Waves of Palaeolithic ANE ancestry driven by P subclades; new CWC-like Finnish Iron Age

New preprint The population history of northeastern Siberia since the Pleistocene, by Sikora et al. bioRxiv (2018).

Interesting excerpts (emphasis mine; most internal references removed):

ANE ancestry

The earliest, most secure archaeological evidence of human occupation of the region comes from the artefact-rich, high-latitude (~70° N) Yana RHS site dated to ~31.6 kya (…)

The Yana RHS human remains represent the earliest direct evidence of human presence in northeastern Siberia, a population we refer to as “Ancient North Siberians” (ANS). Both Yana RHS individuals were unrelated males, and belong to mitochondrial haplogroup U, predominant among ancient West Eurasian hunter-gatherers, and to Y chromosome haplogroup P1, ancestral to haplogroups Q and R, which are widespread among present-day Eurasians and Native Americans.

Symmetry tests using f4 statistics reject tree-like clade relationships with both Early West Eurasians (EWE; Sunghir) and Early East Asians (EEA; Tianyuan); however, Yana is genetically closer to EWE, despite its geographic location in northeastern Siberia

Using admixture graphs (qpGraph) and outgroup-based estimation of mixture proportions (qpAdm), we find that Yana can be modelled as EWE with ~25% contribution from EEA

Among all ancient individuals, Yana shares the most genetic drift with Mal’ta, and f4 statistics show that Mal’ta shares more alleles with Yana than with EWE (e.g. f4(Mbuti,Mal’ta;Sunghir,Yana) = 0.0019, Z = 3.99). Mal’ta and Yana also exhibit a similar pattern of genetic affinities to both EWE and EEA, consistent with previous studies.The ANE lineage can thus be considered a descendant of the ANS lineage, demonstrating that by 31.6 kya early representatives of this lineage were widespread across northern Eurasia, including far northeastern Siberia.


Ancient Palaeosiberian

(…) the 9.8 kya Kolyma1 individual, representing a group we term “Ancient Paleosiberians” (AP). Our results indicate that AP are derived from a first major genetic shift observed in the region. Principal component analysis (PCA), outgroup f3-statistics and mtDNA and Y chromosome haplogroups (G1b and Q1a1a, respectively) demonstrate a close affinity between AP and present-day Koryaks, Itelmen and Chukchis, as well as with Native Americans.

For both AP and Native Americans, ANS ancestry appears more closely related to Mal’ta than Yana, therefore rejecting a direct contribution of Yana to later AP or Native American groups.

Lake Baikal Neolithic – Bronze Age

(…) the newly reported genomes from Ust’Belaya and recently published neighbouring Neolithic and Bronze Age sites show a succession of three distinct genetic ancestries over a ~6 ky time span. The earliest individuals show predominantly East Asian ancestry, closely related to the ancient individuals from DGC. In the early Bronze Age (BA), we observe a resurgence of AP ancestry (up to ~50% ancestry fraction), as well as influence of West Eurasian Steppe ANE ancestry represented by the early BA individuals from Afanasievo in the Altai region (~10%) This is consistent with previous reports of gene flow from an unknown ANE-related source into Lake Baikal hunter-gatherers.

Our results suggest a southward expansion of AP as a possible source, which is also consistent with the replacement of Y chromosome lineages observed at Lake Baikal, from predominantly haplogroup N in the Neolithic to haplogroup Q in the BA. Finally, the most recent individual from Ust’Belaya, dated to ~600 years ago, falls along the Neosiberian cline, similar to the ~760 year-old ‘Young Yana’ individual from northeastern Siberia, demonstrating the widespread distribution of Neosiberian ancestry in the most recent epoch.

Genetic structure of ancient northeast Siberians. PCA of ancient individuals projected onto a set of modern Eurasian and American individuals. Abbreviations in group labels: UP – Upper Palaeolithic; LP – Late Palaeolithic; M – Mesolithic; EN – Early Neolithic; MN – Middle Neolithic; LN – Late Neolithic; EBA – Early Bronze Age; LBA – Late Bronze Age; IA – Iron Age; PE – Paleoeskimo; MED – Medieval

Finland Saami

At the western edge of northern Eurasia, genetic and strontium isotope data from ancient individuals at the Levänluhta site documents the presence of Saami ancestry in Southern Finland in the Late Holocene 1.5 kya. This ancestry component is currently limited to the northern fringes of the region, mirroring the pattern observed for AP ancestry in northeastern Siberia. However, while the ancient Saami individuals harbour East Asian ancestry, we find that this is better modelled by DGC rather than AP, suggesting that AP influence was likely restricted to the eastern side of the Urals. Comparison of ancient Finns and Saami with their present-day counterparts reveals additional gene flow over the past 1.6 kya, with evidence for West Eurasian admixture into modern Saami. The ancient Finn from Levänluhta shows lower Siberian ancestry than modern Finns .

EDIT (27 OCT 2018): By comparing the three, I see these are samples published already (at least two) in Lamnidis et al. (2018), but here with added (1) specific radiocarbon dates, (2) comparison with Neosiberian populations and (3) strontium isotope analyses.

Finnish_IA (ca. 350 AD) is probably a Saami-speaking individual, just like the Saami_IA with newly reported radiocarbon dates from Levänluhta ca. 400-600 AD (since Fennic peoples were then likely around the Gulf of Finland).

The conflicting strontium isotope data on marine dietary resources on certain samples from the supplementary material hint at possible external origin of the diet of some of the previously reported (and possibly one newly reported) Saami Iron Age individuals, from some 25-30 km. to the northwest through the river up to hundreds of km. to the southwest of Levänluhta (i.e. the whole coast of the Bothnian Sea). It is unclear why they would prefer an origin of the dietary source in southern Baltic regions instead of some km. to the west, though, unless that’s what they want to propose based on the sample’s admixture…

The coast of the Bothnian Sea (=the northern part of the Baltic Sea, between Sweden and Finland) lay only 25-30 km to the northwest, and accessible to the Iron Age people of the Levänluhta region via the Kyrönjoki river. (…) For individual JA2065/DA236, the low 87Sr/86Sr value (0.71078) would imply an exceptionally heavy reliance on Baltic Sea resources. The δ13C and δ15N values of the individual are near comparable (especially considering within-Baltic latitudinal gradients in δ13C; Torniainen et al. 2017) to the δ13C and δ15N values of a Middle Neolithic population on the Baltic island of Gotland (Eriksson, 2004) interpreted to have subsisted primarily on seals.

These new data on the samples give us some more information than what we already had, because the early date of Finnish_IA implies that there was few East Asian admixture (if any at all) in west Finland during the Roman Iron Age, which pushes still farther forward in time the expected appearance of Siberian ancestry among Saamic (first) and Fennic populations (later). It is unclear whether this East Asian ancestry found in Finnish_IA is actually related to DGC, or it is rather related to the ENA-like ancestry found already in Baltic hunter-gatherers (i.e. in some EHG samples from Karelia), for which Baikal_EN is a good proxy in Lazaridis et al. (2018).

Since Bronze Age and Iron Age samples from Estonia show more Baltic_HG drift compared to Corded Ware samples, it is likely that this supposedly DGC-related ancestry (here considered part of the ‘Siberian ancestry’) is actually an EHG-related ENA component of north-east European hunter-gatherers, with whom Finno-Saamic peoples admixed during the expansion of the Corded Ware culture into Finland.

The paper finds thus increased (probably the actual) Siberian ancestry in modern Finns compared to this Iron Age Saami individual. Coupled with the later Saami Iron Age samples, from between one to three centuries later – showing the start of Siberian ancestry influx – , we can begin to establish when the expansion of Siberian ancestry happened in central Finland, and thus quite likely when the Saami began to expand to the north and east and admix with Palaeo-Laplandic peoples.

Admixture modelling using qpAdm. Maps showing locations and ancestry proportions of ancient (left) and modern (right) groups.

One sample of haplogroup N1a1a1a1a4a1-M1982, Yana_MED, is found in the Arctic region (north-eastern Yakutia) ca. 1100 AD. Since it is derived from N1a1a1a1a-L392, it might be a surprise for some to find it in a clearly non-Uralic speaking environment at the same time other subclades of this haplogroup were admixing in the west with well-established Finno-Saamic, Volga-Finnic, Ugric, and Samoyedic populations…

On the growing doubts that these data – contradicting the CWC=IE theory – are creating among geneticists (from the supplementary materials):

NOTE. This paper comes from the Copenhagen group, also signed by Kristiansen, one of today’s strongest supporters of this connection

The Proto-Saami language evolved in southern Finland and Karelia in the Early Iron Age, an area now host to Finnish and the closely related Karelian, but with Saami toponyms showing that the latter two languages are intrusive here (Saarikivi 2004). Saami-speaking populations are thought to have retreated to Lapland during the Middle Iron Age (300–800 AD), where it diverged into the modern Saami dialects. Genetically, the northward retreat of the Saami language correlates with the documented decrease of Saami ancestry in Southern Finland between the Iron Age and the modern period (cf. Lamnidis et al. 2018).

On the way to Lapland, the Saami replaced at least two linguistically obscure groups. This can be inferred from 1) an influx of non-Uralic loanwords into Proto-Saami in the Finnish Lakeland area, and 2) an influx of non-Uralic, non-Germanic words into Saami dialects in Lapland (Aikio 2012). Both of these borrowing events imply contact with non-Saami-speaking groups, e.g. non-Uralic-speaking hunter-gatherers that may have left a genetic and linguistic footprint on modern Saami populations.

The linguistic prehistory of Finland thus does not allow for a straightforward interpretation of the genetic data. The detection of East Asian ancestry in the genetically Saami individual is indicative of a population movement from the east (cf. Lamnidis et al. 2018, Rootsi et al. 2007), one that given the affinities with the ~7.6 ky old individuals from the Devil’s Gate Cave may have been a western extension of the Neosiberian turnover. However, it remains unclear whether this gene flow should be associated with the arrival of Uralic speakers, thus providing further support for a Uralic homeland in Eastern Eurasia, or with an earlier immigration of pre-Uralic, so-called “Paleo-Lakelandic” groups.

I think the genetic interpretation is already straightforward, though. We had a sneak peek at how this late admixture with non-Uralians (mainly Palaeo-Lakelandic and Palaeo-Laplandic peoples from Lovozero and related asbestos ware cultures) is going to unfold among expanding Saami-speaking populations thanks to Lamnidis et al. (2018):

PCA plot of 113 Modern Eurasian populations, with individuals from this study projected on the principal components. Uralic speakers are highlighted in light purple. Image modified from Lamnidis et al. (2018)

Also, still no trace of R1a in far East Asia (reported as M17 ca. 5300 BC near Lake Baikal by Moussa et al. 2016), so I still have doubts about my previous assessment that R1a split into M17 (and thus also M417) in Siberia, with those expanding hunter-gatherer pottery.


mtDNA haplogroup frequency analysis from Verteba Cave supports a strong cultural frontier between farmers and hunter-gatherers in the North Pontic steppe


New preprint paper at BioRxiv, led by a Japanese researcher, with analysis of mtDNA of Trypillians from Verteba Cave, Analysis of ancient human mitochondrial DNA from Verteba Cave, Ukraine: insights into the origins and expansions of the Late Neolithic-Chalcolithic Cututeni-Tripolye Culture, by Wakabayashi et al. (2017).


Background: The Eneolithic (~5,500 yrBP) site of Verteba Cave in Western Ukraine contains the largest collection of human skeletal remains associated with the archaeological Cucuteni-Tripolye Culture. Their subsistence economy is based largely on agro-pastoralism and had some of the largest and most dense settlement sites during the Middle Neolithic in all of Europe. To help understand the evolutionary history of the Tripolye people, we performed mtDNA analyses on ancient human remains excavated from several chambers within the cave.

Results: Burials at Verteba Cave are largely commingled and secondary in nature. A total of 68 individual bone specimens were analyzed. Most of these specimens were found in association with well-defined Tripolye artifacts. We determined 28 mtDNA D-Loop (368 bp) sequences and defined 8 sequence types, belonging to haplogroups H, HV, W, K, and T. These results do not suggest continuity with local pre-Eneolithic peoples, but rather complete population replacement. We constructed maximum parsimonious networks from the data and generated population genetic statistics. Nucleotide diversity (π) is low among all sequence types and our network analysis indicates highly similar mtDNA sequence types for samples in chamber G3. Using different sample sizes due to the uncertainly in number of individuals (11, 28, or 15), we found Tajima’s D statistic to vary. When all sequence types are included (11 or 28), we do not find a trend for demographic expansion (negative but not significantly different from zero); however, when only samples from Site 7 (peak occupation) are included, we find a significantly negative value, indicative of demographic expansion.

Conclusions: Our results suggest individuals buried at Verteba Cave had overall low mtDNA diversity, most likely due to increased conflict among sedentary farmers and nomadic pastoralists to the East and North. Early Farmers tend to show demographic expansion. We find different signatures of demographic expansion for the Tripolye people that may be caused by existing population structure or the spatiotemporal nature of ancient data. Regardless, peoples of the Tripolye Culture are more closely related to early European farmers and lack genetic continuity with Mesolithic hunter-gatherers or pre-Eneolithic groups in Ukraine.

Genetic finds keep supporting the long-lasting cultural and linguistic frontier that Anthony (2007) – among others – asserted existed in the North-West Pontic steppe in the Mesolithic and Neolithic, between western steppe cultures and farmers, while it disproves Kristiansen’s theories of Sredni Stog expansion in Kurgan waves with a mixture of GAC and Trypillia within the Corded Ware culture:

Previous ancient DNA studies showed that hunter-gatherers before 6,500 yrBP in Europe commonly had haplogroups U, U4, U5, and H, whereas hunter-gatherers after 6,500 yrBP in Europe had less frequency of haplogroup H than before. Haplogroups T and K appeared in hunter-gatherers only after 6,500 yrBP, indicating a degree of admixture in some places between farmers and hunter-gatherers. Farmers before and after 6,500 yrBP in Europe had haplogroups W, HV*, H, T, K, and these are also found in individuals buried at Verteba Cave. Therefore, our data point to a common ancestry with early European farmers. Our data also suggest population replacement. Mathieson et al. analyzed a number of Neolithic Ukrainian samples (petrous bone) from several sites in southern, northern, and western Ukraine, dating to ~8,500 – 6,000 yrBP, and found exclusively U (U4 and U5) mtDNA lineages. It should be noted that ‘Neolithic’ in this context does not mean the adoption of agriculture, but rather simply coinciding with a change in material culture. They also analyzed several Trypillian individuals from Verteba Cave (different samples from the those included in this study). Similar to our findings, they found a wider diversity of mtDNA lineages, including H, HV, and T2b. These data, combined with our results, appear to confirm almost complete population replacement by individuals associated with the Tripolye Culture during the Middle to Late Neolithic.

The findings also hint to potential contacts of Yamna with Usatovo as predicted by Anthony (2007), or alternatively (lacking precise dates) to contacts with Corded Ware migrants:

Trypillians were very much a distinct people who most likely displaced 1 local hunter-gatherers with little admixture. Haplogroup W was also observed in several specimens deriving from Site G3. Although we are unsure if all of these haplogroups come from a single or multiple individuals, this observation is interesting in that it is relatively rare and isolated among Neolithic samples. It has, however, been found in samples dating to the Bronze Age. In the study by Wilde et al. [35], they found haplogroup W present in two samples from the Early Bronze Age associated with the Yamnaya and Usatovo cultures. The Usatovo culture (~ 3500 – 2500 BC) was found in Romania, Moldova, and southern Ukraine. It was the conglomeration of Tripolye and North Pontic steppe cultures. Therefore, this individual could link the Trypillian peoples to the Usatovo peoples and perhaps to the greater Yamnaya steppe migrations during the Bronze Age that lead to the Corded Ware Culture.

On the other hand, an article written in terms of mtDNA haplogroup frequencies seems to offer too little proof of anything today. The lack of Y-DNA haplogroups and data on admixture makes their interpretations provisional, subject to change when these further data are published. Also, radiocarbon dating is only confident for individuals of one site (site 7), dated ca. 5,500 cal BP, while “other chambers in the cave are not as confidently dated”…

“Based on the 8 sequence types of the mtDNA D-loop, a maximum parsimonious phylogenetic network was constructed. Circles represent the sequence types, and the size of the circle is proportional to the number of samples. Numbers on the branches between the circles are nucleotide position numbers (+16,000) of the human mitochondrial genome sequence (rCRS). Information about the location (chamber within the cave) where the specimen was excavated is also provided. Areas 2 and 17 are part of Site 7, and these are defined as a separate chamber, although they are located in close proximity within Site 7. The other chambers, Site 20, G2, and G3, are independent and separate locations within the cave. ‘Undefined’ chamber describes an unknown location within the cave. Specimens from each chamber showed deviation for the sequence type distribution observed in the sample set. For example, specimens excavated from Site 7 had five unique sequence types, (I, II, III, IV, and VIII), while specimens excavated from chamber G 21 had mainly one sequence type (V)”. Made available by the authors under a CC-BY-NC-ND 4.0 International license.

We had also seen signs of conflict between Trypillian and steppe cultures in a recent article, Violence at Verteba Cave, Ukraine: New Insights into the Late Neolithic Intergroup Conflict, by Madden et al. (2017):

Many researchers have pointed to the huge “megasites” and construction of fortifications as evidence of intergroup hostilities among the Late Neolithic Tripolye archaeological culture. However, to date, very few skeletal remains have been analyzed for the types of traumatic injury that serve as direct evidence for violent conflict. In this study, we examine trauma on human remains from the Tripolye site of Verteba Cave in western Ukraine. The remains of 36 individuals, including 25 crania, were buried in the gypsum cave as secondary interments. The frequency of cranial trauma is 30-44% among the 25 crania, six males, four females and one adult of indeterminate sex displayed cranial trauma. Of the 18 total fractures, 10 were significantly large and penetrating suggesting lethal force. Over half of the trauma is located on the posterior aspect of the crania, suggesting the victims were attacked from behind. Sixteen of the fractures observed were perimortem and two were antemortem. The distribution and characteristics of the fractures suggest that some of the Tripolye individuals buried at Verteba Cave were victims of a lethal surprise attack. Resources were limited due to population growth and migration, leading to conflict over resource access. It is hypothesized that during this time of change burial in this cave aided in development of identity and ownership of the local territory.


Correlation does not mean causation: the damage of the ‘Yamnaya ancestral component’, and the ‘Future American’ hypothesis

New Ukraine Eneolithic sample from late Sredni Stog, near homeland of the Corded Ware culture

The concept of “outlier” in studies of Human Ancestry, and the Corded Ware outlier from Esperstedt

Marija Gimbutas and the expansion of the “Kurgan people” based on tumulus-building cultures