Updates to ASoSaH: new maps, updated PCA, and added newest research papers


The title says it all. I have used some free time to update the series A Song of Sheep and Horses:

I basically added information from the latest papers published, which (luckily enough for me) haven’t been too many, and I have added images to illustrate certain sections.

I have updated the PCAs by including North Caucasus samples from Wang et al. (2018), whose position I could only infer for older versions from previously published PCA graphs.

PCA of ancient and modern Eurasian samples. Early Eneolithic admixture events in the steppe drawn.

I have also added to the supplementary materials the “Tip of the Iceberg” R1b tree by Mike Walsh from the FTDNA R1b group, with permission, because some relevant genetic sections are centered on the evolution of R1b lineages, and the reader can get easily lost with so many subclades.

I have also updated maps, including some of the Y-DNA ones, and managed to finish two new maps I was working on, and I added them to the supplementary materials and to the menu above:

One on Yamna kurgans in Hungary, coupled with contemporaneous sites of Baden-Boleráz or Kostolac cultures:

Map of attested Yamnaya pit-grave burials in the Hungarian plains; superimposed in shades of blue are common areas covered by floods before the extensive controls imposed in the 19th century; in orange, cumulative thickness of sand, unfavourable loamy sand layer. Marked are settlements/findings of Boleráz (ca. 3500 BC on), Baden (until ca. 2800 BC), Kostolac (precise dates unknown), and Yamna kurgans (from ca. 3100/3000 BC on).

Another one on Steppe ancestry expansion, with a tentative distribution of “steppe ancestry” divided into that of Sredni Stog/Corded Ware origin vs. that of Repin/Yamna origin, a difference that has been known for quite some time already.

It is tentative because there hasn’t been any professional study or amateur attempt to date to differentiate both “steppe ancestries” in Yamna, and especially in Bell Beakers. So much for the call of professional geneticists since 2018 (see here and here) and archaeologists since 2017 (see e.g. here and here) to distinguish fine-scale population structure to be able to follow neighbouring populations which expanded with different archaeological (and thus ethnolinguistic) groups.

Tentative map of fine-scale population structure during steppe-related expansions (ca. 3500–2000 BC), including Repin–Yamna–Bell Beaker/Balkans and Sredni Stog–Corded Ware groups. Data based on published samples and pairwise comparisons tested to date. Notice that the potential admixture of expanding Repin/Early Yamna settlers in the North Pontic area with the late Sredni Stog population (and thus Sredni Stog-related ancestry in Yamna) has been omitted for simplicity purposes, assuming thus a homogeneous Yamna vs. Corded Ware ancestry.

I think both maps are especially important today, given the current Nordicist reactionary trends arguing (yet again) for an origin of Indo-Europeans in The North™, now based on the Fearsome Tisza River hypothesis, on cephalic index values, and a few pairwise comparisons – i.e. an absolutely no-nonsense approach to the Indo-European question (LOL). At least I get to relax and sit this year out just observing how other people bury themselves and their beloved “steppe ancestry=IE” under so many new pet theories…

NOTE. Not that there is anything wrong with a northern origin of North-West Indo-European from a linguistic point of view, as I commented recently – after all, a Corded Ware origin would roughly fit the linguistic guesstimates, unlike the proposed ancestral origins in Anatolia or India. The problem is that, like many other fringe theories, it is today just based on tradition, or (even worse) ethnic, political, or personal desires, and it doesn’t make sense when all findings from disciplines involved in the Indo-European and Uralic questions are combined.

Simple ancestry percentages in modern populations. Recent image by Iain Mathieson 2019 (min. 5.57). A simplistic “Steppe ancestry” defining Indo-European speakers…? Sure.

Within 20 or 30 years, when genetic genealogists (or amateur geneticists, or however you want to call them) ask why we had the opportunity since 2015 to sample as many Hungarian Yamnaya individuals as possible and we didn’t, when it is clear that the number of unscathed kurgans is diminishing every year (from an estimated 4,000 in the 20th century, of the original tens of thousands, to less than 1,500 today) the answer will not be “because this or that archaeologist or linguist was a dilettante or a charlatan‘, as they usually describe academics they dislike.

It will be precisely because the very same genetic genealogists – supposedly interested today in the origin of R1b-L151 and/or genetic marker associated with North-West Indo-Europeans – are obsessed with finding them anywhere else but for Hungary, and prefer to use their money and time to play with a few statistical tools within a biased framework of flawed assumptions and study designs, obtaining absurd results and accepting far-fetched interpretations of them, to be told exactly what they want to hear: be it the Franco-Cantabrian homeland, the Dutch or Moravian Beaker from CWC homeland, the Maykop homeland, or the Moon homeland.

Poetic justice this heritage destruction, whose indirect causes will remain written in Internet archives for everyone to see, as a good lesson for future generations.

Ahead of the (Indo-European – Uralic) game: in theory and in numbers


There is a good reason for hope, for those who look for a happy ending to the revolution of population genomics that is quickly turning into an involution led by beliefs and personal interests. This blog is apparently one of the the most read sites on Indo-European peoples, if not the most read one, and now on Uralic peoples, too.

I’ve been checking the analytics of our sites, and judging by the numbers of the English blog, Indo-European.eu (without the other languages) is quickly turning into the most visited one from Academia Prisca‘s sites on Indo-European languages, beyond Indo-European.info (and its parent sites in other languages), which host many popular files for download.

If we take into account file downloads (like images or PDFs), and not only what Google Analytics can record, Indo-European.eu has not more users than all other websites of Academia Prisca, but at this pace it will soon reach half the total visits, possibly before the end of 2019.

Overall, we have evolved from some 10,000 users/year in 2006 to ~300,000 active users/year and >1,000,000 page+file views/year in 2018 (impossible to say exactly without spending too much time on this task). Nothing out of the ordinary, I guess, and obviously numbers are not a quality index, but rather a hint at increasing popularity of the subject and of our work.

NOTE. The mean reading time is ~2:40 m, which I guess fits the length of most posts, and most visitors read a mean of ~2+ pages before leaving, with increasing reader fidelity over time.

Number of active users of indo-european.eu, according to Google Analytics since before the start of the new blog. Notice the peaks corresponding to the posts below (except the last one, corresponding to the publication of A Song of Sheep and Horses).

The most read posts of 2018, now that we can compare those from the last quarter, are as follows:

  1. – The series on the Corded Ware-Uralic theory, with a marked increase in readers, especially with the last three posts:
    1. Finno-Permic and the expansion of N-L392/Siberian ancestry,
    2. “Siberian ancestry” and Ugric-Samoyedic expansions, and
    3. Haplogroups R1a and N in Finno-Ugric and Samoyedic
  2. Haplogroup is not language, but R1b-L23 expansion was associated with Proto-Indo-Europeans
  3. The history of the simplistic ‘haplogroup R1a — Indo-European’ association
  4. On the origin of haplogroup R1b-L51 in late Repin / early Yamna settlers
  5. On the origin and spread of haplogroup R1a-Z645 from eastern Europe
  6. The Caucasus a genetic and cultural barrier; Yamna dominated by R1b-M269; Yamna settlers in Hungary cluster with Yamna
  7. Something is very wrong with models based on the so-called ‘Yamnaya admixture’ – and archaeologists are catching up (II)
  8. Olalde et al. and Mathieson et al. (Nature 2018): R1b-L23 dominates Bell Beaker and Yamna, R1a-M417 resurges in East-Central Europe during the Bronze Age
  9. Early Indo-Iranian formed mainly by R1b-Z2103 and R1a-Z93, Corded Ware out of Late PIE-speaking migrations
  10. “Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

NOTE. Of course, the most recent posts are the most visited ones right now, but that’s because of the constant increase in the number of visitors.

I think it is obvious what the greatest interest of readers has been in the past two years. You can see the pattern by looking at the most popular posts of 2017, when the blog took off again:

  1. Germanic–Balto-Slavic and Satem (‘Indo-Slavonic’) dialect revisionism by amateur geneticists, or why R1a lineages *must* have spoken Proto-Indo-European
  2. The renewed ‘Kurgan model’ of Kristian Kristiansen and the Danish school: “The Indo-European Corded Ware Theory”
  3. The new “Indo-European Corded Ware Theory” of David Anthony
  4. Correlation does not mean causation: the damage of the ‘Yamnaya ancestral component’, and the ‘Future American’ hypothesis
  5. The Aryan migration debate, the Out of India models, and the modern “indigenous Indo-Aryan” sectarianism

The most likely reason for the radical increase in this blog’s readership is very simple, then: people want to know what is really happening with the research on ancestral Indo-Europeans and Uralians, and other blogs and forums are not keeping up with that demand, being content with repeating the same ideas again and again (R1a-CWC-IE, R1b-BBC-Vasconic, and N-Comb Ware-Uralic), despite the growing contradictions. As you can imagine, once you have seen the Yamna -> Bell Beaker migration model of North-West Indo-European, with Corded Ware obviously representing Uralic, you can’t unsee it.

The online bullying, personal attacks, and similar childish attempts to silence those who want to talk about this theory elsewhere (while fringe theories like R1a/CHG-OIT, R1b-Vasconic, or the Anatolian/Armenian-CHG hypotheses, to name just a few, are openly discussed) has had, as could be expected, the opposite effect to what was intended. I guess you can say this blog and our projects have profited from the first relevant Streisand effect of population genomics, big time.

If this trend continues this year (and other bloggers’ or forum users’ faith in miracles is not likely to change), I suppose that after the Yamna Hungary samples are published (with the expected results) this blog is going to be the most read in 2020 by a great margin… I can only infer that this tension is also helping raise the interest in (and politicization of) the question, hence probably the overall number of active users and their participation in other blogs and forums is going to increase everywhere in 2019, too, as this debate becomes more and more heated.

So, what I infer from the most popular posts and the numbers is that people want criticism and controversy, and if you want blood you’ve got it. Here it is, my latest addition to the successful series criticizing the “Corded Ware/R1a–Indo-European” pet theories, a post I wrote two-three months ago, slightly updated with the newest comedy, and a sure success for 2019 (already added to the static pages of the menu):

The “Indo-European Corded Ware theory” doesn’t hold water

This is how I feel when I see spikes in visits with more and more returning users linked to my controversial posts 😉

Are you not entertained?! Are you not entertained?! Is this not why you are here?!

Mitogenomes from Avar nomadic elite show Inner Asian origin


Inner Asian maternal genetic origin of the Avar period nomadic elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2018).

Abstract (emphasis mine):

After 568 AD the nomadic Avars settled in the Carpathian Basin and founded their empire, which was an important force in Central Europe until the beginning of the 9th century AD. The Avar elite was probably of Inner Asian origin; its identification with the Rourans (who ruled the region of today’s Mongolia and North China in the 4th-6th centuries AD) is widely accepted in the historical research.

Here, we study the whole mitochondrial genomes of twenty-three 7th century and two 8th century AD individuals from a well-characterised Avar elite group of burials excavated in Hungary. Most of them were buried with high value prestige artefacts and their skulls showed Mongoloid morphological traits.

The majority (64%) of the studied samples’ mitochondrial DNA variability belongs to Asian haplogroups (C, D, F, M, R, Y and Z). This Avar elite group shows affinities to several ancient and modern Inner Asian populations.

The genetic results verify the historical thesis on the Inner Asian origin of the Avar elite, as not only a military retinue consisting of armed men, but an endogamous group of families migrated. This correlates well with records on historical nomadic societies where maternal lineages were as important as paternal descent.

MDS with 23 ancient populations. The Multidimensional Scaling plot is based on linearised Slatkin FST values that were calculated based on whole mitochondrial sequences (stress value is 0.1581). The MDS plot shows the connection of the Avars (AVAR) to the Central-Asian populations of the Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval) along coordinate 1 and coordinate 2, which is caused by non-significant genetic distances between these populations. The European ancient populations are situated on the left part of the plot, where the Iberian (IB_EBRAge), Central-European (C-EU_BRAge) and British (BRIT_BRAge) populations from Early Bronze Age and Bronze Age are clustered along coordinate 2, while the Neolithic populations from Germany (GER_Neo), Hungary (HUN_Neo), Near-East (TUR_ _Neo) and Baltic region (BALT_Neo) are located on the skirt of the plot along coordinate 1. The linearised Slatkin FST values, abbreviations and references are presented in Table S4.

Interesting excerpts:

The mitochondrial genome sequences can be assigned to a wide range of the Eurasian haplogroups with dominance of the Asian lineages, which represent 64% of the variability: four samples belong to Asian macrohaplogroup C (two C4a1a4, one C4a1a4a and one C4b6); five samples to macrohaplogroup D (one by one D4i2, D4j, D4j12, D4j5a, D5b1), and three individuals to F (two F1b1b and one F1b1f). Each haplogroup M7c1b2b, R2, Y1a1 and Z1a1 is represented by one individual. One further haplogroup, M7 (probably M7c1b2b), was detected (sample AC20); however, the poor quality of its sequence data (2.19x average coverage) did not allow further analysis of this sample.

European lineages (occurring mainly among females) are represented by the following haplogroups: H (one H5a2 and one H8a1), one J1b1a1, three T1a (two T1a1 and one T1a1b), one U5a1 and one U5b1b (Table S1).

We detected two identical F1b1f haplotypes (AC11 female and AC12 male) and two identical C4a1a4 haplotypes (AC13 and AC15 males) from the same cemetery of Kunszállás; these matches indicate the maternal kinship of these individuals. There is no chronological difference between the female and the male from Grave 30 and 32 (AC11 and AC12), but the two males buried in Grave 28 and 52 (AC13 and AC15) are not contemporaries; they lived at least 2-3 generations apart.

Ward type clustering of 44 ancient populations. The Ward type clustering shows separation of Asian and European populations. The Avar elite group (AVAR) is situated on an Asian branch and clustered together with Central Asian populations from Late Iron Age (C-ASIA_LIAge) and Medieval period (C-ASIA_Medieval), furthermore with Xiongnu period population from Mongolia (MON_Xiongnu) and Scythians from the Altai region (E-EU_IAge_Scyth). P values are given in percent as red numbers on the dendogram, where red rectangles indicate clusters with significant p values. The abbreviations and references are presented in Table S2.

The Avar period elite shows the lowest and non-significant genetic distances to ancient Central Asian populations dated to the Late Iron Age (Hunnic) and to the Medieval period, which is displayed on the ancient MDS plot (Fig. 4); these connections are also reflected on the haplogroup based Ward-type clustering tree (Fig. 3). Building of these large Central Asian sample pools is enabled by the small number of samples per cultural/ethnic group. Further mitogenomic data from Inner Asia are needed to specify the ancient genetic connections; however, genomic analyses are also set back by the state of archaeological research, i.e. the lack of human remains from the 4th-5th century Mongolia, which would be a particularly important region in the study of the Avar elite’s origin.

The investigated elite group from the Avar period elite also shows low genetic distances and phylogenetic connections to several Central and Inner Asian modern populations. Our results indicate that the source population of the elite group of the Avar Qaganate might have existed in Inner Asia (region of today’s Mongolia and North China) and the studied stratum of the Avars moved from there westwards towards Europe. Further genetic connections of the Avars to modern populations living to East and North of Inner Asia (Yakuts, Buryats, Tungus) probably indicate common source populations.

MDS with the 44 modern populations and the Avar elite group. The Multidimensional Scaling plot is displayed based on linearised Slatkin FST values calculated based on whole mitochondrial sequences (stress value is 0.0677). The MDS plot shows differentiation of European, Near-Eastern, Central- and East-Asian populations along coordinates 1 and 2. The Avar elite (AVAR) is located on the Asian part of plot and clustered with Uyghurs from Northwest-China (NW-CHIN_UYG) and Han Chinese (CHIN), as well as with Burusho and Hazara populations from the Central-Asian Highland (Pakistan). The linearised Slatkin FST values, abbreviations and references are presented in Table S5.

Sadly, no Y-DNA is available from this paper, although haplogroups Q, C2, or R1b (xM269) are probably to be expected, given the reported mtDNA. A replacement of the male population with subsequent migrations is obvious from the current distribution of Y-DNA haplogroups in the Carpathian Basin.

Hungarians and Corded Ware

Ancient Hungarians are important to understand the evolution, not only of Ugric, but also of Finno-Ugric peoples and their origin, since they show a genetic picture before more recent population expansions, genetic drift, and bottlenecks in eastern Europe.

By now it is evident that the migration of Magyar clans from their homeland in the Cis-Urals region (from the 4th century AD on) happened after the first waves of late and gradual expansion of N1c subclades among Finno-Ugric peoples, but before the bottlenecks seen in modern populations of eastern Europe.

In Ob-Ugric peoples, from the scarce data found in Pimenoff et al. (2018), we can see how Siberian N subclades expanded further after the separation of Magyars, evidenced by the inverted proportion of haplogroups R1a and N in modern Khantys and Mansis compared to Hungarians, and the diversity of N subclades compared to modern Fennic peoples.

Similarly to Hungarians, the situation of modern Estonians (where R1a and N subclades show approximately the same proportion, ca. 33%) is probably closer to Fennic peoples in Antiquity, not having undergone the latest strong founder effect evident in modern Finns after their expansion to the north.

Hungarian expansion from the 4th to the 10th century AD.

Modern Hungary

This is data from recent papers, summed up in Wikipedia:

  • In Semino et al. (2001) they found among 45 Palóc from Budapest and northern Hungary: 60% R1a, 13% R1b, 11% I, 9% E, 2% G, 2% J2.
  • In Csányi et al. (2008) Among 100 Hungarian men, 90 of whom from the Great Hungarian Plain: 30% R1a, 15% R1b, 13% I2a1, 13% J2, 9% E1b1b1a, 8% I1, 3% G2, 3% J1, 3% I*, 1% E*, 1% F*, 1% K*. Among 97 Székelys, in Romania: 20% R1b, 19% R1a, 17% I1, 11% J2, 10% J1, 8% E1b1b1a, 5% I2a1, 5% G2, 3% P*, 1% E*, 1% N.
  • In Pamjav et al. (2011), among 230 samples expected to include 6-8% Gypsy peoples: 26% R1a, 20% I2a, 19% R1b, 7% I, 6% J2, 5% H, 5% G2a, 5% E1b1b1a1, 3% J1, <1% N, <1% R2.
  • In Pamjav et al. (2017), from the Bodrogköz population: R1a-M458 (20.4%), I2a1-P37 (19%), R1b-M343 (15%), R1a-Z280 (14.3%), E1b-M78 (10.2%), and N1c-Tat (6.2%).

NOTE. The N1c-Tat found in Bodrogköz belongs to the N1c-VL29 subgroup, more frequent among Balto-Slavic peoples, which may suggest (yet again) an initial stage of the expansion of N subclades among Finno-Ugric peoples by the time of the Hungarian migration.

This is the data from FTDNA group on Hungary (copied from a Wikipedia summary of 2017 data):

  • 26.1% R1a (15% Z280, 6.5% M458, 0.9% Z93=>S23201, 3.7% unknown)
  • 19.2% R1b (6% L11-P312/U106, 5.3% P312, 4.2% L23/Z2103, 3.7% U106)
  • 16.9% I2 (15.2% CTS10228, 1.4% M223, 0.5% L38)
  • 8.3% I1
  • 8.1% J2 (5.3% M410, 2.8% M102)
  • 6.9% E1b1b1 (6% V13, 0.3% V22, 0.3% M123, 0.3% M81)
  • 6.9% G2a
  • 3.2% N (1.4% Z9136, 0.5% M2019/VL67, 0.5% Y7310, 0.9% Z16981)- note: only unrelated males are sampled
  • 2.3% Q (1.2% YP789, 0.9% M346, 0.2% M242)
  • 0.9% T
  • 0.5% J1
  • 0.2% L
  • 0.2% C

R1a-Z280 stands out in FDNA (which we have to assume has no geographic preference among modern Hungarians), while R1a-M458 is prevalent in the north, which probably points to its relationship with (at least West) Slavic populations.

Ancient Hungarians

We already knew that Hungarians show similarities with Srubna and Hunnic peoples, and this paper shows a good reason for the similarities with the Huns.

Also, recent population movements in the region (before the Avars) probably increased the proportion of R1b-L23 and I1 subclades (related to Roman and Germanic peoples) as well as possibly R1a-Z283 (mainly M458, related to the expansion of Slavs). From Understanding 6th-century barbarian social organization and migration through paleogenomics, by Amorim et al. (2018):

Y-chromosome haplogroup attribution for 37 medieval and 1 Bronze age individuals.

NOTE. The sample SZ15, of haplogroup R1a1a1b1a3a (S200), belongs to the Germanic branch Z284, which has a completely different history with its integration into the Nordic Bronze Age community.

Interesting is the Szólád Bronze Age sample of R1a1a1b2a2a (Z2123) subclade (ca. 2100-1700 BC), which is possibly the same haplogroup found in King Béla III [Z93+ (80.6%), Z2123+ (10.8%)]*. Nevertheless, Z2123 refers to an upper clade, found also in East Andronovo sites in Narasimhan et al. (2018), as well as in the modern population of the Tarim Basin.

NOTE. For more on the analysis of probability of the actual subclade, see here.

Bronze Age R1a-Z93 samples of central-east Europe – like the Balkans BA sample (ca. 1750-1625 BC) from Merichleri, of R1a1a1b2 subclade – correspond most likely to the expansion of Iranian-speaking peoples in the early 2nd millennium BC, probably to the westward expansion of the Srubna culture.

The specific subclade of King Béla III, on the other hand, probably corresponds to the more recent expansion of Magyar tribes settled in the region during the 9th century AD, so the specific subclade must have separated from those found in central-east Europe and in Andronovo during the Corded Ware expansion.

Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the potential Finno-Ugric-associated distribution of Z282 (including M558, a Z280 subclade) according to ancient maps; the northern Eurasian finds of Z2125 (upper clade of Z2123); and the potential of M458 subclades representing a west-east expansion of Balto-Slavic as a western outgroup of an original Fenno-Ugric population, equivalent to Z284 in Scandinavia.

The study by Csányi et al. (2008), where the Tat C allele was found in 2 of 4 ancient samples, showed thus a potential 50:50 relationship of N1c in ancient Magyars, which is striking given the modern 1-3% a mere 1,000 years later, without any relevant population movement in between. This result remains to be reproduced with the current technology.

In fact, recent studies of ancient Magyars, from the 10th to the 12th century, have not shown any N1c sample, and have confirmed instead the ancient presence of R1a (two other samples, interred near Béla III), R1b (four samples), I2a (two samples) J1, and E1b, a mixed genetic picture which is more in line with what is expected.

So the question that I recently posed about east Corded Ware groups remains open: were Proto-Ugric peoples mainly of R1a-Z282 or R1a-Z93 subclades? Without ancient DNA from Middle Dnieper, Fatyanovo, Afanasevo, and the succeeding cultures (like Netted Ware) in north-eastern Europe, it is difficult to say.

It is very likely that they are going to show mainly a mixture of both R1a-Z282 and R1a-Z93 lineages, with later populations showing a higher proportion of R1a-Z280 subclades. Whether this mixture happened already during the Corded Ware period, or is the result of later developments, is still unknown. What is certain is that Hungarian N1a1a1a-L708 subclades belong to more recent additions of Siberian haplogroups to the Ugric stock, probably during the Iron Age, just centuries before the Magyar expansion.


Mitogenomes show Longobard migration was socially stratified and included females


New bioRxiv preprint A genetic perspective on Longobard-Era migrations, by Vai et al. (2018).

Interesting excerpts (emphasis mine):

In this study we sequenced complete mitochondrial genomes from nine early-medieval cemeteries located in the Czech Republic, Hungary and Italy, for a total of 87 individuals. In some of these cemeteries, a portion of the individuals are buried with cultural markers in these areas traditionally associated with the Longobard culture (hereby we refer to these cemeteries as LC), as opposed to burial communities in which no artifacts or rituals associated by archaeologists to Longobard culture have been found in any graves. These necropolises, hereby referred as NLC, may represent local communities or other Barbaric groups previously migrated to this region. This extended sampling strategy provides an excellent condition to investigate the degree of genetic affinity between coeval LC and NLC burials, and to shed light on early-medieval dynamics in Europe.

Geographical and genetic relationship between the newly sequenced individuals. (A) Location of the sampled necropolises. Here and through the other figures LC cemeteries are represented by a circle while NLC ones are indicated by a square. C) DAPC Scatterplot of the most supported K (7) highlighted by the kmeans analysis

Social rank

There is also no clear geographical structure between samples in our dataset, with individuals from Italy, Hungary and Czech Republic clustering together. However, the first PC clearly separates a group of 12 LC individuals found at Szólád, Collegno and Mušov from a group composed by both LC and NLC individuals. The same pattern is also found when pairwise differences among individuals are plotted by multidimensional scaling (…)

The presence in this group of LC sequences belonging to macrohaplogroups I and W, commonly found at high frequencies in northern Europe (e.g. Finland 32), suggests (although certainly does not prove) the existence of a possible link between these 12 LC individuals and northern Europe. The peculiarity of this group is strengthened by archaeological information from the Szólád cemetery, where 8 of the 12 individuals in this group originated, indicating that all these samples were found buried with typical Longobard artifacts and grave assemblages. We do not find the same tight association for the 3 samples from Collegno, where the 3 graves are indeed devoid of evident Germanic cultural markers; however they are not placed in a separate and marginal location—as for the tombs without grave goods found in Szólád —but among graves with wooden chambers and weapons. It is worth noting that weapon burials were quite scarce in 5th century Pannonia and 6th century Italy (e.g. Goths never buried weapons), and an increase in weapon burials started in Italy only after the Longobard migration. In this light, the individuals buried in this manner may have been members of the same community as well, but belonging to the lowest social level. This social condition could explain the absence of artifacts and could be related to mixed marriages, whose offspring had an inferior social rank. Finally, this group also includes an individual from the Musov graveyard. This finding is particularly interesting in light of the fact that the Musov necropolis has been only tentatively associated with Longobard occupation (see Supplementary Text for details), based on the presence of but a few archaeological markers.

Female migration

We hence estimated that about 70% of the lineages found in Collegno actually derived from the Hungarian LC groups, in agreement with previous archaeological and historical hypotheses. This supports the idea that the spread of Longobards into Italy actually involved movements of fairly large numbers of people, who gave a substantial contribution to the gene pool of the resulting populations. This is even more remarkable thinking that, in many studied cases, military invasions are movements of males, and hence do not have consequences at the mtDNA level. Here, instead, we have evidence of changes in the composition of the mtDNA pool of an Italian population, supporting the view that immigration from Central Europe involved females as well as males.


When Bell Beakers mixed with Eneolithic Europeans: Pömmelte and the Europe-wide concept of sanctuary


Recent open access paper The ring sanctuary of Pömmelte, Germany: a monumental, multi-layered metaphor of the late third millennium BC, by Spatzier and Bertemes, Antiquity (2018) 92(363):655-673.

Interesting excerpts (emphasis mine):

In recent decades, evidence has accumulated for comparable enclosures of later dates, including the Early Bronze Age Únětice Culture between 2200 and 1600 BC, and thus into the chronological and cultural context of the Nebra sky disc. Based on the analysis of one of these enclosure sites, recently excavated at Pömmelte on the flood plain of the Elbe River near Magdeburg, Saxony-Anhalt, and dating to the late third millennium BC

The main occupation began at 2321–2211 cal BC, with the stratigraphically earliest features containing exclusively Bell Beaker finds. Bell Beaker ceramics continue after 2204–2154 cal BC (boundary occupation I/II), although they were probably undecorated, but are now complemented by Únětice Culture (and other Early Bronze Age) types. At this time, with features common to both cultures predominate. Only contexts dating to the late main occupation phase (late phase II) and thereafter contained exclusively Únětice Culture finds. Evidently, the bearers of the Bell Beaker Culture were the original builders of the enclosure. During a second phase of use, Final Neolithic and Early Bronze Age cultures coexisted and intermingled. The material remains, however, should not be taken as evidence for successive groups of differing archaeological cultures, but as witnesses to a cultural transition from the Bell Beaker Culture to the Únětice Culture (Spatzier 2015). The main occupation ended 2086–2021 cal BC with the deconstruction of the enclosure; Bell Beaker finds are now absent. Finally, a few features (among them one shaft) and radiocarbon dates attest the sporadic re-use of the site in a phase of abandonment/re-use that ended 1636– 1488 cal BC.

Cultural sequence and chronological model of the Pömmelte enclosure’s occupation (dates in 1σ-precision) (designed by André Spatzier).

How the above-ground structures possibly influenced perception may reveal another layer of meaning that highlights social functions related to ritual. While zone I was disconnected from the surroundings by a ‘semi-translucent’ post-built border, zones II/III were separated from the outside world by a wooden wall (i.e. the palisade), and zone III probably separated individuals from the crowd gathered in zone II. Accessing the interior or centre therefore meant passing through transitional zones, to first be secluded and then segregated. Exiting the structure meant re-integration and re-connection. The experience possibly induced when entering and leaving the monument reflects the three stages of ‘rites of passage’ described by van Gennep (1909): separation, liminality and incorporation. The enclosure’s outer zone(s) represents the pre- and post-liminal phase; the central area, the liminal phase. Seclusion and liminality in the interior promoted a sense of togetherness, which can be linked to Turner’s “communitas” (1969: 132–33). We might therefore see monuments such as the Pömmelte enclosure as important communal structures for social regulation and the formation of identity.

Layers of meaning of the Pömmelte enclosure as deduced from the archaeological record (design by André Spatzier).

(…) The long-term stability of these connotations must be emphasised. As with the tradition of making depositions, these meanings were valid from the start of the occupation — c. 2300 BC — until at least the early period following the deconstruction event, c. 2050 BC. While the spatial organisation and the solar alignment of the main entrances were maintained throughout the main occupation, stone axes and ‘formal’ graves indicate the continuation of the spatial concepts described above until the twentieth to nineteenth centuries BC.

These layers of meaning mirror parallel concepts of space including, although not necessarily restricted to, the formation of group identities (see Hansen & Meyer 2013: 5). They can perhaps be better understood as a ‘cosmological geography’ manifested in the symbolism of superimposed levels of conceptual ideas related to space and to certain cardinal points (Figure 8). This idea is closely related to Eliade’s (1959: 29–36) understanding of “organized — hence comicized — territory”, that is territory consecrated to provide orientation within the homogeneity of the chaotic ‘outside world’, and the equivalence of spatial consecration and cosmogony. Put differently, the Pömmelte enclosure can be interpreted as a man-made metaphor and an icon of the cosmos, reflecting the Weltanschauung (a comprehensive conception of the world) of the people who built and used it. By bringing together Eliade and Rappaport’s ideas of meaningfulness in relation to religious experience (Rappaport 1999: 391–95), it may be argued that Pömmelte was a place intended to induce oneness with the cosmos. In combining multiple layers that symbolically represent different aspects of life (first-ordermeaning), the enclosure became an icon metaphorically representing the world (second-order-meaning). As this icon was the place to reaffirm life symbolism ritually, through their actions, people perhaps experienced a sense of rootedness in, or unity with, the cosmos (highest-order-meaning). Although we can only speculate about the perceptions of ancient people, such a theory aiming to describe general principles of religious experience can provide insight.


The circular enclosure of Pömmelte is the first Central European monumental complex of primarily sacred importance that has been excavated and studied in detail. It reveals aspects of society and belief during the transition from the Final Neolithic to the Early Bronze Age, in the second half of the third millennium BC. Furthermore, it offers details of ritual behaviour and the way that people organised their landscape. A sacred interior was separated from the profane environment, and served as a venue for rites that secured the continuity of the social, spiritual and cosmic order. Ancestor worship formed another integral part of this: a mound-covered burial hut and a square-shaped ditch sanctuary (located, respectively, within and near the enclosure’s south-eastern sector; cf. Figure 2)—dating to 2880–2580 cal BC and attributed to the Corded Ware Culture (Spatzier 2017a: 235–44)—suggest that this site was deliberately chosen. With construction of the ring sanctuary, this place gained an immense expansion in meaning—comparable to Stonehenge. Through architectural transformation, both of these sites developed into sanctuaries with increasingly complex religious functions, including in relation to the cult of the dead. The cosmological and social functions, and the powerful symbolism of the Nebra sky disc and hoard (Meller 2010: 59–70), are reflected in Pömmelte’s monumental architecture.

All of these features—along with Pömmelte’s dating, function and complex ring structure—are well documented for British henge monuments (Harding 2003; Gibson 2005). The continuous use of circular enclosures in Central Europe from around 3000– 1500 BC remains to be confirmed, but strong evidence indicates usage spanning from the fifth to the first millennia BC (Spatzier 2017a: 273–96). From 2500 BC onwards, examples in Central Europe, Iberia and Bulgaria (Bertemes 2002; Escudero Carrillo et al. 2017) suggest a Europe-wide concept of sanctuary. This indicates that in extensive communication networks at the beginning of bronze metallurgy (Bertemes 2016), intellectual and religious contents circulated alongside raw materials. The henge monuments of the British Isles are generally considered to represent a uniquely British phenomenon, unrelated to Continental Europe; this position should now be reconsidered. The uniqueness of Stonehenge lies, strictly speaking, with its monumental megalithic architecture.

Model of the spatial organisation of the Pömmelte enclosure (designed by André Spatzier).

The Classical Bell Beaker heritage

No serious scholar can argue at this point against the male-biased East Bell Beaker migrations that expanded the European languages related to Late Proto-Indo-European-speaking Yamna (see David Reich’s comments), and thus most likely North-West Indo-European – the ancestor of Italo-Celtic, Germanic, and Balto-Slavic, apart from Pre-Celtic IE in the British Isles, Lusitano-Galician in Iberia, or Messapic in Italy (see here a full account).

With language, these migrants (several ten thousands) brought their particular Weltanschauung to all of Western, Central, and Northern Europe. Their admixture precisely in Hungary shows that they had close interactions with non-Indo-European peoples (genetically related to the Globular Amphorae culture), something that we knew from the dozens of non-Indo-European words reconstructed exclusively for North-West Indo-European, apart from the few reconstructed non-Indo-European words that NWIE shares with Palaeo-Balkan languages, which point to earlier loans from their ancestors, Yamna settlers migrating along the lower Danube.

It is not difficult to imagine that the initial East Bell Beaker group shared a newly developed common cosmological point of view that clashed with other neighbouring Yamna-related worldviews (e.g. in Balkan EBA cultures) after the cultural ties with Yamna were broken. Interesting in this respect is for example their developed (in mythology as in the new North-West Indo-European concept) *Perkwūnos, the weather god – probably remade (in language as in concept) from a Yamna minor god also behind Old Indian parjányas, the rain god – as one of the main gods from the new Pantheon, distinct from *Dyēus patēr, the almighty father sky god. In support of this, the word *meldh-n- ‘lightning’, behind the name of the mythological hammer of the weather god (cf. Old Norse Mjǫllnir or Latvian Milna), was also a newly coined North-West Indo-European term, although the myth of the hero slaying the dragon with the magical object is older.

The Hand of Perkūnas by Mikalojus Konstantinas Čiurlionis, from Wikipedia

Circular enclosures are known in Europe since the Neolithic. Also, the site selected for the Pömmelte enclosure had been used to bury Corded Ware individuals some centuries before its construction, and Corded Ware symbolism (stone axe vs. quern) is seen in the use given by Bell Beakers and later Únětice at this place. All this and other regional similarities between Bell Beakers and different local cultures (see here an example of Iberian Bell Beakers) points to syncretism of the different Bell Beaker groups with preceding cultures in the occupied regions. After all, their genealogical ancestors included also those of their maternal side, and not all encountered males disappeared, as is clearly seen in the resurge of previous paternal lineages in Central-East Europe and in Scandinavia. The admixture of Bell Beakers with previous groups (especially those of similar steppe-related ancestry from Corded Ware) needs more complex analyses to clarify potential early dialectal expansions (read what Iosif Lazaridis has to say).

The popular “big and early” expansions

These syncretic trends gave rise to distinct regional cultures, and eventually different local groups rose to power in the new cultural regions and ousted the old structures. Social norms, hierarchy, and pantheons were remade. Events like this must have been repeated again and again in Bronze and Iron Age Europe, and in many cases it was marked by a difference in the prevailing archaeological culture attested, and probably accompanied by certain population replacements that will be seen with more samples and studies of fine-scale population structure.

Some of these cultural changes, marked by evident haplogroup or admixture replacement, are defined as a ‘resurge’ of ancestry linked to previous populations, although that is obviously not equivalent to a resurge of a previous cultural group, because they usually represent just a successful local group of the same supraregional culture with a distinct admixture and/or haplogroup (see e.g. resurge of R1a-Z645 in Central-East European Bronze Age). Social, religious, or ethnic concepts may have changed in each of these episodes, along with the new prestige dialect.

NOTE. A recent open access paper on two newly studied Middle Bronze Age inhumations from Stonehenge give an interesting idea of potential differences in social identities, in ancestry and geographic origin (which characterize ethnicity) may have been marked by differences in burial ceremonies: Lives before and after Stonehenge: An osteobiographical study of four prehistoric burials recently excavated from the Stonehenge World Heritage Site, by Mays et al. Journal of Archaeological Science: Reports (2018) 20:692-710.

This must have happened then many times during the hundreds (or thousands in some cases) of years until the first attestation of a precise ancient language and culture (read e.g. about one of the latest branches to be attested, Balto-Slavic). Ancient language contacts, like substrates or toponymy, can only rarely be detected after so many changes, so their absence (or the lack of proper studies on them) is usually not relevant – and certainly not an argument – in scholarly discussions. Their presence, on the other hand, is a proof of such contacts.

Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

We have dozens of papers supporting Uralic dialectal substrate influence on Pre-Germanic, Proto-Balto-Slavic, and Pre- and Proto-Indo-Iranian (and even Proto-Celtic), as well as superstrate influence of Palaeo-Germanic (i.e. from Pre- to Proto-Germanic) and Proto-Balto-Slavic into Proto-Finno-Saamic, much stronger than the Indo-Iranian adstrate influence on Finno-Ugric (see the relative importance of each influence) which locates all these languages and their evolution to the north and west of the steppe (with Proto-Permic already separated, in North-East Europe, as is Proto-Ugric further east near the Urals), probably around the Baltic and Scandinavia after the expansion of Bell Beakers. These connections have been known in linguistics for decades.

Apart from some early 20th century scholars, only a minority of Indo-Europeanists support nowadays an Indo-European (i.e. centum) substrate for Balto-Slavic, to keep alive an Indo-Slavonic group based on a hypothetical 19th century Satem group; so e.g. Holzer with his Temematic, and Kortlandt supporting him, also with some supposed Indo-European substrate with heavy non-Indo-European influence for Germanic and Balto-Slavic, that now (thanks mainly to the views of the Copenhagen group) have been linked to the Corded Ware culture, as it has become clear even to them that Bell Beakers expanded North-West Indo-European.

NOTE. The Temematic etymologies have been (all of them) fully dismissed e.g. in Matasović (2013). I have already explained why an Indo-Slavonic group from Sredni Stog is not tenable, and genetics (showing Late PIE only from Yamna expansions) is proving that, too.

For their part, only a minority among Uralicists, such as Kuz’mina, Parpola or Häkkinen, believe in an ‘eastern’ origin of Uralic languages, around the Southern Urals. Genomic finds – like their peers – are clearly not supporting their views. But even if we accept this hypothesis, there is little space beyond Abashevo and related East Corded Ware cultures after the recent papers on Corded Ware and Fennoscandian samples. And yet here we are:

The Copenhagen “Homeland” interactive map

Brought to you by the Copenhagen fantasy map series, Indo-Europeans after (no, really, after) the expansion of Yamna settlers in Hungary ca. 2700 BC: Yamna settlers have magically disappeared. Yamna-related Balkan EBA cultures and the hundreds of Yamna kurgans around the Lower Danube and in Hungary up to Saxony-Anhalt do not exist. Dat huge mythical Middle Dnieper territory lasting (unchanged) for a thousand years, in sooo close contact with Yamna territory (so beautifully ‘linked’ together that they must have been BFFs and admixed!). Uralic Mesolithic hunter-gatherers resisting IE invasions in Volosovo for 1,500 years like Asterix’ Gaulish village against the Romans. Tiny pockets of Bell Beakers will eventually emerge from (surprise!) Corded Ware territories beautifully scattered over Central and Northern Europe (unlike those eastern CWC mega-regions). And, of course, you can almost see Kroonen & Iversen’s Kurgan Pre-Germanic mixing already with their agricultural substrate TRB precisely in full-IE Denmark (quite appropriate for the Danish school). And sheep symbols representing wool finds, for no reason. A great map to mock for years to come, with each new genetic paper.

The new propaganda tool GIS timeline map of the Copenhagen group:

  • consciously ignores Yamna settlers along the Danube, in the Balkans, and in Hungary, and initial East Bell Beakers, i.e. the obvious origin and expansion of North-West Indo-Europeans, but in contrast magnifies (and expands in time) regions for Sredni Stog / Corded Ware cultures (which suggests that this is yet another absurd attempt to revive the theories of the Danish school…);
  • substitutes arrows for Kron-like colors (where danger red = Indo-European) with the same end result of many other late 20th century whole-Europe Kurgan maps, linking Sredni Stog and Corded Ware with Yamna, but obviating the precise origin of Corded Ware peoples (is it Sredni Stog, or is it that immutable Middle Dnieper group? is it West Yamna, or Yamna Hungary? is it wool, or is it wheels?);
  • relegates Uralic speakers to a tiny corner, a ‘Volosovo’ cultural region, thus near Khvalynsk/Yamna (but not too much), that miraculously survives surrounded by all-early-splitting, all-Northern Eneolithic Indo-Europeans, thus considering Uralic languages irrelevant not only to locate the PIE Urheimat, but also to locate their own homeland; also, cultures identified in color with Uralic speakers expand until the Iron Age with enough care not to even touch in the map one of the known R1a samples published to date (because, for some people, apparently R1a must be Indo-European); and of course N1c or Siberian ancestry are irrelevant, too;
  • and adds findings of wheels and wool probably in support of some new ideas based on yet another correlation = causation argument (that I cannot then properly criticize without access to its reasoning beyond cute SmartArt-like symbols) similar to their model – already becoming a classic example of wrong use of statistical methods – based on the infamously named Yamnaya ancestral component, which is obviously still used here, too.

The end result is thus similar to any other simplistic 1990s Gimbutas (or rather the recently radicalized IE Sredni Stog -> Corded Ware -> BBC version by the Danish workgroup) + 2000s R1a-map + 2010s Yamnaya ancestry; but, hard to believe, it is published in mid-2018. A lot of hours of senseless effort, because after its publication it becomes ipso facto outdated.

For comparison of Yamna and Bell Beaker expansions, here is a recent simplistic, static (and yet more accurate) pair of maps, from the Reich Lab:

Cultural maps from Eneolithic and Chalcolithic cultures in Wang et al. (2018).

If the Copenhagen group keeps on pushing Gimbutas’ long ago outdated IE Sredni Stog -> Corded Ware theory as modified by Kristiansen, with their recently invented Corded Ware -> Bell Beaker model in genetics, at some point they are bound to clash with the Reich-Jena team, which seems to have less attachment to the classic Kurgan model and the wrong interpretations of the 2015 papers, and that would be something to behold. Because, as Cersei would say: “When you play the game of thrones, you win or you die. There is no middle ground.” And when you play the game of credibility, after so many, so wrong publications, well…

NOTE. I have been working on a similar GIS tool for quite some time, using my own maps and compiled genetic data, which I currently only use for my 2018 revision of the Indo-European demic diffusion model. Maybe within some weeks or months I will be able to publish the maps properly, after the revised papers. It’s a pitty that so much work on GIS and analysis with genetic data and cultural regions has to be duplicated, but I intend to keep some decent neutrality in my revised cultural maps, and this seems impossible at this point with some workgroups who have put all their eggs in one broken basket…


Hungarian mitogenomes similar to East and West Slavs, but genetic substratum predates their historic contacts


Whole mitochondrial genome diversity in two Hungarian populations, Malyarchuk et al. Mol Genet Genomics (2018).


Complete mitochondrial genomics is an effective tool for studying the demographic history of human populations, but there is still a deficit of mitogenomic data in European populations. In this paper, we present results of study of variability of 80 complete mitochondrial genomes in two Hungarian populations from eastern part of Hungary (Szeged and Debrecen areas). The genetic diversity of Hungarian mitogenomes is remarkably high, reaching 99.9% in a combined sample. According to the analysis of molecular variance (AMOVA), European populations showed a low, but statistically significant level of between-population differentiation (Fst = 0.61%, p = 0), and two Hungarian populations demonstrate lack of between-population differences. Phylogeographic analysis allowed us to identify 71 different mtDNA sub-clades in Hungarians, sixteen of which are novel. Analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Eurasia, though the contribution from European populations is the most pronounced. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East and West Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c), while the influence of Siberian populations is not so noticeable (sub-clades A12a, C4a1a, and probably U4b1a4).

Interesting excerpt:

Our analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Europe. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East (Russians and Ukrainians) and West (Poles and Slovaks) Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c). This observation is consistent with the results of mtDNA studies of medieval populations living in the Hungarian-Slavic contact zone of the Carpathian Basin in the 9th–12th centuries AD (Csákyová et al. 2016). Taken together, these data confirm earlier historical and archaeological reports on mixed populations of medieval Slavs and Magyars, based on the research into cemeteries discovered in Central Europe (Csősz et al. 2016; Csákyová et al. 2016). On the other hand, we cannot confirm the Hungarian-Slavic contacts using molecular dating of the identified mtDNA sub-clades, since their age exceeds the estimated time of the contact period and varies from 1.3 kya (for K1c1j) to 5.2 kya (for T2b25a1) (Figure S1). One of an issue may be sample size problem, because some haplotypes may be missed in the sampling, and this can lead to an overestimate of the age of the mtDNA sub-clade (Richards et al. 2000).

Figure S1. MDS plot based on Fst values calculated from complete mtDNA sequences for population samples from Europe. Stress value = 0.00078

However, it is known that the evolutionary ages of most mtDNA lineages specific to Eastern and Central Europeans correspond to approximately 4 kya (from 2.3 to 5.9 kya) (Malyarchuk et al. 2008, 2017; Mielnik-Sikorska et al. 2013; Översti et al. 2017), thus coinciding with the time of the Bronze Age expansion of Eastern Europeans in accordance with the Kurgan model established by archaeologists and paleogeneticists (Gimbutas 1971; Allentoft et al. 2015; Haak et al. 2015). Thus, similar haplotypes among Hungarians and Slavs and other European ethnic groups can be a reflection of the common genetic substratum which predates the formation of the most modern European populations. Therefore, mtDNA sub-clades H5a1m, T2a1c, and W3a1d1 (with the ages varying from 2.6 to 3.9 kya, based on complete mtDNA mutation rate), which are shared by Hungarians and Finno-Ugric peoples, such as Estonians and Finns, may testify these pan-European relationships (Figure S1). Another example is the sub-clade J2b1a6, which unites the mtDNA haplotypes of the ancient and modern population of Eastern and Central Europe from the Iron Age to the present (Figure S1).


The Danube Corridor Hypothesis and the Carpathian Basin in the Aurignacian


Open access review, The Danube Corridor Hypothesis and the Carpathian Basin: Geological, Environmental and Archaeological Approaches to Characterizing Aurignacian Dynamics, by Wei Chu, J World Prehist (2018).

Abstract (emphasis mine):

Early Upper Paleolithic sites in the Danube catchment have been put forward as evidence that the river was an important conduit for modern humans during their initial settlement of Europe. Central to this model is the Carpathian Basin, a region covering most of the Middle Danube. As the archaeological record of this region is still poorly understood, this paper aims to provide a contextual assessment of the Carpathian Basin’s geological and paleoenvironmental archives, starting with the late Upper Pleistocene. Subsequently, it compiles early Upper Paleolithic data from the region to provide a synchronic appraisal of the Aurignacian archaeological evidence. It then uses this data to test whether the relative absence of early Upper Paleolithic sites is obscured by a taphonomic bias. Finally, it reviews current knowledge of the Carpathian Basin’s archaeological record and concludes that, while it cannot reject the Danube corridor hypothesis, further (geo)archaeological work is required to understand the link between the Carpathian Basin and Central and Southeastern Europe.

Interesting excerpt:

Though the Carpathian Basin record currently supports the idea of an exogenous, early entrance of the early Upper Paleolithic into the Carpathian Basin unrelated to any of the preceding MP or transitional industries, the dispersal across the Carpathian Basin is not suggestive of rapid demic expansion, as is evidenced by the relatively late hybridization of the Peștera cu Oase fossil and implied by persistent Mousterian technological elements (Fu et al. 2015; Horvath 2009; Noiret 2005).

Map of the Carpathian Basin showing major physiographic features, principal early Upper Paleolithic localities and environmental proxies mentioned in the text. Red stars indicate major archaeological sites; black stars indicate minor archaeological sites. Blue circles indicate modern human remains and black circles are loess profiles (see Tables 1 and 3 for locality information). Projection is latitude–longitude WGS84; DEM is SRTM (Color figure online)”

This begs the question of where the makers of the early Upper Paleolithic in the Carpathian Basin came from. Aside from a handful of Aurignacian sites (e.g. Bacho Kiro, Temnata) and Kozarnika, whose link to the Aurignacian remains tenuous, no other sites directly connect the Carpathian Basin Aurignacian to the south in the Balkans. Additionally, Anatolia has also to provide empirical evidence of a connection between Southwestern Europe and the early hominin technocomplexes of the Levant. Therefore, a western source for the Carpathian Basin early Upper Paleolithic is conceivable, especially considering the early Willendorf dates which, if correct, pre-date any of the evidence in the Carpathian Basin. If the Danube was as easy a conduit as has been suggested, it is equally likely that it may have seen hominin movement in the opposite direction (Sitlivy et al. 2014). Indeed, increasing genetic and archaeological evidence (Adler et al. 2008; Anikovich et al. 2007; López et al. 2016) supports the idea that the earliest modern humans coming from the Middle East and into Europe may have bypassed Southeastern Europe (at least overland), opting for a route running through the Caucasus, dispersing east through the East European Plain and then north of the Carpathians.

The recent reanalysis of Central European early Upper Paleolithic assemblages and possibly Initial Upper Paleolithic sensu lato finds farther east in the geographically connected Moravian Plains (Bohunician) suggests that early modern humans were present in Central Europe far sooner than previously recognized (Müller et al. 2011; Nigst et al. 2014; Richter et al. 2008, 2009). This notion could lead to a major modification in our understanding of the origin and cultural ontogeny of the Aurignacian technocomplex (Sitlivy et al. 2014).

This suggests that while hominins were undoubtedly present within the Middle Danube catchment in the late Upper Pleistocene, it is currently difficult to tell from the archaeological record whether they entered the Carpathian Basin on direct ‘highways’, in waves (Hublin 2015), or more piecemeal; furthermore, the evidence is too sparse to suggest a directional trajectory. Indeed, the gap in the Danube record suggests that the situation may be more complicated than has previously been thought. Furthermore, climatic reconstructions, illustrated by advances in loess stratigraphy, faunal/floral records and geochemistry, suggest a necessary diversion from the rugged karstic regions of the basin that may have been more familiar hunting areas for previous (Neanderthal) populations. This may have resulted in more frequent or seasonal use of the lowlands within the earlier parts of MIS 3 that may have prompted subsequent modifications in hominin subsistence behavior. A prolonged/intense modern human presence in the Carpathian Basin throughout the late Upper Pleistocene is testified to by a higher frequency of lithic sites with increased artifact density. Increased sedimentation rates in the later part of the Pleistocene may have also helped to offset the palimpsest effect that might have skewed the record.


East Bell Beakers, an in situ admixture of Yamna settlers and GAC-like groups in Hungary


I wanted to repeat what I said last week in two different posts (see on the new Caucasus and Yamna Hungary samples, and on local groups in contact with Yamna settlers).

We already knew that expanding East Bell Beakers had received influence from a population similar to the available Globular Amphorae culture samples.

  1. Without Yamna settlers, but with Yamna Ukraine and East Bell Beaker samples, including an admixed Yamna Bulgaria sample (from Olalde & Mathieson 2017, and then with their Nature 2018 papers), the most likely interpretation was that Yamna settlers had received GAC ancestry probably during their migration through the Balkans, before turning into East Bell Beakers. However, some comments still supported that it was Corded Ware migrants the ones behind the formation of East Bell Beakers. I couldn’t understand it.
  2. Now we have (with Wang et al. 2018) Yamna settlers (identical to other Yamna groups and Afanasevo migrants) and GAC-like peoples coexisting with them in Hungary, with a Late Chalcolithic Yamna sample from Hungary showing a greater contribution from GAC. However, I still read discussions on Yamna settlers receiving GAC admixture from Corded Ware in Eastern Europe, from GAC in the Dnieper-Dniester area, in Budzhak/Usatovo, etc. I can’t understand this, either.
  3. I will post here the data we have, with the simplest maps and images showing the simplest possible model. No more long paragraphs.

    NOTE. All this data does not mean that this model is certain, especially because we don’t have direct access to the samples. But it is the simplest and most likely one. Sometimes 2+2=4. Even if it turns out later to be false.

    EDIT (30 MAY 2018): In fact, as I commented in the first post about these samples, there is a Yamna LCA/EBA sample probably from Late Yamna (in the North Pontic steppe, west of the Catacomb culture), which shows GAC-like contribution. However, this admixture is lesser than that of Hungary LCA/EBA1 sample, and both Yamna groups (Hungary and steppe) were probably already more sedentary, which also supports different contributions from nearby local GAC-like groups to each region, rather than maintained long-range internal genetic contributions from a single source near the steppe…

    Yamna migrants ca. 3300-2600. Most likely site of admixture with GAC circled in red.
    Yamna – Bell Beaker migration according to Heyd (2007, 2012). Most likely site of admixture with GAC is marked by the evolution of Blue to Red color.
    PCA results. Samples from Yamna Hungary are surrounded by red circles, GAC-like Hungarian groups surrounded by light brown (see below for ADMIXTURE data) Notice the most likely Yamna Hungary sample with GAC admixture clustering closely to CWC Esperstedt outlier, and thus to some East Bell Beaker samples. (d) shows these projected onto a PCA of 84 modern-day West Eurasian populations (open symbols).
    Modified image, with red rectangles surrounding (unreleased) Hungarian samples from Yamna and GAC-like groups. (c) ADMIXTURE results of relevant prehistoric individuals mentioned in the text (filled symbols)
    Modified image, with red rectangles surrounding (unreleased) Yamna samples Notice greater GAC contribution to late Yamna Hungary sample. Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups
    Modified table from Wang et al. (2018) Supplementary materials (in bold, Yamna and related samples; in red, newly reported samples). Notice greater GAC contribution to late Yamna Hungary sample. “Supplementary Table 18. P values of rank=1 and admixture coefficients of modelling the Steppe ancestry populations as a two-way admixture of the Eneolithic_steppe and Globular_Amphora using 14 outgroups. Left populations: Steppe cluster, Eneolithic_steppe, Globular Amphora Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.”

    The CWC outlier from Esperstedt

    I already said that my initial interpretation of the Esperstedt outlier, dated ca. 2430 BC, as due to a late contribution directly from the steppe (i.e. from long-range contacts between late Corded Ware groups from Europe and late groups from the steppe) was probably wrong, seeing how (in Olalde et al. 2017) early East Bell Beaker samples from Hungary and Central Europe clustered closely to this individual.

    Now we see that fully ‘Yamnaya-like’ Yamna settlers lived in Hungary probably for two or three centuries ca. 2900-2600 BC, and the absorption of known (or unknown) Yamna vanguard groups found up to Saxony-Anhalt before 2600 BC would be enough to justify the genomic findings of this individual.

    An outlier it is, then. But probably from admixture with nearby Yamna-like people.

    Image modified by me, from Olalde et al. (2017). PCA of 999 Eurasian individuals. Marked is the Espersted Outlier.