“Dinaric I2a” and the expansion of Common Slavs from East-Central Europe

late-iron-age-eastern-europe

A recently published abstract for an upcoming chapter about Early Slavs shows the generalized view among modern researchers that Common Slavs did not spread explosively from the east, an idea proper of 19th-century Romantic views about ancestral tribes of pure peoples showing continuity since time immemorial.

Migrations and language shifts as components of the Slavic spread, by Lindstedt and Salmela, In: Language contact and the early Slavs, Eds. Tomáš Klír, Vít Boček, Universitätsverlag Winter (2019):

The rapid spread of the Proto-Slavic language in the second half of the first millennium CE was long explained by the migration of its speakers out of their small primary habitat in all directions. Starting from the 1980s, alternative theories have been proposed that present language shift as the main scenario of the Slavic spread, emphasizing the presumed role of Slavic as the lingua franca of the Avar Khaganate. Both the migration and the language shift scenarios in their extreme forms suffer from factual and chronological inaccuracy. On the basis of some key facts about human population genetics (the relatively recent common ancestry of the East European populations), palaeoclimatology (the Late Antique Little Ice Age from 536 to around 660 CE), and historical epidemiology (the Justinianic Plague), we propose a scenario that includes a primary rapid demographic spread of the Slavs followed by population mixing and language shifts to and from Slavic in different regions of Europe. There was no single reason for the Slavic spread that would apply to all of the area that became Slavic-speaking. The northern West Slavic area, the East Slavic area, and the Avar sphere and South-Eastern Europe exhibit different kinds of spread: mainly migration to a sparsely populated area in the northwest, migration and language shift in the east, and a more complicated scenario in the southeast. The remarkable homogeneity of Slavic up to the jer shift was not attributable to a lingua-franca function in a great area, as is often surmised. It was a founder effect: Proto-Slavic was originally a small Baltic dialect with little internal variation, and it took time for the individual Slavic languages to develop in different directions.

While I would need to read the whole chapter, in principle it seems easier to agree with this summary than with Curta’s (sort of diffuse) Danubian origin of Common Slavic, based on the likely origin of the Balto-Slavic expansion with the Trzciniec and/or Lusatian culture, close to the Baltic.

A multi-ethnic Chernyakhov culture

In a sneak peek to the expected Järve et al. (2019) paper in review, there are three Chernyakhov samples (ca. calAD 350-550) with different ancestry probably corresponding to the different regions where they stem from (see image below), which supports the idea that Iron Age eastern Europe was a true melting pot where the eventual language of the different cultures depended on many different factors:

chernyakhov-samples-region
Map of the samples from Järve et al. (2019).

From the paper:

The Chernyakhiv culture was likely an ethnically heterogeneous mix based on Goths (Germanic tribes) but also including Sarmatians, Alans, Slavs, late Scythians and Dacians – the entire ancient population of the northern coast of the Black Sea.

Contacts with neighbouring regions were active, and the Chernyakhiv culture is associated with a number of historical events that took place in Europe at that time. In particular, during the Scythian or Gothic wars of the 230s and 270s, barbarians living in the territory of the Chernyakhiv culture (Goths, Ferules, Carps, Bastarns, etc.) carried out regular raids across the Danube Limes of the Roman Empire. However, from the end of the 3rd century the relations of the barbarians with the Roman Empire gained a certain stability. From the reign of Constantine I the Goths, who were part of the Chernyakhiv culture, became federates (military allies) of the Empire.

The Goths also interacted with the inhabitants of the East European forest zone. The Roman historian Jordanes described the military campaigns of the Gothic king Ermanaric against northern peoples (the ancestors of Vends, Slavs, etc., and the inhabitants of the northern Volga region).

NOTE. As it has become traditional in writings about eastern Europe, ‘Slavs’ are assumed – for no particular reason – to be part of the ‘northern peoples of the forest’ since who knows when exactly, and thus appear mentioned in this very text simultaneously as part of Chernyakhov, but also part of peoples to the north of Chernyakhov warring against them…

admixture-chernyakhov
Proportions of Eastern Hunter-Gatherer (EHG, blue), Natufian (red) and Altaian (green) ancestries in Scythian/Sarmatian groups and groups pre- and postdating them inferred using the a) qpAdm and b) ChromoPainter/NNLS method. c–e Correlation of qpAdm and CP/NNLS proportions for the three putative sources evaluated. Steppe populations predating the Scythians: Yamnaya_Ukraine [26], Yamnaya_Kalmykia [15], Ukr_BA (this study). Scythians and Sarmatians: Nomad_IA [15], Scythian_East and Sarmatian_SU [3], Hungarian Scythian, Sarmatian, Central Saka, Tian Shan Saka and Tagar [1], Scy_Ukr, ScySar_SU and Scy_Kaz (this study). Population postdating the Scythians: Chern (this study). See also Table S3.

Genetic variation

(…) the Chernyakhiv samples overlapped with modern Europeans, representing the most ‘western’ range of variation among the groups of this study.

After the end of the Scythian period in the western Eurasian Steppe, the Chernyakhiv culture samples have higher Near Eastern affinity compared to the Scythians preceding them, agreeing with the Gothic component in the multi-ethnic mix of the Chernyakhiv culture.

The higher proportion Near Eastern and (according to CP/NNLS) lower proportion of eastern ancestry in the Chernyakhiv culture samples were mirrored by f4 analyses where Chern showed lower affinity to Han (Z score –3.097) and EHG (Z score –3.643) than Ukrainian Scythian and Bronze Age samples, respectively, as well as higher Near Eastern (Levant_N and Anatolia_N) affinity than Ukrainian Scythians (Z scores 4.696 and 3.933, respectively). It is plausible to assume that this excess Near Eastern ancestry in Chern is related to European populations whose Near Eastern proportion has exceeded that in the steppe populations since the Neolithic expansion of early farmers. While the Chernyakhiv culture was likely ethnically heterogeneous, the three samples in our Chern group appear to represent its Gothic component.

chernyakhov-goths-uralic-clines
PCA obtained by projecting the ancient samples of this study together with published Scythian/Sarmatian and related samples onto a plot based on 537,802 autosomal SNPs in 1,422 modern Eurasians. To improve readability, the modern populations have been plotted as population medians (after outlier removal). Image modified from the paper, including Sredni Stog, Corded Ware/Uralic (with Srubna outliers) and Chernyakhov clusters.Notice the two new Late Yamna and Catacomb samples from Ukraine clustering with other published samples, despite being from the same region as Sredni Stog individuals.

Early Slavs of hg. I2-L621

A post in Anthrogenica shows some subclades of the varied haplogroups that are expected from medieval Poland:

KO_55, Kowalewko (100-300 AD), I1a3a1a1-Y6626
KO_45, Kowalewko (100-300 AD), I2a2a1b2a-L801
KO_22, Kowalewko (100-300 AD), G2a2b-L30
KO_57, Kowalewko (100-300 AD), G2a2b-L30

ME_7, Markowice (1000-1200 AD), I1a2a2a5-Y5384
NA_13, Niemcza, (900-1000 AD), I2a1b2-L621
NA_18, Niemcza, (900-1000 AD), J2a1a-L26

Just because of these samples among Early Slavs, and looking again more carefully at the modern distribution of I2a-L621 subclades, I think now I was wrong in assuming that I2a-L621 in early Hungarian Conquerors would mean they would appear around the Urals as a lineage integrated in Eastern Corded Ware groups. It seems rather a haplogroup with an origin in Central Europe. Whether it was part of a Baltic community that expanded south, or was incorporated during the expansions to the south is unclear. Like hg. E-V13, it doesn’t seem to have been incorporated precisely along the Danube, but closer to the north-east Carpathians.

Especially interesting is the finding of I2a-L621 among Early Slavs from Silesia, a zone of close interaction among early West Slavs. From Curta (2019):

On Common Slavs

In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland.

On Great Moravia

Svatopluk’s remarkably strong position was immediately recognized by Pope John VIII, who ordered the immediate release of Methodius from his monastic prison in order to place him in 873 under Svatopluk’s protection. One year later (874), Louis the German himself was forced to recognize Svatopluk’s independence through the peace of Forchheim. By that time, the power of Svatopluk had extended into the upper Vistula Basin, over Bohemia, the lands between the Saale and the Elbe rivers, as well as the northern and northeastern parts of the Carpathian Basin.* The Czech prince Bořivoj, a member of the Přemyslid family which would unify and rule Bohemia in the following century, is believed to have been baptized in 874 by Methodius in Moravia together with his wife Ludmila (St. Wenceslas’s grandmother).

*Brather, Archäologie, p. 71. The expansion into the region of the Upper Vistula (Little Poland) results from one of St. Methodius’ prophecies, for which see the Life of Methodius 11, p. 72; Poleski, “Contacts between the Great Moravian empire and the tribes”; Poleski, “Contacts between the tribes in the basins.” Despite an early recognition of the Moravian influences on the material culture in 9th-century southern Poland and Silesia (e.g., Dostál, “Das Vordringen”), the question of Svatopluk’s expansion has triggered in the 1990s a fierce debate among Polish archaeologists. See Wachowski, “Problem”; Abłamowicz, “Górny Śląsk”; Wachowski, “Północny zasięg ekspansji”; Szydłowski, “Czy ślad”; Jaworski, “Elemente.”

On Piast Poland

Mieszko agreed to marry Oda, the daughter of the margrave of the North March, for his first wife had died in 977. The marriage signaled a change in the relations with the Empire, for Mieszko sent troops to help Otto II against the Slavic rebels of 983. He also attacked Bohemia and incorporated Silesia and Lesser Poland into the Piast realm, which prompted Bohemians to ally themselves with the Slavic rebels against whom Emperor Otto was now fighting. By 980, therefore, Mieszko was part of a broader configuration of power, and his political stature was recognized in Scandinavia as well. His daughter, Swietoslawa married first Erik Segersäll of Sweden (ca. 970–ca. 995) and then Sweyn Forkbeard of Denmark (986–1014).26 In the early 990s, together with his wife and children, Mieszko offered his state (called “civitas Schinesghe,” the state of Gniezno) to the pope as a fief, as attested by a unique document known as Dagome iudex and preserved in a late 11th-century summary. The document describes the inner boundaries of the state and peripheral provinces, as if Gniezno were a civitas (city) in Italy, with its surrounding territory. Regional centers, however, did indeed come into being shortly before AD 1000 in Lesser Poland (Cracow, Sandomierz), Pomerania (Gdańsk), and Silesia (Wrocław). Such regional centers came to be distinguished from other strongholds by virtue of the presence within their walls of some of the earliest churches built in stone. Mieszko got his own, probably missionary bishop.

In light of this recent find, which complements the Early Slav of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, we can assume now less speculatively that I2a-CTS10228 most likely expanded with Common Slavs, because alternative explanations for its emergence in the Carpathian Basin, among Early West Slavs, and among Early East Slavs within this short period of time requires too many unacceptable assumptions.

dinaric-i2a-distribution
Modern distribution of “Dinaric” I2a. Modified from Balanovsky et al. (2008)

Hungarian Conquerors

Knowing that R1a-Z280 was an Eastern Corded Ware lineage, found from Baltic Finns to Finno-Ugric populations of the Trans-Urals, we can probably assign expanding Magyars to at least R1a-Z280, R1a-Z93, and N1c-L392 (xB197) lineages.

From Curta (2019):

Earlier Latin sources, especially those of the first half of the 10th century, refer to Magyars as Huns or Avars. They most likely called themselves Magyars, a word indicating that the language they spoke was not Turkic, but Finno-Ugrian, related to a number of languages spoken in Western Siberia and the southern Ural region. The modern word—Hungarian—derives from the Slavic word for those people, U(n)gri, which is another indication of Ugric roots. This has encouraged the search for the origin of the Hungarian people in the lands to the east from the Ural Mountains, in western Siberia, where the Hungarian language is believed to have emerged between 1000 and 500 BC.

In looking for the Magyar primordial homeland, they draw comparisons with the assemblages found in Hungary that have been dated to the 10th century and attributed to the Magyars. Some of those comparisons had extraordinary results. For example, the excavation of the burial mound cemetery recently discovered near Lake Uelgi, in the Cheliabinsk region of Russia, has produced rosette-shaped harness mounts and silver objects ornamented with palmette and floral designs arranged in reticulated patterns, which are very similar to those of Hungary. But Uelgi is not dated to prehistory, and many finds from that site coincided in time with those found in burial assemblages in Hungary. In other words, although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).14 However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

Adding J2a and I1a samples to the Early Slavic stock, based on medieval samples from Poland – with G2a and E-V13 lineages probably shared with Goths from Wielbark/Chernyakhov, or becoming acculturated in the Carpathian Basin – one is left to wonder which of these lineages actually took part in Common Slavic migrations/acculturation events, whenever and wherever those actually happened.

I have tentatively re-assigned lineages of Hungarian conquerors according to their likely origins in a simplistic way – similar to how the paper classifies them – , now (I think) less speculatively, assuming that Early Slavs likely formed eventually part of them:

hungarian-conquerors-y-dna-slavs
Image modified from the paper, with drawn red square around lineages of likely East Slavic origin, and blue squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples, of likely Ugric origin Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

NOTE. The ancestral origin of lineages is meaningless for an ethnolinguistic identification. The only reasonable assumption is that all the individuals sampled formed part of the Magyar polity, shared Magyar culture, and likely spoke Hungarian, unless there is a clear reason to deny this: which I guess should include at least a clearly ‘foreign’ ancestry (showing a distant cluster compared to the group formed by all other samples), ‘foreign’ isotopic data (showing that he was born and/or raised outside of the Carpathian Basin), and particularly ‘foreign’ cultural assemblage of the burial, if one really wants to risk assuming that the individual didn’t speak Hungarian as his mother tongue.

“Dinaric” or Slavic I2a?

I don’t like the use of “Dinaric I2a”, because it is reminiscent of the use of “Iberian R1b-DF27”, or “Germanic R1b-U106”, when ancient DNA has shown that this terminology is most often wrong, and turns out to be misleading. As misleading as “Slavic R1a”. Recently, a Spanish reader wrote me emails wondering how could I possibly say that R1b-DF27 came from Central Europe, because modern distribution maps (see below) made it evident that the haplogroup expanded from Iberia…

DF27-iberia-france-m167
Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

The obvious answer is, these maps show modern distributions, not ancient ones. In the case of R1b-DF27, different Iberian lineages are not even related to the same expansion. At least R1b-M167/SRY2627 lineages seem to have expanded from Central Europe into Iberia much more recently than other DF27 subclades associated with Bell Beakers. What’s more, if R1b-M167/SRY2627 appear densest in north-east Spain it is not because of the impact of Celts or Iberians before the arrival of Romans, but because of the impact of medieval expansions during the Reconquista from northern kingdoms expanding south in the Middle Ages:

iberian-medieval-kingdoms-expansion-population-genomics
Genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. Image modified from Bycroft et al. (2018).

Similarly, the term “Dinaric I2a”, based on the higher density in the Western Balkans, is misleading because it is probably the result of later bottlenecks. Just like the density of different R1a subclades among Modern Slavs is most likely the result of acculturation of different groups, especially to the east and north-east, where language shift is known to have happened in historical times, with the cradle of Russians in particular being a Finno-Volgaic hotspot, later expanding with hg. R1a-Z280 and N1c-L392 lineages.

Now, one may think that maybe Slavs expanded with ALL of these different lineages. Since we are talking about late Iron Age / medieval expansions, there might be confederations of different peoples expanding with a single lingua franca… But no, not really. Not likely in linguistics, not likely in archaeology, and apparently not in population genomics, either.

How many ancient peoples from the Iron Age and Early Middle Ages expanded with so many different lineages? We see bottlenecks in expansions even in recent times: say, in Visigoths under E-V13 (probably recently incorporated during their migrations); in Moors (mostly Berbers) with E-M81 and J; in medieval Iberians under different DF27 bottlenecks during the Reconquista (including huge bottlenecks among Basques); similarly, huge bottlenecks are found in Finnic expansions under N1c…How likely is it that Proto-Slavs (and Common Slavs) expanded with all those attested lineages to date among Early Slavs (E-V13, I2a-L621, R1a-M458, I1, J2a) AND also with other R1a subclades prevalent today, but almost absent in sampled Early Slavs?

To sum up, I am not so sure anymore about the possibility of simplistically assigning R1a-M458 to expanding Common Slavs. R1a-M458 may well have been the prevalent R1a subclade in Central Europe among early Balto-Slavic – and possibly also neighbouring Northern Indo-European-speaking – peoples (let’s see what subclades Tollense and Unetice samples bring), but it is more and more likely that most of the density we see in modern R1a-M458 distribution maps is actually the effect of medieval bottlenecks of West Slavs, similar to the case of Iberia.

r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

Related

Baltic Finns in the Bronze Age, of hg. R1a-Z283 and Corded Ware ancestry

estonian-bronze-age-dna

Open access The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East, by Saag et al. Current Biology (2019).

Interesting excerpts:

In this study, we present new genomic data from Estonian Late Bronze Age stone-cist graves (1200–400 BC) (EstBA) and Pre-Roman Iron Age tarand cemeteries (800/500 BC–50 AD) (EstIA). The cultural background of stone-cist graves indicates strong connections both to the west and the east [20, 21]. The Iron Age (IA) tarands have been proposed to mirror “houses of the dead” found among Uralic peoples of the Volga-Kama region [22].

(…) The 33 individuals included 15 from EstBA, 6 from EstIA, 5 from Pre-Roman to Roman Iron Age Ingria (500 BC–450 AD) (IngIA), and 7 from Middle Age Estonia (1200–1600 AD) (EstMA) and yielded endogenous DNA ∼4%–88%, average genomic coverages ∼0.017–0.734×, and contamination estimates <4% (Table S1). We analyzed the data in the context of modern and other ancient individuals, including from Neolithic Estonia [13].

estonian-y-dna-bronze-iron-age
Archaeological Information, Genetic Sex, mtDNA and Y Chromosome Haplogroups, and Average Coverage of the Individuals of This Study. Modified from the paper to mark distinct Y-DNA haplogroups in the LBA and IA.

We identified chrY hgs for 30 male individuals (Tables 1 and S2; STAR Methods). All 16 successfully haplogrouped EstBA males belonged to hg R1a, showing no change from the CWC period, when this was also the only chrY lineage detected in the Eastern Baltic [11, 13, 30, 31]. Three EstIA and two IngIA individuals also belonged to hg R1a, but three EstIA males belonged to hg N3a, the earliest so far observed in the Eastern Baltic. Three EstMA individuals belonged to hg N3a, two to hg R1a, and one to hg J2b. ChrY lineages found in the Baltic Sea region before the CWC belong to hgs I, R1b, R1a5, and Q [10, 11, 12, 13, 17, 32]. Thus, it appears that these lineages were substantially replaced in the Eastern Baltic by hg R1a [10, 11, 12, 13], most likely through steppe migrations from the east [30, 31]. (…) Our results enable us to conclude that, although the expansion time for R1a1 and N3a3′5 in Eastern Europe is similar [25], hg N3a likely reached Estonia or at least became comparably frequent to modern Estonia [1] only during the BA-IA transition.

A clear shift toward West Eurasian hunter-gatherers is visible between European LN and BA (including Baltic CWC) and EstBA individuals, the latter clustering together with Latvian and Lithuanian BA individuals [11]. EstIA, IngIA, and EstMA individuals project between BA individuals and modern Estonians, partially overlapping with both.

(…) EstBA individuals are clearly distinguishable from Estonian CWC individuals as the former have more of the blue component most frequent in WHGs and less of the brown and yellow components maximized in Caucasus hunter-gatherers and modern Khanty, respectively. The individuals of EstBA, EstIA, IngIA, EstMA, and modern Estonia are quite similar to each other on average, indicating that the relatively high proportion of WHG ancestry in modern Eastern Baltic populations compared to other present-day Europeans [15] traces back to the BA.

estonian-pca-published
Detail of the PCA, modified from the paper to label populations. Estonian Bronze Age and Iron Age samples cluster close to Early Corded Ware from the Baltic.. Principal-component analysis results of modern West Eurasians with ancient individuals projected onto the first two components (PC1 and PC2). BA, Bronze Age; EF, early farmers; HG, hunter-gatherers; IA, Iron Age; IMA, Iron/Middle Ages; LN, Late Neolithic; LNBA, Late Neolithic/Bronze Age; MA, Middle Ages

When comparing Estonian CWC and EstBA using autosomal outgroup f3 and Patterson’s D statistics (Table S3), the latter is more similar to other Baltic BA populations, to Baltic IA and Middle Age (MA) populations, and also to populations similar to WHGs and Scandinavian hunter-gatherers (SHGs), but not to Estonian CCC (Figures 2A and S2A; Data S1). The increase in WHG or SHG ancestry could be connected to western influences seen in material culture [20, 21] and facilitated by a decline in local population after the CCC-CWC period [20]. A slight trend of bigger similarity of Estonian CWC to forest or steppe zone populations and of EstBA to European early farmer populations can also be seen.

(…) When comparing to modern populations, Estonian CWC is slightly more similar to Caucasus individuals but EstBA to Baltic populations and Finnic speakers (Figure 2B; Data S1). Outgroup f3 and D statistics do not reveal apparent differences when comparing EstBA to EstIA, EstIA to IngIA, and EstIA to EstMA (Data S1).

estonian-ba-ia-ancestry
qpAdm results. Error bars indicate one SE. Central MN, Central European Middle Neolithic; EstBA, Estonian Bronze Age; EstIA, Estonian Iron Age; IngIA, Ingrian Iron Age; EstMA, Estonian Middle Ages; WHG, western hunter-gatherers.

These results highlight how uniparental and autosomal data can lead to different demographic inferences—the genetic change between CWC and BA not seen in uniparental lineages is clear in autosomal data and the appearance of chrY hg N in the IA is not matched by a clear shift in autosomal profiles.

EstBA individuals have no Nganasan-related ancestry and EstIA, IngIA, and EstMA individuals on average have 2% or 4% (Figure 3; Data S1). The differentiation remains when using BA or IA Fennoscandian populations [26] instead of Nganasans (Data S1). Notably, the proportion of Nganasan-related ancestry varies between 0% and 12% among sampled EstIA, IngIA, and EstMA individuals (Data S1), which may suggest its relatively recent admixture into the target population. Moreover, two individuals from Kunda (0LS10 and V10) have the highest proportions of Nganasan ancestry among EstIA (6% and 8%), one of them has chrY hg N3a, and isotopic analysis suggests neither individual being born in Kunda [34].

About these two males from Tarand-graves, ‘foreign’ to Kunda:

0LS10: Male from tarand III (burial 9; TÜ 1325: L777), age 17–25 years [34]. He had a fragment of a sheep/goat bone and ceramics as grave goods. This burial has two radiocarbon dates: 2430 ± 35 BP (Poz-10801; 760–400 cal BC) and 2530 ± 41 BP (UBA-26114; 800–530 cal BC) [34]. According to the isotopic analysis, the person was not born in the vicinity of Kunda; his place of birth is still unknown (but south-western Finland and Sweden are excluded) [34]. Sampled tooth r P1.

V10: Male from tarand XI (burial 24; TÜ 1325: L1925), age 25–35 years [34], date 2484 ± 40 BP (UBA-26115; 790–430 cal BC) [34]. He had a few potsherds near the skull. Likewise, this person was not locally born [34]. Sampled tooth l P1.

estonia-bronze-iron-age-steppe-siberian
Autosomal Analyses’ Results for Gyvakarai1 as the closest available Corded Ware source for Balto-Finnic populations.

The paper shows thus:

  • Major continuity of ancestry from Corded Ware to modern Estonians, with only slight changes in different periods. In fact, one of the best fits for the Late Bronze Age ancestry is Gyvakarai1, one of the Corded Ware “outliers” described as “closer to Yamna”, which I already said may be closer to Sredni Stog/EHG populations instead. Another interesting take is that the change from Bronze Age to Iron Age corresponds to an increase in Baltic Corded Ware-related ancestry, rather than being driven by Siberian ancestry.
  • pca-mittnik-gyvakarai
    File modified by me from Mittnik et al. (2018) to include the approximate position of the most common ancestral components, and an identification of potential outliers. Zoomed-in version of the European Late Neolithic and Bronze Age samples. “Principal components analysis of 1012 present-day West Eurasians (grey points, modern Baltic populations in dark grey) with 294 projected published ancient and 38 ancient North European samples introduced in this study (marked with a red outline). From Mittnik et al. (2018).
  • A Volosovo-related migration of hg. N1c with Netted Ware into the area seems to be discarded, based on the full replacement of paternal lines and continuity of R1a-Z283. It is only during the Tarand-grave period when a system of chiefdoms (spread from Ananyino/Akozino) brings haplogroup N1c to the Gulf of Finland. During the Iron Age, the proportion of paternal lineages is still clearly in favour of R1a (50% in the coast, 100% in Ostrobothnia), which indicates a gradual replacement led by elites, likely because of the incorporation of Akozino warrior-traders spreading all over the Baltic, bringing the described shared Mordvinic traits in Fennic.
  • finno-ugric-haplogroup-n
    Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).
  • The arrival of Akozino warrior-traders (bringing N1c and R1a lineages) was probably linked to this minimal “Nganasan-like” ancestry of some samples in the transition to the Iron Age. This arrival is supported by samples 0LS10 (the earliest hg. N1c) and V10 (of hg. R1a), both dated to ca. 800-400 BC, with V10 showing the highest “Nganasan-like” ancestry with 4.8%, both of them neighbouring samples showing 0%. This variable admixture among local and foreign paternal lineages might support the described social system of family alliances with intermarriages. In fact, a medieval sample, 0LS03_1 (hg. R1a) also shows a recent “Nganasan-like” ancestry, which probably points to the integration of different Arctic-related ancestry components among Modern Estonians, in this case related to Finnish expansions and thus integration of Levänluhta-related ancestry, as per the supplementary data.
  • NOTE. Such minimal proportions of “Nganasan-like” ancestry evidence the process of admixture of Volga Finns in Akozino territory through their close interactions with Permians of Ananyino, who in turn acquired this Palaeo-Arctic admixture most likely during the expansion of the linguistic community to hunter-gatherer territories, to the north of the Cis-Urals. This process of stepped infiltration and expansion without language change is not dissimilar to the one seen among Indo-Iranians and Balto-Slavs of hg. R1b, or Vasconic speakers of hg. I2a, although in the case of Baltic Finns of hg. R1a the process of infiltration and expansion of hg. N1c is much less dramatic, with no radical replacement anywhere before the huge bottlenecks observable in Finns.

  • The expansion of haplogroup N1c among Finnic populations, as we are going to see in samples from the Middle Ages such as Luistari, is the consequence of late founder effects after huge bottlenecks expected based on the analysis of modern populations. The expansion of N1c-VL29 is different in origin from that of N1c-Z1936 among Samic (later integrated into Finnish populations), most likely from the east and originally associated with Lovozero Ware.
haplogroup_n3a3
Frequency-Distribution Maps of Individual Subclade N3a3 / N1a1a1a1a1a-CTS2929/VL29, probably initially with Akozino warrior-traders. Map from Ilumäe et al. (2016).

In spite of all this, the conclusion of the paper is (surprise!) that Siberian ancestry and hg. N heralded the arrival of Finnic to the Gulf of Finland in the Iron Age… However, this conclusion is supposedly* supported, not by their previous papers, but by a recent phylogenetic study by Honkola et al. (2013), which doesn’t actually argue for such a late ‘arrival’: it argues for the split of Balto-Finnic around 1500 BC.

NOTE. I say ‘supposedly’ because Kristiina Tambets, for example, has been following the link of Uralic with haplogroup N since the 2000s, so this is not some conclusion they just happened to misread from some random paper they Googled. In those initial assessments, she argued that the “ancient homeland” of the Tat C mutation suggested that Finno-Ugrians were in Fennoscandia before Indo-Europeans. Apparently, since haplogroup N appears later and from the east, it is now more important to follow this haplogroup than what is established in archaeology and linguistics.

Even in the referred paper, this split is considered an in situ development, since the phylogenetic study takes the information – among others – 1) from Parpola and Carpelan, who consider Netted Ware, a culture derived from Fatyanovo/Abashevo and Volosovo, as the culprit of the Finno-Ugric expansion; and 2) from Kallio (2006), who clearly states that Proto-Balto-Finnic (like Proto-Finno-Samic) was spoken around the Gulf of Finland during the Bronze Age. Both of them set the terminus ante quem of the language presence in the Baltic ca. 1900 BC.

Anyways, as a consequence of geneticists keeping these untenable pre-ancient DNA haplogroup-based arguments today, I expect to see this “Finnic” language expansion also described for the Western Baltic, Scandinavia or northern Europe, when this same proportion of hg. N1c and “Nganasan” ancestry is observed in Iron Age samples around the Baltic Sea. The nativist trends that this domination of “Finns” all over Northern Europe 2,500 years ago will create will be even more fun to read than the current ones…

EDIT (10 May 2019) How I see the reaction of many to ancient DNA, in keeping their old theories:

Related

Złota a GAC-CWC transitional group…but not the origin of Corded Ware peoples

koszyce-gac-zlota-cwc

Open access Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave, by Schroeder et al. PNAS (2019).

Interesting excerpts of the paper and supplementary materials, about the Złota group variant of Globular Amphora (emphasis mine):

A special case is the so-called Złota group, which emerged around 2,900 BCE in the northern part of the Małopolska Upland and existed until 2,600-2,500 BCE. Originally defined as a separate archaeological “culture” (15), this group is mainly defined by the rather local introduction of a distinct form of burial in the area mentioned. Distinct Złota settlements have not yet been identified. Nonetheless, because of the character of its burial practices and material culture, which both retain many elements of the GAC and yet point forward to the Corded Ware tradition, and because of its geographical location, the Złota group has attracted significant archaeological attention (15, 16).

The Złota group buried their dead in a new, distinct type of funerary structure; so-called niche graves (also called catacomb graves). These structures featured an entrance shaft or pit and, below that, a more or less extensive niche, sometimes connected to the entrance area by a narrow corridor. Local limestone was used to seal off the entrance shaft and to pave the floor of the niche, on which the dead were usually placed along with grave goods. This specific and relatively sophisticated form of burial probably reflects contacts between the northern Małopolska Upland and the steppe and forest-steppe communities further to the east, who also buried their dead in a form of catacomb graves. Individual cases of the use of ochre and of deformation of skulls in Złota burials provide further indications of such a connection (15). At the same time, the Złota niche grave practice also retains central elements of the GAC funerary tradition, such as the frequent practice of multiple burials in one grave, often entailing redeposition and violation of the anatomical order of corpses, and thus differs from the catacomb grave customs found on the steppes which are strongly dominated by single graves. Nonetheless, at Złota group cemeteries single burial graves appear, and even in multiple burial graves the identity of each individual is increasingly emphasized, e.g. by careful deposition of the body and through the personal nature of grave goods (16).

globular-amphorae-corded-ware-zlota-amphorae
Correspondence analysis of amphorae from the Złota-graveyards reveals that there is no typological break between Globular Amphorae and Corded Ware Amphorae, including ‘Strichbündelamphorae’ (after Furholt 2008)

Just like its burial practices, the material culture and grave goods of the Złota group combine elements of the GAC, such as amber ornaments and central parts of the ceramic inventory, with elements also found in the Corded Ware tradition, such as copper ornaments, stone shaft-hole axes, bone and shell ornaments, and other stylistic features of the ceramic inventory. In particular, Złota group ceramic styles have been seen as a clear transitional phenomenon between classical GAC styles and the subsequent Corded Ware ceramics, probably playing a key role in the development of the typical cord decoration patterns that came to define the latter (17).

As briefly summarized above, the Złota group displays a distinct funerary tradition and combination of material culture traits, which give the clear impression of a cultural “transitional situation”. While the group also appears to have had long-distance contacts directed elsewhere (e.g. to Baden communities to the south), it is the combination of Globular Amphora traits, on the one hand, and traits found among late Yamnaya or Catacomb Grave groups to the east as well as the closely related Corded Ware groups that emerged around 2,800 BCE, on the other hand, that is such a striking feature of the Złota group and which makes it interesting when attempting to understand cultural and demographic dynamics in Central and Eastern Europe during the early 3rd millennium BCE.

catacomb-grave-ksiaznice
Catacomb grave no. 2a/06 from Książnice, Złota culture (acc. to Wilk 2013). Image from Włodarczak (2017)

Książnice (site 2, grave 3ZC), Świętokrzyskie province. This burial, a so-called niche grave of the Złota type (with a vertical entrance shaft and perpendicularly situated niche), was excavated in 2006 and contained the remains of 8 individuals, osteologically identified as three adult females and five children, positioned on limestone pavement in the niche part of the grave. Radiocarbon dating of the human remains indicates that the grave dates to 2900-2630 BCE, 95.4% probability (Dataset S1). The grave had an oval entrance shaft with a diameter of 60 cm and depth of 130 cm; the depth of the niche reached to 170 cm (both measured from the modern surface), and it also contained a few animal bones, a few flint artefacts and four ceramic vessels typical of the Złota group. Książnice is located in the western part of the Małopolska Upland, which only has a few Złota group sites but a stronger presence of other, contemporary groups (including variants of the Baden culture).

Wilczyce (site 90, grave 10), Świętokrzyskie province. A rescue excavation in 2001 uncovered a niche grave of the Złota type, which had a round entrance shaft measuring 90 cm in diameter. The grave was some 60-65 cm deep below the modern surface and the bottom of the niche was paved with thin limestone plates, on which remains of three individuals had been placed; two adults, one female and one male, and one child. Four ceramic vessels of Złota group type were deposited in the niche along with the bodies. Wilczyce is located in the Sandomierz Upland, an area with substantial presence of both the Globular Amphora culture and Złota group, as well as the Corded Ware culture from 2800 BCE.

zlota-gac-cwc
Genetic affinities of the Koszyce individuals and other GAC groups (here including Złota) analyzed in this study. (A) Principal component analysis of previously published and newly sequenced ancient individuals. Ancient genomes were projected onto modern reference populations, shown in gray. (B) Ancestry proportions based on supervised ADMIXTURE analysis (K = 3), specifying Western hunter-gatherers, Anatolian Neolithic farmers, and early Bronze Age steppe populations as ancestral source populations. LP, Late Paleolithic; M, Mesolithic; EN, Early Neolithic; MN, Middle Neolithic; LN, Late Neolithic; EBA, Early Bronze Age; PWC, Pitted Ware culture; TRB, Trichterbecherkultur/Funnelbeaker culture; LBK, Linearbandkeramik/Linear Pottery culture; GAC, Globular Amphora culture; Złota, Złota culture. Image modified to outline in red GAC and Złota groups.

To further investigate the ancestry of the Globular Amphora individuals, we performed a supervised ADMIXTURE (6) analysis, specifying typical western European hunter-gatherers (Loschbour), early Neolithic Anatolian farmers (Barcın), and early Bronze Age steppe populations (Yamnaya) as ancestral source populations (Fig. 2B). The results indicate that the Globular Amphora/Złota group individuals harbor ca. 30% western hunter-gatherer and 70% Neolithic farmer ancestry, but lack steppe ancestry. To formally test different admixture models and estimate mixture proportions, we then used qpAdm (7) and find that the Polish Globular Amphora/Złota group individuals can be modeled as a mix of western European hunter-gatherer (17%) and Anatolian Neolithic farmer (83%) ancestry (SI Appendix, Table S2), mirroring the results of previous studies.

zlota-steppe-ancestry-cwc
Table S2. qpADM results. The ancestry of most Globular Amphora/Złota group individuals
can be modelled as a two-way mixture of Mesolithic western hunter-gatherers (WHG), and early Anatolian Neolithic farmers (Barcın). The five individuals from Książnice (Złota group) show evidence for additional gene flow, most likely from an eastern source.

The lack of a direct genetic connection of Corded Ware peoples with the Złota group despite their common “steppe-like traits” – shared with Yamna – reveals, once more, how the few “Yamna-like” traits of Corded Ware do not support a direct connection with Indo-Europeans, and are the result of the expansion of the so-called steppe package all over Europe, and particularly among cultures closely related to the Khvalynsk expansion, and later under the influence of expanding Yamna peoples.

The results from Książnice may support that early Corded Ware peoples were in close contact with GAC peoples in Lesser Poland during the complex period of GAC-Trypillia-CWC interactions, and especially close to the Złota group at the beginning of the 3rd millennium BC. Nevertheless, patrilineal clans of Złota apparently correspond to Globular Amphorae populations, with the only male sample available yet being within haplogroup I2a-L801, prevalent in GAC.

NOTE. The ADMIXTURE of Złota samples in common with GAC samples (and in contrast with the shared Sredni Stog – Corded Ware “steppe ancestry”) makes the possibility of R1a-M417 popping up in the Złota group from now on highly unlikely. If it happened, that would complicate further the available picture of unusually diverse patrilineal clans found among Uralic speakers expanding with early Corded Ware groups, in contrast with the strict patrilineal and patrilocal culture of Indo-Europeans as found in Repin, Yamna and Bell Beakers.

Once again the traditional links between groups hypothesized by archaeologists – like Gimbutas and Kristiansen in this case – are wrong, as is the still fashionable trend in descriptive archaeology, of supporting 1) wide cultural relationships in spite of clear-cut inter-cultural differences (and intra-cultural uniformity kept over long distances by genetically-related groups), 2) peaceful interactions among groups based on few common traits, and 3) regional population continuities despite cultural change. These generalized ideas made some propose a steppe language shared between Pontic-Caspian groups, most of which have been proven to be radically different in culture and genetics.

gimbutas-kurgan-indo-european
The background shading indicates the tree migratory waves proposed by Marija Gimbutas, and personally checked by her in 1995. Image from Tassi et al. (2017).

Furthermore, paternal lines show once again marked bottlenecks in expanding Neolithic cultures, supporting their relevance to follow the ethnolinguistic identity of different cultural groups. The steppe- or EHG-related ancestry (if it is in fact from early Corded Ware peoples) in Książnice was thus probably, as in the case of Trypillia, in the form of exogamy with females of neighbouring groups:

The presence of unrelated females and related males in the grave is interesting because it suggests that the community at Koszyce was organized along patrilineal lines of descent, adding to the mounting evidence that this was the dominant form of social organization among Late Neolithic communities in Central Europe. Usually, patrilineal forms of social organization go hand in hand with female exogamy (i.e., the practice of women marrying outside their social group). Indeed, several studies (11, 12) have shown that patrilocal residence patterns and female exogamy prevailed in several parts of Central Europe during the Late Neolithic. (…) the high diversity of mtDNA lineages, combined with the presence of only a single Y chromosome lineage, is certainly consistent with a patrilocal residence system.

funnelbeaker-trypillia-corded-ware
Map of territorial ranges of Funnel Beaker Culture (and its settlement concentrations in Lesser Poland), local Tripolyan groups and Corded Ware Culture settlements (■) at the turn of the 4th/3rd millennia BC.

Since ancient and modern Uralians show predominantly Corded Ware ancestry, and Proto-Uralic must have been in close contact with Proto-Indo-European for a very long time – given the different layers of influence that can be distinguished between them -, it follows as logical consequence that the North Pontic forest-steppes (immediately to the west of the PIE homeland in the Don-Volga-Ural steppes) is the most likely candidate for the expansion of Proto-Uralic, accompanying the spread of Sredni Stog ancestry and a bottleneck under R1a-M417 lineages.

The early TMRCAs in the 4th millennium BC for R1a-M417 and R1a-Z645 support this interpretation, like the R1a-M417 sample found in Sredni Stog. On the other hand, the resurgence of typical GAC-like ancestry in late Corded Ware groups, with GAC lineages showing late TMRCAs in the 3rd millennium BC, proves the disintegration of Corded Ware all over Europe (except in Textile Ceramics- and Abashevo-related groups) as the culture lost its cohesion and different local patrilineal clans used the opportunity to seize power – similar to how eventually I2a-L621 infiltrated eastern (Finno-Ugrian) groups.

Related

Uralic speakers formed clines of Corded Ware ancestry with WHG:ANE populations

steppe-forest-tundra-biomes-uralic

The preprint by Jeong et al. (2018) has been published: The genetic history of admixture across inner Eurasia Nature Ecol. Evol. (2019).

Interesting excerpts, referring mainly to Uralic peoples (emphasis mine):

A model-based clustering analysis using ADMIXTURE shows a similar pattern (Fig. 2b and Supplementary Fig. 3). Overall, the proportions of ancestry components associated with Eastern or Western Eurasians are well correlated with longitude in inner Eurasians (Fig. 3). Notable outliers include known historical migrants such as Kalmyks, Nogais and Dungans. The Uralic- and Yeniseian-speaking populations, as well as Russians from multiple locations, derive most of their Eastern Eurasian ancestry from a component most enriched in Nganasans, while Turkic/Mongolic speakers have this component together with another component most enriched in populations from the Russian Far East, such as Ulchi and Nivkh (Supplementary Fig. 3). Turkic/Mongolic speakers comprising the bottom-most cline have a distinct Western Eurasian ancestry profile: they have a high proportion of a component most enriched in Mesolithic Caucasus hunter-gatherers and Neolithic Iranians and frequently harbour another component enriched in present-day South Asians (Supplementary Fig. 4). Based on the PCA and ADMIXTURE results, we heuristically assigned inner Eurasians to three clines: the ‘forest-tundra’ cline includes Russians and all Uralic and Yeniseian speakers; the ‘steppe-forest’ cline includes Turkic- and Mongolic-speaking populations from the Volga and Altai–Sayan regions and Southern Siberia; and the ‘southern steppe’ cline includes the rest of the populations.

eurasian-clines-uralic-altaic
The first two PCs summarizing the genetic structure within 2,077 Eurasian individuals. The two PCs generally mirror geography. PC1 separates western and eastern Eurasian populations, with many inner Eurasians in the middle. PC2 separates eastern Eurasians along the northsouth cline and also separates Europeans from West Asians. Ancient individuals (color-filled shapes), including two Botai individuals, are projected onto PCs calculated from present-day individuals.

For the forest-tundra populations, the Nganasan + Srubnaya model is adequate only for the two Volga region populations, Udmurts and Besermyans (Fig. 5 and Supplementary Table 8).

For the other populations west of the Urals, six from the northeastern corner of Europe are modelled with additional Mesolithic Western European hunter-gatherer (WHG) contribution (8.2–11.4%; Supplementary Table 8), while the rest need both WHG and early Neolithic European farmers (LBK_EN; Supplementary Table 2). Nganasan-related ancestry substantially contributes to their gene pools and cannot be removed from the model without a significant decrease in the model fit (4.1–29.0% contribution; χ2 P ≤ 1.68 × 10−5; Supplementary Table 8).

west-urals-finno-ugrians-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the 13 populations west of the Urals, we present a four-way admixture model, Nganasan+Srubnaya+WHG+LBK_EN, or its minimal adequate subset. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

NOTE. It doesn’t seem like Hungarians can be easily modelled with Nganasan ancestry, though…

For the 4 populations east of the Urals (Enets, Selkups, Kets and Mansi), for which the above models are not adequate, Nganasan + Srubnaya + AG3 provides a good fit (χ2 P ≥ 0.018; Fig. 5 and Supplementary Table 8). Using early Bronze Age populations from the Baikal Lake region (‘Baikal_EBA’; Supplementary Table 2) as a reference instead of Nganasan, the two-way model of Baikal_EBA + Srubnaya provides a reasonable fit (χ2 P ≥ 0.016; Supplementary Table 8) and the three-way model of Baikal_EBA + Srubnaya + AG3 is adequate but with negative AG3 contribution for Enets and Mansi (χ2 P ≥ 0.460; Supplementary Table 8).

east-urals-ugric-samoyedic-qpadm
Supplementary Table 8. QpAdm-based admixture modeling of the forest-tundra cline populations. For the four populations east of the Urals, we present three admixture models: Baikal_EBA+Srubnaya, Baikal_EBA+Srubnaya+AG3 and Nganasan+Srubnaya+AG3. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Bronze/Iron Age populations from Southern Siberia also show a similar ancestry composition with high ANE affinity (Supplementary Table 9). The additional ANE contribution beyond the Nganasan + Srubnaya model suggests a legacy from ANE-ancestry-rich clines before the Late Bronze Age.

bronze-age-iron-age-karasuk-mezhovska-tagar-qpadm
Supplementary Table 9. QpAdm-based admixture modeling of Bronze and Iron Age populations of southern Siberia. For ancieint individuals associated with Karasuk and Tagar cultures, Nganasan+Srubnaya model is insufficient. For all five groups, adding AG3 as the third ancestry or substituting Nganasan with Baikal_EBA with higher ANE affinity provides an adequate model. For each model, we present qpAdm p-value, admixture coefficient estimates and associated 5 cM jackknife standard errors (estimate ± SE). Models with p-value ≥ 0.05 are highlighted in bold face. Modified from the article, to include colors for cultures, and underlined best models for Corded Ware ancestry among Uralians.

Lara M. Cassidy comments the results of the study in A steppe in the right direction (you can read it here):

Even among the earliest available inner Eurasian genomes, east–west connectivity is evident. These, too, form a longitudinal cline, characterized by the easterly increase of a distinct ancestry, labelled Ancient North Eurasian (ANE), lowest in western European hunter-gatherers (WHG) and highest in Palaeolithic Siberians from the Baikal region. Flow-through from this ANE cline is seen in steppe populations until at least the Bronze Age, including the world’s earliest known horse herders — the Botai. However, this is eroded over time by migration from west and east, following agricultural adoption on the continental peripheries (Fig. 1b,c).

Strikingly, Jeong et al. model the modern upper steppe cline as a simple two-way mixture between western Late Bronze Age herders and Northeast Asians (Fig. 1c), with no detectable residue from the older ANE cline. They propose modern steppe peoples were established mainly through migrations post-dating the Bronze Age, a sequence for which has been recently outlined using ancient genomes. In contrast, they confirm a substantial ANE legacy in modern Siberians of the northernmost cline, a pattern mirrored in excesses of WHG ancestry west of the Urals (Fig. 1b). This marks the inhospitable biome as a reservoir for older lineages, an indication that longstanding barriers to latitudinal movement may indeed be at work, reducing the penetrance of gene flows further south along the steppe.

eurasian-clines-uralic-turkic-mongol-altaic
The genomic formation of inner Eurasians. b–d, Depiction of the three main clines of ancestry identified among Inner Eurasians. Sources of admixture for each cline are represented using proxy ancient populations, both sampled and hypothesised, based on the study’s modelling results. The major eastern and western ancestries used to model each cline are shown in bold; the peripheral admixtures that gave rise to these are also shown. Additional contributions to subsections of each cline are marked with dashed lines. b, The northernmost cline, illustrating the legacy of WHG and ANE-related populations. c,d, The upper (c) and lower (d) steppe clines are shown, both of which have substantial eastern contributions related to modern Tungusic speakers. The authors propose these populations are themselves the result of an admixture between groups related to the Nganasan, whose ancestors potentially occupied a wider range, and hunter-gatherers (HGs) from the Amur River Basin. While the upper steppe cline in c can be described as a mixture between this eastern ancestry and western steppe herders, the current model for the southern steppe cline as shown in d is not adequate and is likely confounded by interactions with diverse bordering ancestries. Credit: Ecoregions 2017, Resolve https://ecoregions2017.appspot.com/

Given the findings as reported in the paper, I think it should be much easier to describe different subclines in the “northernmost cline” than in the much more recent “Turkic/Mongolic cline”, which is nevertheless subdivided in this paper in two clines. As an example, there are at least two obvious clines with “Nganasan-related meta-populations” among Uralians, which converge in a common Steppe MLBA (i.e. Corded Ware) ancestry – one with Palaeo-Laplandic peoples, and another one with different Palaeo-Siberian populations:

siberian-clines-uralic-altaic
PCA of ancient and modern Eurasian samples. Ancient Palaeo-Laplandic, Palaeosiberian, and Altai clines drawn, with modern populations labelled. See a version with higher resolution.

The inclusion of certain Eurasian groups (or lack thereof) in the PCA doesn’t help to distinguish these subclines visually, and I guess the tiny “Naganasan-related” ancestral components found in some western populations (e.g. the famous ~5% among Estonians) probably don’t lend themselves easily to further subdivisions. Notice, nevertheless, the different components of the Eastern Eurasian source populations among Finno-Ugrians:

uralic-admixture-qpadm
Characterization of the Western and Eastern Eurasian source ancestries in inner Eurasian populations. [Modified from the paper, includes only Uralic populations]. a, Admixture f3 values are compared for different Eastern Eurasian (Mixe, Nganasan and Ulchi; green) and Western Eurasian references (Srubnaya and Chalcolithic Iranians (Iran_ChL); red). For each target group, darker shades mark more negative f3 values. b, Weights of donor populations in two sources characterizing the main admixture signal (date 1 and PC1) in the GLOBETROTTER analysis. We merged 167 donor populations into 12 groups (top right). Target populations were split into five groups (from top to bottom): Aleuts; the forest-tundra cline populations; the steppe-forest cline populations; the southern steppe cline populations; and ‘others’.

Also remarkable is the lack of comparison of Uralic populations with other neighbouring ones, since the described Uralic-like ancestry of Russians was already known, and is most likely due to the recent acculturation of Uralic-speaking peoples in the cradle of Russians, right before their eastward expansions.

west-eurasian-east-eurasian-ancestry
Supplementary Fig. 4. ADMIXTURE results qualitatively support PCA-based grouping of inner Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”). Eurasians into three clines. (A) Most southern steppe cline populations derive a higher proportion of their total Western Eurasian ancestry from a source related to Caucasus, Iran and South Asian populations. (B) Turkic- and Mongolic-speaking populations tend to derive their Eastern Eurasian ancestry more from the Devil’s Gate related one than from Nganasan-related one, while the opposite is true for Uralic- and Yeiseian-speakers. To estimate overall western Eurasian ancestry proportion, we sum up four components in our ADMIXTURE results (K=14), which are the dominant components in Neolithic Anatolians (“Anatolia_N”), Mesolithic western European hunter-gatherers (“WHG”), early Holocene Caucasus hunter-gatherers (“CHG”) and Mala from southern India, respectively. The “West / South Asian ancestry” is a fraction of it, calculated by summing up the last two components. To estimate overall Eastern Eurasian ancestry proportion, we sum up six components, most prevalent in Surui, Chipewyan, Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”).

A comparison of Estonians and Finns with Balts, Scandinavians, and Eastern Europeans would have been more informative for the division of the different so-called “Nganasan-like meta-populations”, and to ascertain which one of these ancestral peoples along the ancient WHG:ANE cline could actually be connected (if at all) to the Cis-Urals.

Because, after all, based on linguistics and archaeology, geneticists are not supposed to be looking for populations from the North Asian Arctic region, for “Siberian ancestry”, or for haplogroup N1c – despite previous works by their peers – , but for the Bronze Age Volga-Kama region…

Related

Common Slavs from the Lower Danube, expanding with haplogroup E1b-V13?

late-iron-age-eastern-europe

Florin Curta has published online his draft for Eastern Europe in the Middle Ages (500-1300), Brill’s Companions to European History, Vol. 10 (2019), apparently due to appear in June.

Some interesting excerpts, relevant for the latest papers (emphasis mine):

The Archaeology of the Early Slavs

(…) One of the most egregious problems with the current model of the Slavic migration is that it is not at all clear where it started. There is in fact no agreement as to the exact location of the primitive homeland of the Slavs, if there ever was one. The idea of tracing the origin of the Slavs to the Zarubyntsi culture dated between the 3rd century BC and the first century AD is that a gap of about 200 years separates it from the Kiev culture (dated between the 3rd and the 4th century AD), which is also attributed to the Slavs. Furthermore, another century separates the Kiev culture from the earliest assemblages attributed to the Prague culture. It remains unclear as to where the (prehistoric) Slavs went after the first century, and whence they could return, two centuries later, to the same region from which their ancestors had left. The obvious cultural discontinuity in the region of the presumed homeland raises serious doubts about any attempts to write the history of the Slavic migration on such a basis. There is simply no evidence of the material remains of the Zarubyntsi, Kiev, or even Prague culture in the southern and southwestern direction of the presumed migration of the Slavs towards the Danube frontier of the Roman Empire.

Moreover, the material culture revealed by excavations of 6th- to 7th-century settlements and, occasionally, cremation cemeteries in northwestern Russia, Belarus, Poland, Moravia, and Bohemia is radically different from that in the lands north of the Danube river, which according to the early Byzantine sources were inhabited at that time by Sclavenes: no settlement layout with a central, open area; no wheel-made pottery or pottery thrown on a tournette; no clay rolls inside clay ovens; few, if any clay pans; no early Byzantine coins, buckles, or remains of amphorae; no fibulae with bent stem, and few, if any bow fibulae. Conversely, those regions have produced elements of material culture that have no parallels in the lands north of the river Danube: oval, trough-like settlement features (which are believed to be remains of above-ground, log-houses); exclusively handmade pottery of specific forms; very large settlements, with over 300 houses; fortified sites that functioned as religious or communal centers; and burials under barrows. With no written sources to inform about the names and identities of the populations living in the 6th and 7th centuries in East Central and Eastern Europe, those contrasting material culture profiles could hardly be interpreted as ethnic commonality. In other words, there is no serious basis for attributing to the Sclavenes (or, at least, to those whom early Byzantine authors called so) any of the many sites excavated in Russia, Belarus, Poland, Moravia, and Bohemia.

slavic-expansion-prague-korchak
Common Slavic expanding with Prague-Korchak from the east…or was it from the west?

Migrations

There is of course evidence of migrations in the 6th and 7th centuries, but not in the directions assumed by historians. For example, there are clear signs of settlement discontinuity in northern Germany and in northwestern Poland. German archaeologists believe that the bearers of the Prague culture who reached northern Germany came from the south (from Bohemia and Moravia), and not from the east (from neighboring Poland or the lands farther to the east). At any rate, no archaeological assemblage attributed to the Slavs either in northern Germany or in northern Poland may be dated earlier than ca. 700. In Poland, settlement discontinuity was postulated, to make room for the new, Prague culture introduced gradually from the southeast (from neighboring Ukraine). However, there is increasing evidence of 6th-century settlements in Lower Silesia (western Poland and the lands along the Middle Oder) that have nothing to do with the Prague culture. Nor is it clear how and when did the Prague culture spread over the entire territory of Poland. No site of any of the three archaeological cultures in Eastern Europe that have been attributed to the Slavs (Kolochin, Pen’kivka, and Prague/Korchak) has so far been dated earlier than the sites in the Lower Danube region where the 6th century sources located the Sclavenes. Neither the Kolochin, nor the Pen’kivka cultures expanded westwards into East Central or Southeastern Europe; on the contrary, they were themselves superseded in the late 7th or 8th century by other archaeological cultures originating in eastern Ukraine. Meanwhile, there is an increasing body of archaeological evidence pointing to very strong cultural influences from the Lower and Middle Danube to the Middle Dnieper region during the 7th century—the opposite of the alleged direction of Slavic migration.

When did the Slavs appear in those regions of East Central and Eastern Europe where they are mentioned in later sources? A resistant stereotype of the current scholarship on the early Slavs is that “Slavs are Slavonic-speakers; Slavonic-speakers are Slavs.”* If so, when did people in East Central and Eastern Europe become “Slavonic speakers”? There is in fact no evidence that the Sclavenes mentioned by the 6th-century authors spoke Slavic (or what linguists now call Common Slavic). Nor can the moment be established (with any precision), at which Slavic was adopted or introduced in any given region of East Central and Eastern Europe.** To explain the spread of Slavic across those regions, some have recently proposed the model of a koiné, others that of a lingua franca. The latter was most likely used within the Avar polity during the last century of its existence (ca. 700 to ca. 800).

*Ziółkowski, “When did the Slavs originate?” p. 211. On the basis of the meaning of the Old Church Slavonic word ięzyk (“language,” but also “people” or “nation”), Darden, “Who were the Sclaveni?” p. 138 argues that the meaning of the name the Slavs gave to themselves was closely associated with the language they spoke.

**Uncertainty in this respect dominates even in recent studies of contacts between Slavic and Romance languages (particularly Romanian), even though such contacts are presumed to have been established quite early (Paliga, “When could be dated ‘the earliest Slavic borrowings’?”; Boček, Studie). Recent studies of the linguistic interactions between speakers of Germanic and speakers of Slavic languages suggest that the adoption of place names of Slavic origin was directly linked to the social context of language contact between the 9th and the 13th centuries (Klír, “Sociální kontext”).

Avars

During the 6th century, the area between the Danube and the Tisza in what is today Hungary, was only sparsely inhabited, and probably a “no man’s land” between the Lombard and Gepid territories. It is only after ca. 600 that this area was densely inhabited, as indicated by a number of new cemeteries that came into being along the Tisza and north of present-day Kecskemét. There can therefore be no doubt about the migration of the Avars into the Carpathian Basin, even though it was probably not a single event and did not involve only one group of population, or even a cohesive ethnic group.

The number of graves with weapons and of burials with horses is particularly large in cemeteries excavated in southwestern Slovakia and in neighboring, eastern Austria. This was a region of special status on the border of the qaganate, perhaps a “militarized frontier.” From that region, the Avar mores and fashions spread farther to the west and to the north, into those areas of East Central Europe in which, for reasons that are still not clear, Avar symbols of social rank were particularly popular, as demonstrated by numerous finds of belt fittings. Emulating the success of the Avar elites sometimes involved borrowing other elements of social representation, such as the preferential deposition of weapons and ornamented belts. For example, in the early 8th century, a few males were buried in Carinthia (southern Austria) with richly decorated belts imitating those in fashion in the land of the Avars, but also with Frankish weapons and spurs. Much like in the Avar-age cemeteries in Slovakia and Hungary, the graves of those socially prominent men are often surrounded by many burials without any grave goods whatsoever.

early-avar-khaganate
Territory of the early Avar Qaganate and the location of the investigated sites in the Carpathian Basin in Csáky et al. (2019).

Carantanians

Carantania was a northern neighbor of the Lombard duchy of Friuli, which was inhabited by Slavs. According to Paul the Deacon, who was writing in the late 780s, those Slavs called their country Carantanum, by means of a corruption of the name of ancient Carnuntum (a former Roman legionary camp on the Danube, between Vienna and Bratislava). Carantanians were regarded as Slavs by the author of a report known as the Conversion of the Bavarians and Carantanians, and written in ca. 870 in order to defend the position of the archbishop of Salzburg against the claims of Methodius, the bishop of Pannonia.94 According to this text, a duke named Boruth was ruling over Carantania when he was attacked by Avars in ca. 740. He called for the military assistance of his Bavarian neighbors. The Bavarian duke Odilo (737–748) obliged, defeated the Avars, but in the process also subdued the Carantanians to his authority. Once Bavarian overlordship was established in Carantania, Odilo took with him as hostages Boruth’s son Cacatius and his nephew Chietmar (Hotimir). Both were baptized in Bavaria. During the 743 war between Odilo and Charles Martel’s two sons, Carloman and Pepin (the Mayors of the Palace in Austrasia and Neustria, respectively), Carantanian troops fought on the Bavarian side. The Bavarian domination cleared the field for missions of conversion to Christianity sent by Virgil, the new bishop of Salzburg (746–784). Many missionaries were of Bavarian origin, but some were Irish monks.

Moravians

Several Late Avar cemeteries dated to the last quarter of the 8th century are known from the lands north of the middle course of the river Danube, in what is today southern Slovakia and the valley of the Lower Morava [see image below]. By contrast, only two cemeteries have so far been found in Moravia (the eastern part of the present-day Czech Republic), along the middle and upper course of the Morava and along its tributary, the Dyje. In both Dolní Dunajovice and Hevlín, the latest graves may be dated by means of strap ends and belt mounts with human figures to the very end of the Late Avar period. (…)

The archaeological evidence pertaining to burial assemblages dated to the early 9th century is completely different. Shortly before or after 800, all traces of cremation—with or without barrows—disappear from the valley of the Morava river and southwestern Slovakia, two regions in which cremation had been the preferred burial rite during the previous centuries. This dramatic cultural change has often been interpreted as a direct influence of both Avar and Frankish burial rites, but it coincides in time with the adoption of Christianity by local elites. In spite of conversion, however, the representation of status through furnished burial continued well into the 9th century. Unlike Avar-age sites in Hungary and the surrounding regions, many men were buried in 9th-century Moravia together with their spurs, in addition to such weapons as battle axes, “winged” lance heads, or swords with high-quality steel blades of Frankish production.

morvaian-sites
Relevant Moravian sites mentioned in Curta’s new book.

When the Magyars inflicted a crushing defeat on the Bavarians at Bratislava (July 4, 907), the fate of Moravia was sealed as well. Moravia and the Moravians disappear from the radar of the written sources, and historians and archaeologists alike believe that the polity collapsed as a result of the Magyar raids.

Magyars

(…) although there can be no doubt about the relations between Uelgi and the sites in Hungary attributed to the first generations of Magyars, those relations indicate a migration directly from the Trans-Ural lands, and not gradually, with several other stops in the forest-steppe and steppe zones of Eastern Europe. In the lands west of the Ural Mountains, the Magyars are now associated with the Kushnarenkovo (6th to 8th century) and Karaiakupovo (8th to 10th century) cultures, and with such burial sites as Sterlitamak (near Ufa, Bashkortostan) and Bol’shie Tigany (near Chistopol, Tatarstan).* However, the same problem with chronology makes it difficult to draw the model of a migration from the lands along the Middle Volga. Many parallels for the so typically Magyar sabretache plates found in Hungary are from that region. They have traditionally been dated to the 9th century, but more recent studies point to the coincidence in time between specimens found in Eastern Europe and those from Hungary.

* Ivanov, Drevnie ugry-mad’iary; Ivanov and Ivanova, “Uralo-sibirskie istoki”; Boldog et al., “From the ancient homelands,” p. 3; Ivanov, “Similarities.” Ivanov, “Similarities,” p. 562 points out that the migration out of the lands along of the Middle Volga is implied by the disappearance of both cultures (Kushnarenkovo and Karaiakupovo) in the mid-9th century. For the Kushnarenkovo culture, see Kazakov, “Kushnarenkovskie pamiatniki.” For the Karaiakupovo culture, see Mogil’nikov, “K probleme.”

Given that the Magyars are first mentioned in relation to events taking place in the Lower Danube area in the 830s, the Magyar sojourn in Etelköz must have been no longer than 60 years or so—a generation. (…)

arrival-of-hungarians-feszty-slavs
A detail of the Arrival of the Hungarians, Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. This specific detail is probably based on the account on The Annals of Fulda, which narrates under the year 894 that the Hungarians crossed the Danube into Pannonia where they “killed men and old women outright and carried off the young women alone with them like cattle to satisfy their lusts and reduced the whole” province “to desert”.

It has become obvious by now that one’s impression of the Magyars as “Easterners” and “steppe-like” was (and still is) primarily based on grave finds, while the settlement material is considerably more aligned with what is otherwise known from other contemporary settlement sites in Central and Southeastern Europe. The dominant feature on the 10th- and 11th-century settlements in Hungary is the sunken-floored building of rectangular plan, with a stone oven in a corner. Similarly, the pottery resulting from the excavation of settlement sites is very similar to that known from many other such sites in Eastern Europe. Moreover, while clear changes taking place in burial customs between ca. 900 and ca. 1100 are visible in the archaeological record from cemeteries, there are no substantial differences between 10th- and the 11th-century settlements in Hungary. (…)

As a matter of fact, the increasing quantity of paleobotanical and zooarchaeological data from 10th-century settlements strongly suggests that the economy of the first generations of Magyars in Hungary was anything but nomadic. To call those Magyars “half-nomad” is not only wrong, but also misleading, as it implies that they were half-way toward civilization, with social changes taking place that must have had material culture correlates otherwise visible in the burial customs.

Comments

The origin of “Slavs” (i.e. that of “Slavonic” as a language, whatever the ancestral Proto-Slavic ethnic make-up was) is almost as complicated as the origin of Albanians, Basques, Balts, or Finns. Their entry into history is very recent, with few reliable sources available until well into the Middle Ages. If you add our ignorance of their origin with the desire of every single researcher or amateur out there to connect them to the own region (or, still worse, to all the regions where they were historically attested), we are bound to find contradictory data and a constantly biased selection of information.

Furthermore, it is extremely complicated to connect any recent population to its ancestral (linguistic) one through haplogroups prevalent today, and just absurd to connect them through ancestral components. This, which was already suspected for many populations, has been confirmed recently for Basques in Olalde et al. (2019) and will be confirmed soon for Finns with a study of the Proto-Fennic populations in the Gulf of Finland.

NOTE. Yes, the “my parents look like Corded Ware in this PCA” had no sense. Ever. Why adult people would constantly engage in that kind of false 5,000-year-old connections instead of learning history – or their own family history – escapes all comprehension. But if something is certain about human nature, is that we will still see nativism and ancestry/haplogroup fetishism for any modern region or modern haplogroups and their historically attested ethnolinguistic groups.

balto-slavic-pca
Genetic structure of modern Balto-Slavic populations within a European context according to the three genetic systems. Image from Kushniarevich et al. (2015)

As you can see from my maps and writings, I prefer neat and simple concepts: in linguistics, in archaeology, and in population movements. Hence my aversion to this kind of infinite proto-historical accounts (and interpretations of them) necessary to ascertain the origins of recent peoples (Slavs in this case), and my usual preference for:

  • Clear dialectal classifications, whether or not they can be as clear cut as I describe them. The only thing that sets Slavic apart from other recent languages is its connection with Baltic, luckily for both. Even though this connection is disputed by some linguists, and the question is always far from being resolved, a homeland of Proto-Balto-Slavic would almost necessarily need to be set to the north of the Carpathian Mountains in the Bronze Age (or at least close to them).
  • NOTE. A dismissal of a connection with Baltic would leave Slavic a still more complicated orphan, and its dialectal classification within Late PIE more dubious. Its union with Balto-Slavic locates it close to Germanic, and thus as a Bronze Age North-West Indo-European dialect close to northern Germany. So bear with me in accepting this connection, or enter the linguistic hell of arguing for Indo-Slavonic of R1a-Z93 mixed with Temematic….

  • A priori “pots = people” assumption, which may lead to important errors, but fewer than the usual “pots != people” of modern archaeologists. The traditional identification of the Common Slavic expansion with the Prague-Korchak culture – however undefined this culture may be – has clear advantages: it may be connected (although admittedly with many archaeological holes) with western cultures expanding east during the Bronze Age, and then west again after the Iron Age, and thus potentially also with Baltic.
  • A simplistic “haplogroup expansion = ethnolinguistic expansion”, which is quite useful for prehistoric migrations, but enters into evident contradictions as we approach the Iron Age. Common Slavs may be speculatively (for all we know) associated with an expansion of recent R1a-M458 lineages – among other haplogroups – from the east, and possibly Balto-Slavic as an earlier expansion of older subclades from the west, as I proposed in A Clash of Chiefs.
r1a-m458-underhill-2015
Modern distribution of R1a-M458, after Underhill et al. (2015).

NOTE. The connection of most R1a-Z280 lineages is more obviously done with ancient Finno-Ugric peoples, as it is clear now (see here and here).

Slavs appeared first in the Danube?

No matter what my personal preference is, one can’t ignore the growing evidence, and it seems that Florin Curta‘s long-lasting view of a Danubian origin of expansion for Common Slavic, including its condition as a lingua franca of late Avars, won’t be easy to reject any time soon:

1) Theories concerning Chernyakhov as a Slavic homeland will apparently need to be fully rejected, due to the Germanic-like ancestry that will be reported in the study by Järve et al. (2019).

EDIT (3 MAY 2019). From their poster Shift in the genetic landscape of the western Eurasian Steppe not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths) (download PDF):

(…) the transition from the Scythian to the Chernyakhov culture (~2,100–1,700 cal BP) does mark a shift in the Ponto-Caspian genetic landscape. Our results agree well with the Ostrogothic origins of the Chernyakhov culture and support the hypothesis that Scythian dominance was cultural rather than achieved through population replacement.

scythians-chernyakhov-ostrogoths-jarve
PCA of novel and published ancient samples from Scythian/Sarmatian and related groups on the background of modern samples presented as population medians. Δ – ref. 1, ○ – ref. 2, □ – ref. 3, ◊ – this study. Embedded are the locations of some of the samples. Notice the wide cluster formed by the three samples, from Hungarian Scythians in the west to steppe-like peoples in the east.

2) Therefore, unless Przeworsk shows the traditionally described mixture of populations in terms of ancestry and/or haplogroups, it will also be a sign of East Germanic peoples expanding south (and potentially displacing the ancestors of Slavs in either direction, east or south).

It would seem we are stuck in a Danubian vs. Kievan homeland for Common Slavs, then:

3) About the homeland in the Kiev culture, two early Avar females from Szólád have been commented to cluster “among Modern Slavic populations” based on some data in Amorim et al. (2018).

Rather than supporting an origin of Slavs in common with modern Russians, Poles, and Ukranians as observed in the PCA, though, the admixture of AV1 and AV2 (ca. AD 540-640) paradoxically supports an admixture of Modern Slavs of Eastern Europe in common with early Avar peoples (an Altaic-speaking population) and other steppe groups with an origin in East Asia… So this admixture would actually support a western origin of the Common Slavs with which East Asian Avars may have admixed, and whose descendants are necessarily sampled at later times.

pca-medieval-avar-longobards
Procrustes transformed PCA of medieval ancient samples against POPRES imputed SNP dataset. AV1 and Av2 samples have been circled in red. Color coding of medieval samples is same as in Figs 1 and 2. Two letter and three codes for POPRES samples: AL=Albania, AT=Austria, BA=Bosnia-Herzegovina, BE=Belgium, BG=Bulgaria, CH=Switzerland, CY=Cyprus, CZ=Czech Republic, DE=Germany, DK=Denmark, ES=Spain, FI=Finland, FR=France, GB=United Kingdom, GR, Greece, HR=Croatia, HU=Hungary, IE=Ireland, IT=Italy, KS=Kosovo, LV=Latvia, MK=Macedonia, NO=Norway, NL=Netherlands, PL=Poland, PT=Portugal, RO=Romania, SM=Serbia and Montenegro, RU=Russia, Sct=Scotland, SE=Sweden, SI=Slovenia, SK=Slovakia, TR=Turkey, UA=Ukraine.

4) Favouring Curta’s Danubian origin (or even an origin near Bohemia) at the moment are thus:

  • The “western” cluster of Early Slavs from Brandýsek, Bohemia (ca. AD 600-900).
  • Two likely Slavic individuals from Usedom, in Mecklenburg-Vorpommern (AD 1200) show hg. R1a-M458 and E1b-M215 (Freder 2010).
  • An early West Slav individual from Hrádek nad Nisou in Northern Bohemia (ca. AD 1330) also shows E1b-M215 (Vanek et al. 2015).
  • One sample from Székkutas-Kápolnadülő (SzK/239) among middle or late Avars (ca. AD 650-710), a supposed Slavonic-speaking polity, of hg. E1b-V13.
  • Two samples from Karosc (K1/13, and K2/6) among Hungarian conquerors (ca. AD 895-950), likely both of hg. E1b-V13, probably connected to the alliance with Moravian elites.
  • Possibly a West Slavic sample from Poland in the High Middle Ages (see below).

A later Hungarian sample (II/53) from the Royal Basilica, where King Béla was interred, of hg. E1b1, supports the importance of this haplogroup among elite conquerors, although its original relation to the other buried individuals is unknown.

NOTE. You can see all ancient samples of haplogroup E to date on this Map of ancient E samples, with care to identify the proper subclades related to south-eastern Europe. About the ancestral origin of the haplogroup in Europe, you may read Potential extra Iberomaurusian-related gene flow into European farmers, by Chad Rohlfsen.

Even assuming that the R1a sample reported from the late Avar period is of a subclade typically associated with Slavs (I know, circular reasoning here), which is not warranted, we would have already 6 E1b1b vs. 1-2 R1a-M458 in populations that can be actually assumed to represent early Slavonic speakers (unlike many earlier cultures potentially associated with them), clearly earlier than other Slavic-speaking populations that will be sampled in eastern Europe. It is more and more likely that Early Slavs are going to strengthen Curta’s view, and this may somehow complicate the link of Proto-Slavic with eastern European BA cultures like Trzciniec or Lusatian.

NOTE. I am still expecting a clear expansion associated with Prague-Korchak, though, including a connection with bottlenecks based on R1a-M458 in the Middle Ages, whether the expansion is eventually shown to be from the west (i.e. Bohemia -> Prague -> Korchak), or from the east (i.e. Kiev -> Korchack -> Prague), and whether or not this cultural community was later replaced by other ‘true’ Slavonic-speaking cultures through acculturation or population movements.

slavic-origins
Common theories on Slavic origins.. After “The Early Slavs. Culture and Society in Early Medieval Europe” by P. M. Barford, Cornell University Press (2001). Image by Hxseek at Wikipedia.

5) Back to Przeworsk and the “north of the Carpathians” homeland (i.e. between the Upper Oder and the Upper Dniester), but compatible with Curta’s view: Even if Common Slavic is eventually evidenced to be driven by small migrations north and south of the Danube during the Roman Iron Age, before turning into a mostly “R1a-rich” migration or acculturation to the north in Bohemia and then east (which is what this early E1b-V13 connection suggests), this does not dismiss the traditional idea that Late Bronze Age – Iron Age central-eastern Europe was the Proto-Slavic homeland, i.e. likely the Pomeranian culture disturbed by the East Germanic migrations first (in Przeworsk), and the migrations of steppe nomads later (around the Danube).

Even without taking into account the connection with Baltic, the relevance of haplogroup E1b-V13 among Early Slavs may well be a sign of an ancestral population from the northern or eastern Carpathian region, supported by the finding of this haplogroup among the westernmost Scythians. The expansion of some modern E1b-CTS1273 lineages may link Slavic ancestrally with the Lusatian culture, which is an eastern (very specific) Urnfield culture group, stemming from central-east Europe.

An important paper in this respect is the upcoming Zenczak et al., where another hg. E1b1 will be added to the list above: such a sample is expected from Poland (from Kowalewko, Maslomecz, Legowo or Niemcza), either from the Roman Iron Age or Early Middle Ages, close to an early population of likely Scandinavian origin (eight I1 samples), apart from other varied haplogroups, with little relevance of R1a. Whether this E-V13 sample is an Iron Age one (justifying the bottleneck under E-V13 to the south) or, maybe more likely, a late one from the Middle Ages (maybe supporting a connection of the Gothic/Slavic E1b bottleneck with southern Chernyakhov or further west along the Danube) is unclear.

The finding of south-eastern European ancestry and lineages in both, Early Slavs and East Germanic tribes* suggests therefore a Slavonic homeland near (or within) the Przeworsk culture, close to the Albanoid one, as proposed based on topohydronymy. This may point to a complex process of acculturation of different eastern European populations which formed alliances, as was common during the Iron Age and later periods, and which cannot be interpreted as a clear picture of their languages’ original homeland and ancestral peoples (in the case of East Germanic tribes, apparently originally expanding from Scandinavia under strong I1 bottlenecks).

* Iberian samples of the Visigothic period in Spain show up to 25% E1b-V13 samples, with a mixture of haplogroups including local and foreign lineages, as well as some more E1b-V13 samples later during the Muslim period. Out of the two E1b samples from Longobards in Amorim et al. (2018), only SZ18 from Szólád (ca. AD 412-604) is within E1b-V13, in a very specific early branch (SNP M35.2), further locating the expansion of hg. E1b-V13 near the Danube. Samples of haplogroup J (maybe J2a) or G2a among Germanic tribes (and possibly in Poland’s Roman Iron Age / Early Middle Ages) are impossible to compare with early Hungarian ones without precise subclades.

east-slavic-expansion
East Slavic expansion in topo-hydronymy. Image from (Udolph 1997, 2016).

I already interpreted the earlier Slavic samples we had as a sign of a Carpathian origin and very recent bottlenecks under R1a lineages among Modern Slavs:

The finding of haplogroup E1b1b-M215 in two independent early West Slavic individuals further supports that the current distribution of R1a1a1b1a-Z282 lineages in Slavic populations is the product of recent bottlenecks. The lack of a precise subclade within the E1b1b-M215 tree precludes a proper interpretation of a potential origin, but they are probably under European E1b1b1a1b1-L618 subclade E1b1b1a1b1a-V13 (formed ca. 6100 BC, TMRCA ca. 2800 BC), possibly under the mutation CTS1273 (formed ca. 2600 BC, TMRCA ca. 2000 BC), in common with other ancient populations around the Carpathians (see below §viii.11. Thracians and Albanians). This gross geographic origin would support the studies of the Common Slavic homeland based on toponymy (Figure 66), which place it roughly between the Upper Oder and the Upper Dniester, north of the Carpathians (Udolph 1997, 2016).

EDIT (8 APR 2019): Another interesting data is the haplogroup distribution among Modern Slavs and neighbouring peoples (see Wikipedia). For example, the bottleneck seen in Modern Albanians, under Z5017 subclade, also points to an origin of the expansion of E1b-V13 subclades among multiethnic groups around the Lower Danube coinciding with the Roman Iron Age, given the estimates for the arrival of Proto-Albanian close to the Latin and Greek linguistic frontier.

Remarkable is also its distribution among Rusyns, East Slavs from the Carpathians not associated with the Kievan Rus’, isolated thus quite soon from East Slavic expansions to the east. They were reported to show ca. 35% hg. E1b-V13 globally in FTDNA, with a frequency similar to or higher than R1a, in common with South Slavic peoples*, reflecting thus a situation similar to the source of East Slavs before further R1a-based bottlenecks (and/or acculturation events) to the east:

* Although probably due in part to founder effects and biased familial sampling, this should be assumed to be common to all FTDNA sampling, anyway.

rusyns-map
Map showing the full geographic extent of the Rusyn people in Central Europe, prior to World War I (Carpatho Rusyn Society).

Repeating what should be already evident: in complex organizations and/or demographically dense populations (more common since the Iron Age), we can’t expect language change to happen in the same way as during the known Neolithic or Chalcolithic population replacements, be it in Finland, Hungary, Iberia, or Poland. For example, no matter whether Romans (2nd c. BC) brought some R1b-U152 and other Mediterranean lineages to Iberia; Germanic peoples entering Hispania (AD 5th c.) were of typically Germanic lineages or not; Muslims who spoke mainly Berber (AD 8th c.) and were mainly of hg. E1b-M81 (and J?) brought North African ancestry; etc. the language or languages of Iberia changed (or not) with the political landscape: neither with radical population replacements (or full population continuity), nor with the dominant haplogroups’ ancestral language.

Y-chromosome haplogroups are, in those cases, useful for ascertaining a more recent origin of the population. Like the finding of certain R1a-Z645, I2a-L621 & N-L392 lineages among Hungarians shows a recent origin near the Trans-Urals forest-steppes, or the finding of I1, R1b-U106 & E1b-V13 among Visigoths shows a recent origin near the Danube, the finding of Early Slavs (ca. AD 6th-7th c.) originally with small elite groups of hg. R1a-M458 & E1b-V13 from the Lower/Middle Danube – if strengthened with more Early Slavic samples, with Slavonic partially expanding as a lingua franca in some regions – is not necessarily representative of the Proto-Slavic community, just as it is clearly not representative of the later expansion of Slavic dialects. It would be representative, though, of the same processes of acculturation repeated all over Eurasia at least since the Iron Age, where no genetic continuity can be found with ancestral languages.

Related

Magyar tribes brought R1a-Z645, I2a-L621, and N1a-L392(xB197) lineages to the Carpathian Basin

hungarian-conquerors-turks

The Nightmare Week of “N1c=Uralic” proponents continues, now with preprint Y-chromosome haplogroups from Hun, Avar and conquering Hungarian period nomadic people of the Carpathian Basin, by Neparaczki et al. bioRxiv (2019).

Abstract:

Hun, Avar and conquering Hungarian nomadic groups arrived into the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, from 49 individuals, supposed to represent military leaders. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly unmixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating pure European, Asian and admixed components. Their heterogeneous paternal and maternal lineages indicate similar phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources. Composition of conquering Hungarian paternal lineages is very similar to that of Baskhirs, supporting historical sources that report identity of the two groups.

Interesting excerpts (emphasis mine):

All N-Hg-s identified in the Avars and Conquerors belonged to N1a1a-M178. We have tested 7 subclades of M178; N1a1a2-B187, N1a1a1a2-B211, N1a1a1a1a3-B197, N1a1a1a1a4-M2118, N1a1a1a1a1a-VL29, N1a1a1a1a2-Z1936 and the N1a1a1a1a2a1c1-L1034 subbranch of Z1936. The European subclades VL29 and Z1936 could be excluded in most cases, while the rest of the subclades are prevalent in Siberia 23 from where this Hg dispersed in a counter-clockwise migratory route to Europe (…). All the 5 other Avar samples belonged to N1a1a1a1a3-B197, which is most prevalent in Chukchi, Buryats, Eskimos, Koryaks and appears among Tuvans and Mongols with lower frequency.

haplogroup-n-pca
First two components of PCA from Hg N1a subbranch distribution in 51 populations including Avars and Conquerors. Colors indicate geographic regions. Three letter codes are given in Supplementary Table S5.

By contrast two Conquerors belonged to N1a1a1a1a4-M2118, the Y lineage of nearly all Yakut males, being also frequent in Evenks, Evens and occurring with lower frequency among Khantys, Mansis and Kazakhs.

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936 , the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region.Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars.

The west Eurasian R1a1a1b1a2b-CTS1211 subclade of R1a is most frequent in Eastern Europe especially among Slavic people. This Hg was detected just in the Conqueror group (K2/18, K2/41 and K1/10). Though CTS1211 was not covered in K2/36 but it may also belong to this sub-branch of Z283.

Hg I2a1a2b-L621 was present in 5 Conqueror samples, and a 6th sample form Magyarhomorog (MH/9) most likely also belongs here, as MH/9 is a likely kin of MH/16 (see below). This Hg of European origin is most prominent in the Balkans and Eastern Europe, especially among Slavic speaking groups. It might have been a major lineage of the Cucuteni-Trypillian culture and it was present in the Baden culture of the Chalcolithic Carpathian Basin.

hungarian-conquerors-y-dna
Image modified from the paper, with drawn red square around lineages of likely Ugric origin, and squares around R1a-Z93, R1a-Z283, N1a-Z1936, and N1a-M2004 samples. Y-Hg-s determined from 46 males grouped according to sample age, cemetery and Hg. Hg designations are given according to ISOGG Tree 2019. Grey shading designate distinguished individuals with rich grave goods, color shadings denote geographic origin of Hg-s according to Fig. 1. For samples K3/1 and K3/3 the innermost Hg defining marker U106* was not covered, but had been determined previously.

We identified potential relatives within Conqueror cemeteries but not between them. The uniform paternal lineages of the small Karos3 (19 graves) and Magyarhomorog (17 graves) cemeteries approve patrilinear organization of these communities. The identical I2a1a2b Hg-s of Magyarhomorog individuals appears to be frequent among high-ranking Conquerors, as the most distinguished graves in the Karos2 and 3 cemeteries also belong to this lineage. The Karos2 and Karos3 leaders were brothers with identical mitogenomes 11 and Y-chromosomal STR profiles (Fóthi unpublished). The Sárrétudvari commoner cemetery seems distinct from the others, containing other sorts of European Hg-s. Available Y-chromosomal and mtDNA data from this cemetery suggest that common people of the 10th century rather represented resident population than newcomers. The great diversity of Y Hg-s, mtDNA Hg-s, phenotypes and predicted biogeographic classifications of the Conquerors indicate that they were relatively recently associated from very diverse populations.

Surprising about the Hungarian conquerors – although in line with the historical accounts – is the varied patrilineal origin of clans, including Q1a, G2a2b, I1, E1b1b, R1b, J1, or J2 – some of which (depending on specific lineages) may have appeared earlier in the Carpathian Basin or south-eastern Europe.

However, out of the 27 conqueror elite samples, 17 are of haplogroups most likely related to Ugric populations beyond the Urals: R1a-Z645, I2-L621, and two specific N1a-L392 lineages (see below). In fact, there are three high-ranking conqueror elites of hg. I2-L621 (one of them termed a “leader”, brother to an unpublished leader of Karos3, and all of them possibly family), one of hg. R1a-Z280, one of hg. R1a-Z93 (which should be added to the Árpáds), and one of hg. N1a-Z1936, which gives a good idea of the ruling class among the elite Ugric settlers.

NOTE. The Q1a sample is also likely to be found in the mixed population of the West Siberian forest-steppes, since it was found in Mesolithic-Neolithic samples from eastern Europe to Lake Baikal, and in Bronze Age Siberian groups, although admittedly it may have formed part of an Avar Transtisza group, or even earlier Hunnic or Scythian groups along the steppes. Without precise subclades it’s impossible to know.

arrival-of-hungarians-arpad
The seven chieftains of the Hungarians, detail of Arrival of the Hungarians, from Árpád Feszty’s and his assistants’ vast (1800 m2) cyclorama, painted to celebrate the 1000th anniversary of the Magyar conquest of Hungary, now displayed at the Ópusztaszer National Heritage Park in Hungary. Image from Wikipedia.

I2a-L621

I2a-L621 (xS17250) or I2a1b2 in the old nomenclature, is found in 6 early conquerors (including one leader), on a par with R1a and N samples. This haplogroup is found widely distributed in ancient samples, due to its early split (formed ca. 9200 BC, TMRCA ca. 4500 BC) and expansion, probably with Neolithic populations. I can’t seem to find samples of this early haplogroup from the Carpathian Basin, as mentioned in the text, although it wouldn’t be strange, because it appears also in Neolithic Iberia, and in modern populations from western Europe.

Nevertheless, I2a-L621 samples seem to be concentrated mainly in Mesolithic-Neolithic cultures of Fennoscandia, and appeared also in Sikora et al. (2017) in a sample of the High Middle Ages from Sunghir (ca. AD 1100-1200), probably from the Vladimir-Suzdalian Rus’, in a region where clearly tribes of Volga Finns were being assimilated at the time. The reported SNP call by Genetiker is A16681 (see Yfull), deep within I2a-CTS10228. It is possibly also behind a modern Saami from Chalmny Varre (ca. AD 1800) of hg. I2a in Lamnidis et al. (2018).

Lacking precise subclades from Hungarian conquerors this is pure speculation, but modern samples may also point to I2a-CTS10228 (formed ca. 3100 BC, TMRCA ca. 1800 BC) as a Finno-Ugric lineage in common with R1a, which must have expanded to the Urals and beyond with eastern Corded Ware groups or (more likely) succeeding cultures. This is in line with the association of certain I2a lineages with modern Uralic peoples or populations from their historical regions in eastern Europe, and linked thus to the most likely homeland of Uralians in the eastern European forests:

uralic-groups-haplogroup-r1a
Additional file 6: Table S5. Y chromosome haplogroup frequencies in Eurasia. Modified by me: in bold haplogroup N1c and R1a from Uralic-speaking populations, with those in red showing where R1a is the major haplogroup. Observe that all Uralic subgroups – Finno-Permic, Ugric, and Samoyedic – have some populations with a majority of R1a, and also of I lineages. Data from Tambets et al. (2018).

R1a-Z645

Regarding the important question of the ethnic makeup of Ugric populations stemming from the Urals, the most interesting (and expected) data is the presence of R1a-Z645 lineages among high-ranking conquerors, in particular four R1a-Z280 subclades proper of Finno-Ugrians.

This proves that, in line with the old split and expansion of R1a-CTS1211 (formed ca. 2600 BC, TMRCA ca. 2400 BC), and its finding in Bronze Age Fennoscandian samples, only some late R1a-Z280 (xZ92) lineages (see Z280 on YFull) may show a clear identification with early acculturated Uralic speakers, with the main early acculturated Balto-Slavic R1a haplogroup remaining R1a-M458.

I recently hypothesized this late connection of Slavs with very specific R1a-Z280 (xZ92) lineages based on analyses of modern populations (like Slovenians), because the connection of ancient Finno-Ugrians with modern Z92 samples was already evident:

(…) subclades of hg. R1a1a1b1a2-Z280 (xR1a1a1b1a2a-Z92) seem to have also been involved in early Slavic expansions, like R1a1a1b1a2b3a-CTS3402 (formed ca. 2200 BC, TMRCA ca. 2200 BC), found among modern West, South, and East Slavic populations and in Fennoscandia, prevalent e.g. among modern Slovenians which points to a northern origin of its expansion (Maisano Delser et al. 2018).

This finding also supports the expected shared R1a-Z280 lineages among ancient Finno-Ugric populations, as predicted from the study of modern Permic and Ugric peoples in Dudás et al. (2019).

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups. Notice the distribution of R1a-Z280 (xZ92), i.e. R1a-M558, compared to the ancient Finno-Ugric distribution.

Furthermore, while we don’t have precise R1a-Z93 lineages to compare with the new Hunnic sample reported, we already know that some archaic R1a-Z2124 subclades stem from the forest-steppe areas of the Cis- and Trans-Urals, and the two newly reported R1a-Z93 Hungarian conqueror elites, like those of the Árpád dynasty, probably belong to them.

There is an obvious lack of continuity in specific paternal lineages among the Hunnic, the Avar, and the Conqueror periods, which makes any simplistic identification of all R1a-Z93 lineages as stemming from Avars, Huns, or the Iron Age Pontic-Caspian steppes clearly flawed. Comparing R1a-Z93 in Hungarian Conquerors with Huns is like comparing them with samples of the Srubna or earlier periods… Similarly, comparing the Hunnic R1b-U106 or the early Avar I1 to later Hungarian samples is not warranted without precise subclades, because they most likely correspond to different Germanic populations: Goths among Huns, then Longobards, then likely peoples descended from Franks and Irish Monks (the latter with R1b-P312).

N1a-L392

Second behind R1a subclades are, as expected, N1a-L392 (N1c in the old nomenclature).

Avars are dominated by a specific N1a-L392 subclade, N1a-B197, as we recently discovered in Csáky et al. (2019).

Hungarian conquerors show three N1a-Z1936 subclades, which is known to stem from the northern Ural region, including the Arctic (likely Palaeo-Laplandic peoples) and cross-stamped cultures of the northern Eurasian forests.

haplogroup_n3a4
Frequency-Distribution Maps of Individual Subclade N3a4 / N1a1a1a1a2-Z1936, probably with the Samic (first) and Fennic (later) expansions into Paleo-Lakelandic and Palaeo-Laplandic territories.

On the other hand, the two N1a-M2118 lineages are more clearly associated with Palaeo-Siberian populations east of the Urals, but became incorporated into the Ugric stock in the Trans-Urals region probably in the same way as N1a-Z1936, by infiltration from (and acculturation of) hunter-gatherers of forest and taiga cultures.

NOTE. You can read more about the infiltration of N1a lineages in the recent post Corded Ware—Uralic (IV): Hg R1a and N in Finno-Ugric and Samoyedic expansions, and in the specific sections for each Uralic group in A Clash of Chiefs.

haplogroup-n1a-M2118
Frequency-Distribution Maps of Individual Sub-clades of hg N3a2, by Ilumäe et al. (2016).

Conclusion

The picture offered by the paper on Hungarian Conquerors, while in line with historical accounts of multi-ethnic tribes incorporating regional lineages, shows nevertheless patrilineal clans clearly associated with Uralic peoples, in a distribution which could have been easily inferred from ancient Trans-Uralian forest-steppe cultures and modern samples (even regarding I2a-L621).

In spite of this, there is a great deal of discussion in the paper about specific N1a subclades in Hungarian conquerors, while the presence of R1a-Z280 (among early Magyar elites!) is interpreted, as always, as recently acculturated Slavs. This is sadly coupled with the simplistic identification of I2a-L621 as of local origin around the Carpathians.

The introduction of the paper to the history of Hungarians is also weird, for example giving credibility to the mythic accounts of the Árpád dynasty’s origin in Attila, which is in line, I guess, with what the authors intended to support all along, i.e. the association of Magyars with Turks from the Eurasian steppes, which they are apparently willing to achieve by relating them to haplogroup R1a-Z93

The conclusion is thus written to appease modern nation-building myths more than anything else, like many other papers before it:

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis. At the same time none of the examined Conquerors belonged to the L1034 subclade of Z1936, while all of the Khanty Z1936 lineages reported in 37 proved to be L1034 which has not been tested in the 23 study. Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks”. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

So, back to square one, and new circular reasoning: If ancient populations from north-eastern Europe believed to represent ancient Finno-Ugrians are of R1a-Z645 lineages, it’s because they were not Finno-Ugric speakers. If ancient and modern populations known to be of Finno-Ugric language show clear connections with R1a-Z645, it’s because they are “multi-ethnic”.

The only stable basis for discussion in genetic papers, apparently, is the own making of geneticists, with their traditional 2000s “R1a=Indo-European” and “N1c=Uralic”, coupled with national beliefs. It does not matter how many predictions based on that have been proven wrong, or how many predictions based on the Corded Ware = Uralic expansion have been proven right.

Related

R1a-Z280 and R1a-Z93 shared by ancient Finno-Ugric populations; N1c-Tat expanded with Micro-Altaic

Two important papers have appeared regarding the supposed link of Uralians with haplogroup N.

Avars of haplogroup N1c-Tat

Preprint Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin, by Csáky et al. bioRxiv (2019).

Interesting excerpts (emphasis mine):

After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data.

Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest.

The Y-STR analyses of 17 males give evidence on a surprisingly homogeneous Y chromosomal composition. Y chromosomal STR profiles of 14 males could be assigned to haplogroup N-Tat (also N1a1-M46). N-Tat haplotype I was found in four males from Kunpeszér with identical alleles on at least nine loci. The full Y-STR haplotype I, reconstructed from AC17 with 17 detected STRs, is rare in our days. Only nine matches were found among haplotypes in YHRD database, such as samples from the Ural Region, Northern Europe (Estonia, Finland), and Western Alaska (Yupiks). We performed Median Joining (MJ) network analysis using N-Tat haplotypes with ten shared STR loci (Fig. 3, Table S9). All modern N-Tat samples included in the network had derived allele of L708 as well. Haplotype I (Cluster 1 in Fig. 3) is shared by eight populations on the MJ network among the 24 identical haplotypes. Cluster 1 represents the founding lineage, as it is described in Siberian populations, because this haplotype is shared by the most populations and it is more diverse than Cluster 2.

Nine males share N-Tat haplotype II (on a minimum of eight detected alleles), all of them buried in the Danube-Tisza Interfluve. We found 30 direct matches of this N-Tat haplotype II in the YHRD database, using the complete 17 STR Y-filer profile of AC1, AC12, AC14, AC15, AC19 samples. Most hits came from Mongolia (seven Buryats and one Khalkh) and from Russia (six Yakuts), but identical haplotypes also occur in China (five in Xinjiang and four in Inner Mongolia provinces). On the MJ network, this haplotype II is represented by Cluster 2 and is composed of 45 samples (including 32 Buryats) from six populations (Fig. 3).

y-str-haplogroup-n-mongolian-ugrians
Median Joining network of 162 N-Tat Y-STR haplotypes Allelic information of ten Y-STR loci were used for the network. Only those Avar samples were included, which had results for these ten Y-STR loci. The founder haplotype I (Cluster 1) is shared by eight populations including three Mongolian, three Székely, three northern Mansi, two southern Mansi, two Hungarian, eight Khanty, one Finn and two Avar (AC17, AC26) chromosomes. Haplotype II (Cluster 2) includes 45 haplotypes from six populations studied: 32 Buryats, two Mongolians, one Székely, one Uzbek, one Uzbek Madjar, two northern Mansi and six Avars (AC1, AC12, AC14, AC15, AC19 and KSZ 37). Haplotype III (indicated by a red arrow) is AC8. Information on the modern reference samples is seen in Table S9.

A third N-Tat lineage (type III) was represented only once in the Avar dataset (AC8), and has no direct modern parallels from the YHRD database. This haplotype on the MJ network (see red arrow in Fig. 3) seems to be a descendent from other haplotype cluster that is shared by three populations (two Buryat from Mongolia, three Khanty and one Northern Mansi samples). This haplotype cluster also differs one molecular step (locus DYS393) from haplotype II. We classified the Avar samples to downstream subgroup N-F4205 within the N-Tat haplogroup, based on the results of ours and Ilumäe et al.18 and constructed a second network (Fig. S4). The N-F4205 network results support the assumption that the N-Tat Avar samples belong to N-F4205 subgroup (see SI chapter 1d for more details).

Based on our calculation, the age of accumulated STR variance (TMRCA) within N-Tat lineage for all samples is 7.0 kya (95% CI: 4.9 – 9.2 kya), considering the core haplotype (Cluster 1) to be the founding lineage. Y haplogroup N-Tat was not detected by large scale Eurasian ancient DNA studies but it occurs in late Bronze Age Inner Mongolia and late medieval Yakuts, among them N-Tat has still the highest frequency.

Two males (AC4 and AC7) from the Transtisza group belong to two different haplotypes of Y-haplogroup Q1. Both Q1a-F1096 and Q1b-M346 haplotypes have neither direct nor one step neighbour matches in the worldwide YHRD database. A network of the Q1b-M346 haplotype shows that this male had a probable Altaian or South Siberian paternal genetic origin.

EDIT (5 APR 2019): The paper offers an interesting late sample before the arrival of Hungarian conquerors, although we don’t know which precise lineage the sample belongs to:

One sample in our dataset (HC9) comes from this population, and both his mtDNA (T1a1b) and Y chromosome (R1a) support Eastern European connections. (…) Furthermore, we excluded sample HC9 from population-genetic statistical analyses because it belongs to a later period (end of 7th – early 9th centuries)

Apparently, then, results are consistent with what was already known from studies of modern populations:

According to Ilumäe et al. study, the frequency peak of N-F4205 (N3a5-F4205) chromosomes is close to the Transbaikal region of Southern Siberia and Mongolia, and we conclude that most Avar N-Tat chromosomes probably originated from a common source population of people living in this area, completely in line with the results of Ilumäe et al.

haplogroup_n1
Geographic-Distribution Map of hg N3 from Ilumäe et al.

Finno-Ugrians share haplogroup R1a-Z280

Another paper, behind paywall, Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region, by Dudás et al. Molecular Genetics and Genomics (2019).

Interesting excerpts (emphasis mine):

Y‑chromosome diversity

The most frequent haplogroups of the Bashkirian Maris were N1b-P43 (42%), R1a-Z280 (16%), R1a-Z93 (16%), N1c-Tat (13%), and J2-M172 (7%). Furthermore, subgroup R1b-M343 accounted for 4% and I2a-P37 covered 2% of the lineages. None of the Mari N1c Y chromosomes belonged to the N1c subgroups investigated (L1034, VL29, Z1936).

In the case of the Southern Mansi males, the most frequent haplogroups were N1b-P43 (33%), N1c-L1034 (28%) and R1a-Z280 (19%). The frequencies of the remaining haplogroups were as follows: R1a-M458 (6%), I1-L22 (3%), I2a-P37 (3%), and R1b-P312 (3%). The haplotype and haplogroup diversities of the Bashkirian Mari group were 0.9929 and 0.7657, whereas these values for the Southern Mansi were 0.9984 and 0.7873, respectively. The results show that, in both populations, haplotypes are much more diverse than haplogroups.

bashkir-mari-southern-mansi
Haplogroup frequencies of the Bashkirian Mari and the Southern Mansi ethnic groups in Ural region

Genetic structure

(..) the studied Bashkirian Mari and Southern Mansi population groups formed a compact cluster along with two Khanty, Northern Mansi, Mari, and Estonian populations based on close Fst-genetic distances (< 0.05), with nonsignificant p values (p > 0.05) except for the Estonian population. All of these populations belong to the Finno-Ugric language family. Interestingly, the other Mansi population studied by Pimenoff et al. (2008) (pop # 38) was located a great distance from the Southern Mansi group (0.268). In addition, the Bashkir population (pop # 6) did not show a close genetic affinity to the Bashkirian Mari group (0.194), even though it is the host population. However, the Russian population from the Eastern European region of Russia (pop # 49) showed a genetic distance of 0.055 with the Southern Mansi group. All Hungarian speaking populations (pops 13, 22, 23, 24, 50, and 51) showed close genetic affinities to each other and to the neighbouring populations, but not to the two studied populations.

y-dna-hungarians-ugric-mansi
Multidimensional scaling (MDS) plot constructed on Fstgenetic distances of Y haplogroup frequencies of 63 populations compared. The haplogroup frequency data used for population comparison together with references are seen in Online Resource 2 (ESM_2). Pairwise Fst-genetic distances and p values between 63 populations were calculated as shown in Online Resource 3 (ESM_3) Fig. 4 Multidimensional scaling (MDS) plot constructed on Rstgenetic distances of 10 STR-based Y haplotype frequencies of 21 populations compared. Image modified to include labels of modern populations.

Phylogenetic analysis

Median-joining networks were constructed for:

N-P43 (earlier N1b):

(…) TMRCA estimates for this haplogroup were made for all P43 samples (n = 157) 8.7 kya (95% CI 6.7–10.8 kya), for the N-P43 Asian.

N1c-Tat:

(…) 75% of Buryats belonged to Haplotype 2, indicating that the Buryats studied by us is a young and isolated population (Bíró et al. 2015). Bashkirian Mari samples derive from Haplotype 2 via Haplotype 3 (see dark purple circles on the top of Fig. 6a). Haplotype 3 contained six males (2 Buryat, 1 Northern Mansi, and 3 Khanty samples from Pimenoff et al. 2008). The biggest Bashkirian Mari haplotype node (3 Mari samples) was positioned three mutational steps away from Haplotype 1 and the remaining Mari samples can be derived from this haplotype. Southern Mansi haplotypes were scattered within the network except for two, which formed a smaller haplotype node with two Northern Mansi and two Khanty samples from Pimenoff et al. (2008).

n1c-n-tat-uralic-ugric
Median-Joining Networks (MJ) of 153 N-Tat (a) and 26 N-L1034 (b) haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. For N-Tat network, we used data from Southern Mansi (n = 11), Bashkirian Mari (n = 6) samples with Hungarian (n = 12), Hungarian speaking Székely (n = 6), Northern Mansi (n = 14), Mongolian (n = 16), Buryat (n = 44), Finnish (n = 13), Uzbek Madjar (n = 2), Uzbek (n = 3), Khanty (n = 4) populations studied earlier by us (Fehér et al. 2015; Bíró et al. 2015) and Khanty (n = 18) and Mansi (n = 4) studied by Pimenoff et al. (2008)

R1a-Z280 haplotypes, shared by Maris, Mansis, and Hungarians, hence ancient Finno-Ugrians:

The founder R1a-Z280 haplotype was shared by four samples from four populations (1 Bashkirian Mari; 1 Southern Mansi; 1 Hungarian speaking Székely; and 1 Hungarian), as presented in Fig. 7 (Haplotype 1). Haplotype 2 included five males (3 Bashkirian Mari and 2 Hungarian), as it can be seen in Fig. 7. Haplotype 4 included two shared haplotypes (1 Bashkirian Mari and one Hungarian speaking Csángó). The remaining two Bashkirian Mari haplotypes differ from the founder haplotype (Haplotype 1) by two mutational steps via Hungarian or Hungarian and Bashkirian Mari shared haplotypes. Beside Haplotype 1, the remaining Southern Mansi haplotypes were shared with Hungarians (Haplotype 5 or turquoise blue and red-coloured circles above Haplotype 7) or with Hungarians and Hungarian speaking Székely group (Haplotypes 3, 5, and 6). Haplotype 7 included ten Hungarian speakers (Hungarian, Székely, and Csángó). One Hungarian and one Uzbek Khwarezm shared haplotype can be found in Fig. 7 as well (red and white-coloured circle). All the other haplotypes were scattered in the network. The age of accumulated STR variation within R1a-Z280 lineage for 93 samples is estimated to be 9.4 kya (95% CI 6.5–12.4 kya) considering Haplotype 1 (Fig. 7) to be the founder.

r1a-z280-ugrians
Median-Joining Networks (MJ) of 93 R1a-Z280 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used haplotype data from Bashkirian Mari (n = 7), Southern Mansi (n = 7), Hungarian (n = 52), Hungarian speaking Székely (n = 11), Hungarian speaking Csángó (n = 10), Uzbek Ferghana (n = 2), Uzbek Tashkent (n = 1), Uzbek Khwarezm (n = 1) and Northern Mansi (n = 2) populations

R1a-Z93 as isolated lineages among Permic and Ugric populations:

Figure 8 depicts an MJ network of R1a-Z93* samples using 106 haplotypes from the 14 populations (Fig. 8). All of the Bashkirian Mari samples (7 haplotypes) formed a very isolated branch and differed from the one Hungarian haplotype (Fig. 8, see Haplotype 1) by seven mutational steps as well from two Uzbek Tashkent samples (see Haplotype 3). Another Hungarian sample shared two haplotypes of Uzbek Khwarezm samples in Haplotype 4. This haplotype can be derived from Haplotype 3 (Uzbek Tashkent). Haplotype 2 included one Hungarian and one Khakassian male. The remaining three Hungarian haplotypes are outliers in the network and are not shared by any sample. The other population samples included in the network either form independent clusters such as Altaians, Khakassians, Khanties, and Uzbek Madjars or were scattered in the network. The age of accumulated STR variation (TMRCA) within R1a-Z93* lineage for 106 samples is estimated as 11.6 kya (95% CI 9.3–14.0 kya) considering an Armenian haplotype (Fig. 8, “A”) to be the founder and the median haplotype.

r1a-z93-ugrians
Median-Joining Networks (MJ) of 106 R1a-Z93 haplotypes constructed. The circle sizes are proportional to the haplotype frequencies. The smallest area is equivalent to one individual. We used the next haplotype data: 7 Bashkirian Mari, 6 Khanty, 4 Uzbek Madjar, 5 Uzbek Ferghana, 9 Uzbek Tashkent, 7 Uzbek Khwarezm, 2 Mongolian, 2 Buryat, 6 Hungarian samples tested by us for this study or published earlier (Bíró et al. 2015) and populations (3 Armenian; 3 Afghan Tajik;
16 Altaian; 24 Khakassian; 12 Kyrgyz) from Underhill et al. (2015)

Comments

The results of modern populations for N (especially N1c) subclades show really wide clusters and ancient TMRCA, consistent with their known ancient and wide distribution in northern and eastern Eurasian groups, and thus with infiltration of different lineages with eastern nomads (and northern Arctic populations) coupled with later bottlenecks, as well as acculturation of groups.

EDIT (2 APR): Interesting is the specific subclade to which ancient Mongolic-speaking Avars belong (information from Yfull) N1c-F4205 (TMRCA ca. 500 BC), subclade of N1c-Y6058 (formed ca. 2800 BC, TMRCA ca. 2800 BC). This branch also gives the “European” branch N1c-CTS10760 (formed ca. 2800 BC, TMRCA ca. 2100 BC), and is subclade of a branch of N1c-L392 (formed ca. 4400 BC, TMRCA ca. 2800 BC). A northern expansion of N1c-L392 is probably represented by its branch N1c-Z1936 (formed ca. 2800, TMRCA ca. 2100 BC), the most likely candidate to appear in the Kola Peninsula in the Bronze Age as the Palaeo-Laplandic population (see here). Read more about potential routes of expansion of haplogroup N.

On the other hand, R1a-Z280 lineages form a tight cluster connecting Permic with Ugric groups, with R1a-Z93 showing early isolation (probably) between Cis-Urals and Trans-Urals regions. While both Corded Ware lineages in Finno-Ugrians are most likely related to the Abashevo expansion through Seima-Turbino and the Andronovo-like Horizon (and potentially later Eurasian expansions), a plausible hypothesis would be that Finno-Ugrians are related to an expansion of R1a-Z283 haplogroups (we already knew about the Finno-Permic connection), while the ancient connection between Permians and Hungarians with R1a-Z93 would correspond to this haplogroup’s potentially tighter link with an early Samoyedic split.

I don’t think that an explosive expansion of eastern Corded Ware groups of R1a-Z645 lineages will show a clear-cut division of haplogroups among Eastern Uralic groups, though, and culturally I doubt we will have such a clear image, either (similar to how the explosive expansion of Bell Beakers cannot be easily divided by regional/language group into R1b-L151 subclades before the known bottlenecks). Relevant in this regard are the known Z93 samples from the Árpád dynasty.

Nevertheless, this data may represent a slightly more recent wave of R1a-Z280 lineages linked to the expansion of Ugric into the Trans-Uralian region, after their split from Finno-Permic, still in close contact with Indo-Iranians in Poltavka and Sintashta-Potapovka, evident from the early and late Indo-Iranian borrowings, during a common period when Samoyedic had already separated.

Such a “Z283 over Z93” layer in the Trans-Urals (and Cis-Urals?) forest-steppes would be similar to the apparent replacement of Z284 by Z282 in the Eastern Baltic during the Bronze Age (possibly with the second or Estonian Battle Axe wave or, much more likely during later population movements). Such an early R1a-Z93 split could potentially be supported also by the separation into bottlenecks under “Northern” (R1a-Z283) Finno-Ugric-speaking Abashevo-related groups and “Southern” (R1a-Z93) acculturated Indo-Iranian-speaking Abashevo migrants developing Sintashta-Potapovka admixing with Poltavka R1b-Z2103 herders.

r1a-z282-z280-z2125-distribution
Modified image, from Underhill et al. (2015). Spatial frequency distributions of Z282 (green) and Z93 (blue) affiliated haplogroups.. Notice the potential Finno-Ugric-associated distribution of Z282 (especially R1a-M558, a Z280 subclade), the expansion of R1a-Z2123 subclades with Central Asian forest-steppe groups.

Conclusion

Let’s review some of the most common myths about Hungarians (and Finno-Ugrians in general) repeated ad nauseam, side by side with my assertions:

❌ N (especially N1c-Tat) in ancient and modern samples represent the True Uralic™ N1c peoples including Magyar tribes? Nope.

✅ Ancient N (especially N1c-Tat) lineages among Uralic populations expanded relatively recently, and differently in different regions (including eastern steppe nomads and northern arctic populations) not associated with a particular language or language group? Yep (read the series on Corded Ware = Uralic expansion).

❌ Modern Hungarian R1a-Z280 lineages represent the majority of the native population, poor Slavic ‘peasants’ from the Carpathian Basin, forcibly acculturated by a minority of bad bad Hungarian hordes? Nope.

✅ Modern Hungarian R1a-Z280 subclades represent Ugric lineages in common with ancient R1a-Z645 Finno-Ugric populations from north-eastern Europe and the Trans-Urals? Yep (see Avars and Ugrians).

❌ Modern Hungarian R1a-Z93 lineages represent acculturated Iranian/Turkic peoples from the steppes? Not likely.

✅ Modern Hungarian R1a-Z93 lineages represent a remnant of the expansion of Corded Ware to the east, potentially more clearly associated with Samoyedic? Much more likely.

finno-ugric-haplogroup-n
Map of archaeological cultures in north-eastern Europe ca. 8th-3rd centuries BC. [The Mid-Volga Akozino group not depicted] Shaded area represents the Ananino cultural-historical society. Fading purple arrows represent likely stepped movements of subclades of haplogroup N for centuries (e.g. Siberian → Ananino → Akozino → Fennoscandia [N-VL29]; Circum-Arctic → forest-steppe [N1, N2]; etc.). Blue arrows represent eventual expansions of Uralic peoples to the north. Modified image from Vasilyev (2002).

Sooo, the theory of a “diluted” Y-DNA in Modern Hungarians from originally fully N-dominated conquerors subjugating native R1a-Z280 Slavs from the Carpathian Basin is not backed up by genetic studies? The ethnic Iranian-Turkic R1a-Z93 federation in the steppes that ended up speaking Magyar is not real?? Who would’ve thunk.

Another true story whose rejection in genetics could not be predicted, like, not at all.

Totally unexpected, too, the drift of “R1a=IE” fans with the newest genetic findings towards a Molgen-like “Yamna/R1b = Vasconic-Caucasian”, “N1c = Uralic-Altaic”, and “R1a = the origin of the white world in Mother Russia”. So much for the supposed interest in “Steppe ancestry” and fancy statistics.

Related

Arrival of steppe ancestry with R1b-P312 in the Mediterranean: Balearic Islands, Sicily, and Iron Age Sardinia

steppe-balearic-sicily-sardinia

New preprint The Arrival of Steppe and Iranian Related Ancestry in the Islands of the Western Mediterranean by Fernandes, Mittnik, Olalde et al. bioRxiv (2019)

Interesting excerpts (emphasis in bold; modified for clarity):

Balearic Islands: The expansion of Iberian speakers

Mallorca_EBA dates to the earliest period of permanent occupation of the islands at around 2400 BCE. We parsimoniously modeled Mallorca_EBA as deriving 36.9 ± 4.2% of her ancestry from a source related to Yamnaya_Samara; (…). We next used qpAdm to identify “proximal” sources for Mallorca_EBA’s ancestry that are more closely related to this individual in space and time, and found that she can be modeled as a clade with the (small) subset of Iberian Bell Beaker culture associated individuals who carried Steppe-derived ancestry (p=0.442).

Suppl. Materials: The model used was with Bell_Beaker_Iberia_highsteppe, a group of outliers from Iberia buried in a Bell Beaker mortuary context who unlike most individuals from this context in that region had high proportions of Steppe ancestry (p=0.442).

Our estimates of Steppe ancestry in the two later Balearic Islands individuals are lower than the earlier one: 26.3 ± 5.1% for Formentera_MBA and 23.1 ± 3.6% for Menorca_LBA, but the Middle to Late Bronze Age Balearic individuals are not a clade relative to non-Balearic groups. Specifically, we find that f4(Mbuti.DG, X; Formentera_MBA, Menorca_LBA) is positive when X=Iberia_Chalcolithic (Z=2.6) or X=Sardinia_Nuragic_BA (Z=2.7). While it is tempting to interpret the latter statistic as suggesting a genetic link between peoples of the Talaiotic culture of the Balearic islands and the Nuragic culture of Sardinia, the attraction to Iberia_Chalcolithic is just as strong, and the mitochondrial haplogroup U5b1+16189+@16192 in Menorca_LBA is not observed in Sardinia_Nuragic_BA but is observed in multiple Iberia_Chalcolithic individuals. A possible explanation is that both the ancestors of Nuragic Sardinians and the ancestors of Talaiotic people from the Balearic Islands received gene flow from an unsampled Iberian Chalcolithic-related group (perhaps a mainland group affiliated to both) that did not contribute to Formentera_MBA.

This sample, like another one in El Argar, is of hg. R1b-P312. So there you are, the data that connects the Proto-Iberian expansion (replacing IE-speaking Bell Beakers) to the Iberian Chalcolithic population, signaled by the increase in Iberian Chalcolithic ancestry after the arrival of Bell Beakers, most likely connected originally to the Argaric and post-Argaric expansions during the MBA.

balearic-sicily-sardinia-pca
PCA with previously published ancient individuals (non-filled symbols), projected onto variation from present-day populations (gray squares).

Steppe in Sardinia IA: Phocaeans from Italy?

Most Sardinians buried in a Nuragic Bronze Age context possessed uniparental haplogroups found in European hunter-gatherers and early farmers, including Y-haplogroup R1b1a[xR1b1a1a] which is different from the characteristic R1b1a1a2a1a2 spread in association with the Bell Beaker complex. An exception is individual I10553 (1226-1056 calBCE) who carried Y-haplogroup J2b2a, previously observed in a Croatian Middle Bronze Age individual bearing Steppe ancestry, suggesting the possibility of genetic input from groups that arrived from the east after the spread of first farmers. This is consistent with the evidence of material culture exchange between Sardinians and mainland Mediterranean groups, although genome-wide analyses find no significant evidence of Steppe ancestry so the quantitative demographic impact was minimal.

Another interesting data, these (Mesolithic) remnant R1b-V88 lineages closely related to the Italian Peninsula, the most likely region of expansion of these lineages into Africa, in turn possibly connected to the expansion of Proto-Afroasiatic.

We detect definitive evidence of Iranian-related ancestry in an Iron Age Sardinian I10366 (391-209 calBCE) with an estimate of 11.9 ± 3.7.% Iran_Ganj_Dareh_Neolithic related ancestry, while rejecting the model with only Anatolian_Neolithic and WHG at p=0.0066 (Supplementary Table 9). The only model that we can fit for this individual using a pair of populations that are closer in time is as a mixture of Iberia_Chalcolithic (11.9 ± 3.2%) and Mycenaean (88.1 ± 3.2%) (p=0.067). This model fits even when including Nuragic Sardinians in the outgroups of the qpAdm analysis, which is consistent with the hypothesis that this individual had little if any ancestry from earlier Sardinians.

yamnaya-samara
Proportions of ancestry using a distal qpAdm framework on an individual basis (a), and based on qpWave clusters

Sicily EBA: The Lusitanian/Ligurian connection?

(…) While a previously reported Bell Beaker culture-associated individual from Sicily had no evidence of Steppe ancestry, (…) we find evidence of Steppe ancestry in the Early Bronze Age by ~2200 BCE. In distal qpAdm, the outlier Sicily_EBA11443 is parsimoniously modeled as harboring 40.2 ± 3.5% Steppe ancestry, and the outlier Sicily_EBA8561 is parsimoniously modeled as harboring 23.3 ± 3.5% Steppe ancestry. (…) The presence of Steppe ancestry in Early Bronze Age Sicily is also evident in Y chromosome analysis, which reveals that 4 of the 5 Early Bronze Age males had Steppe-associated Y-haplogroup R1b1a1a2a1a2. (Online Table 1). Two of these were Y-haplogroup R1b1a1a2a1a2a1 (Z195) which today is largely restricted to Iberia and has been hypothesized to have originated there 2500-2000 BCE. This evidence of west-to-east gene flow from Iberia is also suggested by qpAdm modeling where the only parsimonious proximate source for the Steppe ancestry we found in the main Sicily_EBA cluster is Iberians.

What’s this? An ancestral connection between Sicel Elymian and Galaico-Lusitanian or Ligurian (based on an origin in NE Iberia)? Impossible to say, especially if the languages of these early settlers were replaced later by non-Indo-European speakers from the eastern Mediterranean, and by Indo-European speakers from the mainland closely related to Proto-Italic during the LBA, but see below.

Regarding the comment on R1b-Z195, it is associated with modern Iberians, as DF27 in general, due to founder effects beyond the Pyrenees. It is a very old subclade, split directly from DF27 roughly at the same time as it split from the parent P312, i.e. it can be found anywhere in Europe, and it almost certainly accompanied the expansion of Celts from Central Europe under the subclade R1b-M167/SRY2627.

The connection is thus strong only because of the qpAdm modeling, since R1b-DF27 and subclade R1b-Z195 are certainly lineages expanded quite early, most likely with Yamna settlers in Hungary and East Bell Beakers.

In this case, if stemming from Iberia, it is most likely of subclade R1b-Z220 – or another Z195 (xM167) lineage – originally associated with the Old European substrate found in topo-hydronymy in Iberia, whose most likely remnants attested during the Iron Age were Lusitanians.

r1b-df27-z195
Left: Modern distribution of R1b-Z195 (YFull estimate 2700 BC); Right: Modern distribution of DF27. Both include later founder effects within Iberia, so the increase in the Basque country and the Crown of Aragon and the decrease in Portugal can safely be ignored. Contour maps of the derived allele frequencies of the SNPs analyzed in Solé-Morata et al. (2017).

We detect Iranian-related ancestry in Sicily by the Middle Bronze Age 1800-1500 BCE, consistent with the directional shift of these individuals toward Mycenaeans in PCA. Specifically, two of the Middle Bronze Age individuals can only be fit with models that in addition to Anatolia_Neolithic and WHG, include Iran_Ganj_Dareh_Neolithic. The most parsimonious model for Sicily_MBA3125 has 18.0 ± 3.6% Iranian-related ancestry (p=0.032 for rejecting the alternative model of Steppe rather than Iranian-related ancestry), and the most parsimonious model for Sicily_MBA has 14.9 ± 3.9% Iranian-related ancestry (p=0.037 for rejecting the alternative model).

The modern southern Italian Caucasus-related signal identified in Raveane et al. (2018) is plausibly related to the same Iranian-related spread of ancestry into Sicily that we observe in the Middle Bronze Age (and possibly the Early Bronze Age).

The non-Indo-European Sicanians and Elymians were possibly then connected to eastern Mediterranean groups before the expansion of the Sea Peoples.

For the Late Bronze Age group of individuals, qpAdm documented Steppe-related ancestry, modeling this group as 80.2 ± 1.8% Anatolia_Neolithic, 5.3 ± 1.6% WHG, and 14.5 ± 2.2% Yamnaya_Samara. Our modeling using sources more closely related in space and time also supports Sicily_LBA having Minoan-related ancestry or being derived from local preceding populations or individuals with ancestries similar to those of Sicily_EBA3123 (p=0.527), Sicily_MBA3124 (p=0.352), and Sicily_MBA3125 (p=0.095).

This increase in Steppe-related ancestry in a western site during the LBA most likely represents either an expansion from the Aegean or – maybe more likely, given the archaeological finds – a regional population similar to Sicily EBA re-emerging or rather being displaced from the eastern part of the island because of a westward movement from nearby Calabria.

Whether this population sampled spoke Indo-European or not at this time is questionable, since the Iron Age accounts show non-IE Elymians in this region.

Actually, Elymians seem to have spoken Indo-European, which fits well with the increase in steppe ancestry.

EDIT (21 MAR): Interesting about a proposed incoming Minoan-like ancestry is the potential origin of the Iran Neolithic-related ancestry that is going to appear in Central Italy during the LBA. This could then be potentially associated with Tyrsenians passing through the area, although the traditional description may be more more compatible with an arrival of Sea Peoples from the Adriatic.

Sad to read this:

This manuscript is dedicated to the memory of Sebastiano Tusa of the Soprintendenza del Mare in Palermo, who would have been an author of this study had he not tragically died in the crash of Ethiopia Airlines flight 302 on March 10.

Related