Human ancestry solves language questions? New admixture citebait


A paper at Scientific Reports, Human ancestry correlates with language and reveals that race is not an objective genomic classifier, by Baker, Rotimi, and Shriner (2017).

Abstract (emphasis mine):

Genetic and archaeological studies have established a sub-Saharan African origin for anatomically modern humans with subsequent migrations out of Africa. Using the largest multi-locus data set known to date, we investigated genetic differentiation of early modern humans, human admixture and migration events, and relationships among ancestries and language groups. We compiled publicly available genome-wide genotype data on 5,966 individuals from 282 global samples, representing 30 primary language families. The best evidence supports 21 ancestries that delineate genetic structure of present-day human populations. Independent of self-identified ethno-linguistic labels, the vast majority (97.3%) of individuals have mixed ancestry, with evidence of multiple ancestries in 96.8% of samples and on all continents. The data indicate that continents, ethno-linguistic groups, races, ethnicities, and individuals all show substantial ancestral heterogeneity. We estimated correlation coefficients ranging from 0.522 to 0.962 between ancestries and language families or branches. Ancestry data support the grouping of Kwadi-Khoe, Kx’a, and Tuu languages, support the exclusion of Omotic languages from the Afroasiatic language family, and do not support the proposed Dené-Yeniseian language family as a genetically valid grouping. Ancestry data yield insight into a deeper past than linguistic data can, while linguistic data provide clarity to ancestry data.

Regarding European ancestry:

Southern European ancestry correlates with both Italic and Basque speakers (r = 0.764, p = 6.34 × 10−49). Northern European ancestry correlates with Germanic and Balto-Slavic branches of the Indo-European language family as well as Finno-Ugric and Mordvinic languages of the Uralic family (r = 0.672, p = 4.67 × 10−34). Italic, Germanic, and Balto-Slavic are all branches of the Indo-European language family, while the correlation with languages of the Uralic family is consistent with an ancient migration event from Northern Asia into Northern Europe. Kalash ancestry is widely spread but is the majority ancestry only in the Kalash people (Table S3). The Kalasha language is classified within the Indo-Iranian branch of the Indo-European language family.

Sure, admixture analysis came to save the day. Yet again. Now it’s not just Archaeology related to language anymore, it’s Linguistics; all modern languages and their classification, no less. Because why the hell not? Why would anyone study languages, history, archaeology, etc. when you can run certain algorithms on free datasets of modern populations to explain everything?

What I am criticising here, as always, is not the study per se, its methods (PCA, the use of Admixture or any other tools), or its results, which might be quite interesting – even regarding the origin or position of certain languages (or more precisely their speakers) within their linguistic groups; it’s the many broad, unsupported, striking conclusions (read the article if you want to see more wishful thinking).

This is obviously simplistic citebait – that benefits only journals and authors, and it is therefore tacitly encouraged -, but not knowledge, because it is not supported by any linguistic or archaeological data or expertise.

Is anyone with a minimum knowledge of languages, or general anthropology, actually reviewing these articles?


Featured image: Ancestry analysis of the global data set, from the article.

Another hint at the role of Corded Ware peoples in spreading Uralic languages into north-eastern Europe, found in mtDNA analysis of the Finnish population


Open article at Scientific Reports (Nature): Identification and analysis of mtDNA genomes attributed to Finns reveal long-stagnant demographic trends obscured in the total diversity, by Översti et al. (2017).

Of special interest is its depiction of Finland’s past as including the expansion of Corded Ware population of mtDNA U5b1b2 (and probably Y-DNA R1a-M417 subclades), most likely Uralic speakers of the Forest Zone, to the north of the Yamna culture (where Late Proto-Indo-European was spoken).

A later expansion of other subclades – particularly Y-DNA N1c -, was probably associated with the later western expansion of the Eurasian Seima-Turbino phenomenon, and its current prevalence in Finnish Y-DNA haplogroups might have been the consequence of the population decline ca. 1500 BC, and later Iron Age population bottleneck (with the population peak ca. 500 AD) described in the article.

That would more naturally explain the ‘cultural diffusion’ of Finnic languages into invading eastern N1c lineages, a diffusion which would have been in fact a long-term, quite gradual replacement of previously prevalent Y-DNA R1a subclades in the region, as supported by the prevalent “steppe” component in genome-wide ancestry of Finns.

Therefore, there were probably no sudden, strong population (and thus cultural) changes associated with the arrival of N1c lineages, like the ones seen with R1a (Corded Ware / Uralic) and R1b (Yamna / Proto-Indo-European) expansions in Europe.

How the Saami fit into this scheme is not yet obvious, though.


In Europe, modern mitochondrial diversity is relatively homogeneous and suggests an ubiquitous rapid population growth since the Neolithic revolution. Similar patterns also have been observed in mitochondrial control region data in Finland, which contrasts with the distinctive autosomal and Y-chromosomal diversity among Finns. A different picture emerges from the 843 whole mitochondrial genomes from modern Finns analyzed here. Up to one third of the subhaplogroups can be considered as Finn-characteristic, i.e. rather common in Finland but virtually absent or rare elsewhere in Europe. Bayesian phylogenetic analyses suggest that most of these attributed Finnish lineages date back to around 3,000–5,000 years, coinciding with the arrival of Corded Ware culture and agriculture into Finland. Bayesian estimation of past effective population sizes reveals two differing demographic histories: 1) the ‘local’ Finnish mtDNA haplotypes yielding small and dwindling size estimates for most of the past; and 2) the ‘immigrant’ haplotypes showing growth typical of most European populations. The results based on the local diversity are more in line with that known about Finns from other studies, e.g., Y-chromosome analyses and archaeology findings. The mitochondrial gene pool thus may contain signals of local population history that cannot be readily deduced from the total diversity.

From its results:

In general, there appears to be two loose and largely overlapping clusters among the Finn-characteristic haplogroups: the first between 1,000–2,000 ybp and the second around 3,300–5,500 ybp. The age of the older cluster coincides temporally with the arrival of the Corded-Ware culture and, notably, the spread of agriculture in Finland. The arrival and spread of agriculture, temporally corresponding with the age estimates for most of the haplogroups characteristic of Finns, might be a sign of population size increase enabled by the new mode of subsistence, resulting in reduced drift and accumulation of genetic diversity in the population.


Another insight in the past population sizes in Finland is based on radiocarbon-dated archaeological findings in different time periods. These analyses suggest two prehistoric population peaks in Finland, the Stone Age peak (c. 5,500 ybp) and the Metal Age peak (~1,500 ybp). Both of these peaks were followed by a population decline, which appears to have reached its ebb around 3,500 ybp. These developments are not distinguishable in the BSPs. However, these ages correspond well to the two haplogroup age clusters described above. The presumably less severe Iron Age population bottleneck seen in the archaeological data, 1,500–1,300 ybp, temporally coincides with the population size reduction visible for the Finn-characteristic subhaplogroups.


Discovered via Eurogenes.