Demographic history and genetic adaptation in the Himalayan region

Open access Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations, by Arciero et al. Mol. Biol. Evol (2018), accepted manuscript (msy094).

Abstract (emphasis mine):

We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India or Tibet at over 500,000 SNPs, and analysed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively-selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 (EPAS1) and Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.

Population samples analysed in this study. A. Map of South and East Asia, highlighting the four regions examined, and the colour assigned to each. B. Samples from the Tibetan Plateau. C.Samples from Nepal. D. Samples from Bhutan and India. The circle areas are proportional to the sample sizes. The three letter population codes in B-D are defined in supplementary table S1.

Relevant excerpts:

Genetic affinity to ancestral populations

We explored the genetic affinity between the Himalayan populations and five ancient genomes using f3-outgroup statistics. Himalayans show greater affinity to Eurasian hunter-gatherers (MA-1, a 24,000- year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya, than to European farmers (5,500-4,800 years ago; Fig. 5A) or to European hunter-gatherers (La Braña, 7,000 years ago; Fig. 5B), like other South and East Asian populations. We further explored the affinity of Himalayan populations by comparing them with the 45,000-year-old Upper Palaeolithic hunter-gatherer (Ust’-Ishim) and each of MA-1, La Braña, or Yamnaya. Himalayan individuals cluster together with other East Asian populations and show equal distance from Ust’-Ishim and the other ancient genomes, probably because Ust’-Ishim belongs to a much earlier period of time (supplementary fig. S15). We also explored genetic affinity between modern Himalayan populations and five ancient Himalayans (3,150 1,250 years old) from Nepal. The ancient individuals cluster together with modern Himalayan populations in a worldwide PCA (supplementary fig. S16), and the f3-outgroup statistics show modern high-altitude populations have the closest affinity with these ancient Himalayans, suggesting that these ancient individuals could represent a proxy for the first populations residing in the region (supplementary fig. S17 and supplementary table S4). Finally, we explored the genetic affinity of Himalayan samples with the archaic genomes of Denisovans and Neanderthals (Skoglund and Jakobsson 2011), and found that they show a similar sharing pattern with Denisovans and Neanderthals to the other South and East Asian populations. Individuals belonging to four Nepalese, one Cambodian, and three Chinese populations show the highest Denisovan sharing (after populations from Australia and Papua New Guinea) but these values are not significantly greater than other South and East Asian populations (supplementary figs. S18 and S19).

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. A. PCA of the Himalayan and HGDP-CEPH populations. Each dot represents a sample, coded by region as indicated. The Himalayan region samples lie between the HGDP-CEPH East Asian and South Asian samples on the right-hand side of the plot. B. PCA of the Himalayan populations alone. Each dot represents a sample, coded by country or region as indicated. Most samples lie on an arc between Bhutanese and Nepalese samples; Toto (India) are seen as extreme outlier in the bottom left corner, while Dhimal (Nepal) and Bodo (India) also form outliers.

NOTE. The variance explained in the PCA graphics seems to be too high. This happened recently also with the Damgaard et al. (2018) papers (see here the comment by Iosif Lazaridis).

Similarities and differences between high-altitude Himalayan

The most striking example is provided by the Toto from North India, an isolated tribal group with the lowest genetic diversity of the Himalayan populations examined here, indicated by the smallest long-term Ne (supplementary fig. S5), and a reported census size of 321 in 1951 (Mitra 1951), although their numbers have subsequently increased. Despite this extreme substructure, shared common ancestry among the high-altitude populations (Fig. 2C and Fig. 3) can be detected, and the Nepalese in general are distinguished from the Bhutanese and Tibetans (Fig. 2C) and they also cluster separately (Fig. 3). In a worldwide context, they share an ancestral component with South Asians (supplementary fig. S2). On the other hand, the Tibetans do not show detectable population substructure, probably due to a much more recent split in comparison with the other populations (Fig. 2C and supplementary fig. S6). The genetic similarity between the high-altitude populations, including Tibetans, Sherpa and Bhutanese, is also supported by their clustering together on the phylogenetic tree, the PCA generated from the co-ancestry matrix generated by fineSTRUCTURE (supplementary fig. S10 and S11), the lack of statistical significance for most of the D-statistics tests (Yoruba, Han; high-altitude Himalayan 1, high-altitude Himalayan 2), and the absence of correlation between the increased genetic affinity to lowland East Asians and the spatial location of the Himalayan populations (supplementary figs. S12 and S13). Together, these results suggest the presence of a single ancestral population carrying advantageous variants for high-altitude adaptation that separated from lowland East Asians, and then spread and diverged into different populations across the Himalayan region. (…)

Recent admixture events

Genetic structure of the Himalayan region populations from analyses using unlinked SNPs. C. ADMIXTURE (K values of 2 to 6, as indicated) analysis of the Himalayan samples. Note that most increases in the value of K result in single population being distinguished. Population codes in C are defined in supplementary table S1.

Himalayan populations show signatures of recent admixture events, mainly with South and East Asian populations as well as within the Himalayan region itself. Newar and Lhasa show the oldest signature of admixture, dated to between 2,000 and 1,000 years ago. Majhi and Dhimal display signatures of admixture within the last 1,000 years. Chetri and Bodo show the most recent admixture events, between 500 and 200 years ago (Fig. 4, supplementary tables S3). The comparison between the genetic tree and the linguistic association of each Himalayan population highlights the agreement between genetic and linguistic sub-divisions, in particular in the Bhutanese and Tibetan populations. Nepalese populations show more variability, with genetic sub-clusters of populations belonging to different linguistic affiliations (Fig. 3B). Modern high-altitude Himalayans show genetic affinity with ancient genomes from the same region (supplementary fig. S17), providing additional support for the idea of an ancient high-altitude population that spread across the Himalayan region and subsequently diverged into several of the present-day populations. Furthermore, Himalayan populations show a similar pattern of allele sharing with Denisovans as other South-East Asian populations (supplementary fig. S18 and S19). Overall, geographical isolation, genetic drift, admixture with neighbouring populations and linguistic subdivision played important roles in shaping the genetic variability we see in the Himalayan region today.


Reconstructing the genetic history of late Neanderthals


New paper (behind paywall) Reconstructing the genetic history of late Neanderthals, by Mateja Hajdinjak, Qiaomei Fu, Alexander Hübner, et al. Nature (2018).

Abstract (edited):

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment6 of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.

Phylogenetic relationships of late Neanderthals. a, Bayesian phylogenetic tree of mitochondrial genomes of 23 Neanderthals, 3 Denisovans, 64 modern humans and a hominin from Sima de los Huesos. The posterior probabilities for the branches are shown. b, Neighbour-joining tree of Y chromosome sequences of Mezmaiskaya 2, Spy 94a, 175 present-day humans21 and two present-day humans carrying the A00 haplogroup30. The number of substitutions is shown above the branches. c, Neighbour-joining tree of nuclear genomes based on autosomal transversions among late Neanderthals, Vindija 33.19, Mezmaiskaya 1, Altai Neanderthal, Denisovan and 12 present-day humans. Bootstrap support values after 1,000 replications are shown.

Interesting excerpts (edited):

(…) Mezmaiskaya 2 shared more derived alleles with the other late Neanderthals than with Mezmaiskaya 1 (− 2.13 ≤ Z ≤ − 9.56; Supplementary Information 9), suggesting that there was a population turnover towards the end of Neanderthal history. This turnover may have been the result of a population related to western Neanderthals replacing earlier Neanderthals in the Caucasus, or the replacement of Neanderthals in western Europe by a population related to Mezmaiskaya 2. The timing of this turnover coincides with pronounced climatic fluctuations during Marine Isotope Stage 3 between 60 and 24 ka, when extreme cold periods in northern Europe may have triggered the local extinction of Neanderthal populations and subsequent re-colonization from refugia in southern Europe or western Asia.

(…) the majority of gene flow into early modern humans appears to have originated from one or more Neanderthal populations that diverged from other late Neanderthals after their split from the Altai Neanderthal about 150 ka, but before the split from Mezmaiskaya 1 at least 90 ka. Owing to the scarcity of overlapping genetic data from Oase 1, whose genome revealed an unusually high percentage of Neanderthal ancestry11, we were unable to resolve whether one of these late Neanderthals was significantly closer than others to the introgressing Neanderthal in Oase 1.

Interbreeding between Neanderthals and early modern humans is likely to have occurred intermittently, presumably resulting in gene flow in both directions. However, when we applied an approach that uses the extended length of haplotypes expected from recent introgression into the analysed late Neanderthals, we did not find any indications of recent gene flow from early modern humans to the late Neanderthals. We caution that given the small number of analysed Neanderthals we cannot exclude that such gene flow occurred. However, it is striking that Oase 1, one of two early modern humans that overlapped in time with late Neanderthals, showed evidence for recent additional Neanderthal introgression whereas none of the late Neanderthals analysed here do. This may indicate that gene flow affected the ancestry of modern human populations more than it did Neanderthals


Two sources of archaic Denisovan ancestry in East Asia, one possibly after the isolation of Native Americans


Open access paper Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture, by Sharon L. Browning, Brian L. Browning, Zhou, Tucci, & Akey, Cell (2018).


Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan.

Mean detected archaic sequence per individual (Mb)

The discussion on the potential implication of the paper:

Featured image, from the article: Contour Density Plots of Match Proportion of Introgressed Segments to the Altai Neanderthal and Altai Denisovan Genomes.


Neanderthals did paint caves after all

U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art, by Hoffmann et al. Science (2018) 359(6378):912-915.

Neandertal cave art
It has been suggested that Neandertals, as well as modern humans, may have painted caves. Hoffmann et al. used uranium-thorium dating of carbonate crusts to show that cave paintings from three different sites in Spain must be older than 64,000 years. These paintings are the oldest dated cave paintings in the world. Importantly, they predate the arrival of modern humans in Europe by at least 20,000 years, which suggests that they must be of Neandertal origin. The cave art comprises mainly red and black paintings and includes representations of various animals, linear signs, geometric shapes, hand stencils, and handprints. Thus, Neandertals possessed a much richer symbolic behavior than previously assumed.

The extent and nature of symbolic behavior among Neandertals are obscure. Although evidence for Neandertal body ornamentation has been proposed, all cave painting has been attributed to modern humans. Here we present dating results for three sites in Spain that show that cave art emerged in Iberia substantially earlier than previously thought. Uranium-thorium (U-Th) dates on carbonate crusts overlying paintings provide minimum ages for a red linear motif in La Pasiega (Cantabria), a hand stencil in Maltravieso (Extremadura), and red-painted speleothems in Ardales (Andalucía). Collectively, these results show that cave art in Iberia is older than 64.8 thousand years (ka). This cave art is the earliest dated so far and predates, by at least 20 ka, the arrival of modern humans in Europe, which implies Neandertal authorship.

So, a very bad time to publish the recent article Drawings of Representational Images by Upper Paleolithic Humans and their Absence in Neanderthals Might Reflect Historical Differences in Hunting Wary Game



Neanderthal language revisited: speech old and shared with archaic humans


Neanderthal language revisited: not only us, by Dediu and Levinson, Curr Opin Behav Sci (2018) 21:49–55.


Here we re-evaluate our 2013 paper on the antiquity of language (Dediu and Levinson, 2013) in the light of a surge of new information on human evolution in the last half million years. Although new genetic data suggest the existence of some cognitive differences between Neanderthals and modern humans — fully expected after hundreds of thousands of years of partially separate evolution, overall our claims that Neanderthals were fully articulate beings and that language evolution was gradual are further substantiated by the wealth of new genetic, paleontological and archeological evidence briefly reviewed here.

The new data supports language and speech being old and shared with archaic humans. However, this does not rule out subtle and very interesting differences

Check out also the interesting open access article Drawings of Representational Images by Upper Paleolithic Humans and their Absence in Neanderthals Might Reflect Historical Differences in Hunting Wary Game, by Richard G. Coss.


Earliest modern humans outside Africa and ancient genomic history


Interesting new paper at Science, The earliest modern humans outside Africa, by Hershkovitz et al., Science (2018) Vol. 359, Issue 6374, pp. 456-459


Recent paleoanthropological studies have suggested that modern humans migrated from Africa as early as the beginning of the Late Pleistocene, 120,000 years ago. Hershkovitz et al. now suggest that early modern humans were already present outside of Africa more than 55,000 years earlier (see the Perspective by Stringer and Galway-Witham). During excavations of sediments at Mount Carmel, Israel, they found a fossil of a mouth part, a left hemimaxilla, with almost complete dentition.

The sediments contain a series of well-defined hearths and a rich stone-based industry, as well as abundant animal remains. Analysis of the human remains, and dating of the site and the fossil itself, indicate a likely age of at least 177,000 years for the fossil—making it the oldest member of the Homo sapiens clade found outside Africa.


To date, the earliest modern human fossils found outside of Africa are dated to around 90,000 to 120,000 years ago at the Levantine sites of Skhul and Qafzeh. A maxilla and associated dentition recently discovered at Misliya Cave, Israel, was dated to 177,000 to 194,000 years ago, suggesting that members of the Homo sapiens clade left Africa earlier than previously thought. This finding changes our view on modern human dispersal and is consistent with recent genetic studies, which have posited the possibility of an earlier dispersal of Homo sapiens around 220,000 years ago. The Misliya maxilla is associated with full-fledged Levallois technology in the Levant, suggesting that the emergence of this technology is linked to the appearance of Homo sapiens in the region, as has been documented in Africa.

Beautifully complementing this anthropological research, the open access review Insights into Modern Human Prehistory Using Ancient Genomes, by Melinda A. Yang and Qiaomei Fu, Trends in Genetics (2018), depicts potential later migrations:

Key Figure: Schematic of Populations in Eurasia and the Americas (Bottom Right) during Ancient Modern A (AMA, ∼45–35 ka), Ancient Modern B (AMB, ∼34–15 ka), and Ancient Modern C (AMC, ∼14–7.5 ka).

Abbreviations: AMER, ancestry related to present-day Native Americans and Anzick 1; ANE, ancestry related to ancient North Eurasians represented by Mal’ta 1; EAS, ancestry related to present-day East Asians and the Tianyuan and Devil’s Gate individuals; EUR, ancestry related to ancient Europeans and found partially in present-day Europeans; NE, ancestry related to an unsampled population known as Basal Eurasian and found in partial amounts in ancient and present-day populations of the Near East and in present-day Europeans. Broken lines indicate no ancient genetic samples have been found for a population with the inferred ancestry. Colors loosely indicate genetic groupings between or within a region, with color gradients showing the connections (i.e., gene flow) that may exist between different ancient populations. A summary of major events in each of the time periods is on the left.


Eurasia ∼45–35 ka shows the presence of at least four distinct populations: early Asians and Europeans, as well as populations with ancestry found hardly or not at all in present-day populations.

Europeans from around 34–15 ka show high internal population structure.

Approximately 14–7.5 ka, populations across Eurasia shared genetic similarities, suggesting greater interactions between geographically distant populations.

Ancient modern human genomes support at least two Neanderthal admixture events, one ∼60–50 ka in early ancestors of non-African populations and a second >37 ka related to the Oase 1 individual.

A gradual decline in archaic ancestry in Europeans dating from ∼37 to 14 ka suggests that purifying selection lowered the amount of Neanderthal ancestry first introduced into ancient modern humans.

The genetic relationship of past modern humans to today’s populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45 000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa.

(Both articles discovered via Iosif Lazaridis Twitter account).

See also:

Optimal Migration Routes of Initial Upper Palaeolithic Populations to Eurasia


Ecological Niche and Least-Cost Path Analyses to Estimate Optimal Migration Routes of Initial Upper Palaeolithic Populations to Eurasia, by Kondo et al. (2018), from The Middle and Upper Paleolithic Archeology of the Levant and Beyond, Replacement of Neanderthals by Modern Humans Series. Chapter downloadable at


This paper presents a computer-based method to estimate optimal migration routes of early human population groups by a combination of ecological niche analysis and least-cost path analysis. In the proposed method, niche probability is predicted by MaxEnt, an ecological niche model based on the maximum entropy theory. Location of known archaeological sites and environmental factors derived from palaeoterrain and palaeoclimate models, are input to the model to calculate the niche probability at each spatial pixel and weights of the environmental factors. The inverse of probability score is then used as an index of relative dispersal rate to accumulate the travel cost from a given origin. Based on this cumulative cost surface, least-cost paths from the origin to given destinations are visualised. This method was applied to the Initial Upper Palaeolithic population group (probably of modern humans) in Eurasia. The model identified three migration routes from the Levant to (1) Central Europe via Anatolia and Eastern Europe, (2) the Russian steppe via Caucasus Mountains, and (3) the Altai region via the southern coastal Iran and Afghanistan.

Cumulative cost to the southernmost IUP site (Wadi Aghir) using the inverse of the niche probability of the recovery experiment (corresponding to a warm/humid phase) as friction value

Check out also the chapter The Middle to Upper Paleolithic Transition in the Zagros: The Appearance and Evolution of the Baradostian, by Sonia Shidrang, from the same book. Also downloadable at

Featured image from the chapter: “Niche probability for the IUP lithic industry predicted by MaxEnt using the palaeoclimate model from the recovery experiment (corresponding to a warm/humid phase).”

See also:

Two more studies on the genetic history of East Asia: Han Chinese and Thailand


A comprehensive map of genetic variation in the world’s largest ethnic group – Han Chinese, by Charleston et al. (2017).

It is believed – based on uniparental markers from modern and ancient DNA samples and array-based genome-wide data – that Han Chinese originated in the Central Plain region of China during prehistoric times, expanding with agriculture and technology northward and southward, to become the largest Chinese ethnic group.


As are most non-European populations around the globe, the Han Chinese are relatively understudied in population and medical genetics studies. From low-coverage whole-genome sequencing of 11,670 Han Chinese women we present a catalog of 25,057,223 variants, including 548,401 novel variants that are seen at least 10 times in our dataset. Individuals from our study come from 19 out of 22 provinces across China, allowing us to study population structure, genetic ancestry, and local adaptation in Han Chinese. We identify previously unrecognized population structure along the East-West axis of China and report unique signals of admixture across geographical space, such as European influences among the Northwestern provinces of China. Finally, we identified a number of highly differentiated loci, indicative of local adaptation in the Han Chinese. In particular, we detected extreme differentiation among the Han Chinese at MTHFR, ADH7, and FADS loci, suggesting that these loci may not be specifically selected in Tibetan and Inuit populations as previously suggested. On the other hand, we find that Neandertal ancestry does not vary significantly across the provinces, consistent with admixture prior to the dispersal of modern Han Chinese. Furthermore, contrary to a previous report, Neandertal ancestry does not explain a significant amount of heritability in depression. Our findings provide the largest genetic data set so far made available for Han Chinese and provide insights into the history and population structure of the world’s largest ethnic group.

Using Shanghai individuals as representatives, shared drift between Chinese and ancient humans are computed by calculating the outgroup f3 statistics of the form f3(Mbuty;X, Y), with ancient individuals separated into approximately Palaeolithic, Mesolithic, Neolithic , and Chalcolithic-Medieval times. it is found that modern Chinese individuals show greater shared drift with pre-Neolithic hunter-gatherers rather than Neolithic farmers (Featured image from the article).

EDIT (17/7/2017): Davidski at Eurogenes shares an interesting view on this kind of results:

These sorts of estimates always look way off. And I doubt that it’s largely the result of the Silk Road, which linked China to the Near East and Mediterranean rather than to Northern Europe. More likely it reflects gene flow from the Pontic-Caspian steppe in Eastern Europe during the Bronze and Iron ages, via the Afanasievo, Andronovo, and other closely related steppe peoples

New insights from Thailand into the maternal genetic history of Mainland Southeast Asia, by Kutanan et al. (2017)


Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1,234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA sequences from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the extension and expansion of TK people through MSEA, although there is also some support for an admixture model. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.