Ancient mtDNA from Central America and Mexico


New article, Successful reconstruction of whole mitochondrial genomes from ancient Central America and Mexico, by Morales-Arce et al., Scientific Reports (2017).


The northern and southern peripheries of ancient Mesoamerica are poorly understood. There has been speculation over whether borderland cultures such as Greater Nicoya and Casas Grandes represent Mesoamerican outposts in the Isthmo-Colombian area and the Greater Southwest, respectively. Poor ancient DNA preservation in these regions challenged previous attempts to resolve these questions using conventional genetic techniques. We apply advanced in-solution mitogenome capture and high-throughput sequencing to fourteen dental samples obtained from the Greater Nicoya sites of Jícaro and La Cascabel in northwest Costa Rica (n = 9; A.D. 800–1250) and the Casas Grandes sites of Paquimé and Convento in northwest Mexico (n = 5; A.D. 1200–1450). Full mitogenome reconstruction was successful for three individuals from Jícaro and five individuals from Paquimé and Convento. The three Jícaro individuals belong to haplogroup B2d, a haplogroup found today only among Central American Chibchan-speakers. The five Paquimé and Convento individuals belong to haplogroups C1c1a, C1c5, B2f and B2a which, are found in contemporary populations in North America and Mesoamerica. We report the first successfully reconstructed ancient mitogenomes from Central America, and the first genetic evidence of ancestry affinity of the ancient inhabitants of Greater Nicoya and Casas Grandes with contemporary Isthmo-Columbian and Greater Southwest populations, respectively.

Archaeological sites location and corresponding culture areas as noted in the text. ArcGIS 10.4 software ( was used to generate the figure. Service layer credits Esri, ArcGIS Online, TerraColor (Earthstar Geographics) 1999; Vivid – Mexico (Digital Globe) 2005, 2009, 2010, 2011, 2012, 2013, 2014, 2015; Metro (Digital Globe) 2016; Vivid Caribbean (Digital Globe) 2013, 2014, 2015, 2016, Vivid (Digital Globe) 2015, Vivid – Mexico (Digital Globe) 2012 and the GIS User Community.

Discovered via Bernard Sécher’s blog.

Featured image: From Wikipedia, author Juan Miguel, “Mesoamérica y toda América Central prehispanica en el siglo XVI (16) — antes de la llegada de los españoles.”


Review article about Ancient Genomics, by Pontus Skoglund and Iain Mathieson


A preprint article by two of the most prolific researchers in Human Ancestry is out, and they request feedback: Ancient genomics: a new view into human prehistory and evolution, by Skoglund and Mathieson (2017). Right now, it is downloadable on Dropbox.


The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on ancient genomic data, including greatly increased resolution of the timing and structure of the out-of-Africa event, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document patterns of population continuity and change on every inhabited continent–in particular the effect of agricultural expansions in Africa, Europe and Oceania–and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia–the most populous continent, and Africa–the continent that contains the most genetic diversity. Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.

The paper may be highly recommended as an introduction for anyone interested in the field of Human Ancestry in general.

However, its short summary of steppe ancestry expansion (where the Corded Ware culture predominates) is still reminiscent of the infamous “Yamnaya -> Corded Ware -> Bell Beaker” model set forth by the 2015 Nature articles on the subject, and Kristiansen’s Indo-European Corded Ware theory.

Here is an excerpt (emphasis mine):

The next substantial change is closely related to ancestry that by around 5000 BP extended over a region of more than 2000 miles of the Eurasian steppe, including in individuals associated with the Yamnaya Cultural Complex in far-eastern Europe (1; 38) and with the Afanasievo culture in the central Asian Altai mountains (1). This “steppe” ancestry is itself a mixture between ancestry that is related to Mesolithic hunter-gatherers of eastern Europe and ancestry that is related to both present-day populations (38) and Mesolithic hunter-gatherers (46) from the Caucasus mountains, and also to the populations of Neolithic (11), and Copper Age (56) Iran. Steppe ancestry appeared in southeastern Europe by 6000 BP (72), northeastern Europe around 5000 BP (47) and central Europe at the time of the Corded Ware Complex around 4600 BP (1; 38). These dates are reasonably tight constraints, because in each case there is no evidence of steppe ancestry in individuals immediately preceding these dates (47; 72). Gene flow on the steppe was extensive and bidirectional, as shown by the eastward flow of Anatolian Neolithic ancestry– reaching well into central Eurasia by the time of the Andronovo culture ~3500 BP (1)–and the westward flow of East Asian ancestry–found in individuals associated with the Iron Age Scythian culture close to the Black Sea ~2500 BP (143).

Copper and Bronze Age population movements (14; 78 Martiniano, 2017 #8761; 85; 112), as well as later movements in the Iron Age and Historical period (70; 119) further distributed steppe ancestry around Europe. Present-day western European populations can be modeled as mixtures of these three ancestry components (Mesolithic hunter-gatherer, Anatolian Neolithic and Steppe) (38; 57). In eastern Europe, further shifts in ancestry are the result of additional or distinct gene flow from Anatolia throughout the Neolithic and Bronze Age in the Aegean (42; 51; 55; 72; 87), and gene flow from Siberian-related populations in Finland and the Baltic region (38). East-west gene flow also brought new ancestry–related to populations from 265 Copper Age Iran–to the Levant during the Copper and Bronze ages (39; 56).

The geographic structure of these population transformations gave rise to population structure of present-day Europe. For example Anatolian Neolithic ancestry is highest in southern European populations like Sardinians, and lowest in northern European populations (38). Steppe ancestry is at high frequency in north-central Europeans and low in the south. Isolation-by-distance may have contributed to these patterns to some extent, but the contribution must have been small. In much of Europe, extreme population discontinuity was the norm.

Featured image: from the article, “Major Holocene population movements and expansions that have been demonstrated using ancient DNA.”


New pre-print papers on ancient and modern population genetics


Two pre-print papers reposted or published recently, interesting for the genetic analysis of ancient and modern populations (emphasis mine):

Assessing the relationship of ancient and modern populations, by Joshua G Schraiber (2017) Abstract:

Genetic material sequenced from ancient samples is revolutionizing our understanding of the recent evolutionary past. However, ancient DNA is often degraded, resulting in low coverage, error-prone sequencing. Several solutions exist to this problem, ranging from simple approach such as selecting a read at random for each site to more complicated approaches involving genotype likelihoods. In this work, we present a novel method for assessing the relationship of an ancient sample with a modern population while accounting for sequencing error by analyzing raw read from multiple ancient individuals simultaneously. We show that when analyzing SNP data, it is better to sequencing more ancient samples to low coverage: two samples sequenced to 0.5x coverage provide better resolution than a single sample sequenced to 2x coverage. We also examined the power to detect whether an ancient sample is directly ancestral to a modern population, finding that with even a few high coverage individuals, even ancient samples that are very slightly diverged from the modern population can be detected with ease. When we applied our approach to European samples, we found that no ancient samples represent direct ancestors of modern Europeans. We also found that, as shown previously, the most ancient Europeans appear to have had the smallest effective population sizes, indicating a role for agriculture in modern population growth.

Polygenic Adaptation has Impacted Multiple Anthropometric Traits, by Jeremy J Berg, Xinjun Zhang, and Graham Coop (2017). Abstract:

Most of our understanding of the genetic basis of human adaptation is biased toward loci of large phenotypic effect. Genome wide association studies (GWAS) now enable the study of genetic adaptation in highly polygenic phenotypes. Here we test for polygenic adaptation among 187 world- wide human populations using polygenic scores constructed from GWAS of 34 complex traits. By comparing these polygenic scores to a null distribution under genetic drift, we identify strong signals of selection for a suite of anthropometric traits including height, infant head circumference (IHC), hip circumference (HIP) and waist-to-hip ratio (WHR), as well as type 2 diabetes (T2D). In addition to the known north-south gradient of polygenic height scores within Europe, we find that natural selection has contributed to a gradient of decreasing polygenic height scores from West to East across Eurasia, and that this gradient is consistent with selection on height in ancient populations who have contributed ancestry broadly across Eurasia. We find that the signal of selection on HIP can largely be explained as a correlated response to selection on height. However, our signals in IHC and WC/WHR cannot, suggesting a response to selection along multiple axes of body shape variation. Our observation that IHC, WC, and WHR polygenic scores follow a strong latitudinal cline in Western Eurasia support the role of natural selection in establishing Bergmann’s Rule in humans, and are consistent with thermoregulatory adaptation in response to latitudinal temperature variation.

Featured image from the second article: Polygenic Height Scores for 187 population samples (combined Human origin panel and 1000 genomes datasets), plotted on geographic coordinates. Blue corresponds to populations with the “tallest” polygenic height scores, and yellow the “shortest”.

Preprint paper: Estimating genetic kin relationships in prehistoric populations, by Monroy Kuhn, Jakobsson, and Günther


A new preprint paper appeared some days ago in BioRxiv, Estimating genetic kin relationships in prehistoric populations, by researchers of the Uppsala University Jose Manuel Monroy Kuhn, Mattias Jakobsson, and Torsten Günther. Jakobsson and Günther. You might remember the last two from their work Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations, whose results were said not to be replicable by Lazaridis and Reich (PNAS), something they denied pointing to the limitations of the current aDNA data (PNAS).

They propose a new, more conservative method to infer close relationships (in contrast with available methods, suitable for modern samples). They have implemented the method as a software program, called READ, which should work better with degraded samples (typical of ancient DNA) by reducing false positives – and having therefore more false negatives. Abstract:

Archaeogenomic research has proven to be a valuable tool to trace migrations of historic and prehistoric individuals and groups, whereas relationships within a group or burial site have not been investigated to a large extent. Knowing the genetic kinship of historic and prehistoric individuals would give important insights into social structures of ancient and historic cultures. Most archaeogenetic research concerning kinship has been restricted to uniparental markers, while studies using genome-wide information were mainly focused on comparisons between populations. Applications which infer the degree of relationship based on modern-day DNA information typically require diploid genotype data. Low concentration of endogenous DNA, fragmentation and other post-mortem damage to ancient DNA (aDNA) makes the application of such tools unfeasible for most archaeological samples. To infer family relationships for degraded samples, we developed the software READ (Relationship Estimation from Ancient DNA). We show that our heuristic approach can successfully infer up to second degree relationships with as little as 0.1x shotgun coverage per genome for pairs of individuals. We uncover previously unknown relationships among prehistoric individuals by applying READ to published aDNA data from several human remains excavated from different cultural contexts. In particular, we find a group of five closely related males from the same Corded Ware culture site in modern-day Germany, suggesting patrilocality, which highlights the possibility to uncover social structures of ancient populations by applying READ to genome-wide aDNA data.

The software READ applied to the 230 ancient European DNA data from Mathieson et al. (2015) was studied, with certain interesting results. For starters, this paper already supports the idea that the five German Corded Ware samples from Esperstedt were all related, thus further supporting to a certain extent the culture’s patrilocality and female exogamy practices:

Of particular interest was a group of five males from Esperstedt in Germany who were associated with the Corded Ware culture {a culture that arose after large scale migrations of males from the east. Around 50 Corded Ware burials, six of them stone cists, were excavated near Esperstedt in the context of road constructions in 2005. Characteristic Corded Ware pottery was found in the graves and all male individuals had been buried on their right hand site. Interestingly, the central individual of the group of related individuals (I1541) was buried in a stone cist approximately 700 meters from the graves of the other four individuals which were all close to each other. The close relationship of this group of only male individuals from the same location suggest patrilocality and female exogamy, a pattern which has also been found from Strontium isotopes at another Corded Ware site just 30 kilometers from Esperstedt and suggested for the Corded Ware culture in general. This represents just one example of how the genetic analysis of relationships can be used to uncover and understand social structures in ancient populations.

It is to be expected that improvement in such methods can help more accurately define certain samples, by inferring their precise subclades. For example, in the case of those relatives from Esperstedt – classified variously as R(xR1b), R1a, or R1a1 – one would be able to classify those related patrilineally to the most precise subclade: in this case, that of the sample I0104 (ca.2473-2348 BC), of subclade R1a1a1-M417.

However, errors are dependent on the quality of the ancient DNA recovered:

READ does not explicitly model aDNA damage and it only considers one allele at heterozygous sites. This implies that a careful curation of the data is required to avoid errors due to low coverage, short sequence fragments, deamination damage, sequencing errors and potential contamination. We recommend a number of well established filtering steps when working with low coverage aDNA data

The Endangered Archaeology in the Middle East and North Africa (EAMENA) Database

A recent online database catalogues 20,000 threatened archaeological sites: The Endangered Archaeology in the Middle East and North Africa (EAMENA) Database.

Researchers at the Universities of Oxford, Leicester and Durham created the database in 2015 with support from the Arcadia Fund, a non-profit that seeks to preserve endangered heritage sites. The EAMENA team wanted to build a uniform catalogue of historic locations that are facing a growing onslaught of threats, according to a University of Oxford press statement. The resource was only recently made available to the public.

Not all damage and threats to the archaeology can be prevented, but they can be mitigated through the sharing of information and specialist skills

Dr Robert Bewley, Director of EAMENA project

News via Smithsonian Mag