Review article about Ancient Genomics, by Pontus Skoglund and Iain Mathieson

A preprint article by two of the most prolific researchers in Human Ancestry is out, and they request feedback: Ancient genomics: a new view into human prehistory and evolution, by Skoglund and Mathieson (2017). Right now, it is downloadable on Dropbox.


The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on ancient genomic data, including greatly increased resolution of the timing and structure of the out-of-Africa event, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document patterns of population continuity and change on every inhabited continent–in particular the effect of agricultural expansions in Africa, Europe and Oceania–and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia–the most populous continent, and Africa–the continent that contains the most genetic diversity. Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.

The paper may be highly recommended as an introduction for anyone interested in the field of Human Ancestry in general.

However, its short summary of steppe ancestry expansion (where the Corded Ware culture predominates) is still reminiscent of the infamous “Yamnaya -> Corded Ware -> Bell Beaker” model set forth by the 2015 Nature articles on the subject, and Kristiansen’s Indo-European Corded Ware theory.

Here is an excerpt (emphasis mine):

The next substantial change is closely related to ancestry that by around 5000 BP extended over a region of more than 2000 miles of the Eurasian steppe, including in individuals associated with the Yamnaya Cultural Complex in far-eastern Europe (1; 38) and with the Afanasievo culture in the central Asian Altai mountains (1). This “steppe” ancestry is itself a mixture between ancestry that is related to Mesolithic hunter-gatherers of eastern Europe and ancestry that is related to both present-day populations (38) and Mesolithic hunter-gatherers (46) from the Caucasus mountains, and also to the populations of Neolithic (11), and Copper Age (56) Iran. Steppe ancestry appeared in southeastern Europe by 6000 BP (72), northeastern Europe around 5000 BP (47) and central Europe at the time of the Corded Ware Complex around 4600 BP (1; 38). These dates are reasonably tight constraints, because in each case there is no evidence of steppe ancestry in individuals immediately preceding these dates (47; 72). Gene flow on the steppe was extensive and bidirectional, as shown by the eastward flow of Anatolian Neolithic ancestry– reaching well into central Eurasia by the time of the Andronovo culture ~3500 BP (1)–and the westward flow of East Asian ancestry–found in individuals associated with the Iron Age Scythian culture close to the Black Sea ~2500 BP (143).

Copper and Bronze Age population movements (14; 78 Martiniano, 2017 #8761; 85; 112), as well as later movements in the Iron Age and Historical period (70; 119) further distributed steppe ancestry around Europe. Present-day western European populations can be modeled as mixtures of these three ancestry components (Mesolithic hunter-gatherer, Anatolian Neolithic and Steppe) (38; 57). In eastern Europe, further shifts in ancestry are the result of additional or distinct gene flow from Anatolia throughout the Neolithic and Bronze Age in the Aegean (42; 51; 55; 72; 87), and gene flow from Siberian-related populations in Finland and the Baltic region (38). East-west gene flow also brought new ancestry–related to populations from 265 Copper Age Iran–to the Levant during the Copper and Bronze ages (39; 56).

The geographic structure of these population transformations gave rise to population structure of present-day Europe. For example Anatolian Neolithic ancestry is highest in southern European populations like Sardinians, and lowest in northern European populations (38). Steppe ancestry is at high frequency in north-central Europeans and low in the south. Isolation-by-distance may have contributed to these patterns to some extent, but the contribution must have been small. In much of Europe, extreme population discontinuity was the norm.

Featured image: from the article, “Major Holocene population movements and expansions that have been demonstrated using ancient DNA.”


Leave a Reply

Your email address will not be published.

Help us avoid Spam! *