Fulani from Cameroon show ancestry similar to Afroasiatic speakers from East Africa

sahel-region-fulani

Open access African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations, by Fan et al. Genome Biology (2019) 20:82.

Interesting excerpts (emphasis mine):

Introduction

To extend our knowledge of patterns of genomic diversity in Africa, we generated high coverage (> 30×) genome sequencing data from 43 geographically diverse Africans originating from 22 ethnic groups, representing a broad array of ethnic, linguistic, cultural, and geographic diversity (Additional file 1: Table S1). These include a number of populations of anthropological interest that have never previously been characterized for high-coverage genome sequence diversity such as Afroasiatic-speaking El Molo fishermen and Nilo-Saharan-speaking Ogiek hunter-gatherers (Kenya); Afroasiatic-speaking Aari, Agaw, and Amhara agro-pastoralists (Ethiopia); Niger-Congo-speaking Fulani pastoralists (Cameroon); Nilo-Saharan-speaking Kaba (Central African Republic, CAR); and Laka and Bulala (Chad) among others. We integrated this data with 49 whole genome sequences generated as part of the Simons Genome Diversity Project (SGDP) [14] (…)

afroasiatic-samples
Locations of samples included in this study. Each dot is an individual and the color indicates the language classification

Results and discussion

We found that the CRHG populations from central Africa, including the Mbuti from the Demographic Republic of Congo (DRC), Biaka from the CAR, and Baka, Bakola, and Bedzan from Cameroon, also form a basal lineage in the phylogeny. The other two hunter-gatherer populations, Hadza and Sandawe, living in Tanzania, group with populations from eastern Africa (Fig. 2). The two Nilo-Saharan-speaking populations, the Mursi from southern Ethiopia and the Dinka from southern Sudan, group into a single cluster, which is consistent with archeological data indicating that the migration of Nilo-Saharan populations to eastern Africa originated from a source population in southern Sudan in the last 3000 years [4, 23, 24, 25].

phylogenetic-relationship-africans
Phylogenetic relationship of 44 African and 32 west Eurasian populations determined by a neighbor joining analysis assuming no admixture. Here, the dots of each node represent bootstrap values and the color of each branch indicates language usage of each population. Human_AA human ancestral alleles

The Fulani people are traditionally nomadic pastoralists living across a broad geographic range spanning Sudan, the Sahel, Central, and Western Africa. The Fulani in our study, sampled from Cameroon, clustered with the Afroasiatic-speaking populations in East Africa in the phylogenetic analysis, indicating a potential language replacement from Afroasiatic to Niger-Congo in this population (Fig. 2). Prior studies suggest a complex history of the Fulani; analyses of Y chromosome variation suggest a shared ancestry with Nilo-Saharan and Afroasiatic populations [24], whereas mtDNA indicates a West African origin [26]. An analysis based on autosomal markers found traces of West Eurasian-related ancestry in this population [4], which suggests a North African or East African origin (as North and East Africans also have such ancestry likely related to expansions of farmers and herders from the Near East) and is consistent with the presence at moderate frequency of the −13,910T variant associated with lactose tolerance in European populations [15, 16].

Phylogenetic reconstruction of the relationship of African individuals under a model allowing for migration using TREEMIX [27] largely recapitulates the NJ phylogeny with the exception of the Fulani who cluster near neighboring Niger-Congo-speaking populations with whom they have admixed (Additional file 2: Figure S1). Interestingly, TREEMIX analysis indicates evidence for gene flow between the Hadza and the ancestors of the Ju|‘hoan and Khomani San, supporting genetic, linguistic, and archeological evidence that Khoesan-speaking populations may have originated in Eastern Africa [28, 29, 30].

afroasiatic-niger-congo-admixture
ADMIXTURE analysis of 92 African and 62 West Eurasian individuals. Each bar is an individual and colors represent the proportion of inferred ancestry from K ancestral populations. The bottom bar shows the language classification of each individual. With the increasing of K, the populations are largely grouped by their current language usage

About the Fulani, this is what the referenced study of Y‐chromosome variation among 15 Sudanese populations by Hassan et al. (2008), had to say:

  • Haplogroups A-M13 and B-M60 are present at high frequencies in Nilo-Saharan groups except Nubians, with low frequencies in Afro-Asiatic groups although notable frequencies of B-M60 were found in Hausa (15.6%) and Copts (15.2%).
  • Haplogroup E (four different haplotypes) accounts for the majority (34.4%) of the chromosome and is widespread in the Sudan. E-M78 represents 74.5% of haplogroup E, the highest frequencies observed in Masalit and Fur populations. E-M33 (5.2%) is largely confined to Fulani and Hausa, whereas E-M2 is restricted to Hausa. E-M215 was found to occur more in Nilo-Saharan rather than Afro-Asiatic speaking groups.
  • In contrast, haplogroups F-M89, I-M170, J-12f2, and JM172 were found to be more frequent in the Afro-Asiatic speaking groups. J-12f2 and J-M172 represents 94% and 6%, respectively, of haplogroup J with high frequencies among Nubians, Copts, and Arabs.
  • Haplogroup K-M9 is restricted to Hausa and Gaalien with low frequencies and is absent in Nilo-Saharan and Niger-Congo.
  • Haplogroup R-M173 appears to be the most frequent haplogroup in Fulani, and haplogroup R-P25 has the highest frequency in Hausa and Copts and is present at lower frequencies in north, east, and western Sudan.
  • Haplogroups A-M51, A-M23, D-M174, H-M52, L-M11, OM175, and P-M74 were completely absent from the populations analyzed.
fulfulde-fulani-language
Image modified from “Fulfulde Language Family Report” Author: Annette Harrison; Cartographer: Irene Tucker; SIL International 2003.

This is what David Reich will talk about in the seminar Insights into language expansions from ancient DNA:

In this talk, I will describe how the new science of genome-wide ancient DNA can provide insights into past spreads of language and culture. I will discuss five examples: (1) the spread of Indo-European languages to Europe and South Asia in association with Steppe pastoralist ancestry, (2) the spread of Austronesian languages to the open Pacific islands in association with Taiwanese aboriginal-associated ancestry, (3) the spread of Austroasiatic languages through southeast Asia in association with the characteristic ancestry type that is also represented in western Indonesia suggesting that these languages were once widespread there, (4) the spread of Afroasiastic languages through in East Africa as part of the Pastoral Neolithic farming expansion, and (5) the spread of Na-Dene languages in North America in association with Proto-Paleoeskimo ancestry. I will highlight the ways that ancient DNA can meaningfully contribute to our understanding of language expansions—increasing the plausibility of some scenarios while decreasing the plausibility of others—while emphasizing that with genetic data by itself we can never definitively determine what languages ancient people spoke.

EDIT (3 MAY 2019): Apparently, there was not much to take from the talk:

neolithic-pastoralist-africa
Pastoralist Neolithic in Africa, through a pale-green Sahelo-Sudanian steppe corridor. See full map.

This seminar (and maybe some new paper on the Neolithic expansion in Africa) could shed light on population movements that may be related to the spread of Afroasiatic dialects. Until now, it seems that Bantu peoples have been more interesting for linguistics and archaeology, and South and East Africans for anthropology.

Archaeology in Africa appears to be in its infancy, as is population genomics. From the latest publication by Carina Schlebusch, Population migration and adaptation during the African Holocene: A genetic perspective, a chapter from Modern Human Origins and Dispersal (2019):

The process behind the introduction and development of farming in Africa is still unclear. It is not known how many independent invention events there were in the continent and to which extent the various first instances of farming in northern Africa are linked. Based on the archeological record, it was proposed that at least three regions in Africa may have developed agriculture independently: the Sahara/Sahel (around 7 ka), the Ethiopian highlands (7-4 ka), and western Africa (5-3 ka). In addition to these developments, the Nile River Valley is thought to have adopted agriculture (around 7.2 ka), from the Neolithic Revolution in the Middle East (Chapter 12 – Jobling et al. 2014; Chapter 35, 37 – Mitchell and Lane 2013). From these diverse centers of origin, farmers or farming practices spread to the rest of Africa, with domesticate animals reaching the southern tip of Africa ~2 ka and crop farming ~1,8 ka (Mitchell 2002; Huffman 2007)

african-popularion-movements
Schematic representation of possible migration routes related to the expansion of herders and crop farmers during Holocene times. Arrow color indicate source populations; Brown-Eurasian, Green-western African, Blue-eastern African.

Similar to the case in Europe and the 1990s-2000s wrong haplogroup history based on the modern distribution of R1b, R1a, N, or I2, it is possible that neither of the most often mentioned haplogroups linked to the Afroasiatic expansion, E and J, were responsible for its early spread within Africa, despite their widespread distribution in certain modern Afroasiatic-speaking areas. The fact that such assessments include implausible glottochronological dates spanning up to 20,000 years for the parent language, combined with regional language continuities despite archaeological changes, makes them even more suspicious.

Similar to the case with Indo-Europeans and the “steppe ancestry” concept of the 2010s, it may be that the often-looked-for West Eurasian ancestry among Africans is the effect of recent migrations, unrelated to the Afroasiatic expansion. The results of this paper could be offering another sign of how this ancestry may have expanded only quite recently westwards from East Africa through the Sahel, after the Semitic expansion to the south:

1. From approximately 1000 BC, accompanying Nilo-Saharan peoples.

2. From approximately AD 1500, with the different population movements related to the nomadic Fulani:

sahel-nomadic-sedentary
Image from Sahel in West African History – Oxford Research Encyclopedia of African History.
  • Arguably, since the Fulani caste system wasn’t as elaborate in northern Nigeria, eastern Niger, and Cameroon, these specific groups would be a good example of the admixture with eastern populations, based on the (proportionally) huge amount of slaves they dealt with.
  • Similarly, it could be argued that the castes-based social stratification in most other territories (including Sudan) would have helped them keep a genetic make-up similar to their region of origin in terms of ancient lineages, hence similar to Chadic populations from west to east.

Reich’s assertion of the association of the language expansion with the spread of Pastoral Neolithic is still too vague, but – based on previous publications of ancient DNA in Africa and the Levant – I don’t have high hopes for a revolutionary paper in the near future. Without many samples and proper temporal transects, we are stuck with speculations based on modern distributions and scarce historical data.

fula-people-distribution
A distribution map of Fula people. Dark green: a major ethnic group; Medium: significant; Light: minor. Modified from image by Sarah Welch at Wikipedia.

About the potential genetic make-up of Cameroon before the arrival of the Neolithic, from the recent SAA 84th Annual Meeting (Abstracts in PDF):

Lipson, Mark (Harvard Medical School), Mary Prendergast (Harvard University), Isabelle Ribot (Université de Montréal), Carles Lalueza-Fox (Institute of Evolutionary Biology CSIC-UPF) and David Reich (Harvard Medical School)

[253] Ancient Human DNA from Shum Laka (Cameroon) in the Context of African Population History We generated genome-wide DNA data from four people buried at the site of Shum Laka in Cameroon between 8000–3000 years ago. One individual carried the deeply divergent Y chromosome haplogroup A00 found at low frequencies among some present-day Niger-Congo speakers, but the genome-wide ancestry profiles for all four individuals are very different from the majority of West Africans today and instead are more similar to West-Central African hunter-gatherers. Thus, despite the geographic proximity of Shum Laka to the hypothesized birthplace of Bantu languages and the temporal range of our samples bookending the initial Bantu expansion, these individuals are not representative of a Bantu source population. We present a phylogenetic model including Shum Laka that features three major radiations within Africa: one phase early in the history of modern humans, one close to the time of the migration giving rise to non-Africans, and one in the past several thousand years. Present-day West Africans and some East Africans, in addition to Central and Southern African hunter-gatherers, retain ancestry from the first phase, which is therefore still represented throughout the majority of human diversity in Africa today.

Related

Palaeolithic Caucasus samples reveal the most important component of West Eurasians

dzudzuana-ancestry-europe

Preprint Paleolithic DNA from the Caucasus reveals core of West Eurasian ancestry, by Lazaridis et al. bioRxiv (2018).

Interesting excerpts:

We analyzed teeth from two individuals 63 recovered from Dzudzuana Cave, Southern Caucasus, from an archaeological layer previously dated to ~27-24kya (…). Both individuals had mitochondrial DNA sequences (U6 and N) that are consistent with deriving from lineages that are rare in the Caucasus or Europe today. The two individuals were genetically similar to each other, consistent with belonging to the same population and we thus analyze them jointly.

(…) our results prove that the European affinity of Neolithic Anatolians does not necessarily reflect any admixture into the Near East from Europe, as an Anatolian Neolithic-like population already existed in parts of the Near East by ~26kya. Furthermore, Dzudzuana shares more alleles with Villabruna-cluster groups than with other ESHG (Extended Data Fig. 5b), suggesting that this European affinity was specifically related to the Villabruna cluster, and indicating that the Villabruna affinity of PGNE populations from Anatolia and the Levant is not the result of a migration into the Near East from Europe. Rather, ancestry deeply related to the Villabruna cluster was present not only in Gravettian and Magdalenian-era Europeans but also in the populations of the Caucasus, by ~26kya. Neolithic Anatolians, while forming a clade with Dzudzuana with respect to ESHG, share more alleles with all other PGNE (Extended Data Fig. 5d), suggesting that PGNE share at least partially common descent to the exclusion of the much older samples from Dzudzuana.

dzudzuana-anatolia-pca
Ancient West Eurasian population structure. PCA of key ancient West Eurasians, including additional populations (shown with grey shells), in the space of outgroup f4-statistics (Methods).

Our co-modeling of Epipaleolithic Natufians and Ibero-Maurusians from Taforalt confirms that the Taforalt population was mixed, but instead of specifying gene flow from the ancestors of Natufians into the ancestors of Taforalt as originally reported, we infer gene flow in the reverse direction (into Natufians). The Neolithic population from Morocco, closely related to Taforalt is also consistent with being descended from the source of this gene flow, and appears to have no admixture from the Levantine Neolithic (Supplementary Information 166 section 3). If our model is correct, Epipaleolithic Natufians trace part of their ancestry to North Africa, consistent with morphological and archaeological studies that indicate a spread of morphological features and artifacts from North Africa into the Near East. Such a scenario would also explain the presence of Y-chromosome haplogroup E in the Natufians and Levantine farmers, a common link between the Levant and Africa.

(…) we cannot reject the hypothesis that Dzudzuana and the much later Neolithic Anatolians form a clade with respect to ESHG (P=0.286), consistent with the latter being a population largely descended from Dzudzuana-like pre-Neolithic populations whose geographical extent spanned both Anatolia and the Caucasus. Dzudzuana itself can be modeled as a 2-way mixture of Villabruna-related ancestry and a Basal Eurasian lineage.

In qpAdm modeling, a deeply divergent hunter-gatherer lineage that contributed in relatively unmixed form to the much later hunter-gatherers of the Villabruna cluster is specified as contributing to earlier hunter-gatherer groups (Gravettian Vestonice16: 35.7±11.3% and Magdalenian ElMiron: 60.6±11.3%) and to populations of the Caucasus (Dzudzuana: 199 72.5±3.7%, virtually identical to that inferred using ADMIXTUREGRAPH). In Europe, descendants of this lineage admixed with pre-existing hunter-gatherers related to Sunghir3 from Russia for the Gravettians and GoyetQ116-1 from Belgium for the Magdalenians, while in the Near East it did so with Basal Eurasians. Later Europeans prior to the arrival of agriculture were the product of re-settlement of this lineage after ~15kya in mainland Europe, while in eastern Europe they admixed with Siberian hunter-gatherers forming the WHG-ANE cline of ancestry [See PCA above]. In the Near East, the Dzudzuana-related population admixed with North African-related ancestry in the Levant and with Siberian hunter-gatherer and eastern non-African-related ancestry in Iran and the Caucasus. Thus, the highly differentiated populations at the dawn of the Neolithic were primarily descended from Villabruna Cluster and Dzudzuana-related ancestors, with varying degrees of additional input related to both North Africa and Ancient North/East Eurasia whose proximate sources may be clarified by future sampling of geographically and temporally intermediate populations.

qpgraph-dzudzuana
An admixture graph model of Paleolithic West Eurasians. An automatically generated admixture graph models fits populations (worst Z-score of the difference between estimated and fitted f-statistics is 2.7) or populations (also including South_Africa_HG, worst Z-score is 3.5). This is a simplified model assuming binary admixture events and is not a unique solution (Supplementary Information section 2). Sampled populations are shown with ovals and select labeled internal nodes with rectangles.

Interesting excerpts from the supplementary materials:

From our analysis of Supplementary Information section 3, we showed that these sources are indeed complex, and only one of these (WHG, represented by Villabruna) appears to be a contributor to all the remaining sources. This should not be understood as showing that hunter-gatherers from mainland Europe migrated to the rest of West Eurasia, but rather that the fairly homogeneous post-15kya population of mainland Europe labeled WHG appear to represent a deep strain of ancestry that seems to have contributed to West Eurasians from the Gravettian era down to the Neolithic period.

Villabruna is representative of the WHG group. We also include ElMiron, the best sample from the Magdalenian era as we noticed that within the WHG group there were individuals that could not be modeled as a simple clade with Villabruna but also had some ElMiron-related ancestry. Ddudzuana is representative of the Ice Age Caucasus population, differentiated from Villabruna by Basal Eurasian ancestry. AG3 represents ANE/Upper Paleolithic Siberian ancestry, sampled from the vicinity of Lake Baikal, while Russia_Baikal_EN related to eastern Eurasians and represents a later layer of ancestry from the same region of Siberia as AG3 Finally, Mbuti are a deeply diverged African population that is used here to represent deep strains of ancestry (including Basal Eurasian) prior to the differentiation between West Eurasians and eastern non-Africans that are otherwise not accounted for by the remaining five sources. Collectively, we refer to this as ‘Basal’ or ‘Deep’ ancestry, which should be understood as referring potentially to both Basal Eurasian and African ancestry.

It has been suggested that there is an Anatolia Neolithic-related affinity in hunter-gatherers from the Iron Gates. Our analysis confirms this by showing that this population has Dzudzuana-related ancestry as do many hunter-gatherer populations from southeastern Europe, eastern Europe and Scandinavia. These populations cannot be modeled as a simple mixture of Villabruna and AG3 but require extra Dzudzuana-related ancestry even in the conservative estimates, with a positive admixture proportion inferred for several more in the speculative ones. Thus, the distinction between European hunter-gatherers and Near Eastern populations may have been gradual in pre-Neolithic times; samples from the Aegean (intermediate between those from the Balkans and Anatolia) may reveal how gradual the transition between Dzudzuana-like Neolithic Anatolians and mostly Villabruna-like hunter-gatherers was in southeastern Europe.

ancient-modern-european-admixture
Modified image (cut, with important samples marked). Modeling present-day and ancient West-Eurasians. Mixture proportions computed with qpAdm (Supplementary Information section 4). The proportion of ‘Mbuti’ ancestry represents the total of ‘Deep’ ancestry from lineages that split prior to the 365 split of Ust’Ishim, Tianyuan, and West Eurasians and can include both ‘Basal Eurasian’ and other (e.g., Sub-Saharan African) ancestry. (a) ‘Conservative’ estimates. Each population 367 cannot be modeled with fewer admixture events than shown.

Villabruna: This type of ancestry differentiates between present-day Europeans and non-Europeans within West Eurasia, attaining a maximum of ~20% in the Baltic in accordance with previous observations and with the finding of a later persistence of significant hunter-gatherer ancestry in the region. Its proportion drops to ~0% throughout the Near East. Interestingly, a hint of such ancestry is also inferred in all North African populations west of Libya in the speculative proportions, consistent with an archaeogenetic inference of gene flow from Iberia to North Africa during the Late Neolithic.

ElMiron: This type of ancestry is absent in present-day West Eurasians. This may be because most of the Villabruna-related ancestry in Europeans traces to WHG populations that lacked it (since ElMiron-related ancestry is quite variable within European hunter-gatherers). However, ElMiron ancestry makes up only a minority component of all WHG populations sampled to date and WHG-related ancestry is a minority component of present-day Europeans. Thus, our failure to detect it in present day people may be simply be too little of it to detect with our methods.

Dzudzuana: Our analysis identifies Dzudzuana-related ancestry as the most important component of West Eurasians and the one that is found across West Eurasian-North African populations at ~46-88% levels. Thus, Dzudzuana-related ancestry can be viewed as the common core of the ancestry of West Eurasian-North African populations. Its distribution reaches its minima in northern Europe and appears to be complementary to that of Villabruna, being most strongly represented in North Africa, the Near East (including the Caucasus) and Mediterranean Europe. Our results here are expected from those of Supplementary Information section 3 in which we modeled ancient Near Eastern/North African populations (the principal ancestors of present-day people from the same regions) as deriving much of their ancestry from a Dzudzuana-related source. Migrations from the Near East/Caucasus associated with the spread of the Neolithic, but also the formation of steppe population introduced most of the Dzudzuana-related ancestry present in Europe, although (as we have seen above) some such ancestry was already present in some pre-agricultural hunter-gatherers in Europe.

AG3: Ancestry related to the AG3 sample from Siberia has a northern distribution, being strongly represented in both central-northern Europe and the north Caucasus.

Russia_Baikal_EN: Ancestry related to hunter-gatherers from Lake Baikal in Siberia (postdating AG3) appears to have affected primarily northeastern European populations which have been previously identified as having East Eurasian ancestry; some such ancestry is also identified for a Turkish population from Balıkesir, likely reflecting the Central Asian ancestry of Turkic speakers which has been recently confirmed directly in an Ottoman sample from Anatolia.

Some comments

So, to try and sum up:

  • Dzudzuana shares ancestry with ‘Common West Eurasian’ (CWE). the ancestor cluster of Villabruna.
  • Dzudzuana diverges from CWE because of a Basal Eurasian ancestry contribution [which supports that Basal Eurasian ancestry was a deep Middle Eastern lineage].
  • Dzudzuana is closest to Anatolia Neolithic, and close to Gravettian.
palaeolithic-gravettian-villabruna
Palaeolithic migrations and clusters in Europe. See more maps.

Chronologically:

  1. Aurignacian: First West Eurasians arrive ca. 36,000 BP, Goyet cluster expands probably with C1a2 lineages.
  2. After that, the early or ‘unmixed’ Villabruna cluster (‘hidden’ somewhere probably east of Europe, either North Eurasia or South Eurasia), lineages unknown (possibly IJ), contributes to:
    1. Gravettian (ca. 30,000 BP): Věstonice cluster expands, probably with IJ lineages.
    2. A (hidden) ‘Common West Eurasian’ population.
    3. In turn:

      • Dzudzuana ca. 26,000 BP derived from Common West Eurasian (curiously, haplogroup G seems to split in today’s subclades ca. 26,000 BP).
      • During the Gravettian (ca. 26,000 BP), an Anatolian Neolithic-like population exists already in the Near East. Both Věstonice and this Anatolian HG are close to Dzudzuana; in turn, Dzudzuana from CWE.

    4. Magdalenian (ca. 20,000 BP): El Mirón cluster expands, probably with more specific I lineages.
  3. Bølling-Allerød warming period (ca. 14,000 BP): ‘late’ Villabruna cluster or WHG (=CWE with greater affinity to Near Eastern populations) expands, probably spreading with R1b in mainland Europe and to the east (admixing with Siberian HG), creating the WHG — ANE ancestry cline, as reflected in Iron Gates HG, Baltic HG, etc.

[Here we have the possible “bidirectional gene flow between populations ancestral to Southeastern Europeans of the early Holocene and Anatolians of the late glacial or a dispersal of Southeastern Europeans into the Near East” inferred from Anatolian hunter-gatherers]

palaeolithic-gravettian-magdalenian-migrations
The Gravettian (30,000 to 20,000 years) is drawn in black and white; the subsequent Magdalenian (17,000 to 10,000 years) and Hamburgian (13,000-11,750 years) are in light blue and red. It is not known whether the spread of the Gravettian was a result of diffusion of people or cultures. This figure illustrates the possible monocentric origins of the Gravettian, in which the Gravettian is hypothesized to have its origin in the Middle Danube Basin, first spreading west (solid lines) and later spreading east and southeast (dashed lines). This scenario is largely based on the chronology of sites. Thus far, genome-wide data has been collected from only three of the ten< Gravettian regions indicated on the map. These regions are northern Austria (1 sample), the Czech Republic (6), southern Italy (3) and Belgium (3), indicating that they all share a genomic ancestry. However, it is unknown whether samples from the remaining regions also share a close genomic ancestry. Some skeletal remains associated with the Gravettian that could be investigated paleogenomically are from Sungir (Russia); Laghar Velho (central Portugal); Cussac Cave; Les Garennes, near Vilhonneur; and Level 2 at Abri Pataud116 (western France). Light blue and light red regions represent the approximate distributions of the Magdalenian Culture and the Hamburgian Culture (13,000-11,750 years). Figure adapted from Kozłowski. Image from Harris (2017)

The paper talks about possibilities for Common West Eurasian:

  1. Migration from mainland Europe to Near East or vice versa (not very likely);
  2. Migration from a geographically intermediate Ice Age refugium in southeast Europe, Anatolia, or the circum-Pontic region that explain post-glacial affinity of post-glacial Levantine and Anatolian populations.

It also re-states what was known:

  • EHG (ca. 8,000 BP) = between WHG — ANE (ca. 24,000 BP).
  • CHG (ca. 10,000 BP) = between EHG — Iran N.

I would say that the distinct CHG vs. Dzudzuana ancestry puts CHG probably to the south, within the Iranian Plateau, during the Gravettian, expanding probably later.

Also important, Ancestral North African probably accompanied by haplogroup E. Early expansion of North Africans into the Near East further confirms the impossibility of Afroasiatic (much younger) to be associated with these expansions, and confirms that the still unclear Green Sahara migrations are the key.

Related