous samples.

Palaeo-Indo-Europeans

While the non-Celtic Indo-European nature of Lusitanian is certain, the nature of the “Pre-Celtic” language spoken by peoples such as Cantabri, Astures, Pellendones, Carpetani and Vettones is still being discussed, due to the scarcity of material to work with.

Galaico-Lusitanian

From Hacia una definición del lusitano, by Vallejo (2013):

It is certain that the delimitation of the geographical area set by Tovar is still valid, basically determined by the known direct documents, that is, the traditionally accepted inscriptions (the classic ones of Lamas de Moledo, Arroyo de la Luz and Cabeço das Fráguas), in addition to the new ones from Arroyo and the recent one from Arronches, see Fig. 1), to which some others could be added: the new bilingual inscription from Viseu necessarily compels us to consider it as indigenous, because it contains terms that belong to the core of the language and not only onomastics (I refer to the nexus igo and the nicknames deibabor and deibobor). By virtue of this new incorporation, we can also consider other texts as indigenous, although they do not include a common lexicon (see Fig. 1, inscriptions 7 to 22), in the expectation that many Lusitanian scribes were consciously mixing two linguistic registers (code switching), one to refer to the deities (for which they frequently used indigenous inflection) and another for anthroponyms (always with Latin inflection).

iberia-early-bronze-age
Left: Early Bronze Age cultures in Iberia (in red, likely Indo-European groups; in green, likely non-Indo-European groups). Right: Unsupervised ADMIXTURE of ancient DNA samples. See full maps including Y-DNA and mtDNA.

Firstly, it is striking that this geographical profile drawn by the texts correspond almost exactly to the distribution of large series of anthroponyms and theonyms.* Among the abundant names of people we can highlight those with a large number of repetitions whose appearance is circumscribed to our region of study (see Fig. 2). Some of them are truly frequent and lack parallels on the outside, such as the stem Tanc / Tang- (of Tanginus) with no less than 130 attestations, or Tonc- / Tong- (of Tongius or Tongetamus) with 70. Others show also sufficiently representative figures as Camalus and Maelo (with 46 repetitions each), Celtius (with 29), Caturo or Sunua (with 23), Camira (with 22), Doquirus (with 20), Louesius (with 18), Al(l)ucquius (with 17) or Malge(i)nus (with 16). According to these quantities, it appears that these are not casual occurrences of names, taking into account that chance tends to be reduced to a minimum in the study of the Iberian Peninsula, since we can easily handle the entire peninsular corpus. In turn, Reue, Bandue, Nauiae and Crougiae are the theonyms that best represent the Lusitanian-Galician area, coinciding fundamentally (Figure 3) with the picture that anthroponymy and texts had drawn, although with less examples.

lusitanian-inscriptions-toponymy-anthroponymy-teonymy
Top left: Lusitanian (long and short) inscriptions; top right: Map of the distribution of statue-menhirs and south-western stelae, by Rodríguez-Corral (2014) [(1) stelae in Beira Alta and Tras-os-Montes (Portugal), and Orense (Galicia, Spain); (2) both in the same territory: northwestern statue-menhirs and southwestern stelae; (3) hybridization of both into the same material form (stela/stela-menhir from Pedra Alta)]; bottom left: Lusitanian teonymy; bottom right: Lusitanian anthroponymy.

* The other subdivision of the onomastics, toponymy, presents difficulty in the elaboration of series, by the few repetitions of segments, once the universal element -briga has been eliminated.

It is not only these groups of names and roots that help us define a large northwestern area, but, as I have had occasion to mention in other places, some onomastic data that share a similar distribution can also be added: the desinence -oi (with an assimilation in -oe / -ui) of theonymic dative singular, the ending -bo of dative plural, the presence of the noun-forming suffix -aiko-, in addition to other phonetic features such as the passage of e> ei in anthroponymy, the reduction ug> uo the step of w> b.

iberia-north-west-dna
Genetic isolation in modern north-western Iberia (northern Portugal / southern Galicia) is greater than in other Iberian regions, forming different ancestral clusters splitting before others (including Basques). Image from Bycroft et al. (2018). See explanatory video by Carracedo.

Astur-Cantabrian

From The concept of Onomastic Landscape: the case of the Astures, by Vallejo (2013):

(…) First of all, it seems that there is an independent onomastic area, which can be defined by a series of names and suffixes that are repeated there exclusively or predominantly. This area does not seem to correspond with what we know of the Lusitanian-Galician onomastics nor of the more coastal Asturian; it also differs from the Celtiberian area, with which it does not have features in common. In this way, and always in the conjectural terrain, we could find ourselves before an Indo-European non-Celtic language different from the Lusitanian language.

A peculiarity that will have to be investigated is the presence of an excessively wide border corridor, where the names of the southern Astures (Augustales) do not predominate, but neither those of the northern Astures (Transmontanos). Similarly, we will have to see the scope of the hypothesis that there might have been a language perhaps differentiated from that spoken in the Lusitanian, Galician or Celtiberian zones; the lower documentary richness of the Asturian zone of Transmontana makes it more difficult to guarantee that it is not the same linguistic area as the one we isolate among Asturian cities.

In any case, de Hoz, even taking into account the difficulty of an affirmation of this type, pointed out ambiguously that we could find ourselves in front of different languages. On the other hand, the absence of texts directly transmitted by this people leaves us without a definitive confirmation the argument that it is a linguistically differentiated region, but it does not invalidate it at all. These drawbacks require the suspension of the exact characterization of our area, awaiting advances in the field of epigraphy and methodology.

astur-cantabrian-toponymy

Non-Indo-Europeans

The following are mainly excerpts from Villar (2007, 2014):

villar-vascos
Lenguas, genes y culturas en la Prehistoria de Europa y Asia suroccidental (2007). Buy the ebook online (or the printed version, if available).

Basques

Anthroponymy

The information provided by place-names and hydronyms on the one hand and anthroponyms on the other is of undoubted historical value in both cases, but of different specific significance. Anthroponyms reflect the present situation at the moment when living people were using them. It is an aspect very sensitive to social changes of all kinds, reaching its highest level of instability when there is language change.

(…) the Pre-Roman anthroponymic inventory of the Basque Country and Navarre indicates that prior to the arrival of Romans the language spoken was Indo-European (reflected in the names used) in the territories of Caristii, Varduli and Autrigones, while in Vasconic territory (especially in the current Navarre) most of the speakers chose Iberian names. In the territories of the current Basque Country, only a negligible statistical proportion chose Basque names, whereas in Navarre it was a minority of the population. That’s how things were towards the 3rd century BC.

Hydro-Toponymy

Cities and rivers are not subject to the ephemeral life cycle of humans. Rivers have very long cycles that go far beyond the life time not only of individuals, but also of languages ​​and cultures. Cities are also generally very stable, although social circumstances occasionally cause one to be abandoned or destroyed, while new ones are created from time to time. That means that the names of rivers and cities are not subject to fashions or frequent change. Nor does a language change imply a renewal of the previous hydronymy and toponymy.

Speakers of the new languages ​​incorporated into a territory learn from the natives the hydronymic and toponymic system, producing what we call the “toponymic transmission”. (…) it requires a prolonged contact between the native population and the new occupants, which can only occur when the indigenous population is not annihilated quickly and radically.

iberia-middle-bronze-age
Top Left: Middle Bronze Age cultures in Iberia (in red, likely Indo-European groups; in green, likely non-Indo-European groups). Top Right: Unsupervised ADMIXTURE of ancient DNA samples. See full maps including Y-DNA and mtDNA. Bottom: Bottom: PCA of Bronze Age groups.

The ancient onomastic data of the Basque Country and Navarre can be summarized as follows:

  • Ancient hydronymy, the longest lasting onomastic component, is not Basque, but Indo-European in its entirety.
  • The old toponymy, which follows it in durability, is also Indo-European in its entirety, except Poampaelo (now Pamplona) and Oiarso (now Oyarzun).
  • And in anthroponymy, which reflects the language used at the time when those names were in use, is also massively Indo-European, although there are between 10-15% anthroponyms of Vasconic etymology.

(…) the existing data show that, while in Roman times in Hispania there were only a couple of place-names in the Pyrenean border and a dozen anthroponyms of Vasconic etymology, in Aquitaine there was an abundant antroponymy of that etymology.

iberia-late-bronze-age
Left: Late Bronze Age cultures in Iberia (in red, likely Indo-European groups; in green, likely non-Indo-European groups). Right: Unsupervised ADMIXTURE of ancient DNA samples. See full maps including Y-DNA and mtDNA.

This set of facts is most compatible with a hypothesis that postulated a late infiltration of this type of population from Aquitaine, which at the time of the Roman conquest had only reached to establish a bridgehead, consisting of a small population center in Navarre and Alto Aragón and nothing else, except some isolated individuals in the current provinces of Álava, Vizcaya and Guipúzcoa. The almost complete absence of old place-names of Vasconic etymology would be explained in this way: Vasconic speakers, recently arrived and still in small numbers, would not have had the possibility of altering in depth the toponymic heritage prior to their arrival, which was Indo-European.

The idea of ​​a late Vasconization of a part of those territories, in the High Middle Ages or late Antiquity, is not new. Already in the 1920s M. Gómez Moreno said about the modern Basque provinces, with the district of Estella in Navarra, that “personal nomenclature allows comparisons of definitive value, probative that there lived people of the Cantabrian-Asturian race [who for Gómez Moreno were Indo-European], without the slightest trace of perceptible Basqueness”. For him, the first Indo-European people to penetrate the peninsula would have been Ligurian, which evolved into Cantabrians, Asturians, Venetians, Lusitanians, Tormogi, Vacaeans, Autrigones, Caristii and Varduli.

iberia-early-iron-age
Top Left: Pre-Roman cultures in Iberia (in red/brown, Indo-European groups; in pink, Greek; in yellow, Phoenician; in green, likely non-Indo-European groups; Tartessian is disputed). Top Right: Unsupervised ADMIXTURE of ancient DNA samples. See full maps including Y-DNA and mtDNA. Bottom: PCA of Iron Age groups.

Aquitaine

If, as we said above, Basque speakers began to enter the Iberian Peninsula from the other side of the Pyrenees only from the Roman-Republican era, to intensify their presence in the following centuries we must assume that they were to the north of the Pyrenees already before those dates. And, indeed, the existence of this abundant Vasconic antroponymy shows that in the first centuries of our era – while Vasconic speakers in the Peninsula were very few in number, their population in Aquitaine was abundant.

In a provisional manner we can advance that [Aquitaine’s] hydronyms are also known in other places of Europe and easily compatible with Indo-European etymologies (Argantia, Aturis, Tarnes, Sigmanos); and among the place names there are also many that are compatible with non-Gallic Indo-European etymologies, or not necessarily Gallic (Curianum, Aquitania, Burdigala, Cadurci, Auscii, Eluii, Rutani, Cala- (gorris), Latusates, Cossion, Sicor, Oscidates, Vesuna, etc.).

In addition to those place names that we classify as generically Indo-European, there are not a few Celts (Lugdunum, Mediolanum, Noviomagos, Segodunon, Bituriges, Petrucorii, Pinpedunni), several Latins (Aquae Augustae, Convenae, ad Sextum, Augusta), and even some Celto-Latin hybrids (Augustonemeton, Augustoriton). On the other hand, there are hardly any names, neither serial nor not serial, that have a reasonable possibility of being explained by Vasconic etymology (Anderedon could be one of them).

Consequently, the onomastic question of Aquitaine is not compatible with the possibility that Vasconic is the “primordial element” there, either. On the contrary, it is compatible with the hypothesis that they arrived also late in Aquitaine, when hydro-toponymy was already established. They had to Vasconize all or part of the previous population, that turned to use to a large extent the Vasconic anthroponymy. But the previous toponymy remained and the Vasconization process was probably soon interrupted by Celticization first, and Romanization later.

aquitanian-tribes-vascones
Aquitani and neighbouring tribes around the Pyrenees, as described by the Romans (ca. 1st c. BC). The Basque language likely expanded south and west of the Pyrenees into Indo-European-speaking territories during the Roman period. The term ‘Vascones’ only became applied to Basque-speaking tribes in medieval times. Map modified from image by Sémhur at Wikipedia.

A prediction in genetics

This is how Francisco Villar and co-authors from the University of Salamanca saw what would happen with the genetic studies of modern Basques in 2007, based on the similarity with neighbouring Iberians and French, and the late intrusion of the language in its current territory:

Unfortunately, linguistics does not have the means to establish the moment of that arrival in terms of absolute chronology. In any case, this hypothesis is not incompatible with some peculiarities in the frequency of certain genes of the Basque-speaking population. Indeed, today we tend to attribute these peculiarities to the joint action of genetic drift and isolation; to which perhaps we could add a bottleneck in the Vasconic founding population that would one day settle in Aquitaine.

villar-indoeuropeos
Indoeuropeos, iberos, vascos y sus parientes (2014). Buy the ebook online (Or printed version, if available).

Also Villar, in 2014:

In the hypothesis that I propose, future speakers of Basque would have settled initially in Aquitaine, where there would have been an inevitable genetic diffusion with pre-existing [first stage] populations. On the other hand, Basque speakers from Aquitaine would have started to arrive to the Basque Country and Navarre only from Roman times (only a couple of Vasconic toponyms, at least one of them of recent creation; scarce anthroponyms of Vasconic etymology). The part of those populations that mixed with the pre-existing Palaeo-Indo-Europeans (Indo-European names of rivers; general Indo-European toponymy) saw how the uniqueness of their haplogroups, if there was any, was diluted, making it difficult to distinguish from the general [Indo-European] background; being a minority, it could had been even lost as a result of adverse genetic drift.

Olalde et al. (2019) confirmed this hypothesis that modern Basques are quite similar to investigated Iron Age Indo-Europeans from Iberia (such as Celtiberians sampled from the Basque Country):

For the Iron Age, we document a consistent trend of increased ancestry related to Northern and Central European populations with respect to the preceding Bronze Age. The increase was 10 to 19% (95% confidence intervals given here and in the percentages that follow) in 15 individuals along the Mediterranean coast where non-Indo-European Iberian languages were spoken; 11 to 31% in two individuals at the Tartessian site of La Angorrilla in the southwest with uncertain language attribution; and 28 to 43% in three individuals at La Hoya in the north where Indo-European Celtiberian languages were likely spoken. This trend documents gene flow into Iberia during the Late Bronze Age or Early Iron Age, possibly associated with the introduction of the Urnfield tradition.

Modern Basques show therefore, paradoxically, an ancestry similar to recent Iron Age Indo-European invaders (quite likely the ancestors of Celtiberians), which confirms the hypothesis of bottlenecks/founder effects followed by a very recent isolation of its population:

(…) the genetic profile of present-day Basques who speak the only non-Indo-European language in Western Europe [] overlap genetically with Iron Age populations showing substantial levels of Steppe ancestry.

iberia-roman-period
Left: Roman period in Iberia. Right: Unsupervised ADMIXTURE of ancient DNA samples. See full maps including Y-DNA and mtDNA. Notice increase of steppe ancestry in the north, associated with the (Late Bronze Age / Early Iron Age) arrival of Central Europeans.

Iberians

Regarding the Iberian language, the circumstances of analysis are less favorable. However, we can observe in the ancient toponymy of typically Iberian areas (the Spanish Levant and Catalonia) a considerable proportion of toponymy of Indo-European etymology, often identical to that which F. Villar (2000) has called “Southern-Iberian-Pyrenean”. In fact, its presence in the Levant is nothing else but a continuation from Catalonia to the South along the Mediterranean coast. Here are some examples: Caluba, Sorobis, Uduba, Lesuros, Urce / Urci, Turbula, Arsi / Arse, Asterum, Cartalias, Castellona, ​​Lassira, Lucentum, Saguntum, Trete, Calpe, Lacetani, Onusa, Palantia, Saetabis, Saetabicula, Sarna , Segestica, Sicana, Turia, Turicae, Turis.

Compatible with the Indo-European etymology can also be Blanda, Sebelacum, Sucro, Tader, Sigarra, Mastia, Contestania, Liria, Lauro, Indibilis, Herna, Edeta, Dertosa, Cesetania, Cossetani, Celeret, Bernaba, Biscargis, (…)

Finally, in other place names there are Indo-European components in hybrid toponymic syntagms, such as:

  1. orc- / urc-: Orceiabar, Urcarailur, Urceatin, Urcebas, Urcecere, Urcescer, Urceticer.
  2. Il-: Iltukoite, Iluro (3), Ilurci, Ilorci, Ilurcis, Ilucia, Iliturgi, Ilarcurris, Iluberitani, etc.

il-iberian

Examples like these show that in Catalonia and the Spanish Levant the Iberian language is not the deepest identifiable substrate language, but that it took root there when there was previously an Indo-European language that had created a considerable network of toponyms and hydronyms that we can recognize, and over which Iberians settled as a superstrate. The pre-existence of an Indo-European language in the historically Iberian area is further corroborated by the fact that its ancient hydronyms are all Indo-European, with the exception of a single river that has a name that is supposed to be Iberian: the Iberus (Ebro), of which obviously the country and its inhabitants took their name. No doubt ib- was an appellation for river, so that in the language that created that hydronym the Iber should have simply been “the river”. But we will see in the body of this work that ib- is in various places outside the Iberian Peninsula as an appellation for «river», which will force us to rethink its supposed Iberian affiliation. In fact, the Iberus had another name, Elaisos, whose etymology is compatible with Indo-European. As we know with certainty that after Iberians no other Indo-European peoples came to their territory before the Romans, the Indo-European creators of that hydronymy have had to be there before the Iberians. And its antiquity must be considerable because, as we have already said, the vast majority of its hydronyms (Alebus, Caluba, Lesuros, Palantia, Saetabis, Sigarra, Sucro, Tader, Turia and Uduba, Elaisos) belong to that anonymous Indo-European language that didn’t leave written texts or had historical continuity.

inscriptions-celtiberians-iberians-hispania
Inscriptions in Iberia ca. 2nd–1st c. BC. Purple squares show Celtiberian inscriptions, blue circles show Iberian inscriptions. Image modified from Hesperia – Banco de datos de lenguas paleohispánicas.

Villar (2014):

Not always that a language is settled in a territory is it able to eradicate the existing ones definitively. Even a political system as unitary and unifying as the Roman was not able to eradicate the Basque language. And nowadays in Latin America, despite the crushing cultural dominance of Spanish, despite the means for the schooling of a modern society, in spite of the media, a multitude of pre-Columbian languages ​​are spoken that coexist with the language of culture, the only one that is written in those countries. In those situations, which can be prolonged for quite a lot of time, there are individuals who only speak the language newly imposed, others who speak only the language that has resisted disappearing, and others who speak both, in a broad framework of bilingualism. My proposal is that something similar to that must have happened in the Iberian territory when the Romans arrived: A language of culture, Iberian, diversified into more or less distant local dialects, coexisted with several previous languages, equally differentiated from the dialectal point of view. This explains the irruption in the Iberian texts of non-Iberian anthroponyms and, above all, the existence there of a Palaeo-Indo-European hydro-toponymy that had remained in use not only because it was transmitted to Iberian speakers, but also because its native users were still present.

Related

European hydrotoponymy (I): Old European substrate and its relative chronology

old-european-hydronymy-toponymy

These first two posts on Old European hydro-toponymy contain excerpts mainly from Indoeuropeos, iberos, vascos y sus parientes, by Francisco Villar, Universidad de Salmanca (2014), but also from materials of Lenguas, genes y culturas en la Prehistoria de Europa y Asia suroccidental, by Villar et al. Universidad de Salamanca (2007). I can’t recommend both books hardly enough for anyone interested in the history of Pre-Roman peoples in Iberia and Western Europe.

NOTE. Both books also contain detailed information on hydrotoponymy of other regions, like Northern Europe, the Aegean and the Middle East, with some information about Asia, apart from (outdated) genetic data, but their main aim is obviously the Prehistory of Iberia and neighbouring regions like France, Italy, or Northern Africa.

Here are only some excerpts (emphasis mine), translated from Spanish (see the original texts here), accompanied by images from both books.

villar-indoeuropeos
Indoeuropeos, iberos, vascos y sus parientes (2014). Buy the ebook online (Or printed version, if available).

Alteuropäisch and Krahe

The investigation of “Old European” or Alteuropäisch, popularized by Krahe, began precisely with the study of some toponyms and personal names spread all over Europe, previously considered “Ligurian” (by H. d’Arbois de Jubainville and C. Jullian) or “Illyrian” (by J. Pokorny), with which those linguistic groups – in turn badly known – were given an excessive extension, based only on some lexical coincidences.

This is a comment made by the author about Krahe‘s data and his opinions, frequently used against his compiled data, which I find paradoxically applicable to Villar’s data and his tentative assignment of the relative linguistic chronology to an absolute one – including the expansion of a “Mesolithic” Indo-European vs. a “Neolithic” Basque / Iberian vs. a Bronze Age Celtic – when it is now clear that the sequence of events was much later than that:

It is very widespread today a derogatory and globally disqualifying attitude to everything that sounds like Alteuropäisch and Krahe, sometimes without the necessary discrimination between different hypotheses, or even between data and hypothesis. It is not fair that the version of H. Krahe and that of W. P. Schmid be disqualified in a single simplistic judgment as if they were the same thing. But it is a major mistake to reduce the value of the hydro-toponymic data of Europe by the mere fact that Krahe attributed an implausible historical explanation to them. The data are real and still need an adequate explanation within a real historical framework, despite the unfeasibility of Krahe’s explanation.

With that we reach a point that I want to highlight. Among those who are allergic to anything that involves deviating one iota of the Indo-European paradigm as a single event, an attitude gaining momentum considers that hydro-toponymy was introduced in the different regions of Europe and Southeast Asia by the same Indo-European languages ​​that appear historically occupying their territory. H. Krahe had argued strongly against this possibility, so now I will save myself a deeper refutation and I will limit myself to pointing out some difficulties that position is forced to face.

salo-salano
Sala, Sala, Sala, Sala, Sala, Sala, Sala, Sala, Sala, Sala, Sala, Salaca/Salis, Salaceni,
Salacia, Salacia, Salaeni, Salam, Salandona, Salangi, Salangi , Salaniana, Sãlantas,
Salapa, Salapeni, Salaphitanum, Salapia / Salpia / Salapina palus / Salpe, Salar, Salara, Salarama,
Salarbima, Salariga, Salars, Salas, Salat, Salauris, Salcitani, Sale, Sale, Sale, Sale
stagnum, Salecon, Saleia, Salentina, Salentini, Salernum, Salerni, Sales, Sali, Salia, Salia,
Salica, Salica, Salice, Salii, Salija, Salinẽlis, Salìnis, Salìnis, Salìnis, Salìnis, Salinsae, Salionca,
Salius, Salō, Salō, Saloca, Salodurum, Salona, Salonae, Salonenica, Salonia, Saloniana,
Salonime, Salonium, Salontia, Saluca, Salum, Salum, Salunatasi, Saluntum / Salluntum,
Salùpis, Sãlupis, Salur, Salurnis, Selepitani, Sõlis.

The defenders of that alternative have to assume that the process of dialectalization, that before the migrations from the Urheimat was separating into the different Indo-European branches, affected each of them in the phonetic aspect in the general naming vocabulary, but left them unaltered in its phonetic predialectal state with regards to hydro-toponymy, as well as a good part of the naming lexicon related to the concepts of “river, water” and the different qualities of water currents. For example, according to those sharing that opinion, the Hispanic Palantia of the area of Vaccei would be in fact Celtic, but in that name the loss of the initial /p/ that characterizes Celtic would not have been applicable. Similarly, the hydro-toponymy in Germania is largely exempt from the Lautverschiebung, in Greece the loss of initial /s/, etc. These names not only fail to suffer the dialectal innovations corresponding to their zones, but sometimes they present innovations different from the features of the dialect involved. For example the word *mori “sea, standing water” is sometimes found in the hydro-toponymy of Gaul in the form *mari instead of *mori proper of Celtic (Marantium, Marisanga, Marsus), which in the framework of the paradigm has to be inevitably interpreted as a non-Celtic innovation.

wako-wogo
Potential geographic relationship between a priori unrelated graphic-phonetic variants.

Names of this nature that appear in areas where a pre-Roman historical Indo-European language never existed remain unexplained, such as in North Africa, Arabia Felix or the Caucasus: Lake Pallantias in Libya; the Salat River in Mauritania Tingitana; Auso in Mauritania Caesariensis; the Alonta River in Georgia; the Abas River in Caucasian Albania; Salma and Salapeni in Arabia Felix; etc. Of course, for these cases it is always possible to deny any relationship of kinship between these forms and their European cognates, and attribute everything to the chance of random homophonies. Thus, once again, the annoying comparative data are sacrificed in the sacred altar of the paradigm, despite the fact that they are so numerous and consistent that if there were no blind faith in the current dogma, they would be sufficient to articulate a new paradigm over them.

The choice of each Indo-Europeanist between the non-Indo-European and the Indo-European interpretation to explain the prehistoric toponymy of Europe is not motivated by the fact that they manage partial sets of hydronyms that are more propitious alternatively for the one or the other option. On the contrary, frequently the same batch of materials is claimed by both trends as its own. An extreme example is that of Th. Vennemann, who considers simply as non-Indo-European (specifically Paleo-Basque) exactly the same material that H. Krahe used to support his Indo-European interpretation. Thus, the structure and linguistic characteristics of the studied material have little role in the choice of one or the other path, which is rather conditioned by convictions and adhesion to a varied range of personal beliefs, traditional dogmas and scientific paradigms.

villar-vascos
Lenguas, genes y culturas en la Prehistoria de Europa y Asia suroccidental (2007). Buy the ebook online (or the printed version, if available).

The linguistic column

The sequence of languages ​​that were successively spoken in any territory constitutes what by analogy [with the “geological column”] we could call its “ethno-linguistic column”.

Next I offer the list of the languages ​​detected in the compositional (and to a lesser extent derivational) toponymic syntagms in which the appellatives ub-, up-, ab-, ap-, ur-, il-, igi, tuk, -ip – analyzed in this work – are involved.

From the interaction of the different strata in words and hybrid syntagms we can, therefore, establish the linguistic column in the Iberian Peninsula and its neighboring territories (Western Europe and Northern Africa) with the following sequence:

1. A first stratum of very old chronology, which in a previous publication I have proposed to call Palaeo-Indo-European [“arqueo-indoeuropeo”]. The toponymic elements belonging to this stratum dealt with throughout this text are abundant: kerso-, turso-, alawo-, lako-, mido-, silo-, tibo-, etc.

They always function as determinant toponyms of a place-name in any other language. It never uses the name “city” (or “river”) in hybrid syntagms. Their place names (determinants) are combined with names of the following languages:

   a) Iberian in Iberia or Southern France: kiŕś-iltiŕ, tuŕś-iltiŕ, alaun-iltiŕte, lakunm ∙ -iltiŕte.

   b) The language of the igi in southern Iberia and perhaps Northern Africa: Cantigi, Saltigi, Sagigi, Sicingi.

   c) The southern language of the postponed -il: Mid-ili, Sil-ili, Tib-ili.

   d) The language of the postponed -ip: Lac-ipo, Ost-ipo, Vent-ipo.

   e) Celtic in Gaul: kerso-ialos > Cersolius > Cerseuil; Ibili-duros > Ibliodurus.

karo-karanto
Cariensi, Carantium, Carandonis, Carae, Caraca / Caracca, Carrinensis, Cariaca, Carneus, Carula, Carlae, Carieco, Cariocieco, Caricillum, Carona, Carnona, Caranta, Carantonus / Carantana, Caronte, Carantomum / Carantomium, Carronenses / Garronenses, Cares / Carus, Caranusca, Carona, Caro vicus, Carninia, Carus, Carnutes, Carnonis castrum, Carenses, Caralis / Carallis, Carni, Carnicum, Caraceni, Careia, Carici, Carant / Carrant, Carnonacae, Carontō, Cariolum, Caritani, Carinum, Carantani, Carnuntum, Cariniana Vallis, Cariones, Careotae, Caroia, Caria, Careum, Carnae, Caran, Carnasium, Carnus, Carneates, Carnium, Carenus, Karlasuwa, Carnias, Karahna, Karna, Cariuntis, Kariuna, Careotis, Karu, Caralitis, Carus, Carnasso, Cares, Carene, Caranum, Caria, Carina, Carura, Caralis, Coralis, Carana, Carnalis, Carinum, Carnus, Carium, Carnium, Carnus Carnuntus / Carnusii, Chariuntas, Carandra, Carna, Carana, Carine, Cariatae, Caralae, Carura, Carei, Carura, Caricum, Caranis, Caralia, Carustum, Carystus, Carastasei.

This first Palaeo-Indo-European layer also corresponds to:

Several Palaeo-Indo-European varieties that have ab-, ap-, ub-, up- as a name for «river». To them belong also numerous place names (balsa-, siko-, wol-, etc.) that act as first members composed in both monoglotic and hybrid syntagmas.

Palaeo-Indo-European varieties in which ur- is the name “river”.

ab-hydronyms

2. The second stratum in decreasing order of antiquity is formed by the language of the place name igi “city”, although its presence is only verified with certainty in Iberia (especially in the south) and Northern Africa:

   a) It sets the igi name in compounds with Palaeo-Indo-European toponyms as in Salt-, Ast-, Olont-, Cant-, Aur- (Hispania) and Sagigi, Sicingi (Northern Africa).

   b) It works as the first place-name of the compound when the second is il: Igilium, Igilgili, Singili.

3. The third stratum is the language of the name il “city”:

   a) It puts the nickname il as determined in hybrid syntagms with Palaeo-Indo-European determinants: Mid-ili, Sil-ili, Tib-ili.

   b) It puts the nickname il as determined in hybrid syntagms with determinant toponyms igi: Igilium, Igilgili, Singili.

   c) It puts the place names (determinants) in front of the name (determined) of the language -ip (Il-ipa, Il-ipula and Il-ipla).

il-toponyms

4. Fourth is the language of the name ip- “city”, which puts the name (determined) in syntagms with:

   a) Palaeo-Indo-European toponym (determinant): Lac-ipo, Ost-ipo, Vent-ipo.

   b) Toponym (determinant) il: Ilipa.

   c) Second generation hybrid toponym of Palaeo-Indo-European + il: Balsilippa.

   d) In the Balsilippa and Sicilippa conglomerates, the three strata appear in the expected sequence: Palaeo-Indo-European + il + ip.

ip-toponyms

5. In the fifth place of the sequence is the language of the tuk-:

   a) It puts the name tuk- in compounds in which the place-name is a Palaeo-Indo-European element: Acatucci (see Aduatuci in Germania).

   b) It puts the name tuk- “height, top” in compounds in which the place-name is an ip- fossilized as place-names: Iptuci, etc.

   c) On at least one occasion an ip-fossilized syntagm acts as a toponym opposite a Celtic name: Itucodon (<Iptuco-dunum).

NOTE. Even though Villar talks about this stratum -tuk in Germania (Aduatukus) and the British Isles (Itucodon), only one case is found in each territory.

tuk-variants

6. The last place is occupied by Celtic:

   a) In Itucodon it puts the name (dunum) in front of a complex toponym of two previous strata, ip- + tuk-; and in Iliodurus it gives the name duro- in front of an equally complex Ibliodurus (<Ibili + duro).

   b) In bilbiliz it puts the casual morpheme in a fossilized bi-member toponym of a previous stratum, one of whose components is il-: Bilbil-iz.

linguistica-cronologia-hispania
[First column modified to include relative instead of absolute chronology]

A hard change of paradigm

More effort did it cost me to accept that ub- is a dialectal variant of a known Indo-European word for “water, river”, of which previously knew three others: ap-, ab-, up-. The obviousness of the phonetic correlation ap- / ab- // up- / ub- together with the semantic link with rivers, which can be verified above all outside of Spain, but is also present in our Peninsula, forced my resistance little by little. And with it fell the first trench of the dogma, unshakable until that moment, that everything in the Peninsula in the south was to be non-Indo-European.

ub-ob-hydronyms

Along with this serial component, many other isolated place names were revealed as very likely of Indo-European etymology, both in the “Iberian” East and in the “Tartessian” South. So the ubiquity of Indo-European throughout the Peninsula began to impose itself to me painfully. I say painfully because I lacked a paradigm in which to fit the new perspective that was making its way into my mind, which was therefore suspended in nothing, without any theoretical support, leaving me with a feeling that I was losing my footing. And for a time I was reluctant to accept the profound implications that all of this had entailed.

All il languages, in any of their locations, exhibit a compositional behavior in hybrid toponymic syntagms that place them all in an intermediate position between the clearly [first/second layer] strata, with place-names for their human settlements semantically derived from water realities (ur), and those clearly attributable to the [fifth layer] with appellations derived from settlements in heights (briga, dunum). But in that intermediate segment of the column there are three strata: 1) il, 2) ip-, 3) tuk-. In Andalusia there is an additional one: the igi stratum, of opaque semantics, which immediately precedes the il stratum.

or-ur-hydronyms
Hydronyms in -or-, -ur-.

To postulate that any of the toponymic strata of our column imply a new linguistic stratum, certain additional requirements will be necessary. One of them is that, in addition to the name in question, the languages ​​involved should share other features that could not have been lent, such as the very precise order of elements in the compounds Toponym + Name coexisting with Name + Adjective. Or the sharing of additional lexical elements that are not usually subject to loans, such as the semantically basic adjectives beri «new» and bels «black».

Unfortunately, the toponymic method, like the Comparative Method itself, does not have the capacity to establish precise absolute chronologies. (…)

Linguistic chronology

old-european-hydro-toponymy
Old European hydrotoponymy. Baltic data compensated. Statistical method Kriging.

In Europe (Hispania, South of France, Germania, British Isles, Baltic) the oldest stratum that can be identified is an indeterminable number of palaeo-varieties of the Indo-European macro-family, which do not have a direct local relationship with historical Indo-European languages, to the extent that we can verify. In fact, we have seen that stratigraphic signs lead us to consider the main Indo-European pre-Roman language of Hispania, the Celtic language, as a stratum after the il language, which in turn is later than the peninsular Indo-European palaeo-varieties.

In North Africa there is also a Palaeo-Indo-European stratum present. But there is also a very old non-Indo-European stratum whose identity I can not define through the material used. Nor has it been possible for me to establish relative antiquity of one and the other on African soil.

Another of the languages ​​involved, which has il- as an appellation for “city” in the Southwest of Hispania and North Africa, could have some kind of kinship relationship with Basque on the one hand and the Iberian language on the other, but the same indirect form that I have just pointed out for the Indo-European palaeo-varieties with respect to the historical Indo-European languages. Or in other words: the language(s) of the place-names referred to in this work would be palaeo-varieties of a linguistic family to which two known historical languages, Iberian and Basque, may have belonged, although we can’t establish a relation of direct affiliation neither between those two historical languages ​​among themselves, nor between any of them and the palaeo-varieties of the prehistoric toponymy.

linguistica-cronologia-africa
[First column modified to include relative instead of absolute chronology]

In general, Celtic does not have in its historical territories the onomastic behavior of an ancestral language, but that of an intrusive language, whose presence there is not only more recent than other Indo-European varieties, but also after that of various non-Indo-European strata, which are themselves ranked between the oldest detected (Palaeo-Indo-European) and the last of Pre-Romans, which is Celtic itself. If we only detected two strata, the Indo-European and the Celtic ones, we could discuss if it is possible that both are one and the same, so that what we define as “Celtic” is nothing other than the modern in situ evolution of Palaeo-Indo-European. But examples like those of kiŕśiltiŕ, kerso-ialos, Cirsa or Itucodon, among many others analyzed throughout this book, make it unlikely. And, in addition, the mediation of several strata in the column between the Palaeo-Indo-European language of Cirsa, as well as the greater antiquity of the ip- and tuk- languages ​​in Spanish, Gallic and British territory, defines the latter as a new and more recent layer than the aforementioned, which burst into its historical sites during the Iron Age.

Because Archaeology continues to deny the existence of population movements of a size worthy of consideration in the Iron Age, it is necessary to accept that the Indo-European Problem remains intact. It is understandable that before this aporia, many minds who are uncomfortable living with doubts, prefer to adopt a creed (the traditional, the Neolithic or the continuist) and expose it as a certainty to their students in the classrooms or their colleagues in conferences and publications. It’s not my case. For me, with Voltaire, “le doute est désagréable, mais la certitude est ridicule”. Or with Manzoni: “E men male l’agitarsi nel dubbio, che riposar nell’errore”.

Continue reading on European hydrotoponymy (II): Basques, Iberians, and Etruscans after Old Europeans.

Related

Modern Sardinians show elevated Neolithic farmer ancestry shared with Basques

sardinia-europe-relation

New paper (behind paywall), Genomic history of the Sardinian population, by Chiang et al. Nature Genetics (2018), previously published as a preprint at bioRxiv (2016).

#EDIT (18 Sep 2018): Link to read paper for free shared by the main author.

Interesting excerpts (emphasis mine):

Our analysis of divergence times suggests the population lineage ancestral to modern-day Sardinia was effectively isolated from the mainland European populations ~140–250 generations ago, corresponding to ~4,300–7,000 years ago assuming a generation time of 30 years and a mutation rate of 1.25 × 10−8 per basepair per generation. (…) in terms of relative values, the divergence time between Northern and Southern Europeans is much more recent than either is to Sardinia, signaling the relative isolation of Sardinia from mainland Europe.

We documented fine-scale variation in the ancient population ancestry proportions across the island. The most remote and interior areas of Sardinia—the Gennargentu massif covering the central and eastern regions, including the present-day province of Ogliastra— are thought to have been the least exposed to contact with outside populations. We found that pre-Neolithic hunter-gatherer and Neolithic farmer ancestries are enriched in this region of isolation. Under the premise that Ogliastra has been more buffered from recent immigration to the island, one interpretation of the result is that the early populations of Sardinia were an admixture of the two ancestries, rather than the pre-Neolithic ancestry arriving via later migrations from the mainland. Such admixture could have occurred principally on the island or on the mainland before the hypothesized Neolithic era influx to the island. Under the alternative premise that Ogliastra is simply a highly isolated region that has differentiated within Sardinia due to genetic drift, the result would be interpreted as genetic drift leading to a structured pattern of pre-Neolithic ancestry across the island, in an overall background of high Neolithic ancestry.

sardinia-pca
PCA results of merged Sardinian whole-genome sequences and the HGDP Sardinians. See below for a map of the corresponding regions.

We found Sardinians show a signal of shared ancestry with the Basque in terms of the outgroup f3 shared-drift statistics. This is consistent with long-held arguments of a connection between the two populations, including claims of Basque-like, non-Indo-European words among Sardinian placenames. More recently, the Basque have been shown to be enriched for Neolithic farmer ancestry and Indo-European languages have been associated with steppe population expansions in the post-Neolithic Bronze Age. These results support a model in which Sardinians and the Basque may both retain a legacy of pre-Indo-European Neolithic ancestry. To be cautious, while it seems unlikely, we cannot exclude that the genetic similarity between the Basque and Sardinians is due to an unsampled pre-Neolithic population that has affinities with the Neolithic representatives analyzed here.

density-nuraghi-sardinia-genetics
Left: Geographical map of Sardinia. The provincial boundaries are given as black lines. The provinces are abbreviated as Cag (Cagliari), Cmp (Campidano), Car (Carbonia), Ori (Oristano), Sas (Sassari), Olb (Olbia-tempio), Nuo (Nuoro), and Ogl (Ogliastra). For sampled villages within Ogliastra, the names and abbreviations are indicated in the colored boxes. The color corresponds to the color used in the PCA plot (Fig. 2a). The Gennargentu region referred to in the main text is the mountainous area shown in brown that is centered in western Ogliastra and southeastern Nuoro.
Right: Density of Nuraghi in Sardinia, from Wikipedia.

While we can confirm that Sardinians principally have Neolithic ancestry on the autosomes, the high frequency of two Y-chromosome haplogroups (I2a1a1 at ~39% and R1b1a2 at ~18%) that are not typically affiliated with Neolithic ancestry is one challenge to this model. Whether these haplogroups rose in frequency due to extensive genetic drift and/or reflect sex-biased demographic processes has been an open question. Our analysis of X chromosome versus autosome diversity suggests a smaller effective size for males, which can arise due to multiple processes, including polygyny, patrilineal inheritance rules, or transmission of reproductive success. We also find that the genetic ancestry enriched in Sardinia is more prevalent on the X chromosome than the autosome, suggesting that male lineages may more rapidly trace back to the mainland. Considering that the R1b1a2 haplogroup may be associated with post-Neolithic steppe ancestry expansions in Europe, and the recent timeframe when the R1b1a2 lineages expanded in Sardinia, the patterns raise the possibility of recent male-biased steppe ancestry migration to Sardinia, as has been reported among mainland Europeans at large (though see Lazaridis and Reich and Goldberg et al.). Such a recent influx is difficult to square with the overall divergence of Sardinian populations observed here.

sardinian-admixture
Mixture proportions of the three-component ancestries among Sardinian populations. Using a method first presented in Haak et al. (Nature 522, 207–211, 2015), we computed unbiased estimates of mixture proportions without a parameterized model of relationships between the test populations and the outgroup populations based on f4 statistics. The three-component ancestries were represented by early Neolithic individuals from the LBK culture (LBK_EN), pre-Neolithic huntergatherers (Loschbour), and Bronze Age steppe pastoralists (Yamnaya). See Supplementary Table 5 for standard error estimates computed using a block jackknife.

Once again, haplogroup R1b1a2 (M269), and only R1b1a2, related to male-biased, steppe-related Indo-European migrations…just sayin’.

Interestingly, haplogroup I2a1a1 is actually found among northern Iberians during the Neolithic and Chalcolithic, and is therefore associated with Neolithic ancestry in Iberia, too, and consequently – unless there is a big surprise hidden somewhere – with the ancestry found today among Basques.

NOTE. In fact, the increase in Neolithic ancestry found in south-west Ireland with expanding Bell Beakers (likely Proto-Beakers), coupled with the finding of I2a subclades in Megalithic cultures of western Europe, would support this replacement after the Cardial and Epi-Cardial expansions, which were initially associated with G2a lineages.

I am not convinced about a survival of Palaeo-Sardo after the Bell Beaker expansion, though, since there is no clear-cut cultural divide (and posterior continuity) of pre-Beaker archaeological cultures after the arrival of Bell Beakers in the island that could be identified with the survival of Neolithic languages.

We may have to wait for ancient DNA to show a potential expansion of Neolithic ancestry from the west, maybe associated with the emergence of the Nuragic civilization (potentially linked with contemporaneous Megalithic cultures in Corsica and in the Balearic Islands, and thus with an Iberian rather than a Basque stock), although this is quite speculative at this moment in linguistic, archaeological, and genetic terms.

Nevertheless, it seems that the association of a Basque-Iberian language with the Neolithic expansion from Anatolia (see Villar’s latest book on the subject) is somehow strengthened by this paper. However, it is unclear when, how, and where expanding G2a subclades were replaced by native I2 lineages.

Related

The Proto-Indo-European – Euskarian hypothesis

palaeolithic

Another short communication by Juliette Blevins has just been posted, A single sibilant in Proto-Basque: *s, *Rs, *sT and the phonetic basis of the sibilant split:

Blevins (to appear) presents a new reconstruction of Proto-Basque, the mother of Basque and Aquitanian, based on standard methods in historical linguistics: the comparative method and the method of internal reconstruction. Where all previous reconstructions of Proto-Basque assume a contrast between two sibilants, *s, a voiceless apical sibilant, and *z a voiceless laminal sibilant (Martinet 1955; Michelena 1977; Lakarra 1995; Trask 1997), this proposal is unique in positing only a single sibilant *s. Under this account, all instances of Common Basque /z/ are derived from *s. More specifically, in syllable coda, *Rs > *Rz (R a sonorant) while in the syllable onset, *sT > *zT (T an oral stop). The true split of *s into /s/ vs. /z/ occurs when clusters like *Rz or *zT are further simplified to /z/.

In this talk, internal evidence for a single sibilant, *s, in Proto-Basque is presented, and sound changes underlying the sibilant split are examined within the context of Evolutionary Phonology (Blevins 2004, 2006, 2015, 2017). Similar sound changes are identified in other languages with similar cluster types (e.g. Kümmel 2007:232), and the phonetic basis of the sibilant split is informed by recent studies of sibilant retraction (e.g. Stevens and Harrington 2016; Stuart-Smith et al. 2018).

Blevins, already known for her previous work on the Basque language, was known internationally for her recent controversial proposal of a genetic relationship between Proto-Indo-European and Basque. Apparently, a book with her full model, Advances in Proto-Basque Reconstruction with evidence for the Proto-Indo-European-Euskarian Hypothesis, will be published by Routledge soon.

I was never convinced, not just about a genetic connection, but about the very possibility of discovering it if there was any, mainly because such a link would be quite old, and Basque is known to have been greatly influenced by surrounding IE prestige languages for millennia until it was first attested in the 16th century. Internal reconstruction can only avail a gross reconstruction of few aspects up to a certain point in time, probably not very far beyond the Pre-Roman period, and that only thanks to the available Aquitanian inscriptions.

There are indeed certain known migrations that could be linked with a pan-European population movement, the most likely one for this hypothesis being the Villabruna cluster (the Villabruna sample itself being of haplogroup R1b pre-P297), and especially the expansion of R1b-V88 lineages, found widespread in Europe from west to east, from Mesolithic Iberia to Khvalynsk.

This haplogroup is also found in Sardinia, which may be connected to the expansion of V88 subclades (which I have speculatively proposed could be linked to Afro-Asiatic) into Africa through Italy and the Green Sahara; although it could also be linked to a speculative Vasconic-Iberian – Palaeo-Sardo group.

Without knowing the exact Pre-Proto-Indo-European stage at which Blevins would place the Basque separation, it is difficult to know how it could fit within any macro-language proposal – and thus potential ancestral population expansion.

If you are interested in this hypothesis, I suggest Koch’s controversial paper of 2013 Is Basque an Indo-European Language? (PDF), appeared in JIES 41 (1 & 2)….And of course the many papers rejecting it in the same volume. You also have Forni’s writings supporting this association.

Seeing how many Basque nationalists (obviously obsessed with racial purity) are still rooting for an autochthonous Palaeolithic origin of R1b lineages (especially P312) linked with the Basque language and dat huge Vasconic Western Europe; and now, after Olalde & Mathieson 2018, how some are also suggesting a Neolithic link of R1b with the Neolithic expansion and Sardinians, for lack of further modern genetic differences with other Western Europeans… I wonder how a lot of people inclined to believe this nonsense today, and mentally linking Vasconic with haplogroup R1b, will be paradoxically necessarily tied precisely to this kind of macro-family proposals in the future.

Related:

Analysis of R1b-DF27 haplogroups in modern populations adds new information that contrasts with ‘steppe admixture’ results

R1b-DF27-iberia

New open access article published in Scientific Reports, Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ, by Solé-Morata et al. (2017).

Abstract

Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.

Some people like to say that Y-DNA haplogroup analysis, or phylogeography in general, is of no use anymore (especially modern phylogeography), and they are content to see how ‘steppe admixture’ was (or even is) distributed in Europe to draw conclusions about ancient languages and their expansion. With each new paper, we are seeing the advantages of analysing ancient and modern haplogroups in ascertaining population movements.

Quite recently there was a suggestion based on steppe admixture that Basque-speaking Iberians resisted the invasion from the steppe. Observing the results of this article (dates of expansion and demographic data) we see a clear expansion of Y-DNA haplogroups precisely by the time of Bell Beaker expansion from the east. Y-DNA haplogroups of ancient samples from Portugal point exactly to the same conclusion.

The situation of R1b-DF27 in Basques, as I have pointed out elsewhere, is probably then similar to the genetic drift of Finns, mainly of N1c lineages, speaking today a Uralic language that expaned with Corded Ware and R1a subclades.

The recent article on Mycenaean and Minoan genetics also showed that, when it comes to Europe, most of the demographic patterns we see in admixture are reminiscent of the previous situation, only rarely can we see a clear change in admixture (which would mean an important, sudden replacement of the previous population).

Equating the so-called steppe admixture with Indo-European languages is wrong. Period.

The following are excerpts from the article (emphasis is mine):

Dates and expansions

The average STR variance of DF27 and each subhaplogroup is presented in Suppl. Table 2. As expected, internal diversity was higher in the deeper, older branches of the phylogeny. If the same diversity was divided by population, the most salient finding is that native Basques (Table 2) have a lower diversity than other populations, which contrasts with the fact that DF27 is notably more frequent in Basques than elsewhere in Iberia (Suppl. Table 1). Diversity can also be measured as pairwise differences distributions (Fig. 5). The distribution of mean pairwise differences within Z195 sits practically on top of that of DF27; L176.2 and Z220 have similar distributions, as M167 and Z278 have as well; finally, M153 shows the lowest pairwise distribution values. This pattern is likely to reflect the respective ages of the haplogroups, which we have estimated by a modified, weighted version of the ρ statistic (see Methods).

Z195 seems to have appeared almost simultaneously within DF27, since its estimated age is actually older (4570 ± 140 ya). Of the two branches stemming from Z195, L176.2 seems to be slightly younger than Z220 (2960 ± 230 ya vs. 3320 ± 200 ya), although the confidence intervals slightly overlap. M167 is clearly younger, at 2600 ± 250 ya, a similar age to that of Z278 (2740 ± 270 ya). Finally, M153 is estimated to have appeared just 1930 ± 470 ya.

Haplogroup ages can also be estimated within each population, although they should be interpreted with caution (see Discussion). For the whole of DF27, (Table 3), the highest estimate was in Aragon (4530 ± 700 ya), and the lowest in France (3430 ± 520 ya); it was 3930 ± 310 ya in Basques. Z195 was apparently oldest in Catalonia (4580 ± 240 ya), and with France (3450 ± 269 ya) and the Basques (3260 ± 198 ya) having lower estimates. On the contrary, in the Z220 branch, the oldest estimates appear in North-Central Spain (3720 ± 313 ya for Z220, 3420 ± 349 ya for Z278). The Basques always produce lower estimates, even for M153, which is almost absent elsewhere.

R1b-DF27-tree
Simplified phylogenetic tree of the R1b-M269 haplogroup. SNPs in italics were not analyzed in this manuscript.

Demography

The median value for Tstart has been estimated at 103 generations (Table 4), with a 95% highest probability density (HPD) range of 50–287 generations; effective population size increased from 131 (95% HPD: 100–370) to 72,811 (95% HPD: 52,522–95,334). Considering patrilineal generation times of 30–35 years, our results indicate that R1b-DF27 started its expansion ~3,000–3,500 ya, shortly after its TMRCA.

As a reference, we applied the same analysis to the whole of R1b-S116, as well as to other common haplogroups such as G2a, I2, and J2a. Interestingly, all four haplogroups showed clear evidence of an expansion (p > 0.99 in all cases), all of them starting at the same time, ~50 generations ago (Table 4), and with similar estimated initial and final populations. Thus, these four haplogroups point to a common population expansion, even though I2 (TMRCA, weighted ρ, 7,800 ya) and J2a (TMRCA, 5,500 ya) are older than R1b-DF27. It is worth noting that the expansion of these haplogroups happened after the TMRCA of R1b-DF27.

R1b-DF27-PCA
Principal component analysis of STR haplotypes. (a) Colored by subhaplogroup, (b) colored by population. Larger squares represent subhaplogroup or population centroids.

Sum up and discussion

We have characterized the geographical distribution and phylogenetic structure of haplogroup R1b-DF27 in W. Europe, particularly in Iberia, where it reaches its highest frequencies (40–70%). The age of this haplogroup appears clear: with independent samples (our samples vs. the 1000 genome project dataset) and independent methods (variation in 15 STRs vs. whole Y-chromosome sequences), the age of R1b-DF27 is firmly grounded around 4000–4500 ya, which coincides with the population upheaval in W. Europe at the transition between the Neolithic and the Bronze Age. Before this period, R1b-M269 was rare in the ancient DNA record, and during it the current frequencies were rapidly reached. It is also one of the haplogroups (along with its daughter clades, R1b-U106 and R1b-S116) with a sequence structure that shows signs of a population explosion or burst. STR diversity in our dataset is much more compatible with population growth than with stationarity, as shown by the ABC results, but, contrary to other haplogroups such as the whole of R1b-S116, G2a, I2 or J2a, the start of this growth is closer to the TMRCA of the haplogroup. Although the median time for the start of the expansion is older in R1b-DF27 than in other haplogroups, and could suggest the action of a different demographic process, all HPD intervals broadly overlap, and thus, a common demographic history may have affected the whole of the Y chromosome diversity in Iberia. The HPD intervals encompass a broad timeframe, and could reflect the post-Neolithic population expansions from the Bronze Age to the Roman Empire.

While when R1b-DF27 appeared seems clear, where it originated may be more difficult to pinpoint. If we extrapolated directly from haplogroup frequencies, then R1b-DF27 would have originated in the Basque Country; however, for R1b-DF27 and most of its subhaplogroups, internal diversity measures and age estimates are lower in Basques than in any other population. Then, the high frequencies of R1b-DF27 among Basques could be better explained by drift rather than by a local origin (except for the case of M153; see below), which could also have decreased the internal diversity of R1b-DF27 among Basques. An origin of R1b-DF27 outside the Iberian Peninsula could also be contemplated, and could mirror the external origin of R1b-M269, even if it reaches there its highest frequencies. However, the search for an external origin would be limited to France and Great Britain; R1b-DF27 seems to be rare or absent elsewhere: Y-STR data are available only for France, and point to a lower diversity and more recent ages than in Iberia (Table 3). Unlike in Basques, drift in a traditionally closed population seems an unlikely explanation for this pattern, and therefore, it does not seem probable that R1b-DF27 originated in France. Then, a local origin in Iberia seems the most plausible hypothesis. Within Iberia, Aragon shows the highest diversity and age estimates for R1b-DF27, Z195, and the L176.2 branch, although, given the small sample size, any conclusion should be taken cautiously. On the contrary, Z220 and Z278 are estimated to be older in North Central Spain (N Castile, Cantabria and Asturias). Finally, M153 is almost restricted to the Basque Country: it is rarely present at frequencies >1% elsewhere in Spain (although see the cases of Alacant, Andalusia and Madrid, Suppl. Table 1), and it was found at higher frequencies (10–17%) in several Basque regions; a local origin seems plausible, but, given the scarcity of M153 chromosomes outside of the Basque Country, the diversity and age values cannot be compared.

Within its range, R1b-DF27 shows same geographical differentiation: Western Iberia (particularly, Asturias and Portugal), with low frequencies of R1b-Z195 derived chromosomes and relatively high values of R1b-DF27* (xZ195); North Central Spain is characterized by relatively high frequencies of the Z220 branch compared to the L176.2 branch; the latter is more abundant in Eastern Iberia. Taken together, these observations seem to match the East-West patterning that has occurred at least twice in the history of Iberia: i) in pre-Roman times, with Celtic-speaking peoples occupying the center and west of the Iberian Peninsula, while the non-Indoeuropean eponymous Iberians settled the Mediterranean coast and hinterland; and ii) in the Middle Ages, when Christian kingdoms in the North expanded gradually southwards and occupied territories held by Muslim fiefs.

DF27-iberia-france
Contour maps of the derived allele frequencies of the SNPs analyzed in this manuscript. Population abbreviations as in Table 1. Maps were drawn with SURFER v. 12 (Golden Software, Golden CO, USA).

I wouldn’t trust the absence of R1b-DF27 outside France as a proof that its origin must be in Western Europe – especially since we have ancient DNA, and that assertion might prove quite wrong – but aside from that the article seems solid in its analysis of modern populations.

Related:

Text and figures from the article, licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Wiik’s theory about the spread of Uralic into east and central Europe, and the Uralic substrate in Germanic and Balto-Slavic

vasconic-uralic

I recently wrote about how Wiik’s model was wrong in supporting a Mesolithic European Vasconic-Uralic harmony – genetically based on the modern distribution of R1b vs. N1c haplogroups -, and thus also the disruption of this harmony by Indo-Europeans (supposedly a population of R1a-lineages invading central Europe from a Balkan homeland).

Romanticism does this quite frequently: it makes us believe in some esoteric fantasy, like the ethnic continuity of our ancestors in the region we live (and a far, far greater original territory that has been unfairly diminished by invaders), providing us with strong links to support our artificial borders and their potential expansion.

Even though my article on the demic diffusion of Indo-European languages does only slightly comment on the origins (and potential language) of N1c-lineages and of Proto-Basque and Proto-Uralic languages, I have already received some angry emails by Basque and Finnish genetic amateurs. I don’t get the point of fantasizing about one’s own ethnicity and prehistoric territory, and then getting through the five stages of grief when one is confronted with different (usually sounder) theories, time and time again. It seems like a lot of time lost by generations in wholly stupid quests and self-negotiation.

However wrong Wiik’s basic theses are, though, if you have read my paper you have seen that Corded Ware groups spread from north-western Ukraine might have spoken Uralic languages. Therefore, it is reasonable to assume that Pre-Germanic, Pre-Balto-Slavic and Pre-Indo-Iranian might have been adopted by peoples who spoke Uralic languages, probably related with each other, possibly belonging to early Finno-Ugric dialects. In that sense, Wiik’s work has a renewed linguistic interest, regarding the potential substrate words he investigated.

This is not a picture that certain Basque, Finnish, Russian, or Indian romantics would have hoped (or even hope today) for, in terms of ethnic, linguistic, and territorial identification, but that is not a real problem, anyway, just another building of imaginary origins that will fall as many others before them. In the same sense, Germanic ethnogenesis has become more complicated than what some would have wanted, with at least three main paternal lineages with completely different ethnolinguistic origins developing together since ca. 2500 BC to form a more homogeneous community only during the Bronze Age. Therefore, no homogeneous exclusive ethnic ‘original’ European regional community can be fantastically invented anymore.

This seems to me a real coup de grâce to genetic-based nationalism in Europe, and it is encouraging for the European Union that Germany, as the central European country, is not only a central territory, but also a central cultural and genetic bridge between west and east Europe, in terms of history, of North-West Indo-European languages, and paternal lineages and admixture analyses.

References

EDIT: You can read interesting recent posts on genetics of Finnic peoples in Razib Khan’s blog: The origin of the Finnic peoples, and The Finnic Peoples Emerged In Baltic After The Bronze Age, the latter discussing results on a recent paper by Saag et al. (2017).