Proto-Tocharians: From Afanasievo to the Tarim Basin through the Tian Shan

tocharians-early-eneolithic

A reader commented recently that there is little information about Indo-Europeans from Central and East Asia in this blog. Regardless of the scarce archaeological data compared to European prehistory, I think it is premature to write anything detailed about population movements of Indo-Iranians in Asia, especially now that we are awaiting the updates of Narasimhan et al (2018).

Furthermore, there was little hope that Tocharians would be different than neighbouring Andronovo-like populations (see a recent post on my predicted varied admixture of Common Tocharians), so the history of both unrelated Late PIE languages would have had to be explained by the admixture of Afanasievo-related groups with peoples of Andronovo descent and their acculturation.

However, data reported recently by Ning, Wang et al. Current Biology (2019) confirmed that peoples of mainly Afanasievo ancestry – as opposed to those of Corded Ware-related ancestry expanding with the Srubna-Andronovo horizon – spread the Tocharian branch of Proto-Indo-European from the Altai into the Tian Shan area, surviving essentially unadmixed into the Early Iron Age.

This genetic continuity of Tocharians will no doubt help us disentangle a great part the ethnolinguistic history of speakers of the Tocharian branch of Proto-Indo-European, from Pre-Proto-Tocharians of Afanasievo to Common Tocharians of the Late Bronze Age/Iron Age eastern Tian Shan.

NOTE. Tocharian’s isolation from the rest of Late PIE dialects and its early and intense language contacts have always been the key to support an early migration and physical separation of the group, hence the traditional association with Afanasievo, a late Repin/early Yamna offshoot. Even with the current incomplete archaeological and genetic picture, there is no other option left for the expansion of Tocharian.

It is not possible to use the currently available ancestry data to map the evolution of Afanasievo ancestry, lacking a proper geographical and temporal transect of Central and East Asian groups. In spite of this, Ning, Wang, et al. (2019) is a huge leap forward, discarding some archaeological models, and leaving only a few potential routes by which Tocharians may have spread southward from the Altai.

NOTE. I have updated the maps of prehistoric cultures accordingly, with colours – as always – reflecting the language/ancestry evolution of the different groups, even though the archaeological data of some groups of Xinjiang remains scarce, so their ethnolinguistic attribution – and the colours picked for them – remain tentative.

xinjiang-andronovo-xiaohe-horizon-bronze-iron-age
A rough timeline of related archaeological sites from North Eurasia. Image modified from Yang (2019).

Tocharians

The recent book Ancient China and its Eurasian Neighbors. Artifacts, Identity and Death in the Frontier, 3000–700 BCE, by Linduff, Sun, Cao, and Liu, Cambridge University Press (2017) offers an interesting summary of the introduction of metalworking into western China.

Here are some relevant excerpts (emphasis mine):

Although [the Xinjiang] route is not uniformly agreed upon (Shelach-Lavi 2009: 134–46), this western transmission has been thought to have passed through eastern Kazakhstan, especially as it is manifest in Semireiche, with Yamnaya, Afanasievo (copper) and Andronovo (tin bronze) peoples (Mei 2000: Fig. 3). From Xinjiang this knowledge has been thought to have traveled through the Gansu Corridor via the Qijia peoples (Bagley 1999) and then into territories controlled by dynastic China. The dating of this process is still a problem, as the sites and their contents in Xinjiang are consistently later than those in Gansu, suggesting that the point of contact was in Gansu and that the knowledge then spread from there westward.

1. Eneolithic Altai

tocharians-chalcolithic-eneolithic
Afanasievo expansion ca. 3300-2600 BC. See full culture and ancient DNA maps.

The Afanasievo sites, as they are identified in Mongolia, for instance, make up an Eneolithic culture analogous to that of southern Siberia (3100/2500–2000 BCE) in the Upper Yenissei Valley that is characterized by copper tools and an economy reliant on horse, sheep and cattle breeding as well as hunting. (…) The Afanasievo is best known through study of its burials, which typically include groups of round barrows (kurgans), each up to 12 m in diameter with a stone kerb and covering a central pit grave containing multiple inhumations. In their Siberian context, burial pottery types and styles have suggested contacts with the slightly earlier Kelteminar culture of the Aral and Caspian Sea area.

The Afanasievo culture monuments, located in the northern Altai and in the Minusinsk Basin (the western Sayan), have been seen as analogous evidence for cross-Eurasian exchange. These complexes contain small collections of metal, and many of the items are made of brass, although golden, silver and iron ornaments were also identified. A mere one-fourth of these objects are tools and ornaments, while the rest consist of unshaped remains and semi-manufactured objects. Its metallurgical tradition has recently been dated by Chernykh to as early as 3100 to 2700 BCE (1992),making it more compatible chronologically with the early brass-using sites in Shaanxi mentioned above. Kovalev and Erdenebaatar have excavated barrows in Bayan-Ulgii, Mongolia, that have been carbon-dated to the first half of the third millennium BCE and associated by ceramic types and styles and burial patterns with the Afanasievo (Kovalev and Erdenebaatar 2009: 357–58). These mounded kurgans were covered with stone and housed rectangular, wooden-faced tombs that included Afanasievo-type bronze awls, plates and small “leaf-shaped” knife blades (Kovalev and Erdenebaatar 2009: Figs. 6 and 7).

They also excavated sites belonging to the more recently identified Chemurchek archaeological culture, located in the foothills of the Mongolian Altai (Kovalev 2014, 2015) (Fig. 2.6). These sites are carbon-dated to the same period as the Afanasievo burials or to c. 3100/2500–1800 BCE (six barrows in Khovd aimag and four in Bayan-Ulgo aimag). In the rectangular stone kerbed Chemurchek slab burials (Ulaaanhus sum, Bayan-ul’gi aimag and so forth), bronze items included awls; and at Khovd aimag, Bulgan sum, in addition to stone sculptures, three lead and one bronze ring were excavated (Kovalev and Erdenebaatar 2009: Figs. 2 and 3; Fig. 2.6). Although we will not know if they were produced locally until much further investigation is undertaken, these discoveries do document knowledge of various uses and types of metal objects in western and south central Mongolia. The types of metal items thus far recovered are simple tools (awls) and rings (ornamental?) not unlike those associated with Andronovo archaeological cultures as well.

This is a complex circumstance where archaeological evidence is not complete, but raises very important questions about transmission of metallurgical knowledge to and from areas in present-day China. In the 1970s some Afanasievo mounds were excavated in Central Mongolia by a Soviet–Mongolian expedition led by V. V. Volkov and E. A. Novgorodova (Novgorodova 1989: 81–85). Unfortunately, these mounds did not yield metal objects, only ceramics, but they show that the Afanasievo culture with the Eneolithic metallurgical tradition of manufacturing pure copper items had already moved east at least far as central Mongolia. In 2004, Kovalev and Erdenebaatar investigated a large Afanasievo mound, Kulala ula, in the extreme northwest of Mongolia, near the Russian border (Kovalev and Erdenebaatar 2009). There they found a copper knife and awl (Fig. 2.5). There are five C14 dates on wood, coal and human bones from this mound, which belong to the period 2890–2570 BCE. This shows that the Afanasievo culture were carriers of technology and produced artifacts in the first half of the third millennium BCE and that they also moved south along the foothills of the Mongolian Altai. Afanasievo culture in Altai and the Minusinsk basin is dated by C14 to 3600–2500 BCE (Svyatko et al. 2009; Polyakov 2010). In the north of Xinjiang in the Altai district, several typical egg-shaped vessels and two censers of Afanasievo types were found. Some of these have been obtained from the stone boxes (chambers of megalithic graves of the Chemurchek culture) (Kovalev 2011). Thus, the Afanasievo tradition of pure copper metallurgy must have spread to the northern foothills of the Tienshan Mountains no later than the mid-third millennium BCE. The links with Afanasievo and local cultures adjacent to and south of the mountains into present-day China can now be assumed.

tocharians-chalcolithic-late
Afanasievo – Chemurchek evolution ca. 2600-2200 BC. See full culture and ancient DNA maps.

2. Bronze Age Altai

Kovalev and Erdenebaatar (2014a) and later Tishkin, Grushin, Kovalev and Munkhbayar (2015) in Western Mongolia conducted large-scale excavations of megalithic barrows of the Chemurchek culture (dated about 2600–1800 BCE). This peculiar culture appeared in Dzungaria and the Mongolian Altai in the second quarter of the third millennium BCE and for some time existed together with the late Afanasievo culture, as evidenced by the findings of Afanasievo ceramics in Chemurchek graves, in the stone boxes. Unfortunately, in China we do not yet know of any metal object related,without doubt, to the Chemurchek culture. Kovalev, Erdenebaatar, Tishkin and Grushin found several leaden ear rings and one ring of tin bronze in three excavated Chemurchek stone boxes (Kovalev and Erdenebaatar 2014a; Tishkin et al. 2015). Such lead rings are typical for Elunino culture,which occupied the entire West Altai after 2400–2300 BCE (Tishkin et al. 2015). This culture had developed a tradition of bronze metallurgy with various dopants, primarily tin. Thus, the tradition of bronze metallurgy as early as this time could have penetrated the Mongolian Altai far to the south. In addition, in the Hadat ovoo Chemurchek stone box, Kovalev and Erdenebaatar discovered stone vessels refurbished with the help of copper “patches,” indicating the presence there of metallurgical production (Fig. 2.7) (Kovalev and Erdenebaatar 2014a). In one of the secondary

Chemurchek graves unearthed by Kovalev and Erdenebaatar in Bayan-Ulgi (2400–2220 BCE), a bronze awl was found (Kovalev and Erdenebaatar 2009). Kovalev and Erdenebaatar also discovered a new culture in the territory of Mongolia (Map 2.3), one that begins immediately after Chemurchek – Munkh-Khairkhan culture (Kovalev and Erdenebaatar 2009, 2014b). To date, about 17 mounds of this culture have been excavated in Khovd, Zavkhan, Khovsgol, Bulgan aimag of Mongolia. This culture dates from about 1800 to 1500 BCE, that is, contemporary with the Andronovo culture. Therefore, the Andronovo culture does not extend far into the territory of Mongolia. Three knives without dedicated handles or stems and five awls have been found in the Munkh-Khairkhan culture mounds (Fig. 2.8). All these products are made of tin bronze. (…) Additionally, eight Late Bronze Age burials (c. 1400–1100 BCE) were unearthed in the Bulgan sum of Khovd aimag and belong to another previously unknown culture called Baitag. And in the Gobi Altai, a new group of “Tevsh” sites dating to the Late Bronze Age were defined in Bayankhongor and South Gobi aimags (Miyamoto and Obata 2016: 42–50). From these Tevsh and Baitag sites, we see the expansion of burial goods to include beads of semiprecious stones (carnelian), bronze beads, buttons and rings and even the famous elaborate golden hair ornaments (Tevsh uul;Bogd sum;Uverkhanagia aimag) from the Baitag barrows (Kovalev and Erdenebaatar 2009: Fig. 5; Miyamoto and Obata 2016).

2.1. Chemurchek

About the Chemurchek culture, from A re-analysis of the Qiemu’erqieke (Shamirshak) cemeteries, Xinjiang, China, by Jia and Betts JIES (2010) 38(4):

The major characteristics of Qiemu’erqieke Phase I include:

  1. Burials with two orientations of approximately 20° or 345°.
  2. Rectangular enclosures built using large stone slabs. The size of the enclosure varies from a maximum of 28 x 30 m.*to a minimum of 10.5 x 4.4 m. (Figure 8, Table 2).
  3. *The stone enclosure located near Hayinar is the largest one at approximately 30 x 40 m. based on pacing of the site during a visit by the authors in 2008.

  4. Almost life-sized anthropomorphic stone stelae erected along one side of the stone enclosures (Lin Yun 2008).
  5. Single enclosures tend to contain one or more than one burial, all or some with stone cist coffins.
  6. The cist coffin is usually constructed using five large stone slabs, four for the sides and one on top, leaving bare earth at the base (Zhang Yuzhong 2007). Sometimes the insides of the slabs have simple painted designs (Zhang Yuzhong 2005).
  7. Primary and secondary burials occur in the same grave.
  8. Some decapitated bodies (up to 20) may be associated with the main burial in one cist.
  9. Bodies are commonly placed on the back or side with the legs drawn up.
  10. Grave goods include stone and bronze arrowheads, handmade gray or brown round-bottomed ovoid jars, and small numbers of flat-bottomed jars (Fig. 7).
  11. Clay lamps appear to occur together with roundbottomed jars.
  12. Complex incised decoration on ceramics is common but some vessels are undecorated.
  13. The stone vessels are distinctive for the high quality of manufacture.
  14. Stone moulds indicate relatively sophisticated metallurgical expertise.
  15. Artefacts made from pure copper occur.
  16. Sheep knucklebones (astragali) imply a tradition (as in historical and modern times) of keeping knucklebones for ritual or other purposes. They also indicate the herding of domestic sheep as part of the subsistence economy.
tocharians-bronze-age-early
Chemurchek culture ca. 2200-1750 BC. See full culture and ancient DNA maps.

Chemurchek dating

Available evidence suggests that the date range for Qiemu’erqieke Phase I should fall from the later third into the early second millennium BC. There are several reasons to suggest that the time span is around the early second millennium BC. Lin Yun (2008) (…) maintains that the bronze artefacts found in Phase I show a greater sophistication in the level of copper alloy technology than that of the pure copper artefacts common to the Afanasievo tradition. On this basis it might be suggested that the Afanasievo could be considered to be Chalcolithic with a time span across much of the third millennium BC ( Gorsdorf et al. 2004: 86, Fig. 1). Qiemu’erqieke Phase I, however, should more properly be considered as Bronze Age.

Lin Yun also used the bronze arrowhead from burial Ml 7 to narrow down the date of Qiemu’erqieke Phase I. Two arrowheads were found in this burial, one of them leaf shaped with a single barb on the back (Fig. 7:4). A similar arrowhead, together with its casting mould, has been found at the Huoshaogou site of Siba tradition (Li Shuicheng 2005, Sun Shuyun and Han Rufen 1997), in Gansu province, northwest China, dated around 2000-1800 BC (Li Shuicheng and Shui Tao 2000) . This supports a date in the early second millennium BC for the Qiemu’erqieke arrowhead. The painted, round-bottomed jar from the Tianshanbeilu cemetery Qia Weiming, Betts and Wu Xinhua 2008: Fig. 7, bottom left) has been considered as a hybrid between the Upper Yellow River Bronze Age cultures of Siba in northwest China and the steppe tradition of Qiemu’erqieke in west Siberia (Li Shuicheng 1999). If this assumption is correct, the date of Tianshanbeilu, around 2000 BC, can be used as a reference for Qiemu’erqieke Phase I (Jia Weiming, Betts and Wu Xinhua 2008, Lin Yun 2008, Li Shuicheng 1999). Stone arrowheads found in Qiemu’erqieke Phase I also imply that the date is likely to fall within the earlier part of the Bronze Age as no such stone arrowheads have yet been found elsewhere in sites of the Bronze Age in Xinlang dated after the beginning of the second millennium BC.*
*For example Chawuhu and Xiaohe cemeteries (Xinjiang Institute of Archaeology 1999, 2003).

pottery-afanasevo-chemurchek
Pottery of Afanasevo and East European traits from the Chemurchek complex. Image modified from Kovalev (2017).

(…) Pottery “oil burners” (goblet-like ceramic vessels, possibly lamps) have been found in three traditions: Afanasievo (Gryaznov and Krizhevskaya 1986:21), Okunevo and Qiemu’erqieke. It is believed that this oil-burner found in Siberia and the Altai is a heritage from the Yamnaya and Catacomb
cultures (Sulimirski 1970: 225, 425; Shishlina 2008:46) in the Caspian steppe further to the west, but does not seem to exist in known Andronovo cultures.
The oil-burner tends to disappear after around 2300 BC during the mid-Okunevo period. It is, however, possible that the tradition continues longer in the Qiemu’erqieke sites.

The construction of the stone enclosures also reveals a close connection between Qiemu’erqieke Phase I and the mid and late Okunevo tradition (Sokolova 2007). Slab built stone enclosures emerged in both the Okunevo and Afanasievo traditions (Gryaznov and Krizhevskaya 1986:15-23, Kovalev 2008, Sokolova 2007, Anthony 2007:310, Koryakova and Epimakhov 2007). In the early Afanasievo the enclosure is circular with no cist coffin (Anthony 2007:310, Gryaznov and Krizhevskaya 1986:20), but in the early stage of the Okunevo square stone enclosures with a single cist burial are dominant. Square or rectangular stone enclosures are a marked feature of Qiemu’erqieke Phase I, suggesting temporal relationships between Qiemu’erqieke Phase I and the Okunevo. In Okunevo chronological group II, possibly with influence from the Anfanasievo, circular stone enclosures appeared in combination with rectangular enclosures within individual cemeteries, referred to by Sokolova (2007: table 2) as hybrid examples. By Okunevo chronological group III, rectangular stone slab enclosures with multi-burials emerged again. This is the dominant form in Qiemu’erqieke Phase I. Okunevo burial traditions changed again to single cist burials in the late stage around chronological group V ( Sokol ova 2007). A specific mortuary rite of decapitated burials exists in both the Qiemu’erqieke and Okunevo traditions (Sokolova 2007, Chen Kwang-tzuu and Hiebert 1995), as does the occasional occurrence of painted designs on the interior of the slabs forming the cists ( e.g., Khavrin 1997: 70, fig. 4; 77: tab. IV.5). Based on these comparisons, the date of Qiemu’erqieke Phase I may well parallel that of the Okunevo from at least chronological group II around 2400 BC (Gorsdorf et al. 2004: fig. 1).

khuh-udzuur-barrow
Khuh Udzuuriin I-1 elite barrow (ca. 2470-2190 BC). Modified from Image modified from Kovalev (2014).

In addition to the pottery making tradition, the anthropomorphic stone stelae may also have earlier antecedents. In the Okunevo assemblage there are anthropomorphic stelae that are longer, thinner and more abstract than those of Qiemu’erqieke. There is no indication of such stelae in the Afanasievo tradition (Gryaznov and Krizhevskaya 1986:15-23). However, further to the west, anthropomorphic stone stelae are associated with the Kemi-Oba and Yamnya cultures around the third millennium BC (Telegin and Mallory 1994; Figure 13). Some major characteristics of these stelae such as the icons on the front face of the stelae (Telegin and Mallory 1994:8-9) also appear on stelae found in Qiemu’erqieke Phase I. Recalling the oil burners that may have been inherited from the Yamnya culture and which are found in the Afansievo, Okunevo and Qiemu’erqieke Phase I, it migh t be possible to speculate that Qiemu’erqieke Phase I has its origins even earlier than the first half of the third millennium BC. This idea has also been suggested by Kovalev ( 1999).

Despite the affinities with the Okunevo cultural tradition, Qiemu’erqieke Phase I appears to be a discrete regional variant. The ceramic assemblage shows traits unique to this cluster of sites, while the anthropomorphic stelae are also distinctive markers of this tradition.

khuh-udzuur-stela
Khuh Udzuur anthropomorphic stone stela, oriented toward the south – south-east. Image modified from Kovalev (2014).

3. Bronze Age Xinjiang

I recently reported on this blog the description of Xiaohe and Gumugou cemeteries from interesting Master’s thesis Shifting Memories: Burial Practices and Cultural Interaction in Bronze Age China: A study of the Xiaohe-Gumugou cemeteries in the Tarim Basin, by Yunyun Yang, Uppsala University, Department of Archaeology and Ancient History (2019).

It also offered a full summary of findings from prehistoric sites of Xinjiang related to the arrival of a cultural package from the Altai region, ultimately connected to Afanasievo. Relevant excerpts include the following (emphasis mine):

In Bronze Age Xinjiang, burials were diverse but also show some common features between different geographic sections. The main three mountains, including Kunlun Mountains, Tian Shan (mountains) and Altai Mountains, enclose the Tarim Basin, and the Dzungaria Basin, but leave the eastern part of the Tarim Basin and the south-eastern part of the Dzungaria Basin open (with easy access to the surroundings). The Hami Basin is located at the transitional area, connecting the two basins. Burials are mainly spread along the edge of the mountain ranges.

xinjiang-afanasievo-andronovo-bmac-tian-shan
An assumption of the spreading/expansion routes stone burial construct.

3.1. The Lop Nur region

In the Lop Nur region, the Xiaohe cemetery (2000-1450 BCE) and the Gumugou cemetery (1900-1800 BCE) had many common features shared, and so is the Keliyahe northern cemetery:

  • Cemeteries were located in sandy areas;
  • Rectangular/boat-shaped wooden coffins with monuments of wooden planks or poles;
  • Coffins had no bottoms;
  • The dead were placed lying straight on the back;
  • The dead were commonly buried in single graves.

The Gumugou cemetery contained six special sun-radiating-spokes burial pattern in addition to the normal burials, which were similar to the wooden coffin graves of the Xiaohe cemetery.

NOTE. For more on Xiaohe and Gumugou, see the recent post on Proto-Tocharians. See other papers on the Andronovo horizon for other Early to Middle Bronze Age cultural groups less clearly associated with the Xiaohe horizon, like Hazandu, Xintala, or the Chust culture.

From Shuicheng (2006):

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority. The composition of alloy did not show significant change over time. Some colleagues pointed out that the Nulasai 奴拉赛 site at Nileke 尼勒克 County in the Yili 伊犁 River basin of Xinjiang was the pioneer in the use of “sulphuric ore–ice copper–copper”technology. It is also the only early smelting site in Euro-Asia that arsenic ore was added to deliberately produce an alloy

tocharians-bronze-age-middle
Prehistoric cultures of Xinjiang during the Middle Bronze Age. See full culture and ancient DNA maps.

3.2. The Hami Basin-the Balikun Grassland

From Yang (2019):

The Hami Basin-the Balikun Grassland area is located at the eastern part of Tian Shan. The area is divided in a northern basin and a southern basin by the east-west stretch of the Tian Shan. In the Hami Basin-the Balikun Grassland area, the main type of burials were earth-pit graves in the early Bronze Age, and burials of stone-pit with barrows became more common in the late Bronze Age. The Hami-Tianshan-Beilu cemetery is a representative of the earth-pit graves. The features of the Hami-Tianshan-Beilu cemetery (2000-1500 bce) here were:

  • Rectangular earth pit graves;
  • The dead were often in a hocker position lying on one side;
  • Commonly a single dead in one grave.
balikun-grassland
The Balikun grassland today (source).

The Hami-Wubu cemetery (earlier than 1000 bce) and the Yanbulake cemetery (1200-600 bce) are representatives of another common earth-pit graves. Common features here were:

  • Rectangular earth pits, with two storeys and/or roofed with wooden boards;
  • The dead was placed in a hocker position lying on one side;
  • Mostly a single dead in one grave.

Later there appeared more stone-pit graves in this area, and the features can be summarized as:

  • Round burial mounds, commonly constructed by stones or a mix of stones and earth;
  • Burial mounds with a sunken top or a normal (dome) top;
  • The diameter of the burial mounds varied between 3 and 25.4 m (but not necessarily limited in this scope);
  • Circular or rectangular stone kerbs;
  • Rectangular stone pits, constructed by earth, or stones, or a mix of earth and stones;
  • Rectangular stone pits contained wooden coffins (represented by the Yiwu Baiqi’er cemetery).
hami-basin-balikun-grassland-iron-age-burials
Some representatives of stone burials in the Hami Basin – the Balikun Grassland in the Iron Age (Adapted from: Xinjiang 2011, 29-41). Image modified from Yang (2019).

In the Hami Basin, the Bronze Age cemeteries show common burial features like earth pits and hocker position of the dead. With similar pottery styles in the Hami-Tianshan-Beilu cemetery to those in the Machang and Siba cultures (Xinjiang 2011: 17), it suggests possible cultural influence or people’s migrating from the Hexi Corridor in the east.

In the Balikun Grassland, burials in an earlier time contained mostly earth-pit graves but also a small number of stone-pit graves. The pebbles were imbedded in the floors and the walls of the graves in a rectangular shape, e.g. the Balikun-Nanwan cemetery (1600-1000 bce). In a later time, there appeared huge burial mounds with a sunken top, and with the diameters of the burial mounds varying from 3 to 25.4 m, e.g. the Balikun-Dongheigou cemetery and the Balikun-Heigouliang cemetery. The Yiwu-Bai’erqi and the Yiwu-Kuola cemeteries contained either round stone burial mounds or circular stone kerbs on the ground surface. Considering the three burial elements including burial mounds, stone pits and circular kerbs, the later period cemeteries in the Balikun Grassland were actually similar to cemeteries from the southern edge of the Altai Mountain area.

From Shuicheng (2006):

The Nanwan 南湾 cemetery site at Kuisu 奎苏 Town, Balikun 巴里坤 (1600–1100 BC) also yielded an assemblage of early bronzes. The style of its early phase artifacts is similar to that of the burials distributed in the North Tianshan Route. Some sorts of cultural connection should have existed between the two.

The dates of Yanbulake 焉不拉克 Culture (1300–700 BC) are comparatively late. Its metallurgy was a continuation of the western China tradition. Artifact types include a variety of utilitarian tools, weapons and apparels.

tocharians-bronze-age-late
Prehistoric cultures of Xinjiang during the Late Bronze Age. See full culture and ancient DNA maps.

3.3. The Turpan Basin-the middle part of Tian Shan

From Yang (2019):

Turpan Basin is located at the western part of the Hami Basin, and lies at the southern edge of the eastern Tian Shan. In the Turpan Basin-the middle part of Tian Shan area, the main representative of the Bronze Age cemeteries is the Yanghai Nr.1 cemetery. The features here were:

  • Elliptic earth pit graves, commonly covered by round logs on the top;
  • Some graves contained burial beds made of round logs or reeds;
  • The dead were mainly placed lying straight on the back;
  • Mostly a single dead in one grave.

In Iron Age, the stone burials became dominant, but the stone burials varied in different regions of the Turpan Basin-the middle part of Tian Shan area. Graves containing burial mounds, stone pit, and circular stone kerbs are represented by the Shanshan-Ertanggou cemetery, the Tuokexun-Alagou cemetery, the Urumqi-Chaiwobu cemetery and the Urumqi-Yizihu-Sayi cemetery, etc. The stone funeral construction features here are similar to those contemporary cemeteries in the Hami Basin-the Balikun Grassland area.

3.4. The southern edge of the western and middle part of Tian Shan

In the southern edge of the western and middle part of Tian Shan area, the main representatives of the late Bronze Age cemeteries are the Hejing-Chawuhu Nr.4 cemetery (around 1000-500 bce), the Hejing-Xiaoshankou cemetery, the Baicheng-cemetery, etc. The main burial features of the late Bronze Age and the early Iron Age cemeteries (see Fig.12) here were:

  • Burial mounds, constructed by stones or a mix of stones and earth;
  • Irregular circular or rectangular stone kerbs;
  • Stone pit graves in a bell-shape or a rectangular shape;
  • Stone pit graves constructed by imbedding pebbles or stone slabs in walls and floors;
  • The dead were often placed lying on their back with bent legs;
  • The dead were commonly reburied a second time with multiple burials.

From the late Bronze Age to the early Iron Age in this area, the burial traditions tended to be in a more varied way. In the stone burials with stone kerbs, there is a mixture of stone pit and earth pit graves. The burial features of the Iron Age cemeteries in this section were similar to those contemporary both in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area.

From Shuicheng (2006):

The Chawuhu 察吾呼 Culture (1100–500 BC) distributes on the foothills between the middle section of the Tianshan Mountain Ranges and Tarim River. Its bronze assemblage comprises a variety of weapons, utilitarian tools and small apparels. They show no apparent temporal change in form and type through the four cultural phases. In addition, bronzes bear the Chawuhu characteristics were found in Hejing 和静, Baicheng 拜城 and Luntai 轮台 (Bügür). Yet, sites distributed along the Tarim River, such as Heshuo 和硕, Kuga 库车and Aksu 阿克苏, yielded remains of a bronze culture different from that of Chawuhu. Bronzes recovered include double-eared socketed axe, arrowheads, awls, knives, needles and bracelets. Their absolute dates have been estimated to be earlier than that of Chawuhu.

tocharians-iron-age-early
Prehistoric cultures of Xinjiang during the Early Iron Age. See full culture and ancient DNA maps

3.5. The Pamir Plateau

From Yang (2019):

A typical Bronze Age cemetery from the Pamir Plateau area is the Tashenku’ergan-Xiabandi cemetery (around 1000-500 bce). The burial features here were:

  • Mainly inhumations, but also a few cremations;
  • Burial mounds, constructed of stones;
  • Irregular circular or rectangular stone kerbs;
  • Mostly a single dead in one grave;
  • The dead was placed in a hocker position lying on one side.

The adoption of burial customs from the east supports the migration of Afanasievo-related peoples from the Tian Shan up to the Pamir Plateau, strongly influencing the findings of the Xiabandi cemetery, which has been dated from an early Bronze Age phase (ca. 1500-300 BC) to a late date up to ca. 600 BC.

While it is today unclear how far the Afanasievo admixture reached into the western Xinjiang, it seems that the Pamir Plateau remained culturally connected to neighbouring Andronovo-related cultures in pottery and metallurgical innovations, hence their language probably belonged – during most part of the Bronze and Iron Ages – to the Indo-Iranian branch, even though specific dialects might have changed with each new attested group.

In particular, it is possible that the early Andronovo groups related to the Xiaohe Horizon spoke Indo-Aryan or West Iranian dialects, while Saka-related groups replaced them – or an intermediate Tocharian-speaking group – with East Iranian dialects. A close interaction with West Iranian would justify the known ancient borrowings of Tocharian, although they could also be explained by contacts with Chust-related groups farther west. For more on this, see Ged Carling’s work on the different layers of Iranian loans.

Xinjiang BA/IA Summary

From Yang (2019):

In the early Bronze Age, there are distinct regional differences in the burial customs in and surrounding the Tarim Basin. At the southern edge of the Altai Mountains area, the burial customs included stone burial mounds, stone pit graves, circular or rectangular stone kerbs and stone human sculptures; the dead were placed lying straight on the back. In the Hami Basin-the Balikun Grassland area, the burial customs included earth pit graves; the dead were placed in a hocker position lying on one side. In the Turpan Basin-the middle part of Tian Shan area, the burial customs included earth pit graves; the dead were placed lying straight on the back. In the Lop Nur region, the burial customs included wooden coffins buried in sand; the dead were placed lying straight on the back.

But from the late Bronze Age to the early Iron Age, there was a common shift in burial customs from earth pit graves to stone burials in the Hami Basin-the Balikun Grassland area and in the Turpan Basin-the middle part of Tian Shan area. The main features of the stone burials include stone burial mounds, circular or rectangular stone kerbs, and the stone pit graves in the cemeteries. Similar stone burial customs commonly appeared at the southern edge of the western and middle part of Tian Shan area and the Pamir Plateau area in Iron Age. The burial features in most areas are in a mixture of both the earth pit graves and stone pit graves, especially in the Hami Basin-the Balikun Grassland area and the Turpan Basin-the middle part of Tian Shan area.

xinjiang-bronze-age-iron-age

From Shuicheng (2006):

Historians of metallurgy conducted metallographic analyses on a sample of 234 metal specimens recovered from 16 localities in eastern Xinjiang. They concluded that the metallurgic industry in eastern Xinjiang could be roughly partitioned into three developmental phases. The early phase is represented by the burials distributed in the North Tianshan Route. The majority of the metal assemblage was tin-bronzes; however, copper and arsenic-bronzes maintained considerable proportions. The middle phase is represented by the burials at Yanbulake. During this phase, tin-bronze still maintained the majority; the proportion of arsenic-bronze increased, and some of them were high arsenic-bronzes. The late phase is represented by the burials at Heigouliang 黑沟梁. The composition of lead increased in the bronze alloy in the expense of arsenic. In addition, this phase witnessed the appearance of high tin-bronze that composed up to 16% of tin and the appearance of brass, that is, an alloy of copper and zinc. The bronze alloy consistently contained significant amount of impurities regardless of temporal difference. Casting and forging technologies coexisted throughout the three phases. The early bronzes (2000–500 BC) of eastern Xinjiang, in general, contained arsenic; however, the composition of arsenic was usually under 8%, but a few artifacts contained more than 20% arsenic. In all, arsenic had long been used in the alloy-forming of the early bronzes in eastern Xinjiang. Consequently, arsenic-bronzes were widely found in the prehistoric archaeology of the region. The artifact types, chemical compositions and manufacture techniques of the bronze assemblage of the burials of the North Tianshan Route are similar to those of Siba Culture, indicating that eastern Xinjiang had played a significant role in the East-West interactions.

An assemblage of early bronzes had been recovered from northwestern Xinjiang and the periphery of Dzungaria 准噶尔 Basin. It comprises a variety of utilitarian tools and weapons, and a small number of apparels. These artifacts bear the stamps of Andronovo Culture in form, artifact type and decorative pattern. The metallographic analysis on selected artifacts indicates that they comprise mainly of tin-bronzes that contain 2–10% of tin. Moreover, the chemical compositions of these artifacts are similar to that of the Andronovo Culture. Latter date (first half of the 1st millennium BC) artifacts of the assemblage include a small number of arsenic-bronzes. In all, during the period between the mid-2nd and mid-1st millennium BC, copper and bronze artifacts coexisted in this region, albeit tin-bronze comprised the majority.

tocharians-iron-age-late
Prehistoric cultures of Xinjiang during the Late Iron Age. See full culture and ancient DNA maps.

Tocharians in population genomics

Prehistoric population movements between the Altai and the Tian Shan are difficult to pinpoint, not the least because of the division of these territories among three different countries and their archaeological teams, only recently (more) open to the international scholarship.

The available schematic archaeological picture, where migrations could only be roughly inferred, has been recently updated to a great extent by Ning, Wang et al. (2019), whose genetic analysis of the samples is as thorough as anyone could have asked for, with a level of detail which matches the complex genetic picture of the region by the Iron Age.

As a summary, here is what they described about the samples from Shirenzigou (ca 400-200 BC), corresponding to the Iron Age populations of the Hami Basin-the Balikun Grassland area, and closely related to the preceding Yanbulake Culture:

As shown in Figure S3, the Steppe_MLBA populations including Srubnaya, Andronovo, and Sintashta were shifted toward farming populations compared with Yamnaya groups and the Shirenzigou samples. This observation is consistent with ADMIXTURE analysis that Steppe_MLBA populations have an Anatolian and European farmer-related component that Yamnaya groups and the Shirenzigou individuals do not seem to have. The analysis consistently suggested Yamnaya-related Steppe populations were the better source in modeling the West Eurasian ancestry in Shirenzigou.

biplot-yamnaya-tocharians-shirenzigou
Biplot of f3-outgroup tests illustrating the Kostenki14 and Anatolia_N like ancestries in Shirenzigou individuals. Most Shirenzigou individuals were on a cline with Yamnaya and European hunter-gatherer groups, lacking the European farmer ancestry as compared to the Steppe_MLBA populations such as Andronovo, Srubnaya and Sintashta [S1-S5]. Horizontal and vertical bars represent ± 3 standard errors, corresponding to form of outgroup f3 tests on the x axis and y axis respectively.

We continued to use qpAdm to estimate the admixture proportions in the Shirenzigou samples by using different pairs of source populations, such as Yamnaya_Samara, Afanasievo, Srubnaya, Andronovo, BMAC culture (Bustan_BA and Sappali_ Tepe_BA) and Tianshan_Hun as the West Eurasian source and Han, Ulchi, Hezhen, Shamanka_EN as the East Eurasian source. In all cases, Yamnaya, Afanasievo, or Tianshan_Hun always provide the best model fit for the Shirenzigou individuals, while Srubnaya, Andronovo, Bustan_BA and Sappali_Tepe_BA only work in some cases.

p-values-shirenzigou-samples-han-chinese
Table S2. P values in modelling a two-way (P=rank 1) admixture in Shirenzigou samples using each of the four populations (Bustan_BA, Sappali_Tepe_BA, Andronovo.SG, Srubnaya) together with Han Chinese as two sources [S6], Related to Figure 2. We used the following set of outgroups populations: Dinka, Ust_Ishim, Kostenki14, Onge, Papuan, Australian, Iran_N, EHG, LBK_EN.

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

In the PCA, ADMIXTURE, outgroup f3 statistics [see Figure S4], as well as f4 statistics (Table S3), we observed the Shirenzigou individuals were closer to the present day Tungusic and Mongolic-speaking populations in northern Asia than to the populations in central and southern China, suggesting the northern populations might contribute more to the Shirenzigou individuals. Based on this, we then modeled Shirenzigou as a three-way admixture of Yamnaya_Samara, Ulchi (or Hezhen) and Han to infer the source from the East Eurasia side that contributed to Shirenzigou. We found the Ulchi or Hezhen and Han-related ancestry had a complicated and unevenly distribution in the Shirenzigou samples. The most Shirenzigou individuals derived the majority of their East Eurasian ancestry from Ulchi or Hezhen-related populations, while the following two individuals M820 and M15-2 have more Han related than Ulchi/ Hezhen-related ancestry

It is unclear whether the Chemurchek population will show a sizeable local contribution from neighbouring groups. The fact that Okunevo shows 20% Yamnaya-related ancestry strongly supports the nature of neighbouring stone-grave-building peoples of the Altai and the northern Tian Shan as mostly Afanasievo-like, and the apparent lack of contributions of Srubna/Andronovo-like ancestry in the early Hami-Balikun stone burial builders also speaks for radical population replacement events reaching the areas south of Tian Shan, at least initially.

While ancestry cannot settle linguistic questions, it seems that nomads of the Gansu and Qinghai grasslands retained an ancestry close to Andronovo, whereas nomads of the Hami Basin-Balikun grasslands and related populations of Xinjiang remained closely related to Afanasievo. This doesn’t preclude that the ancestors of the Yuezhi became acculturated under the influence of peoples from eastern Xinjiang, but all data combined suggest an isolation of both populations – relative to other groups and to each other – and it is therefore more likely that they spoke Indo-Iranian-related languages rather than a language of the Tocharian branch.

Haplogroups

In an interesting twist of events, despite the initially reported hg. R1b and Q, Tocharians from Shirenzigou actually show a haplogroup diversity comparable to that attested in other late Iron Age populations: a similar diversity is seen, for example, among Germanic, Baltic, and Balto-Finnic peoples of the Baltic region; among East Germanic or Scythians of the north Pontic region; or among Mediterranean peoples sampled to date. Iron Age peoples show thus a complex sociopolitical setting that overcame the previous patrilineal homogeneity of Bronze Age expansions.

tocharians-pca
PCA and ADMIXTURE for Shirenzigou Samples. Modified from the original to include in black squares samples related to Yamnaya. Modified from the paper to include labels of modern populations and a dotted lines with the cline formed by Shirenzigou, from (Yamnaya-like) Afanasievo to Central and East Asian-like populations. In red circles, samples with best fit for Andronovo-like ancestry. In green circles, samples with Han-related admixture.

M15-2 (with Han-related ancestry) is of the rare haplogroup Q1a-M120, while the samples with highest Steppe_MLBA-related ancestry are of hg. R1b-PH155, which points to their recent origin among Yuezhi, or to Hun-related populations showing an admixture related to the proto-historic nomads of the Gansu and Qinghai grasslands.

The expansion of Chemurchek-related peoples was probably associated more with hg. Q1a (dubious if it’s a Pre-ISOGG 2017 nomenclature, hence possibly Q1b), a haplogroup that might be found in Khvalynsk as a “significant minority” according to Anthony (2019), and it might also be attested in sampled individuals from Afanasievo in its late phase. This might be, therefore, a case similar to the early expansion of Indo-Europeans with R1b-V1636 lineages through the Volga – North Caucasus region, and of the later expansion with I2a-L699 lineages into the Balkans.

Haplogroup Q1a2-M25 is found in individual X3, whose Steppe ancestry is likely a combination of Afanasievo plus Andronovo-like ancestry heavily admixed with Hezhen/Ulchi-like populations, in line with the expected recent contacts with the neighbouring Xiongnu, Yuezhi, and other population movements affecting eastern Xinjiang.

Sample M4, which packs the most Afanasievo-like ancestry, is of hg. R1a-Z645, which – like sample M8R1 of hg. O – is most likely related to haplogroup resurgence events of local populations, which left the predominant Afanasievo-like admixture brought by builders of stone burials essentially intact, evidenced by the almost 100% of R1a found in the Xiaohe cemetery – and in most of the early Andronovo horizon – and among expanding Kangju and Wusun, as well as by the prevalence of hg. O among sampled East Asian populations.

A question that will only be answered with more samples is how and when the prevalent R1b-L23 and Q1b lineages among Afanasievo-related peoples began to be replaced to reach the high variability seen in Shirenzigou. Given the pastoralist nature of peoples around Tian Shan, the succeeding expansions of Proto-Tocharians, and the late isolation of different Common Tocharian groups, it is more than likely that this variability represents a late and local phenomenon within Xinjiang itself.

tocharians-antiquity
Peoples of Xinjiang during Antiquity. See full culture and ancient DNA maps.

Conclusion

Tocharians are one of the main pillars that confirm the Late Proto-Indo-European homeland of the R1b-rich populations of the Don-Volga region. There is already:

Just like the East Bell Beaker expansion from Yamnaya Hungary has confirmed that Corded Ware peoples did not partake in spreading Indo-European languages (spreading Uralic languages instead), data on the expansion of Tocharian speakers from Afanasievo to the Tian Shan was always there; population genomics is merely helping to connect the dots.

In summary, genetic research is supporting the expected linguistic expansions of the Neolithic and Bronze Age step by step, slowly but surely.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Proto-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1b (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a (potentially Q1b in the newer nomenclature) will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1b, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1b, and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related

Yekaterinovsky Cape, a link between the Samara culture and early Khvalynsk

ekaterinovsky-cape

We already had conflicting information about the elite individual from the Yekaterinovsky Cape and the materials of his grave, which seemed quite old:

For the burial of 45 in the laboratory of the University of Pennsylvania, a 14C date was obtained: PSUAMS-2880 (Sample ID 16068)> 30 kDa gelatin Russia. 12, Ekaterinovka Grave 45 14C age (BP) 6325 ± 25 δ 13C (‰) –23.6 δ15 N (‰) 14.5. The results of dating suggest chronological proximity with typologically close materials from Yasinovatsky and Nikolsky burial grounds (Telegini et al. 2001: 126). The date obtained also precedes the existing dates for the Khvalynsk culture (Morgunova 2009: 14–15), which, given the dominance of Mariupol traits of the burial rite and inventory, confirms its validity. However, the date obtained for human bones does not exclude the possibility of a “reservoir effect” when the age can increase three or more centuries (Shishlin et al. 2006: 135–140).

Now the same date is being confirmed by the latest study published on the site, by Korolev, Kochkina, and Stachenkov (2019) and it seems it is really going to be old. Abstract (in part the official one, in part newly translated for clarity):

For the first time, pottery of the Early Eneolithic burial ground Ekaterinovsky Cape is published. Ceramics were predominantly located on the sacrificial sites in the form of compact clusters of fragments. As a rule, such clusters were located above the burials, sometimes over the burials, some were sprinkled with ocher. The authors have identified more than 70 vessels, some of which have been partially reconstructed. Ceramic was made with inclusion of the crushed shell into molding mass. The rims of vessels had the thickened «collar»; the bottoms had a rounded shape. The ornament was located on the rims and the upper part of the potteries. Fully decorated vessels are rare. The vessels are ornamented with prints of comb and rope stamps, with small pits. A particularity of ceramics ornamentation is presented by the imprints of soft stamps (leather?) or traces of leather form for the making of vessels. The ornamentation, made up of «walking comb» and incised lines, was used rarely as well as the belts of pits made decoration under «collar» of a rim. Some features of the ceramics decoration under study relate it with ceramics of the Khvalynsk culture. The ceramics of Ekaterinovsky Cape burial ground is attributed by the authors to the Samara culture. The ceramic complex under study has proximity to the ceramics from Syezzhe burial ground and the ceramics of the second phase of Samara culture. The chronological position is determined by the authors as a later period than the ceramics from the Syezzhe burial ground, and earlier than the chronological position of ceramics of the Ivanovka stage of the Samara culture and the Khvalynsk culture.

ekaterinovsky-cape-pottery
Ceramics from Ekaterinovsky Cape burial ground. 1–2, 4–5, 7–11 – ceramics from aggregations; 3, 6 – ceramics from the cultural layer.

More specifically:

Based on ceramic fragments from a large vessel from a cluster of sq.m. 14, the date received was: SPb-2251–5673 ± 120 BP. The second date was obtained in fragments from the aggregation [see picture above] from the cluster of sq.m. 45–46: SPb-2252–6372 ± 100 BP. The difference in dating indicates that the process of determining the chronology of the burial ground is far from complete, although we note that the earlier date almost coincided with the date obtained from the human bone from individual 45 (Korolev, Kochkina, Stashenkov, 2018, p. 300).

Therefore, the ceramics of the burial ground Ekaterinovsky Cape possess an originality that determines the chronological position of the burial ground between the earliest materials of the burial type in Syezzhe and the Khvalynsk culture. Techno-typological features of dishes make it possible to attribute it to the Samara culture at the stage preceding the appearance of Ivanovska-Khvalynsk ceramics.

It seems that this site showed cultural influences from the upstream region near the Kama-Vyatka interfluve, too, according to Korolev, Kochkina, Stashenkov, and Khokhlov (2018):

In 2017, excavation of burial ground Ekaterinovsky Cape were continued, located in the area of the confl uence of the Bezenchuk River in the Volga River. During the new excavations, 14 burials were studied. The skeleton of the buried were in a position elongated on the back, less often – crooked on the back with knees bent at the knees. In one burial (No. 90), a special position of the skeleton was recorded. In the burial number 90 in the anatomical order, parts of the male skeleton. This gave grounds for the reconstruction of his original position in a semi-sitting position with the support of elbows on the bottom of the pit. Noteworthy inventory: on the pelvic bones on the left lay a bone spoon, near the right humerus, the pommel of a cruciform club was found. A conclusion is made about the high social status of the buried. The results of the analysis of the burial allow us to outline the closest circle of analogies in the materials of Khvalynsky I and Murzikhinsky burial grounds.

Important sites mentioned in both papers and in this text:

To sum up, it seems that the relative dates we have used until now have to be corrected: older Khvalynsk I Khvalynsk II individuals, supposedly dated ca. 5200-4000 BC (most likely after 4700 BC), and younger Yekaterinovsky individuals, supposedly of the fourth quarter of the 5th millennium (ca. 4250-4000 BC), are possibly to be considered, in fact, roughly reversed, if not chronologically, at least culturally speaking.

Interestingly, this gives a new perspective to the presence of a rare fish- or reptile-headed pommel-scepter, which would be natural in a variable period of expansion of the horse and horse-related symbolism, a cultural trait rooted in the Samara culture attested in Syezzhe before the unification of the symbol of power under the ubiquitous Khvalynsk-Suvorovo horse-headed scepters and related materials.

ekaterinovsky-cape-pommel-mace
Ekaterinovsky Cape Burial Ground. Inventory of the burial no 90: 1, 2 – stone pommel of the mace; 3, 4 – bone article.

The Khvalynsk chieftain

If the reported lineages from Yekaterinovsky Cape are within the R1b-P297 tree, but without further clades, as Yleaf comparisons may suggest, there is not much change to what we have, and R1b-M269 could actually represent a part of the local population, but also incomers from the south (e.g. the north Caspian steppe hunter-gatherers like Kairshak), the east (with hunter-gatherer pottery), or the west near the Don River (in contact with Mariupol-related cultures, as the authors inferred initially from material culture).

Just like R1a-M417 became incorporated into the Sredni Stog groups after the Novodanilovka-Suvorovo expansion, probably as incoming hunter-gatherer pottery groups from the north admixing with peoples of “Steppe ancestry”, R1b-M269 lineages might have expanded explosively only during the Repin expansion, and maybe (like R1b-L51 later) they formed just a tiny part of the clans that dominated the steppe during the Khvalynsk-Novodanilovka community.

On the other hand, the potential finding of various R1b-M269/L23 samples in Yekaterinovsky Cape (including an elite individual) would suggest now, as it was supported in the original report by Mathieson et al. (2015), that these ancient R1b lineages found in the Volga – Ural region are in fact most likely all R1b-M269 without enough coverage to obtain proper SNP calls, which would simplify the picture of Neolithic expansions (yet again). From the supplementary materials:

10122 / SVP35 (grave 12). Male (confirmed genetically), age 20-30, positioned on his back with raised knees, with 293 copper artifacts, mostly beads, amounting to 80% of the copper objects in the combined cemeteries of Khvalynsk I and II. Probably a high-status individual, his Y-chromosome haplotype, R1b1, also characterized the high-status individuals buried under kurgans in later Yamnaya graves in this region, so he could be regarded as a founder of an elite group of patrilineally related families. His MtDNA haplotype H2a1 is unique in the Samara series.

khvalynsk-cemetery
Khvalynsk cemetery and grave gifts. Grave 90 contained copper beads and rings, a harpoon, flint blades, and a bird-bone tube. Both graves (90 and 91) were partly covered by Sacrificial Deposit 4 with the bones from a horse, a sheep, and a cow. Center: grave goods from the Khvalynsk cemetery-copper rings and bracelets, polished stone mace heads, polished stone bracelet, Cardium shell ornaments, boars tusk chest ornaments, flint blades, and bifiacial projectile points. Bottom: shell-tempered pottery from the Khvalynsk cemetery. After Agapov, Vasiliev, and Pestrikova 1990; and Ryndina 1998, Figure 31. Modified from Anthony (2007).

This remarkable Khvalynsk chieftain, whose rich assemblage may correspond to the period of domination of the culture all over the Pontic-Caspian steppes, has been consistently reported as of hg. R1b-L754 in all publications, including Wang et al. (2018/2019) tentative SNP calls in the supplementary materials (obtained with Yleaf, as the infamous Narasimhan et al. 2018 samples), but has been variously reported by amateurs as within the R1b-M73, R1b-V88, or (lately) R1b-V1636 trees, which makes it unlikely that quality of the sample is allowing for a proper SNP call.

The fact that Mathieson et al. (2015) considered it a member of the R1b-M269 clans appearing later in Yamna seems on point right now, especially if samples from Yekaterinovka are all within this tree. The relevance of R1b-L23 in the expansion of Repin and Yamna is reminiscent of the influence of successful clans among Yamna offshoots, such as Bell Beakers, and among Bell Beaker offshoots during the Bronze Age all over Europe.

Taking these younger expansions as example, it seems quite likely based on cultural links that (at least part of) the main clans of Khvalynsk were of R1b-M269 lineage, stemming from a R1b-dominated Samara culture, in line with the known succeeding expansions and the expected strictly patriarcal and patrilineal society of Proto-Indo-Europeans, which would have exacerbated the usual reduction in Y-chromosome haplogroup variability that happens during population expansions, and the aversion towards foreign groups while the culture lasted.

pontic-steppe-neolithic
Cultures of the Pontic-Caspian steppes and forest-steppes and surrounding areas during the Neolithic.

The finding of R1b-L23 in Yekaterinovka, associated with the Samara culture, before or during the Khvalynsk expansion, and close to the Khvalynsk site, would make this Khvalynsk chieftain most likely a member of the M269 tree (paradoxically, the only R1b-L754 branch amateurs have not yet reported for it). Similarly, the sample of a “Samara hunter-gatherer” of Lebyazhinka, of hg. R1b-P297, could also be under this tree, just like most R1b-M269 from Yamna are downstream from R1b-L23, and most reported R1b-M269 or R1b-L23 from Bell Beakers are under R1b-L151.

On the other hand, we know of the shortcomings of attributing a haplogroup expansion to the best known rulers, such as the famous lineages previously wrongly attributed to Niall of the Nine Hostages or Genghis Khan. The known presence of R1b-V1636 up to modern Greeks would be in line with an ancient steppe expansion that we know will show up during the Neolithic, although it could also be a sign of a more recent migration from the Caucasus. The presence of a sister clade of R1b-L23, R1b-PF7562, among modern Balkan populations, may also be attributed to a pre-Yamna steppe expansion.

y-dna-khvalynsk
Y-DNA samples from Khvalynsk and neighbouring cultures. See full version here.

On SNP calls

I reckon that even informal reports on SNP calls, like any other analyses, should be offered in full: not only with a personal or automatic estimation of the result, but with a detailed explanation of the good, dubious, and bad calls, alternatives to that SNP estimation, and a motivated reasoning of why one branch should be preferred over others. Downloading a sample and giving an instruction using a free software tool is never enough, as it became crystal clear recently for the hilariously biased and flawed qpAdm reports on Dutch Bell Beakers as the ‘missing link’ between Corded Ware and Bell Beakers…

Another example I can recall is the report of a R1a-Z93 subclade in the R1a-M417 sample ca. 4000 BC from Alexandria, which seems rather unlikely, seeing how this subclade must have split and expanded explosively with R1a-Z645 to the east with eastern Corded Ware groups, i.e. 1,000 years later, just like Z282 lineages expanded mainly to the north-east. But then again, as with the Khvalynsk chieftain, I have only seen indirect reports of that supposed SNP (including Y26+!), so we should just stick with its officially reported R1a-M417 lineage. This upstream haplogroup was, in fact, repeated with Yleaf’s tentative estimates in Wang et al. (2019) supplementary materials…

The combination of inexperienced, biased, or simply careless design, analyses, and reports, including SNP calls and qpAdm analyses (whether in forums or publications), however well-intentioned (or not) they might be, are hindering a proper analysis of data, adding to the difficulties we already have due to the scarcity of samples, their limited coverage, and the lack of proper context.

Some people like to repeat ad nauseam that archaeology and/or linguistics are ‘not science’ whenever they don’t fit their beliefs and myths based on haplogroup and/or ancestry. But it’s becoming harder and harder to rely on certain genetic data, too, and on their infinite changing interpretations, much more than it is to rely on linguistic and archaeological research, including data, assessments, and discussions that are open for anyone to review…if one is truly interested in them.

Happy new year 2019…and enjoy our new books!

song-sheep-horses-header

Sorry for the last weeks of silence, I have been rather busy lately. I am having more projects going on, and (because of that) I also wanted to finish a project I have been working on for many months already.

I have therefore decided to publish a provisional version of the text, in the hope that it will be useful in the following months, when I won’t be able to update it as often as I would like to:

EDIT (20 JAN 2019): For those of you who are more comfortable reading in your native language, I have placed some links to automatic translations by Google Translate. They might work especially well for the texts of A Game of Clans & A Clash of Chiefs.

Don’t forget to check out the maps included in the supplementary materials: I have added Y-DNA, mtDNA, and ADMIXTURE data using GIS software. The PCA graphics are also important to follow the main text.

NOTE. Right now the files are only in my server. I will try to upload them to Academia.edu and Research Gate when I have time, I have uploaded them to Academia.edu and ResearchGate, in case the websites are too slow.

I would have preferred to wait for a thorough revision of the section on archaeology and the linguistic sections on Uralic, but I doubt I will have time when the reviews come, so it was either now or maybe next December…

I say so in the introduction, but it is evident that certain aspects of the book are tentative to say the least: the farther back we go from Late Proto-Indo-European, the less clear are many aspects. Also, linguistically I am not convinced about Eurasiatic or Nostratic, although they do have a certain interest when we try to offer a comprehensive view of the past, including ethnolinguistic identities.

I cannot be an expert in everything, and these books cover a lot. I am bound to publish many corrections as new information appears and more reviews are sent. For example, just days ago (before SNP calls of Wang et al. 2018 were published) some paragraphs implied that AME might have expanded Nostratic from the Middle East. Now it does not seem so, and I changed them just before uploading the text. That’s how tentative certain routes are, and how much all of this may change. And that only if we accept a Nostratic phylum…

NOTE. Since the first book I wrote was the linguistic one, and I have spent the last months updating the archaeology + genetics part, now many of you will probably understand 1) why I am so convinced about certain language relationships and 2) how I used many posts to clarify certain ideas and receive comments. Many posts offer probably a good timeline of what I worked with, and when.

Acknowledgements

I did not add this section to the books, because they are still not ready for print, but I think this is due somewhere now. It is impossible to reference all who have directly or indirectly contributed to this, so this is a list of those I feel have played an important role.

I am indebted to the following people (which does not mean that they share my views, obviously):

First and foremost, to Fernando López-Menchero, for having the patience to review with detail many parts on Indo-European linguistics, knowing that I won’t accept many of his comments anyway. The additional information he offers is invaluable, but I didn’t want to turn this into a huge linguistic encyclopaedia with unending discussions of tiny details of each reconstructed word. I think it is already too big as it is.

I would not have thought about doing this if it were not for the interest of Wekwos (Xavier Delamarre) in publishing a full book about the Indo-European demic diffusion model (in the second half of 2017, I think). It was them who suggested that I extended the content, when all I had done until then was write an essay and draw some maps in my free time between depositing the PhD thesis and defending it.

Sadly, as much as I would like to publish a book with a professional publisher, I don’t think ancient DNA lends itself for the traditional format, so my requests (mainly to have free licenses and being able to review the text at will, as new genetic papers are published) were logically not acceptable. Also, the main aim of all volumes, especially the linguistic one, is the teaching of essentials of Late Proto-Indo-European and related languages, and this objective would be thwarted by selling each volume for $50-70 and only in printed format. I prefer a wider distribution.

At first I didn’t think much of this proposal, because I do not benefit from this kind of publications in my scientific field, but with time my interest in writing a whole, comprehensive book on the subject grew to the point where it was already an ongoing project, probably by the start of 2018.

I would not have been in contact with Wekwos if it were not for user Camulogène Rix at Anthrogenica, so thanks for that and for the interest in this work.

I would not have thought of writing this either if not for the spontaneous support (with an unexpected phone call!) of a professor of the Complutense University of Madrid, Ángel Gómez Moreno, who is interested in this subject – as is his wife, a professor of Classics more closely associated to Indo-European studies, and who helped me with a search for Indo-Europeanists.

EDIT (1 JAN 2019): I remembered that Karin Bojs sent me her book after reading the demic diffusion model. I may have also thought about writing a whole book back then, but mid-2017 is probably too early for the project.

Professor Kortlandt is still to review the text, but he contributed to both previous essays in some very interesting ways, so I hope he can help me improve the parts on Uralic, and maybe alternative accounts of expansion for Balto-Slavic, depending on the time depth that he would consider warranted according to the Temematic hypothesis.

The maps are evidently (for those who are interested in genetics) in part the result of the effort of the late Jean Manco: As you can see from the maps including Y-DNA and mtDNA samples, I have benefitted from her way of organising data and publishing it. Similarly, the work of Iain McDonald in assessing the potential migration routes of R1b and R1a in Europe with the help of detailed maps was behind my idea for the first maps, and consequently behind these, too.

I should thank all people responsible for the release of free datasets to work with, including the Reich and Jena labs, the Veeramah Lab, and also researchers from the Max Planck Institute or the Mainz Palaeogenetics group, who didn’t mind to share with me datasets to work with.

Readers of this blog with interesting comments have also been essential for the improvement of the texts. You can probably see some of your many contributions there. I may not answer many comments, because I am always busy (and sometimes I just don’t have anything interesting to say), but I try to read all of them.

EDIT (1 JAN 2019) I think I should mention at least Chetan, Egg, or Robert George; but then I would leave out old europe, Sgr Ganesh, or Tileman Ehlen; and if I include them I would leave out others…

Users of other sites, like Anthrogenica, whose particular points of view and deep knowledge of some very specific aspects are sometimes very useful. In particular, user Anglesqueville helped me to fix some issues with the merging of datasets to obtain the PCAs and ADMIXTURE, and prepared some individual samples to merge them.

Even without posting anything, Google Analytics keeps sending me messages about increasing user fidelity (returning users), and stats haven’t really changed (which probably means more people are reading old posts), so thank you for that.

I hope you enjoy the books.

Happy new year!

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

See also

Related

Dzudzuana, Sidelkino, and the Caucasus contribution to the Pontic-Caspian steppe

hunter-gatherer-pottery

It has been known for a long time that the Caucasus must have hosted many (at least partially) isolated populations, probably helped by geographical boundaries, setting it apart from open Eurasian areas.

David Reich writes in his book the following about India:

The genetic data told a clear story. Around a third of Indian groups experienced population bottlenecks as strong or stronger than the ones that occurred among Finns or Ashkenazi Jews. We later confirmed this finding in an even larger dataset that we collected working with Thangaraj: genetic data from more than 250 jati groups spread throughout India (…)

Rather than an invention of colonialism as Dirks suggested, long-term endogamy as embodied in India today in the institution of caste has been overwhelmingly important for millennia. (…)

The Han Chinese are truly a large population. They have been mixing freely for thousands of years. In contrast, there are few if any Indian groups that are demographically very large, and the degree of genetic differentiation among Indian jati groups living side by side in the same village is typically two to three times higher than the genetic differentiation between northern and southern Europeans. The truth is that India is composed of a large number of small populations.

There is little doubt now, based on findings spanning thousands of years, that the Mesolithic and Neolithic Caucasus hosted various very small populations, even if the ancestral components may be reduced to the few known to date (such as ANE, EHG, AME*, ENA, CHG, and other “deep” ancestral components).

NOTE. I will call the ancestral component of Dzudzuana/Anatolian hunter-gatherers Ancient Middle Easterner (AME), to give a clear idea of its likely extension during the Late Upper Palaeolithic, and to avoid using the more simplistic Dzudzuana, unless it is useful to mention these specific local samples.

dzudzuana-pca
Image modified from Lazaridis et al. (2018), including Caucasus, Don-Volga-Ural, and North Pontic Mesolithic-Neolithic populations. “Ancient West Eurasian population structure. (a) Geographical distribution of key ancient West Eurasian populations. (b) Temporal distribution of key ancient West Eurasian populations (approximate date in ky BP). (c) PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).”

Genetic labs have a strong fixation with ancestry. I guess the use of complex statistical methods gives professionals and laymen alike the feeling of dealing with “Science”, as opposed to academic fields where you have to interpret data. I think language reveals a lot about the way people think, and the fact that ancestral components are called ‘lineages’ – while not wrong per se – is a clear symptom of the lack of interest in the true lineages: Y-DNA haplogroups.

Y-DNA bottlenecks

It has become quite clear that male-biased migrations are often the ones which can be confidently followed for actual population movements and ethnolinguistic identification, at least until the Iron Age. The frequently used Palaeolithic clusters offer a clear example of why ancestry does not represent what some people believe: They merely give a basic idea of sizeable population replacements by distant peoples.

Both concepts are important: sizeable and distant peoples. For example, during the Upper Palaeolithic in Europe there was a sizeable population replacement of the Aurignacian Goyet cluster by the Gravettian Vestonice cluster (probably from populations of far eastern Russia) coupled with the arrival of haplogroup I, although during the thousands of years that this material culture lasted, the previously expanded C1a2 lineages did not disappear, and there were probably different resurgence and admixture events.

Haplogroup I certainly expanded with the Gravettian culture to Iberia, where the Goyet ancestry did not change much – probably because of male-driven migrations -, to the extent that during the Magdalenian expansions haplogroup I expanded with an ancestry closer to Goyet, in what is called a ‘resurge’ of the Goyet cluster – even though there is a clear replacement of male lines.

The Villabruna (WHG) cluster is another good example. It probably spread with haplogroup R1b-L754, which – based on the extra ‘East Asian’ affinity of some samples and on modern samples from the Middle East – came probably from the east through a southern route, and not too long before the expansion of WHG likely from around the Black Sea, although this is still unclear. The finding of haplogroup I in samples of mostly WHG ancestry could confuse people that do not care about timing, sub-structured populations, and gene flow.

palaeolithic-expansions-reich
Image from David Reich’s Who We Are and How We Got Here. Having migrated out of Africa and the Near East, modern human pioneer populations spread throughout Eurasia (1). By at least thirty-nine thousand years ago, one group founded a lineage of European hunter-gatherers that persisted largely uninterrupted for more than twenty thousand years (2). Eventually, groups derived from an eastern branch of this founding population of European huntergatherers spread west (3), displaced previous groups, and were eventually themselves pushed out of northern Europe by the spread of glacial ice, shown at its maximum extent (top right). As the glaciers receded, western Europe was repeopled from the southwest (4) by a population that had managed to persist for tens of thousands of years and was related to an approximately thirty-five-thousand-year old individual from far western Europe. A later human migration, following the first strong warming period, had an even larger impact, with a spread from the southeast (5) that not only transformed the population of western Europe but also homogenized the populations of Europe and the Near East. At a single site—Goyet Caves in Belgium—ancient DNA from individuals spread over twenty thousand years reflects these transformations, with representatives from the Aurignacian, Gravettian, and Magdalenian periods.

NOTE. If you don’t understand why ‘clusters’ that span thousands of years don’t really matter for the many Palaeolithic population expansions that certainly happened among hunter-gatherers in Europe, just take a look at what happened with Bell Beakers expanding from Yamna into western Europe within 500 years.

If we don’t thread carefully when talking about population migrations, these terms are bound to confuse people. Just as the fixation on “steppe ancestry” – which marks the arrival in Chalcolithic Europe of peoples from the Pontic-Caspian region – has confused a lot of researchers to this day.

When I began to write about the Indo-European demic diffusion model, my concern was to find a single spot where a North-West Indo-European proto-language could have expanded from ca. 2000 BC (our most common guesstimate). Based on the 2015 papers, and in spite of their conclusions, I thought it had become clear that Corded Ware was not it, and it was rather Bell Beakers. I assumed that Uralic was spoken to the north (as was the traditional belief), and thus Corded Ware expanded from the forest zone, hence steppe ancestry would also be found there with other R1a lineages.

With the publication of Mathieson et al. (2017) and Olalde et al. (2017), I changed my mind, seeing how “steppe ancestry” did in fact appear quite late, hence it was likely to be the result of very specific population movements, probably directly from the Caucasus. Later, Mathieson published in a revision the sample from Alexandria of hg R1a-M417 (probably R1a-Z645, possibly Z93+), which further supported the idea that the migration of Corded Ware peoples started near the North Pontic forest-steppe (as I included in a the next revision).

The question remains the same I repeated recently, though: where do the extra Caucasus components (i.e. beyond EHG) of Eneolithic Ukraine/Corded Ware and Khvalynsk/Yamna come from?

Steppe ancestry: “EHG” + “CHG”?

About EHG ancestry

From Lazaridis et al. (2018):

Considering 2-way mixtures, we can model Karelia_HG as deriving 34 ± 2.8% of its ancestry from a Villabruna-related source, with the remainder mainly from ANE represented by the AfontovaGora3 (AG3) sample from Lake Baikal ~17kya.

AG3 was likely of haplogroup Q1a (as reported by YFull, see Genetiker), and probably the ANE ancestry found in Eastern Europe accompanied a Palaeolithic migration of Q1a2-M25 (formed ca. 22600 BC, TMRCA ca. 14300 BC).

NOTE. You can read more about the expansion of Q lineages during the Palaeolithic.

Combined with what we know about the Eneolithic Steppe and Caucasus populations – it is likely that ANE ancestry remained the most important component of some of the small ghost populations of the Caucasus until their emergence with the Lola culture.

pca-caucasus-dzudzuana
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here. To understand the drawn potential Caucasus Mesolithic cluster, see above the PCA from Lazaridis et al. (2018).

The first sample we have now attributed to the EHG cluster is Sidelkino, from the Samara region (ca. 9300 BC), mtDNA U5a2. In Damgaard et al. (Science 2018), Yamnaya could be modelled as a CHG population related to Kotias Klde (54%) and the remaining from ANE population related to Sidelkino (>46%), with the following split events:

  1. A split event, where the CHG component of Yamnaya splits from KK1. The model inferred this time at 27 kya (though we note the larger models in Sections S2.12.4 and S2.12.5 inferred a more recent split time).
  2. A split event, where the ANE component of Yamnaya splits from Sidelkino. This was inferred at about about 11 kya.
  3. A split event, where the ANE component of Yamnaya splits from Botai. We inferred this to occur 17 kya. Note that this is above the Sidelkino split time, so our model infers Yamnaya to be more closely related to the EHG Sidelkino, as expected.
  4. An ancestral split event between the CHG and ANE ancestral populations. This was inferred to occur around 40 kya.

Other samples classified as of the EHG cluster:

  • Popovo2 (ca. 6250 BC) of hg J1, mtDNA U4d – Po2 and Po4 from the same site (ca. 6550 BC) show continuity of mtDNA.
  • Karelia_HG, from Juzhnii Oleni Ostrov (ca. 6300 BC): I0211/UzOO40 (ca. 6300 BC) of hg J1(xJ1a), mtDNA U4a; and I0061/UzOO74 of hg R1a1(xR1a1a), mtDNA C1
  • UzOO77 and UzOO76 from Juzhnii Oleni Ostrov (ca. 5250 BC) of mtDNA R1b.
  • Samara_HG from Lebyanzhinka (ca. 5600 BC) of hg R1b1a, mtDNA U5a1d.

From the analysis of Lazaridis et al. (2018), we have some details about their admixture:

dzudzuana-admixture-sidelkino
Image modified from Lazaridis et al. (2018). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (Left) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown. (Right) ‘Speculative’ estimates. The highest number of sources (≤5) with admixture estimates within [0,1] are shown for each population. Some of the admixture proportions are not significantly different from 0 (Supplementary Information section 4).

About Anatolia_Neolithic ancestry

About the enigmatic Anatolia_Neolithic-related ancestry found in Pontic-Caspian steppe samples, this is what Wang et al. (2018) had to say:

We focused on model of mixture of proximal sources such as CHG and Anatolian Chalcolithic for all six groups of the Caucasus cluster (Eneolithic Caucasus, Maykop and Late Makyop, Maykop-Novosvobodnaya, Kura-Araxes, and Dolmen LBA), with admixture proportions on a genetic cline of 40-72% Anatolian Chalcolithic related and 28-60% CHG related (Supplementary Table 7). When we explored Romania_EN and Greece_Neolithic individuals as alternative southeast European sources (30-46% and 36-49%), the CHG proportions increased to 54-70% and 51-64%, respectively. We hypothesize that alternative models, replacing the Anatolian Chalcolithic individual with yet unsampled populations from eastern Anatolia, South Caucasus or northern Mesopotamia, would probably also provide a fit to the data from some of the tested Caucasus groups.

Also:

The first appearance of ‘Near Eastern farmer related ancestry’ in the steppe zone is evident in Steppe Maykop outliers. However, PCA results also suggest that Yamnaya and later groups of the West Eurasian steppe carry some farmer related ancestry as they are slightly shifted towards ‘European Neolithic groups’ in PC2 (Fig. 2D) compared to Eneolithic steppe. This is not the case for the preceding Eneolithic steppe individuals. The tilting cline is also confirmed by admixture f3-statistics, which provide statistically negative values for AG3 as one source and any Anatolian Neolithic related group as a second source

yamnaya-caucasus-dzudzuana
Modified image from Wang et al. (2018). In blue, Yamna-related populations. In red, Corded Ware-related populations, and two elevated Anatolia_Neolithic values in Yamna. Notice how only GAC-related admixture increases the Anatolian_N-related ancestry in the Yamna outlier from Ozero, and the late Yamna sample from Hungary, related to the homogeneous Yamna population. “Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

Detailed exploration via D-statistics in the form of D(EHG, steppe group; X, Mbuti) and D(Samara_Eneolithic, steppe group; X, Mbuti) show significantly negative D values for most of the steppe groups when X is a member of the Caucasus cluster or one of the Levant/Anatolia farmer-related groups (Supplementary Figs. 5 and 6). In addition, we used f- and D-statistics to explore the shared ancestry with Anatolian Neolithic as well as the reciprocal relationship between Anatolian- and Iranian farmer-related ancestry for all groups of our two main clusters and relevant adjacent regions (Supplementary Fig. 4). Here, we observe an increase in farmer-related ancestry (both Anatolian and Iranian) in our Steppe cluster, ranging from Eneolithic steppe to later groups. In Middle/Late Bronze Age groups especially to the north and east we observe a further increase of Anatolian farmer related ancestry consistent with previous studies of the Poltavka, Andronovo, Srubnaya and Sintashta groups and reflecting a different process not especially related to events in the Caucasus.

(…) Surprisingly, we found that a minimum of four streams of ancestry is needed to explain all eleven steppe ancestry groups tested, including previously published ones (Fig. 2; Supplementary Table 12). Importantly, our results show a subtle contribution of both Anatolian farmer-related ancestry and WHG-related ancestry (Fig.4; Supplementary Tables 13 and 14), which was likely contributed through Middle and Late Neolithic farming groups from adjacent regions in the West. The discovery of a quite old AME ancestry has rendered this probably unnecessary, because this admixture from an Anatolian-like ghost population could be driven even by small populations from the Caucasus.

yamna-caucasus-cwc-anatolia-neolithic
Image modified from Wang et al. (2018). Marked are: in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus 1128 cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups (see also Supplementary Tables 10, 14 and 20).”

NOTE. For a detailed account of the possibilities regarding this differential admixture in the North Pontic area in contrast to the Don-Volga-Ural region, you can read the posts Sredni Stog, Proto-Corded Ware, and their “steppe admixture”, and Corded Ware culture origins: The Final Frontier.

While it is not yet fully clear, the increased Anatolian_Neolithic-like ancestry in Ukraine_Eneolithic samples (see below) makes it unlikely that all such ancestry in Corded Ware groups comes from a GAC-related contribution. It is likely that at least part of it represents contributions from populations of the Caucasus, based on the mostly westward population movements in the steppe from ca. 4600 BC on, including the Suvorovo-Novodanilovka expansion, and especially the Kuban-Maykop expansion during the final Eneolithic into the North Pontic area.

NOTE. Since CHG-like groups from the Caucasus may have combinations of AME and ANE ancestry similar to Yamna (which may thus appear as ‘steppe ancestry’ in the North Pontic area), it is impossible to interpret with precision the following ADMIXTURE graphic:

ukraine-whg-ehg-steppe
Modified image from Mathieson et al. (2018). Supervised ADMIXTURE analysis, modelling each ancient individual (one per row) as a mixture of population clusters constrained to contain northwestern-Anatolian Neolithic (grey), Yamnaya from Samara (yellow), EHG (pink) and WHG (green) populations. Dates in parentheses indicate approximate range of individuals in each population.

North-Eastern Technocomplex

The East Asian contribution to samples from the WHG samples (like Loschbour or La Braña), as specified in Fu et al. (2016), does not seem to be related to Baikal_EN, and appears possibly (in the ADMIXTURE analysis) integrated into he Villabruna component. I guess this implies that the shared alleles with East Asians are quite early, and potentially due to the expansion of R1b-L754 from the East.

It would be interesting to know the specific material culture Sidelkino belonged to – i.e. if it was related to the expansion of the North-Eastern Technocomplex – , and its Y-DNA. The Post-Swiderian expansion into eastern Europe, probably associated with the expansion of R1b-P297 lineages (including R1b-M73, found later in Botai and in Baltic HG) is supposed to have begun during the 11th millennium BC, but migrations to the Urals and beyond are probably concentrated in the 9th millennium, so this sample is possibly slightly early for R1b.

NOTE. User Rozenfeld at Anthrogenica posted this, which I think is interesting (in case anyone wants to try a Y-SNP call):

there is something strange with Sidelkino EHG: first, its archaeological context is not described in the supplementary. Second, its sex is not listed in the supplementary tables. Third, after looking for info about this sample, I found that: “Сиделькино-3. Для снятия вопроса о половой принадлежности индивида была проведена генетическая экспертиза, выявившая принадлежность останков мужчине.”(translation: Sidelkino-3. To resolve the question about sex of the remains, the genetic analysis was conducted, which showed that remains belonged to male), source: http://static.iea.ras.ru/books/7487_Traditsii.pdf

So either they haven’t mentioned his Y-DNA in the paper for some reason, or there are more than one Sidelkino sample and the male one has not yet been published. The coverage of the Sidelkino sample from the paper is 2.9, more than enough to tell Y-DNA haplogroup.

zaliznyak-post-swiderian
The map of spreading of Post-Swiderian and Post-Krasnosillian sites in Mesolithic of Eastern Europe in the 8th millennia BC. From Zaliznyak (see here).

My speculative guess right now about specific population movements in far eastern Europe, based on the few data we have:

  • The expansion of the North-Eastern Technocomplex first around the 9th millennium BC, most likely expanded R1b-P279 ca. 11300 BC, judging by its TMRCA, with both R1b-M73 (TMRCA 5300) and R1b-M269 (TMRCA 4400 BC) info (with extra El Mirón ancestry) back, and thus Eurasiatic.
  • The expansion of haplogroup J1 to the north may have happened before or after the R1b-P279 expansion. Judging by the increase in AG3-related ancestry near Karelia compared to Baltic_HG, it is possible that it expanded just after R1b-P279 (hence possibly J1-Y6304? TMRCA 9700 BC). Its long-lasting presence in the Caucasus is supported by the Satsurblia (ca. 11300 BC) and the Dolmen BA (ca. 1300 BC) samples.
  • The expansion of R1a-M17 ca. 6600 BC is still likely to have happened from the east, based on the R1a-M17 samples found in Baikalic cultures slightly later (ca. 5300 BC). The presence of elevated Baikal_EN ancestry in Karelia HG and in Samara HG, and the finding of R1a-M417 samples in the Forest Zone after the Mesolithic suggests a connection with the expansion of Hunter-Gatherer pottery, from the Elshanka culture in the Samara region northward into the Forset Zone and westward into the North Pontic area.
  • The expansion of R1b-M73 ca. 5300 BC is likely to be associated with the emergence of a group east of the Urals (related to the later Botai culture, and potentially Pre-Yukaghir). Its presence in a Narva sample from Donkalnis (ca. 5200 BC) suggest either an early split and spread of both R1b-P297 lineages (M73 and M269) through Eastern Europe, or maybe a back-migration with hunter-gatherer pottery.
  • R1b-M269 spread successfully ca. 4400 BC (and R1b-L23 ca. 4100 BC, both based on TMRCA), and this successful expansion is probably to be associated with the Khvalynsk-Novodanilovka expansion. We already know that Samara_HG ca. 5600 was R1b1a, so it is likely that R1b-M269 appeared (or ‘resurged’) in the Volga-Ural region shortly after the expansion of R1a-M17, whose expansion through the region may be inferred by the additional AG3 and Baikal_EN ancestry. Interesting from Samara_HG compared to the previous Sidelkino sample is the introduction of more El Mirón-related ancestry, typical of WHG populations (and thus proper of Baltic groups).

NOTE. The TMRCA dates are obviously gross approximations, because a) the actual rate of mutation is unknown and b) TMRCA estimates are based on the convergence of lineages that survived. The potential finding of R1a-Z645 (possibly Z93+) in Ukraine Eneolithic (ca. 4000 BC), and the potential finding of R1b-L23 in Khvalynsk ca. 4250 BC complicates things further, in terms of dates and origins of any subclade.

The question thus remains as it was long ago: did R1b-M269 lineages expand (‘return’) from the east, near the Urals, or directly from the north? Were they already near Samara at the same time as the expansion of hunter-gatherer pottery, and were not much affected by it? Or did they ‘resurge’ from populations admixed with Caucasus-related ancestry after the expansion of R1a-M17 with this pottery (since there are different stepped expansions from the Samara region)? We could even ask, did R1a-M17 really expand from the east, i.e. are the dates on Baikalic subclades from Moussa et al. (2016) reliable? Or did R1a-M17 expand from some pockets in the Pontic-Caspian steppe, taking over the expansion of HG pottery at some point?

hunger-gatherer-pottery
Early Neolithic cultures in eastern and central Europe: 1–Yelshanian; 2–North Caspian; 3–Rakushechnyj Yar; 4–Surskian; 5–Dnieper-Donetsian; 6– Bug-Dniesterian; 7–Upper Volga; 8–Narvian; 9–Linear Pottery. White arrows: expansion of early farming; black arrows: spread of pottery-making traditions. From Dolukhanov et al. (2009).

Maglemose-related migrations

The most interesting aspect from the new paper (regarding Indo-Uralic migrations) is that Ancestral Middle Easterner ancestry will probably be a better proxy for the Anatolia_Neolithic component found in Ukraine Mesolithic to Eneolithic, and possibly also for some of the “more CHG-like” component found among Pontic-Caspian steppe populations, all likely derived from different admixture events with groups from the Caucasus.

NOTE. Even the supposed gene flow of Neolithic Iranian ancestry into the Caucasus can be put into question, since that means possibly a Dzudzuana-like population with greater “deep ancestry” proportion than the one found in CHG, which may still be found within the Caucasus.

If it was not clear already that following ‘steppe ancestry’ wherever it appears is a rather lame way of following Indo-European migrations, every single sample from the Caucasus and their admixture with Pontic-Caspian steppe populations will probably show that “steppe ancestry” is in fact formed by a variety of steppe-related ancestral components, impossible to follow coherently with a single population. Exactly what is happening already with the Siberian ancestry.

If the paper on the Dzudzuana samples has shown something, is that the expansion of an ANE-like population shook the entire Caucasus area up to the Zagros Mountains, creating this ANE – AME cline that are CHG and Iran_N, with further contributions of “deep ancestries” (probably from the south) complicating the picture further.

If this happens with few known samples, and we know of an ANE-like ghost population in the Caucasus (appearing later in the Lola culture), we can already guess that the often repeated “CHG component” found in Ukraine_Eneolithic and Khvalynsk will not be the same (except the part mediated by the Novodanilovka expansion).

This ANE-like expansion happened probably in the Late Upper Palaeolithic, and reached Northern Europe probably after the expansion of the Villabruna cluster (ca. 12000 BC), judging by the advance of AG3-like and ENA-like ancestry in later WHG samples.

The population movements during the Mesolithic and Early Neolithic in the North Pontic area are quite complicated: the extra AME ancestry is probably connected to the admixture with populations from the Caucasus, while the close similarity of Ukraine populations with Scandinavian ones (with an increase in Villabruna ancestry from Mesolithic to Neolithic samples), probably reveal population movements related to the expansion of Maglemose-related groups.

maglemose-mesolithic
Etno-cultural situation in Central and Eastern Europe in the Late Mesolithic — Early Neolithic (VI—V Mill. BC) (after Конча 2004: 201, карта 1; made after ideas by L. L. Zaliznyak). Legend: 1 — Maglemose circle in the VII Mill. BC (after Gr. Clark); 2—7 — Mesolithic cultures of the Post-Maglemose tradition, VI Mill. BC (after S. Kozłowsky, L. L. Zaliznyak): 2 — de Leyen-Wartena; 3 — Oldesloe — Godenaa; 4 — Chojnice — Peńki; 5 — Janisłavice; 6 — finds of Janisłavice artefacts outside of the main area; 7 — Donets culture; 8 — directions of the settling of Janisłavice people (after S. Kozłowsky and L. L. Zaliznyak); 9 — the south border of Mesolithic and Early Neolithic cultures of post-Swidrian and post-Arensburgian traditions; 10 — northern border of settlement of the Balkan-Danubian farmers; 11 — Bug- Dniester culture; 12 — Neolithic cultures emerged on the ethno-cultural basis of post-Maglemose: Э — Ertebölle-Ellerbeck, Н — Neman, Д — Dnieper-Donets, М — Mariupol (western variants). From Klein (2017).

These Maglemose-related groups were probably migrants from the north-west, originally from the Northern European Plains, who occupied the previous Swiderian territory, and then expanded into the North Pontic area. The overwhelming presence of I2a (likely all I2a2a1b1b) lineages in Ukraine Neolithic supports this migration.

The likely picture of Mesolithic-Neolithic migrations in the North Pontic area right now is then:

  1. Expansion of R1a-M459 from the east ca. 12000 BC – probably coupled with AG3 and also some Baikal_EN ancestry. First sample is I1819 from Vasilievka (ca. 8700 BC), another is from Dereivka ca. 6900 BC.
  2. Expansion of R1b-V88 from the Balkans in the west ca. 9700 BC, based on its TMRCA and also the Balkan hunter-gatherer population overwhemingly of this haplogroup from the 10th millennium until the Neolithic. First sample is I1734 from Vasilievka (ca. 7252 BC), which suggests that it replaced the male population there, based on their similar EHG-like adxmixture (and lack of sizeable WHG increase), and shared mtDNA U5b2, U5a2.
  3. Expansion of I2a-Y5606 probably ca. 6800 based on its TMRCA with Janislawice culture. Supporting this is the increase in WHG contribution to Neolithic samples, including the spread of U4 subclades compared to the previous period.
  4. Expansion of R1a-M17 starting probably ca. 6600 BC in the east (see above).

NOTE. The first sample of haplogroup I appears in the Mesolithic: I1763 (ca. 8100 BC) of haplogroup I2a1, probably related to an older Upper Palaeolithic expansion.

janislawice
Distribution of archeological cultures in the North Pontic Region during the Mesolithic (7th – 6th millennium BCE). Dotted, dashed and solid lines with corresponding arrows indicate alternative models of the spread of the Grebenyky culture groups. (After Bryuako IV., Samojlova TL., Eds, Drevnie kul’tury Severo-­‐Zapadnogo Prichernomor’ya, Odessa: SMIL, 2013.) Nikitin – Ivanova 2017.

Conclusion

It is becoming more and more clear with each new paper that – unless the number of very ancient samples increases – the use of Y-chromosome haplogroups remains one of the most important tools for academics; this is especially so in the steppes, in light of the diversity found in populations from the Caucasus. A clear example comes from the Yamna – Corded Ware similarities:

After the publication of the 2015 papers, it was likely that Yamna expanded with haplogroup R1b-L23, but it has only become crystal clear that Yamna expanded through the steppes into Bell Beakers, now that we have data about the strict genetic homogeneity of the whole Yamna population from west to east (including Afanasevo), in contrast with contemporary Corded Ware peoples which expanded from a different forest-steppe population.

The presence of haplogroups Q and R1a-M459 (xM17) in Khvalynsk along with a R1b1a sample, which some interpreted as being akin to modern ‘mixed’ populations in the past, is likely to point instead to a period of Khvalynsk-Novodanilovka expansion with R1b-M269, where different small populations from the steppe were being integrated into the common Khvalynsk stock, but where differences are seen in material culture surrounding their burials, as supported by the finding of R1b1 in the Kuban area already in the first half of the 5th millennium. The case would be similar to the early ‘mixed’ Icelandic population.

Only after the emergence of the Samara culture (in the second half of the 6th millennium BC), with a sample of haplogroup R1b1a, starts then the obvious connection with Early Proto-Indo-Europeans; and only after the appearance of late Sredni Stog and haplogroup R1a-M417 (ca. 4000 BC) is its connection with Uralic also clear. In previous population movements, I think more haplogroups were involved in migrations of small groups, and only some communities among them were eventually successful, expanding to be dominant, creating ever growing cultures during their expansions.

Indeed, if you think in terms of Uralic and Indo-European just as converging languages, and forget their potential genetic connection, then the genetic + linguistic picture becomes simplified, and the upper frontier of the 6th millennium BC with a division North Pontic (Mariupol) vs. Volga-Ural (Samara) is enough. However, tracing their movements backwards – with cultural expansions from west to east (with the expansion of farming), and earlier east to west (with hunter-gatherer pottery), and still earlier west to east (with the north-eastern technocomplex), offers an interesting way to prove their potential connection to macrofamilies, at least in terms of population movements.

corded-ware-uralic-qpgraph
Modified image from Tambets et al. (2018) Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and yellow—ancient populations (aDNA samples and their pools). Nodes coloured other than pink or yellow are hypothetical intermediate populations. We putatively named nodes which we used as admixture sources using the main recipient among known populations. The colours of intermediate nodes on the qpGraph model match those on the admixture proportions panel. The NeolL (Neolithic Levant) ancestry selected in this qpGraph is likely to correspond (at least in part) to a specific Dzudzuana-like component present in the CHG-like population that admixed in the North Pontic area.

I am quite convinced right now that it would be possible to connect the expansion of R1b-L754 subclades with a speculative Nostratic (given the R1b-V88 connection with Afroasiatic, and the obvious connection of R1b-L297 with Eurasiatic). Paradoxically, the connection of an Indo-Uralic community in the steppes (after the separation of Yukaghir) with any lineage expansion (R1a-M17, R1b-M269, or even Q, I or J1) seems somehow blurrier than one year ago, possibly just because there are too many open possibilities.

David Reich says about the admixture with Neanderthals, which he helped discover:

At the conclusion of the Neanderthal genome project, I am still amazed by the surprises we encountered. Having found the first evidence of interbreeding between Neanderthals and modern humans, I continue to have nightmares that the finding is some kind of mistake. But the data are sternly consistent: the evidence for Neanderthal interbreeding turns out to be everywhere. As we continue to do genetic work, we keep encountering more and more patterns that reflect the extraordinary impact this interbreeding has had on the genomes of people living today.

I think this is a shared feeling among many of us who have made proposals about anything, to fear that we have made a gross, evident mistake, and constantly look for flaws. However, it seems to me that geneticists are more preoccupied with being wrong in their developed statistical methods, in the theoretical models they are creating, and not so much about errors in the true ancient ethnolinguistic picture human population genetics is (at least in theory) concerned about. Their publications are, after all, constantly associating genetic finds with cultures and (whenever possible) languages, so this aspect of their research should not be taken lightly.

Seeing how David Anthony or Razib Khan (among many others) have changed their previously preferred migration models as new data was published, and they continue to be respected in their own fields, I guess we can be confident that professionals with integrity are going to accept whatever new picture appears. While I don’t think that genetic finds can change what we can reconstruct with comparative grammar, I am also ready to revise guesstimates and routes of expansion of certain dialects if R1a-Z645 is shown to have accompanied Late Proto-Indo-Europeans during their expansion with Yamna, and later integrated somehow with Corded Ware.

However, taking into account the obsession of some with an ancestral, uninterrupted R1a—Indo-European association, and the lack of actual political repercussion of Neanderthal admixture, I think the most common nightmare that all genetic researchers should be worried about is to keep inflating this “Yamnaya ancestry”-based hornet’s nest, which has been constantly stirred up for the past two years, by rejecting it – or, rather, specifying it into its true complex nature.

This succession of corrections and redefinitions, coupled with the distinct Y-DNA bottleneck of each steppe population, will eventually lead to a completely different ethnolinguistic picture of the Pontic-Caspian region during the Eneolithic, which is likely to eventually piss off not only reasonable academics stubbornly attached to the CWC-IE idea, but also a part of those interested in daydreaming about their patrilineal ancestors.

Sometimes it’s better to just rip off the band-aid once and for all…

Featured image from The oldest pottery in hunter-gatherer communitiesand models of Neolithisation of Eastern Europe (2015), by Andrey Mazurkevich and Ekaterina Dolbunova.

Related

Interesting is today’s post in Ancient DNA Era: Is Male-driven Genetic Replacement always meaning Language-shift?

On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers

steppe-eneolithic-migrations

A recent comment on the hypothetical Central European origin of PIE helped me remember that, when news appeared that R1b-L51 had been found in Khvalynsk ca. 4250-4000 BC, I began to think about alternative scenarios for the expansion of this haplogroup, with one of them including Central Europe.

Because, if YFull‘s (and Iain McDonald‘s) estimation of the split of R1b-L23 in L51 and Z2103 (ca. 4100 BC, TMRCA ca. 3700 BC) was wrong, by as much as the R1a-Z645 estimates proved wrong, and both subclades were older than expected, then maybe R1b-L51 was not part of the Yamna expansion, but rather part of an earlier expansion with Suvorovo-Novodanilovka into central Europe.

That is, R1b-L51 and R1b-Z2103 would have expanded wih Khvalynsk-Novodanilovka migrants, and they would have either disappeared among local populations, or settled and expanded with successful lineages in certain regions. I think this may give rise to two potential models.

A hidden group in the European east-central steppes?

Here is what Heyd (2011), for example, has to say about the effect of the Khvalynsk-Novodanilovka expansion in the 4th millennium BC, with the first Kurgan wave that shuttered the social, economic, and cultural foundations of south-eastern Europe (before the expansion of west Yamna migrants in the region):

indo-european-anatolian-uralic-migrations
Proto-Anatolian migrations with Khvalynsk-Novodanilovka expansion, including ADMIXTURE data from Wang et al. (2018).

As the Boleraz and Baden tumuli cases in Serbia and Hungary demonstrate, there are earlier, 4th millennium cal. B.C. round tumuli in the Carpathian basin. There are also earlier north-Pontic steppe populations who infiltrated similar environments west of the Black Sea prior to the rise of the Yamnaya culture. This situation can be traced back to the 2nd half of the 5th millennium cal. B.C. to a group of distinct burials, zoomorphic maceheads, long flint blades, triangular flint points, etc., summarized under the term Suvurovo-Novodanilovka (Govedarica 2004; Rassamakin 2004; Anthony 2007; Heyd forthcoming 2011). They also erected round personalized tumuli, though smaller in size and height, above inhumations of single individuals. Suvorovo and Casimcea are the key examples in the lower Danube region of Romania. In northeast Bulgaria, the primary grave of Polska Kosovo (ochre-stained supine extended body position: information communicated by S. Alexandrov) can also be seen as such, as should the Targovishte-“Gonova mogila” primary grave 1 in the Thracian plain with a burial arranged in a supine position with flexed legs, southeast-northwest orientated, and strewed with ochre (Kanchev 1991 , p. 56- 57; Ivanova Gaydarska 2007). In addition to the many copper and shell beads, the 17.4cm long obsidian blade is exceptional, which links this grave to the Csongrád-“Kettoshalom” grave in the south Hungarian plain (Ecsedy 1979). It also yielded an obsidian blade ( 13.2cm long) and copper, shell and limestone beads.

suvorovo-novodanilovka-expansion-europe
The Southeast European distribution of graves of the Suvorovo-Novodanilovka group and such unequipped ones mentioned in the text which can be attributed by burial custom and stratigraphic position in the barrow, plus zoomorphic and abstract animal head sceptres as well as specific maceheads with knobs as from Decea Maresului (mid-5th millennium until around 4000 BC). Heyd (2016).

However, no traces of a tumulus have been recorded above the Kettoshalom tomb. Conventionally, it is dated to the Bodrogkeresztur-period in east Hungary, shortly after 4000 cal. B.C., which would correspond very well with the suggested Cernavodă I (or its less known cultural equivalent in the Thracian plain) attribution for the “Gonova mogila” grave, a cultural background to which the Csongrád grave should have also belonged. Bodrogkeresztur and Cernavodă I periods are not the only examples of 4th millennium cal. B.C. tumuli and burials displaying this steppe connection. Indeed we can find this early steppe impact throughout the 4th millennium cal. B.C. These include adscriptions to the Horodiștea II (Corlateni-Dealul Stadole, grave I: Burtanescu l 998, p. 37; Holbocai, grave 34: Coma 1998, p. 16); to Gordinești-Cernavodă 11 (Liești-Movila Arbănașu, grave 22: Brudiu 2000); to Gorodsk-Usatovo (Corlăteni Dealul Cetăţii, grave I: Comșa 1998, p. 17- 18, in Romania; Durankulak, grave 982: Vajsov 2002, in Bulgaria); and to Cernavodă III(Golyama Detelina, tum. 4: Leshtakov, Borisov 1995), and early (end of 4th millennium cal. B.C.) Ezero in Ovchartsi, primary grave (Kalchev 1994, p. 134-138) and Golyama Detelina, tum. 2 (Kanchev 1991) in Bulgaria. Also the Boleráz and Baden tumuli of Banjevac-Tolisavac and Mokrin in the south Carpathian basin account for this, since one should perhaps take into account primary grave 12 of the Sárrédtudavari-Orhalom tumulus in the Hungarian Alfold: a left-sided crouched juvenile ( 15- 17 y) individual in an oval, NW-SE orientated grave pit 14C dated to 3350-3100 cal. B.C. at 2 sigma (Dani, Ncpper 2006). Neither the burial custom (no ochre strewing or depositing a lump of ochre has been recorded), nor date account for its ascription to the Yamnaya!

All of these tumuli and burials demonstrate, though, that there is already a constant but perhaps low-level 4th millennium cal. B.C. steppe interaction, linking the regions of the north of the Black Sea with those of the west, and reaching deep into the Carpathian basin. This has to be acknowledged. even if these populations remain small, bounded to their steppe habitat with an economy adapted to this special environment, and are not always visible in the record. Indirect hints may help in seeing them, such as the frequent occurrence of horse bones, regarded as deriving from domesticated horses, in Hungarian Baden settlements (Bokonyi 1978; Benecke 1998), and in those of the south German Cham Culture (Matuschik 1999, p. 80-82) and the east German Bernburg Culture (Becker 1999; Benecke 1999). These occur, however, always in low numbers, perhaps not enough to maintain and regenerate a herd. Does this point us towards otherwise archaeologically hidden horsebreeders in the Carpathian basin, before the Yamnaya? In any case, I hope to make one case clear: these are by no means Yamnaya burials in the strict definition! Attribution to the Yamnaya in its strict definition applies.

pit-graves-central-europe
Distribution of Pit-Grave burials west of the Black Sea likely dating to the 2nd half of the 4th millennium BC (triangles: side-crouched burials; filled circles: supine extended burials; open circles: suspected). In Alin Frînculeasa, Bianca Preda, Volker Heyd, Pit-Graves, Yamnaya and Kurgans along the Lower Danube.

Also, about the expansion of Yamna settlers along the steppes:

However, it should have been made clear by the distribution map of the Western Yamnaya that they were confining themselves solely to their own, well-known, steppe habitat and therefore not occupying, or pushing away and expelling, the locally settled farming societies. Also, living solely in the steppes requires another lifestyle, and quite different economic and social bases, most likely very different to the established farming societies. Although surely regarded as incoming strangers, they may therefore not have been seen as direct competitors. This argument can be further enforced when remembering that the lowlands and the steppes in the southeast of Europe had already been populated throughout the 4th millennium cal. B.C., as demonstrated above, by societies with a similar north-Pontic steppe origin and tradition, albeit in lower numbers. It is only for these groups that the Yamnaya may have become a threat, but their common origin and perhaps a similar economic/ social background with comparable lifestyles would surely have assisted to allow rapid assimilation. More important, though, is that farming societies in this region may therefore have been accustomed to dealing and interacting with different people and ethnic strangers for a long time. (…)

When assessing farming and steppe societies’ interaction from a general point of view, attitudes can diverge in three main directions:

  1. the violent one; with raids, fights, struggles, warfare, suppression and finally the superiority and exploitation of the one over the other;
  2. the peaceful one; with a continuous exchange of gifts, goods, work, information and genes in a balanced reciprocal system, leading eventually to the merging of the two societies and creation of a new identity;
  3. the neutral one; with the two societies ignoring each other for a long time.

What we see from trying to understand the record of the Yamnaya, based on their tumuli and burials, and the local and neighbouring contemporary societies, based on their settlements, hoards, and graves, is likely a mixture of all three scenarios, with the balance perhaps more towards exchange in a highly dynamic system with alterations over time. However, violence and raids cannot be ruled out; they would be difficult to see in the archaeological record; or only indirectly, such as the building of hill forts, particularly the defence-like chain of Vucedol hillforts along the south shore of the Danube on the Serbian/Croatian border zone (Tasic 1995a), and the retreat of people into them (Falkenstein 1998, p. 261-262), with other interpretations also possible. And finally, we are dealing here with very different local and neighbouring societies, as well as with more distant contemporary ones, looking, in reality, rather like a chequer board of societies and archaeological cultures (see Parzinger 1993 for the overview). These display different regional backgrounds and traditions leading to different social and settlement organizations, different economic bases and material cultures in the wide areas between Prut and Maritza rivers, and Black Sea and Tisza river. They surely found their individual way of responding to the incoming and settling Yamnaya people.

yamna-tumuli-west-carpathians
Yamnaya tumuli signalling the expansion of West Yamna from ca. 3100 BC (especially after ca. 2950 BC). Heyd (2011).

The best data we have about this potential non-Yamna origin of R1b-L51 – and thus in favour of its admixture in the Carpathian basin – lies in:

  1. The majority of R1a-Z2103 subclades found to date among Yamna samples.
  2. The presence of R1b-Z2103 in the Catacomb culture – in the Northern Caucasus and in Ukraine.
  3. The limited presence of (ancient and modern) R1b-L51 in eastern Europe and India, whose isolated finds are commonly (and simplistically) attributed to ‘late migrations’.
  4. The presence of R1b-L51 (xZ2103) in cultures related to the ‘Yamna package’, but supposedly not to Yamna settlers. So for example I7043, of haplogroup R1b-L151(xU106,xP312), ca. 2500-2200 BC from Szigetszentmiklós-Üdülősor, probably from the Bell Beaker (Csepel group), but maybe from the early Nagýrev culture.
  5. The expansion of its subclades apparently only from a single region, around the Carpathian basin, in contrast to R1b-Z2103.
  6. The already ‘diluted’ steppe admixture found in the earliest samples with respect to Yamna, which points to the appearance after the Yamna admixture with the local population.
  7. Ukrainian archaeologists (in contrast to their Russian colleagues) point to the relevance of North Pontic cultures like Kvitjana and Lower Mikhailovka in the development of Early Yamna in the west, and some eastern European researchers also believe in this similarity.
  8. If R1b-Z2103 and R1b-L51 had expanded with Suvorovo-Novodanilovka migrants to the west, and had admixed later as Hungary_LCA-LBA-like peoples with Yamna migrants during the long-term contacts with other ‘kurganized cultures’ ca. 2900-2500 BC in the Great Hungarian Plains, it could explain some peculiar linguistic traits of North-West Indo-European, and also why R1b-Z2103 appears in cultures associated with this earlier ‘steppe influence’ (i.e. not directly related to Yamna) such as Vučedol (with a R1b-Z2103 sample, see below). That could also explain the presence of R1b-L151(xP312, xU106) in similar Balkan cultures, possibly not directly related to Yamna.
PCA-r1b-l51
Image modified from Wang et al. (2018). PCA of ancient and modern samples. Red circle in dashed line around Varna, Greece Neolithic, and (approximate position of) Smyadovo outliers, part of Khvalynsk-Novodanilovka settlers.

A hidden group among north or west Pontic Eneolithic steppe cultures?

The expansion of Khvalynsk as Novodanilovka into the North Pontic area happened through the south across the steppe, near the coast, with the forest-steppe region working as a clear natural border for this culture of likely horse-riding chieftains, whose economy was probably based on some rudimentary form of mobile pastoralism.

Although archaeologists are divided as to the origin of each individual Middle Eneolithic group near the Black Sea after the end of the Khvalynsk-Novodanilovka period, it seems more or less clear that steppe cultures like Cernavodă, Lower Mikhailovka, or Kvitjana are closer (or “more archaic”) in their steppe features, which connects them to Volga–Ural and Northern Caucasus cultures, like Northern Caucasus, Repin or Khvalynsk.

On the other hand, forest-steppe cultures like Dereivka (including Alexandria) show innovative traits and contacts with para- or sub-Neolithic cultures to the north, like Comb-Pit Ware groups, apart from corded decoration influenced by Trypillian groups to the west, especially in their later (‘Proto-Corded Ware‘) stage after ca. 3500 BC.

If Ukrainian researchers like Rassamakin are right, Early Yamna expanded not only from Repin settlers, but also from local steppe cultures adopting Repin traits to develop an Early Yamna culture, similar to how eastern (Volga–Ural groups) seem to have synchronously adopted Early Yamna without massive affluence of Repin settlements.

Furthermore, local traits develop in southern groups, like anthropomorphic stelae (shared with Kemi-Oba, direct heir of Lower Mikhailovka), and rich burials featuring wagons. These traits are seen in west Yamna settlers.

north-pontic-kvityana-dereivka-repin
Modified from Rassamakin (1999), adding red color to Repin expansion. The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug.

Problems of this model include:

  1. On the North Pontic area – in contrast to the Volga–Ural region – , there was a clear “colonization” wave of Repin settlers, also supported by Ukrainian researchers, based on the number of new settlements and burials, and on the progressive retreat of Dereivka, Kvitjana, as well as (more recent) Maykop- and Trypillia-related groups from the North Pontic area ca. 3350/3300 BC. It seems unlikely that these expansionist, semi-nomadic, cattle-breeding, patrilineally-related steppe clans that were driving all native populations out of their territories suddenly decided, at some point during their spread into the North Pontic area ca. 3300-3100 BC, to join forces with some foreign male lineages from the area, and then continue their expansion to the west…
  2. Similar to the fate of R1b-P297 subclades in the Baltic after the expansion of Corded Ware migrants, previous haplogropus of the North Pontic region – such as R1a, R1b-V88, and I2 subclades basically disappeared from the ancient DNA record after the expansion of Khvalynsk-Novodanilovka, and then after the expansion of Yamna, as is clear from Yamna, Afanasevo, and Bell Beaker samples obtained to date. This, in combination with what we know about Y-chromosome bottlenecks in post-Neolithic expansions, leaves little space to think that a big enough territorial group with a majority of “native” haplogroups could survive later expansions (be it R1b-L51 or R1a-Z645).
  3. Supporting an expansion of the same male (and partly female) population, the Yamna admixture from east to west is quite homogeneous, with the only difference found in (non-significant) EEF-like proportion which becomes elevated in distant areas [apart from significant ‘southern’ contribution to certain outlier samples]. Based on the also homogeneous Y-DNA picture, the heterogeneity must come, in general, from the female exogamy practiced by expanding groups.
  4. There is a short period, spanning some centuries (approximately 3300-2700 BC), in which the North Pontic area – especially the forest-steppe territories to the west of the Dnieper, i.e. the Upper Dniester, Boh, and Prut-Siret areas – are a chaos of incoming and emigrating, expanding and shrinking groups of different cultures, such as late Trypillian groups, Maykop-related traits, TRB, GAC, (Proto-)Corded Ware, and Early Yamna settlements. No natural geographic frontier can be delimited between these groups, which probably interacted in different ways. Nevertheless, based on their cultural traits, admixture, and especially on their Y-DNA, it seems that they never incorporated foreign male lineages, beyond those they probably had during their initial expansion trends.
  5. The further expansionist waves of Early Yamna seen ca. 3100 BC, from the Danube Delta to the west, give an overall image of continuously expanding patrilineal clans of R1b-M269 subclades since the Khvalynsk-Novodanilovka migration, in different periodic steps, mostly from eastern Pontic-Caspian nuclei, usually overriding all encountered cultures and (especially male) populations, rather than showing long-term collaboration and interaction. Such interaction is seen only in exceptional cases, e.g. the long-term admixture between Abashevo and Poltavka, as seen in Proto-Indo-Iranian peoples and their language.
PCA-Ukraine-r1b-l51
Image modified from Wang et al. (2018). PCA of ancient and modern samples. Arrows depicting Khvalynsk -> Yamna drift (blue), and hypothetic approximate Ukraine Eneolithic -> Yamna drift accompanying R1b-L51 (red).

Consequences

We are living right now an exemplary ego-, (ethno-)nationalism-, and/or supremacy-deflating moment, for some individuals of eastern and northern European descent who believed that R1a or ‘steppe ancestry proportions’ meant something special. The same can be said about those who had interiorized some social or ethnolinguistic meaning for the origin of R1b in western Europe, N1c in north-eastern Europe, as well as Greeks, Iranians, Armenians, or Mediterranean peoples in general of ‘Near Eastern’ ancestry or haplogroups, or peoples of Near Eastern origin and/or language.

These people had linked their haplogroups or ancestry with some fantasy continuity of ‘their’ ancestral populations to ‘their’ territories or languages (or both), and all are being proven wrong.

Apart from teaching such people a lesson about what simplistic views are useful for – whether it is based on ABO or RH group, white skin, blond hair, blue eyes, lactase persistence, or on the own ancestry or Y-DNA haplogroup -, it teaches the rest of us what can happen in the near future among western Europeans. Because, until recently, most western Europeans were comfortably settled thinking that our ancestors were some remnant population from an older, Palaeolithic or Mesolithic population, who acquired Indo-European languages by way of cultural diffusion in different periods, including only minor migrations.

Judging by what we can see now among some individuals of Northern and Eastern European descent, the only thing that can worsen the air of superiority among western Europeans is when they realize (within a few years, when all these stupid battles to control the narrative fade) that not only are they the cultural ‘heirs’ of the Graeco-Roman tradition that began with the Roman Empire, but that most of them are the direct patrilineal descendants of Khvalynsk, Yamna, Bell Beaker, and European Bronze Age peoples, and thus direct descendants of Middle PIE, Late PIE, and NWIE speakers.

steppe-chalcolithic-migrations
Steppe-related migrations ca. 3100-2600 BC with tentative linguistic identification.

The finding of R1b-L51 and R1b-Z2103 among expanding Suvorovo-Novodanilovka chieftains, with pockets of R1b-L51 remaining in steppe-like societies of the Balkans and the Carpathian Basin, would have beautifully complemented what we know about the East Yamna admixture with R1a-Z93 subclades (Uralic speakers) ca. 2600-2100 BC to form Proto-Indo-Iranian, and about the regional admixtures seen in the Balkans, e.g. in Proto-Greeks, with the prevalent J subclades of the region.

It would have meant an end to any modern culture or nation identifying themselves with the ‘true’ Late PIE and Yamna heirs, because these would be exclusively associated with the expansion of R1b-Z2103 subclades with late Repin, and later as the full-fledged Late PIE with Yamna settlers to south-east and central Europe, and to the southern Urals. The language would have had then obviously undergone different language changes in all these territories through long-lasting admixture with other populations. In that sense, it would have ended with the ideas of supremacy in western Europe before they even begin.

The most likely future

However limited the evidence, it seems that R1b-L51 expanded with Yamna, though, based on the estimates for the haplogroups involved, and on marginal hints at the variability of L23 subclades within Yamna and neighbouring populations. If R1b-L51 expanded with West Repin / Early Yamna settlers, this is why they have not yet been found among Yamna samples:

steppe-eneolithic-migrations
Simplified map of Repin expansions from ca. 3500/3400 BC.
  • The subclade division of Yamna settlers needs not be 50:50 for L51:Z2103, either in time or in space. I think this is the simplistic view underlying many thoughts on this matter. Many different expanding patrilineal clans of L23 subclades may have been more or less successful in different areas, and non-Z2103 may have been on the minority, or more isolated relative to Z2103-clans among expanding peoples on the steppe, especially on the east. In fact, we usually talk in terms of “Z2103 vs. L51” as if
    1. these two were the only L23 subclades; and
    2. both had split and succeeded (expanding) synchronously;

    that is, as if there had not been multiple subclades of both haplogroups, and as if there had not been different expansion waves for hundreds of years stemming from different evolving nuclei, involving each time only limited (successful) clans. Many different subclades of haplogroups L23 (xZ2103, xL51), Z2103, and L51 must have been unsuccessful during the ca. 1,500 years of late Khvalynsk and late Repin-Early Yamna expansions in which they must have participated (for approximately 60-75 generations, based on a mean 20-25 years).

  • If we want to imagine a pocket of ‘hidden’ L51 for some region of the North Pontic or Carpathian region, the same can be imagined – and much more likely – for any unsampled territory of expanding late Repin/Early Yamna settlers from the Lower Don – Lower Volga region (probably already a mixed society of L51 and Z2103 subclades since their beginning, as the early Repin culture, ca. 3800 BC), with L51 clans being probably successful to the west.
  • The Repin culture expanded only in small, mobile settlements from the Lower Don – Lower Volga to the north, east, and south, starting ca. 3500/3400 BC, in the waves that eventually gave a rather early distant offshoot in the Altai region, i.e. Afanasevo. Starting ca. 3300 BC in the archaeological record, the majority of R1b-Z2103 subclades found to date in Afanasevo also supports either
    • a mixed Repin society, with Z2103-clans predominating among eastern settlers; or
    • a Repin society marked by haplogroup L51, and thus a cultural diffusion of late Repin/Early Yamna traits among neighbouring (Khvalynsk, Samara, etc.) groups of essentially the same (early Khvalynsk-Novodanilovka) genetic stock in the Volga–Ural region.

    Both options could justify a majority of Z2103 in the Lower Volga–Ural region, with the latter being supported by the scattered archaeological remains of late Repin in the region before the synchronous emergence of Early Yamna findings in the whole Pontic-Caspian steppe.

  • Most Z2103 from Yamna samples to date are from around 3100 BC (in average) onward, and from the right bank of the Lower Don to the east, particularly from the Lower Volga–Ural area (especially the Samara region), which – based on the center of expansion of late Repin settlers – may be depicting an artificially high Z2103-distribution of the whole Yamna community.
repin-expansion-khvalynsk-cultures
Repin expansion into the Volga–Ural region from ca. 3500/3400 BC. Map made by me based on maps and data from Morgunova (2014, 2016). Lopatino is marked with number 64.
  • Yamna sample I0443, R1b-L23 (Y410+, L51-), ca. 3300-2700 BCE from Lopatino II, points to an intermediate subclade between L23 and L51, near one of the supposed late Repin sites (based on kurgan burials with late Repin cultural traits) in the Samara region.
  • Other Balkan cultures potentially unrelated to the Yamna expansion also show Z2103 (and not only L51) subclades, like I3499 (ca. 2884-2666 calBC), of the Vučedol culture, from Beli Manastir-Popova zemlja, which points to the infiltration of Yamna peoples in other cultures. In any case, the appearance of R1b-L23 subclades in the region happens only after the Yamna expansion ca. 3100 BC, probably through intrusions into different neighbouring regions, if these Balkan cultures are not directly derived from Yamna settlements (which is probably the case of the Csepel Bell Beaker or early Nagýrev sample, see above).
  • The diversity of haplogroups found in or around the Carpathian Basin in Late Chalcolithic / Early Bronze Age samples, including L151(xP312, xU106), P312, U106, Z2103, makes it the most likely sink of Yamna settlers, who spread thus with expanding family clans of different R1b-L23 subclades.
  • Even though some Yamna vanguard groups are known to have expanded up to Saxony-Anhalt before ca. 2700 BC, haplogroup Z2103 seems to be restricted to more eastern regions, which suggests that R1b-L51 was already successful among expanding West Yamna clans in Hungary, which gave rise only later to expanding East Bell Beakers (overwhelmingly of L151 subclades). The source of R1b-L51 and L151 expansion over Z2103 must lie therefore in the West Yamna period, and not in the Bell Beaker expansion.
indo-european-uralic-migrations-yamna-gac
Yamna migrants ca. 3300-2600. Most likely site of admixture with GAC circled in red.
  • The R1b-Z2103 found in Poltavka, Catacomb, and to the south point to a late migration displacing the western R1b-L51, only after the late Repin expansion. This is also seen in the steppe ancestry and R1b-Z2103 south of the Caucasus, in Hajji Firuz, which points to this route as a potential source of the supposed “Earliest Proto-Indo-Iranian” (the mariannu term) of the Near East. A similar replacement event happened some centuries later with expanding R1a-Z93 subclades from the east wiping out haplogroup R1b-Z2103 from the Pontic-Caspian steppe.
  • Many ancient samples from Khvalynsk, Northern Caucasus, Yamna, or later ones are reported simply as R1b-M269 or L23, without a clear subclade, so the simplistic ‘Yamna–Z2103’ picture is not real: if one takes into account that Z2103 might have been successful quite early in the eastern region, it is more likely to obtain a successful Y-SNP call of a Z2103 subclade in the Volga–Ural region than a xZ2103 one.
  • There are some modern samples of R1b-L51 in eastern Europe and Asia, whose common simplistic attribution to “late expansions” is usually not substantiated; and also ancient R1b-L51 samples might be confirmed soon for Asia.
  • ‘Western’ features described by archaeologists for West Yamna settlers, associated with Kemi Oba and southern Yamna groups in the North Pontic area – like rich burials with anthropomorphic stelae and wagons – are actually absent in burials from settlers beyond Bulgaria, which does not support their affiliation with these local steppe groups of the Black Sea. Also, a mix with local traditions is seen accross all Early Yamna groups of the Pontic-Caspian steppe, and still genetics and common cultural traits point to their homogeneization under the same patrilineal clans expanding continuously for centuries. The maintenance of local traditions (as evidenced by East Bell Beakers in Iberia related to Iberian Proto-Beakers) is often not a useful argument in genetics, especially when the female population is not replaced.
yamna-settlers-hungary
Yamna settlers in the Great Pannonian Plain, showing only kurgans of Hungary ca. 2950-2500 BC. Yamna Hungary was one of the biggest West Yamna provinces. From Hórvath et al. (2013).

Conclusion

This is what we know, using linguistics, archaeology, and genetics:

  • Middle Proto-Indo-European expanded with Khvalynsk-Novodanilovka after ca. 4800 BC, with the first Suvorovo settlements dated ca. 4600 BC.
  • Archaic Late Proto-Indo-European expanded with late Repin (or Volga–Ural settlers related to Khvalynsk, influenced by the Repin expansion) into Afanasevo ca. 3500/3400 BC.
  • Late Proto-Indo-European expanded with Early Yamna settlers to the west into central Europe and the Balkans ca. 3100 BC; and also to the east (as Pre-Proto-Indo-Iranian) into the southern Urals ca. 2600 BC.
  • North-West Indo-European expanded with Yamna Hungary -> East Bell Beakers, from ca. 2500 BC.
  • Proto-Indo-Iranian expanded with Sintashta, Potapovka, and later Andronovo and Srubna from ca. 2100 BC.

It seems that the subclades from Khvalynsk ca. 4250-4000 BC were wrongly reported – like those of Narasimhan et al. (2018). However, even if they are real and YFull estimates have to be revised, and even if the split had happened before the expansion of Suvorovo-Novodanilovka, the most likely origin of R1b-L51 among Bell Beakers will still be the expansion of late Repin / Early Yamna settlers, and that is what ancient DNA samples will most likely show, whatever the social or political consequences.

The only relevance of the finding of R1b-L51 in one place or another – especially if it is found to be a remnant of a Middle PIE expansion coupled with centuries of admixture and interaction in the Carpathian Basin – is the potential influence of an archaic PIE (or non-IE) layer on the development of North-West Indo-European in Yamna Hungary -> East Bell Beaker. That is, more or less like the Uralic influence related to the appearance of R1a-Z93 among Proto-Indo-Iranians, of R1a-Z284 among Pre-Germanic peoples, and of R1a-Z282 among Balto-Slavic peoples.

I think there is little that ancient DNA samples from West Yamna could add to what we know in general terms of archaeology or linguistics at this point regarding Late PIE migrations, beyond many interesting details. I am sure that those who have not attributed some random 6,000-year-old paternal ancestor any magical (ethnic or nationalist) meaning are just having fun, enjoying more and more the precise data we have now on European prehistoric populations.

As for those who believe in magical consequences of genetic studies, I don’t think there is anything for them to this quest beyond the artificially created grand-daddy issues. And, funnily enough, those who played (and play) the ‘neutrality’ card to feel superior in front of others – the “I only care about the truth”-type of lie, while secretly longing for grandpa’s ethnolinguistic continuity – are suffering the hardest fall.

Related

Trypillia and Greece Neolithic outliers: the smoking gun of Proto-Anatolian migrations?

neolithic-migrations-khvalynsk-novodanilovka-anatolian

(Continued from the post Corded Ware culture origins: The Final Frontier).

Looking at the PCA of Wang et al. (2018), I realized that Sredni Stog / Corded Ware peoples seem to lie somewhere between:

  • the eastern steppe (i.e. Khvalynsk-Yamna); and
  • Lower Danube and Balkan cultures affected by Anatolian- and steppe-related (i.e. Khvalynsk-Novodanilovka) migrations.

This multiethnic interaction of the western steppe fits therefore the complex archaeological description of events in the North Pontic, Lower Danube, and Dnieper-Dniester regions. Here are some interesting samples related to those long-lasting contacts:

1. I3719 (mtDNA H1, Y-DNA I2a2a) Ukraine Neolithic sample from Dereivka ca. 4949–4799 BC, described in Mathieson et al. (2018) as of “entirely northwestern-Anatolian-Neolithic-related ancestry”.

2. ANI163 from Varna I ca. 4711–4550 BC (mtDNA H7a1), and I2181 from Balkans Chalcolithic (Smyadovo, in Bulgaria) ca. 4500 BC (mtDNA HV15, Y-DNA R) show the first steppe ancestry in regions known to be affected by the expansion of Suvorovo chiefs.

3. The Yamna Bulgaria outlier (Y-DNA I2a2a1b1b), 3012-2900 calBCE, shows apparently an admixture with cultures of that region (but 1,500 years later).

PCA-trypillia-greece-neolithic-outlier-anatolian
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Trypillia and Corded Ware

4. There is one ‘Trypillia outlier’ among five samples from the Verteba cave in Wang et al. (2018): I1927 (Y-DNA G2a2b2a1a1b1a1a1, mtDNA H1b), ca. 3619-2936 BC, a sample published previously in Nikitin et al. (2017) and Mathieson et al. (2017). We were very quick to dismiss Trypillia (three samples of haplogroup G2a, one sample E) and GAC as a source of Corded Ware admixture, but archaeology clearly shows important population movements at the end of the fourth millennium between late Trypillia groups, GAC, and post-Sredni Stog populations, and genetics is showing that in both cultures, too.

I am not a fan of the ‘lack of samples’ argument, but (similar to Old Hittite samples related to all Anatolian speakers) one site is not enough to describe a culture that spanned millennia and many different early and late groups. One among five Trypillian samples (from a single site), showing a late date (ca. 3228 BC) compared to the other samples (ca. 3700 BC), and quite close to the only three Ukraine Eneolithic samples we have may mean much more than what we may a priori think, i.e. some simplistic unidirectional punctual ‘intrusion’ of steppe ancestry, and instead hint at the known close contacts of late Trypillian groups and North Pontic cultures, including also the Caucasus.

NOTE. The big difference in PCA among GAC-like Hungary LCA – EBA samples (see above two star symbols close to Ukraine Neolithic outlier in the PCA, in contrast with the other three at the bottom) may also be significant, although we don’t have any data about their culture, sites, or the relationship between them.

trypillia-verteba-cave
Location of Verteba Cave in relation to different stages and neighbouring groups of the Cucuteni-Trypillia culture. Image from the paper A Subterranean Sanctuary of the Cucuteni-Trypillia Culture in Western Ukraine, by Kadrow and Pokutta (2016).

Greece Neolithic outlier: Proto-Anatolians?

5. Especially interesting is I6423, one of the Greece Neolithic samples referred to in Wang et al. (2018), which is obviously an outlier among the three used in the paper. It does not seem to correspond to any of the ancient DNA samples published to date; it is not in Hofmanova et al. (2016), in Lazaridis et al. (2017), or in Mathieson et al. (2018).

Since the Neolithic in Greece could mean any period from ca. 6500 BC to ca. 3200 BC, I guess we are talking here about some migration related to the expansion of Khvalynsk-Novodanilovka chieftains after ca. 4500 BC, because it appears on the PCA precisely on the same spot as Varna and Smyadovo outliers, and its ADMIXTURE shows similar components

admixture-ukraine-eneolithic-greece-neolithic
Image modified from Wang et al. (2018). “ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)”. ‘Outlier’ samples referred to in this post have been marked in red. See the original file here.

So, this may be the smoking gun of Proto-Anatolian (or maybe early Common Anatolian) expansion with steppe migrants up to the border of Western Anatolia, and we may be able to get rid of those unfounded doubts about Anatolian origins once and for all…

NOTE. Also interesting seems another Greece Neolithic sample, I6420, in ADMIXTURE, although its position in the PCA (near Minoans and Mycenaeans) does not necessarily point to potential steppe influence, but rather to the extra ‘eastern (Caucasus/Iran-related) ancestry’ contribution found in Minoans and in Mycenaeans (and Anatolia Chalcolithic) compared to previous samples of the region. The third Greece Nelithic sample, I5427 (mtDNA K1a24), from Diros, Alepotrypa Cave, is dated 6005-5879 BC (mean 5892 BC), and appeared first in Mathieson et al. (2018).

greece-neolithic
Modified from Wang et al. (2018) (Greece_Neolithic in red). Supplementary Table 6. P values of rank=1 in modelling the two-way admixture in the Caucasus cluster. Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic. Source 2 populations in bold print are used as examples in modelling the Caucasus cluster groups (See Supplementary Table 7).
greece-neolithic-caucasus
Modified from Wang et al. (2018) (Greece_Neolithic in red). Supplementary Table 10. P values of rank=2 and ancestry proportions in modelling a three-way admixture in the Caucasus cluster testing additional contribution from Iran_ChL. Here, we used an extended set of outgroup populations populations to constrain standard errors: Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic, EHG, WHG, Levant_N.

If this Greece Neolithic sample is not related to Yamna migrations – and its use for statistical analysis of Caucasus samples from Wang et al. (2018) suggests that it is not – , it may have important consequences:

If it is located near the Western Anatolian coast – especially near Troy – there won’t be much to add about the potential site of entry of Common Anatolian languages into Anatolia… I have read some comments about how ‘impossible’ it was for steppe migrants and their language to ‘invade’ the more advanced cultures of Anatolia from the west, but it seems as ‘impossible’ as it was for Barbarians to invade the Roman Empire and impose their language as elites in certain regions. (And yes, we have at least one important weak political period among Middle Eastern cultures in the early 3rd millennium BC, similar to the period of the Fall of the Western Roman Empire).

indo-european-anatolian-uralic-migrations
Most likely Proto-Anatolian expansion in the North Pontic and Balkan area with Khvalynsk-Novodanilovka chieftains, including ADMIXTURE data from Wang et al. (2018).

If it is located somewhere more ‘central’ in the Greek Peninsula, then it could also be used to support the Anatolian nature of the controversial Pre-Greek (‘Pelasgian’) substrate. While we know that Greek (at least since Mycenaean) shows a strong Pre-Greek cultural and linguistic heritage (also reflected in its genetic continuity), the nature of that language is usually believed to be non-Indo-European, and Anatolian contacts are rather few and coincident with the Mycenaean period. I don’t think this sample can tell much about the Pre-Greek language, though, because – if it is really Neolithic, and comparing it with later Minoan and Mycenaean samples – it seems a clear outlier.

suvorovo-novodanilovka-expansion-europe
Heyd (2016): The Southeast European distribution of graves of the Suvorovo-Novodanilovka group and such unequipped ones mentioned in the text which can be attributed by burial custom and stratigraphic position in the barrow, plus zoomorphic and abstract animal head sceptres as well as specific maceheads with knobs as from Decea Maresului (mid-5th millennium until around 4000 BC). The site in the south-west Balkans is Suvodol-Šuplevec, Northern Macedonia (FYROM).

If it is, however, related to later Yamna migrations after ca. 3000 BC (and, like the ‘Ukraine Eneolithic’ sample that is likely from Catacomb, it is classified as Neolithic just because it cannot be attributed to precise Helladic periods), then we may be in front of the first obvious Yamna migrants in Greece. If that is the case (which I doubt), the sample wouldn’t be so informative for PIE dialectal expansions, because by now it is evident that we will find steppe ancestry and R1b-Z2103 subclades accompanying Yamna migrants in the southern Balkans, and probably well into Mycenaean Greece.

NOTE. Whatever the case, I am sure that for those fond of absurd autochthonous continuity theories, as well as for anti-steppe conspirationists, this sample will be just another good way of arguing for anything, ranging from a rejection of the Middle PIE – Late PIE division, to a support for some mythic ancient autochtonous Proto-Graeco-Anatolian group, or maybe some ancient Graeco–Indo-Slavonic split, or whatever new dialectal stage one can invent to support the own genealogical fantasies…

So, if it actually is a Neolithic sample, let’s hope that it shows a clear R1b-M269 (xL23 or early L23) subclade distinct from those (likely Z2103) expanded later with Late PIE-speaking Yamna (and probably to be found among Mycenaeans), so that there can be no more place for ethnic fantasies.

EDIT (28 JUL 2018): Added information on Greece Neolithic and Trypillia samples

Related