“Steppe ancestry” step by step (2019): Mesolithic to Early Bronze Age Eurasia

yamnaya-gac-maykop-corded-ware-bell-beaker

The recent update on the Indo-Anatolian homeland in the Middle Volga region and its evolution as the Indo-Tocharian homeland in the Don–Volga area as described in Anthony (2019) has, at last, a strong scientific foundation, as it relies on previous linguistic and archaeological theories, now coupled with ancient phylogeography and genomic ancestry.

There are still some inconsistencies in the interpretation of the so-called “Steppe ancestry”, though, despite the one and a half years that have passed since we first had access to the closest Pontic–Caspian steppe source populations. Even my post “Steppe ancestry” step by step from a year ago is already outdated.

Admixture

The population selection process for models shown below included (1) plausibility of potential influences in the particular geographic and archaeological context; (2) looking for their clusters or particular samples in the PCA; and (3) testing with qpAdm for potential source populations that might have been involved in their development.

The results and graphics posted are therefore intended to simplistically show potential admixture events between populations potentially close to the actual sources of the target samples, whenever such mating networks could be supported by archaeology.

NOTE. This is an informal post and I am not a geneticist, so I am turning this flexibility to my advantage. If any reader is – for some strange reason – looking for a strict hypothesis testing, for the use of a full set of formal stats (as used e.g. in Ning et al. 2019 for Proto-Tocharians), and correctly redacted and peer-reviewed text, this is not the right place to find them.

spatial-pedigree-geographic-admixture
An example pedigree (a) of a focal individual sampled in the modern day, placed in its geographic context to make the spatial pedigree (b). Dashed lines denote matings, and solid lines denote parentage, with red hues for the maternal ancestors and blue hues for the paternal ancestors. In the spatial pedigree, each plane represents a sampled region in a discrete (nonoverlapping) generation, and each dot shows the birth location of an individual. The pedigree of the focal individual is highlighted back through time and across space. Image modified from Bradburd and Ralph (2019).

Despite the natural impulse to draw straight mixture trajectories (see e.g. Wang et al. 2019), simply adding or subtracting samples used for a PCA shows how the plot is affected by different variables (see e.g. what happens by including more South Asian samples to the PCA below), hence the need to draw curved arrows – not necessarily representing a sizable drift; at least not in recent prehistoric admixture events for which we have a reasonable chronological transect.

reich-arrows-admixture-neolithic-bronze-age
Representation of mixture events between European prehistoric peoples in the PCA. Image modified from David Reich‘s Who We Are and How We Got Here (2018).

Ethnolinguistic identification is a risky business that brings back memories of an evil use of cultural history and its consequences (at least in Western Europe, where this tradition was discontinued after WWII), but it seems necessary for those of us who want to find some confirmation of proposed dialectal schemes and language contacts.

Eneolithic Steppe vs. Steppe Maykop

First things first: I tested Bronze Age Eurasian peoples for the only two true steppe populations sampled to date, as potential sources of their “Steppe ancestry” – conventionally described as an EHG:CHG admixture, similar to that found in the first sampled Yamnaya individuals. I used the rightpops of Wang et al. (2018), but with a catch: since authors used WHG as a leftpop and Villabruna as a rightpop, and I find that a little inconsequential*, I preferred the strategy in Ning et al. (2019), contrasting as outgroup Eneolithic_Steppe (ca. 4300 BC) vs. Steppe_Maykop (ca. 3500 BC) when testing for WHG as a source population.

*WHG usually includes samples from a ‘western’ cluster (Loschbour and La Braña) and an ‘eastern’ cluster (Villabruna and Koros), see Lipson et al. (2017). Therefore, it doesn’t make much sense to include the same (or a very similar) population as a source AND an outgroup.

NOTE. For all other qpAdm analyses below, where WHG was not used as leftpop, I have used Villabruna as rightpop following Wang et al. (2019).

greater-caucasus-steppe-ancestry
Map of samples and sites mentioned in Wang et al. (2019), modified from the original to include labels of Eneolithic_Steppe and Steppe_Maykop samples. See PCA and ADMIXTURE grahpic for the identification of specific samples.

Results are not much different from what has been reported. In general, Yamnaya and related groups such as Bell Beakers and Steppe-related Chalcolithic/Bronze Age populations show good fits for Eneolithic_Steppe as their closest source for Steppe ancestry, and bad fits for Steppe_Maykop, whereas Corded Ware groups show the opposite, supporting their known differences.

This trend seems to be tempered in some groups, though, most likely due the influence of Samara_LN-like admixture in Circum-Baltic Late Neolithic and Eastern Corded Ware groups, and the influence of Anatolia_N/EEF-like admixture in Balkan and late European CWC or BBC groups. In fact, the more EEF-related ancestry in a populatoin, the less reliable these generic models (and even specific ones) seem to become when distinguishing the Steppe-related source.

NOTE. For more on this, see the discussion on Circum-Baltic Corded Ware peoples, and the discussion on Mycenaeans and their potential source populations.

These are just broad strokes of what might have happened around the Pontic–Caspian steppes before and during the Early Bronze Age expansions. The most relevant quest right now for Indo-European studies is to ascertain the chain of admixture events that led to the development and expansion of Indo-Uralic and its offshoots, Indo-European and Uralic.

mesolithic-eastern-europe-post-swiderian
Eastern European Mesolithic with the expansion of Post-Swiderian cultures. See full map.

A history of Steppe ancestry

This post is divided in (more or less accurate) chronological developments as follows:

  1. Hunter-gatherer pottery and the steppes
  2. Khvalynsk and Sredni Stog
  3. Post-Stog and Proto-Corded Ware
  4. Yamnaya and Afanasievo

1. Hunter-gatherer pottery and the steppes

I laid out in the ASOSAH book series the general idea – based on attempts to reconstruct the linguistic ancestor of Indo-Uralic – that Eurasiatic speakers might have expanded with the North-Eastern Techno-Complex that spread through north-eastern Europe during the warm period represented by the transition of the Palaeolithic to the Mesolithic.

If one were to trust the traditional migrationist view, a post-Swiderian population expanded from central-eastern Europe (potentially related originally to Epi-Gravettian peoples, represented by WHG ancestry) into north-eastern Europe, and then further east into the Trans-Urals, to then reappear in eastern Europe as a back-migration represented by the spread of hunter-gatherer pottery.

The marked shift from WHG-like towards EHG-related ancestry from Baltic Mesolithic (ca. 30%) to Combed Ware cultures (ca. 65%-100%) supports this continuous westward expansion, that is possibly best represented in the currently available sampling by the ‘south-eastern’ shift (CHG:ANE-related) of the hunter-gatherer from Lebyazhinka IV (5600 BC) relative to the older one from Sidelkino (9300 BC), both from the Samara region in the Middle Volga:

Mesolithic-Neolithic transition ca. 7000-6000 BC, with hunter-gatherer pottery groups spreading westwards. See full map.

From Anthony (2019):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair-Shak III and Varfolomievka, they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

Given the lack of a proper geographical and chronological transect of ancient DNA from eastern European groups, and the discontinuous appearance of both R1b-M73 and R1b-M269 lineages on both sides of the Urals within the WHG:ANE cline, where EHG appears to have formed, it is impossible at this point to assert anything with enough degree of certainty. For simplicity purposes, though, I risked to equate the expansion of R1b-M73 in West Siberia as potentially associated with Micro-Altaic, and the expansion of hg. R1b-M269 with the spread of Indo-Uralic on both sides of the Urals.

NOTE. For incrementally speculative associations of languages with prehistoric cultures and their potential link to ancestry ± haplogroup expansions, you can check sections on Early Indo-Europeans and Uralians, Indo-Uralians, Altaic peoples, Eurasians, or Nostratians. I explained why I made these simplistic choices here.

While this identification of the Indo-Uralic expansion with hg. R1b is more or less straightforward for the Cis-Urals, given the available ancient DNA samples, it will be very difficult (if at all possible) to trace the migration of these originally R1b-M269-rich populations into Trans-Uralian groups that could eventually be linked to Yukaghir speakers. The sheer number of potential admixture events and bottlenecks in Siberian forest, taiga, and tundra regions since the Mesolithic until Yukaghirs were first attested is guaranteed to give more than one headache in upcoming years…

neolithic-steppes-samara-mariupol
Spread of hunter-gatherer pottery in eastern Europe ca. 6000-5000 BC. See full map.

The slight increase in WHG-related ancestry in Ukraine Neolithic groups relative to Mesolithic ones questions the arrival of this eastern influence in the north Pontic area, or at least its relevance in genomic terms, although the cluster formed is similar to the previous one and to Combed Ware groups – despite the Central European and Baltic influences in the north Pontic region – with some samples showing 0% change relative to Mesolithic groups.

ukraine-samara-mesolithic-neolithic-evolution
Structure and change in hunter-gatherer-related populations, from Mathieson et al. (2018). Inferred ancestry proportions for populations modelled as a mixture of WHG, EHG and CHG. Dashed lines show populations from the same geographic region. Percentages indicate proportion of WHG + EHG ancestry. Standard errors range from 1.5 to 8.3%.

NOTE. For more on Indo-Uralic and its reconstruction from a linguistic point of view, check out its dedicated section on ASOSAH, or the recently published (behind paywall) The Precursors of Proto-Indo-European, edited by Kloekhorst and Pronk, Brill (2019). Authors of specific chapters have posted their contributions to Academia.edu, where they can be downloaded for free.

2. Khvalynsk and Sredni Stog

The cluster formed by the three available samples of the Khvalynsk culture (early 5th millennium BC) might be described, as expected from its position in the PCA, as a mixture of EHG-like populations of the Middle Volga with CHG-like ancestry close to that represented by samples from Progress-2 and Vonyuchka, in the North Caucasus Piedmont (ca. 4300 BC):

This variable CHG-like admixture shown in the wide cluster formed by the available Khvalynsk-related samples support the interpretation of a recently created CHG mating network in Anthony (2019):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

steppe-ancestry-pca-neolithic-khvalynsk
Detail of the PCA of Eurasian samples, including Neolithic clusters with the hypothesized gene flows related to (1) the formation and (2) expansion of Khvalynsk and the (3) emergence of late Sredni Stog. See full image.

The richest copper assemblage found in all Khvalynsk burials belongs to an individual of hg. R1b-V1636 and intermediate Samara_HG:Eneolithic_Steppe ancestry, while full Eneolithic_Steppe-like admixture in the Middle Volga is represented by the commoner of Khvalynsk II, of hg. Q1. The finding of hg. R1b-V1636 in the North Caucasus Piedmont – and R1b-P297 in the Samara region (probably including Yekaterinovka) begs the question of the origin of hg. R1b-V1636 in the Khvalynsk community. Based on its absence in ancient samples from the forest zone, it is tempting to assign it to steppe hunter-gatherers down the Lower Volga and possibly to the east of it, who infiltrated the Samara region precisely during these population movements described by Anthony (2019).

Suvorovo-related samples from the Balkans, including the Varna and Smyadovo outliers of Steppe ancestry, are closely related to the Khvalynsk expansion:

Similarly, the ancestry of late Sredni Stog samples from Dereivka seem to be directly related to the expansion of Mariupol-like individuals over populations of Suvorovo-Novodanilovka-like admixture, as suggested by the resurgence of typical Ukraine Neolithic haplogroups, the shift in the PCA, and the models of Eneolithic_Steppe vs. Steppe_Maykop above:

#EDIT (11 Nov 2019): In fact, the position of the unpublished Greece_Neolithic outlier that appeared in the Wang et al. (2018) preprint (see full PCA and ADMIXTURE) show that the expanding Suvorovo chiefs from the Balkans formed a tight cluster close to the two published outliers with Steppe ancestry from Bulgaria.

The Ukraine_Neolithic outlier, possibly a Novodanilovka-related sample suggests, based on its position in the PCA close to the late Trypillian outlier of Steppe-related ancestry, that Ukraine_Eneolithic samples from Dereivka are a mixture of Ukraine_Neolithic and a Novodanilovka-like community similar to Suvorovo.

The Trypillian_Eneolithic-like admixture found among Proto-Corded Ware peoples (see below) would then feature potentially a small Steppe_Eneolithic-like component already present in the north Pontic area, too.

pca-suvorovo-novodanilovka-khvalynsk-trypillia-greece-ukraine-neolithic-outlier
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Furthermore, whereas Anthony (2019) mentions a long-lasting predominance of hg. R1b in elite graves of the Eneolithic Volga basin, not a single sample of hg. R1a is mentioned supporting the community formed by the Alexandria individual, supposedly belonging to late Sredni Stog groups, but with a Corded Ware-like genetic profile (suggesting yet again that it is possibly a wrongly dated sample).

NOTE. A lack of first-hand information rather than an absence of R1a-M417 samples in the north Pontic forest-steppes would not be surprising, since Anthony is involved in the archaeology of the Middle Volga, but not in that of the north Pontic area.

eneolithic-pontic-caspian-steppe-khvalynsk-novodanilovka-suvorovo
Khvalynsk expansion through the Pontic–Caspian steppes in the early 5th millennium BC. See full map.

3. Post-Stog and Proto-Corded Ware

The origin of the Pre-Corded Ware ancestry is still a mystery, because of the heterogeneity of the sampled groups to date, and because the only ancestral sample that had a compatible genetic profile – I6561 from Alexandria – shows some details that make its radiocarbon date rather unlikely.

The most likely explanation for the closest source population of Corded Ware groups, found in the three core samples of Steppe_Maykop and in Trypillian Eneolithic samples from the first half of the 4th millennium BC, is still that a population of north Pontic forest-steppe hunter-gatherers hijacked this kind of ancestry, that was foreign to the north Pontic region before the Late Eneolithic period, later expanding east and west through the Podolian–Volhynian upland, due to the complex population movements of the Late Eneolithic.

NOTE. The idea of Trypillia influencing the formation of the Steppe_MLBA ancestry proper of Uralic peoples has been around for quite some time already, since the publication of Narasimhan et al. (2018) (see here or here).

steppe-ancestry-pca-corded-ware-bronze-age
Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers, with hypothesized gene flows related to the (1) formation and (2) initial expansion of Pre-Corded Ware ancestry, as well as (3) later regional admixture events. See full image.

The specifics of how the Proto-Corded Ware community emerged remain unclear at this point, despite the simplistic description by Rassamakin (1999) of the Late Eneolithic north Pontic population movements as a two-stage migration of 1) late Trypillian groups (Usatovo) west → east, and (2) Late Maykop–Novosvobodnaya east → west. So, for example, Manzura (2016) on the Zhivotilovka “cultural-historical horizon” (emphasis mine):

Indeed, the very complex combination of different cultural traits in the burial sites of the Zhivotilovka type is able to generate certain problems in the search for the origins of this phenomenon. The only really consistent attribute is the burial rite in contracted position on the left or right side. Yu. Rassamakin is correct in asserting that this position of the deceased can be considered as new in the North Pontic region (Rassamakin 1999, 97). However, this opinion can be accepted only partially for the territory between Dniester and Lower Don. This position is well known in the Usatovo culture in the Northwest Pontic region, although skeletons on the right side are evidenced there only in double burials, whereas single burials contain the deceased only in a contracted position on the left side. On the other hand, the southern and western orientation of the deceased, which is one of the main burial traits of the Zhivotilovka type, is not characteristic of the Usatovo culture. Nevertheless, it is possible to suppose that at least part of the Usatovo population could have played a part in the formation of the cultural type under consideration here. One aspect of this cultural tradition, for instance, could be represented by skeletons on the left side and oriented in north-eastern and eastern directions.

Especially close ties can be traced between the Zhivotilovka and Maykop-Novosvobodnaya traditions, as exemplified by similar burial customs and various grave goods. It is beyond any doubt that the Maykop-Novosvobodnaya population was actively involved in the spread of the main Zhivotilovka cultural traits. The influence of North Caucasian traditions can be well observed, at least as far as the Dnieper Basin, but farther west influence is not manifested pronouncedly. The role of cultural units situated between the Dniester and Don rivers in the process of emergence of the Zhivotilovka type looks somewhat vague. Now, it can be quite confidently asserted that at the end of the 4th millennium BC this territory was settled by migrants from the North Caucasus and Carpathian-Dniester region. This event in theory had to stimulate cultural transformations in the Azov-Black Sea steppes and, thus, bearers of local cultural traditions perhaps could have participated in forming the culture under consideration. In any event, the Zhivotilovka type can be regarded as a complex phenomenon that emerged within the regime of intensive cultural dialogue and that it absorbed totally diff erent cultural traditions. The spread of the Zhivotilovka graves across the Pontic steppes from the Carpathians to the Lower Don or even to the Kuban Basin clearly signalizes a rapid dissolution of former cultural borders and the beginning of active movements of people, things and ideas over vast territories.

zhivotilovka-horizon-north-pontic-area

What were the factors or reasons that could have provoked this event? In the beginning of the second half of the 4th millennium BC two advanced cultural centers emerged in the south of Eastern Europe. These were the Maykop-Novosvobodnaya and Usatovo cultures, which in spite of their separation by great distances were structurally very alike. This is expressed in similar monumental burial architecture, complex burial rites, even the composition of grave goods, developed bronze metallurgy, high standards of material culture, etc. Both cultures in a completely formed state exemplify prosperous societies with a high level of economic and social organization, which can correspond to the type of ranked or early complex societies. Normally, the social elite in such polities tends to rigidly control basic domains social, economic and spiritual life using different mechanisms, even open compulsion (Earle 1987, 294-297). To some extent similar social entities can be found at this moment in the forest-steppe zone of the Carpathian-Dniester region, as reflected by the well organized settlement of Brânzeni III and the Vykhatitsy cemetery (Маркевич 1981; Дергачев 1978). In spite of their complex character, such societies represent rather friable structures, which could rapidly disintegrate due to unfavourable inner or external factors.

The societies in question emerged and existed during a time of favourable natural climatic conditions, which is considered to be a transitional period from the Atlantic to the Subboreal period, lasting approximately from 3600 to 3300 cal BC, or a climatic optimum for the steppe zone (Иванова и др. 2011, 108; Спиридонова, Алешинская 1999, 30-31). These conditions to a large degree could guarantee a stable exploitation of basic resources and support existing social hierarchies. However, after 3300 cal BC significant climatic changes occurred, accompanied by an increasing aridization and fall in temperature. This event is usually termed the “Piora oscillation” or “Rapid Climatic Event”, and is regarded as having been of global character (Magny, Haas 2004). These rapid changes could have seriously disturbed existing economic and social relations and finally provoked a similar rapid disintegration of complex social structures. In this case the sites of the Zhivotilovka type could represent mere fragments of former prosperous societies, which under conditions of the absence of centralized social control and stable cultural borders tried to recombine social and economic ties. However, the population possessed the necessary social experience and important technological resources, such as developed stock-breeding based on the breeding of small cattle and wheeled transport, so they were ready for opening new territories in their search for a better life.

maykop-trypillia-intrusion-steppes
Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

For more on chronology and the potentially larger, longer-lasting Zhivotilovka–Volchansk–Gordineşti cultural horizon and its expansion through the Podolian–Volhynian upland, read e.g. on the Yampil Complex in the latest volume 22 of Baltic-Pontic Studies (2017):

In the forest-steppe zone of the North-West Pontic area, important data concerning the chronological position of the Zhivotilovka-Volchansk group have been produced by the exploration of the Bursuceni kurgan, which is still awaiting full publication [Yarovoy 1978; cf. also Demcenko 2016; Manzura 2016]. Burials linked with the mentioned group were stratigraphically the eldest in the kurgan, and pre-dated a burial in the extended position and [Yamnaya culture] graves. Two of these burials (features 20 and 21) produced radiocarbon dates falling around 3350-3100 BC [Petrenko, Kovaliukh 2003: 108, Tab. 7]. Similar absolute age determinations were obtained for Podolia kurgans at Prydnistryanske [Goslar et al. 2015]. These dates, falling within the Late Eneolithic, mark the currently oldest horizon of kurgan burials in the forest-steppe zone of the North-West Pontic area. The Podolia graves linked with other, older traditions of the steppe Eneolithic seem to represent a slightly later horizon dated to the transition between the Late Eneolithic and Early Bronze Age.

The presence on the left bank of the Dniester River of kurgans associated with the Eneolithic tradition, which at the same time reveals connections with the Gordineşti-Kasperovce-Horodiştea complex, raises questions about the western range of the new trend in funerary rituals, and its potential connection with the expansion of the late Trypilia culture to the West Podolia and West Volhynia Regions. The data potentially suggesting the attribution of kurgans from the upper Dniester basin to this period is patchy and difficult to verify [e.g. Liczkowce – see Sulimirski 1968: 173]. In this context, the discovery of vessels in the Gordineşti style in a kurgan at Zawisznia near Sokal is inspiring [Antoniewicz 1925].

zhivotilovka-volchansk-burial-podolia
Burials representing funerary traditions of Zhivotilovka-Volchansk group in Podolie kurgans: 1 – Porohy, grave 3A/7, 2 – Kuzmin, grave 2/2 [after Klochko et al. 2015b, Bubulich, Khakhey 2001]

Another interesting aspect of potential source populations, in combination with those above for Eneolithic_Steppe vs. Steppe_Maykop, are groups with worse fits for Steppe_Maykop_core, which include Potapovka and Srubnaya, as reported by Wang et al. (2018), but also Sintastha_MLBA (although not Andronovo). This is compatible with the long-term admixture of Abashevo chiefs dominating over a majority of Poltavka-like herders in the Don-Volga-Ural steppes during the formation of the Sintashta-Potapovka-Filatovka community, also visible in the typical Yamnaya lineages and Yamnaya-like ancestry still appearing in the region centuries after the change in power structures had occurred.

NOTE. If you feel tempted to test for mixtures of Khvalynsk_EN, Eneolithic_Steppe, Yamnaya, etc. as a source population for Corded Ware, go for it, but it’s almost certain to give similar ‘good’ fits – whatever the model – in some Corded Ware groups and not in others. It is still unclear, as far as I know, how to formally distinguish a mixture of Corded Ware-related from a Yamnaya-related source in the same model, and the results obtained with a combination of Steppe_Maykop-related + Eneolithic_Steppe-related sources will probably artificially select either one or the other source, as it probably happened in Ning et al. (2019) with Proto-Tocharian samples (see qpAdm values) that most likely had a contribution of both, based on their known intense interactions in the Tarim Basin.

eneolithic-pontic-caspian-steppes-east-europe
Expansion of north Pontic cultures and related groups during the Late Eneolithic. See full map.

4. Yamnaya and Afanasievo

I don’t think it makes much sense to test for GAC (or Iberia_CA, for that matter) as Wang et al. (2019) did, given the implausibility of them taking part in the formation of late Repin during the mid-4th millennium BC around the Don-Volga interfluve (represented by its offshoots Yamnaya and Afanasievo), whether these or other EEF-related populations show ‘better’ fits or not. Therefore, I only tested for more or less straightforward potential source populations:

steppe-ancestry-pca-yamnaya-hungary-bulgaria-vucedol
Detail of the PCA of Eurasian samples, including Yamnaya groups and related clusters, as well as outliers, with hypothesized gene flows related to its (1) formation and (2) expansion. Also included is the inferred position of the admixed sample Yamnaya_Hungary_EBA1. See full image.

Quite unexpectedly – for me, at least – it appears that Afanasievo and Yamnaya invariably prefer Khvalynsk_EN as the closest source rather than a combination including Eneolithic_Steppe directly. In other words, late Repin shows largely genetic continuity with the Steppe ancestry already shown by the three sampled individuals from the Khvalynsk II cemetery, in line with the known strong bottlenecks of Khvalynsk-related groups under R1b lineages, visible also later in Afanasievo and Yamnaya and derived Indo-European-speaking groups under R1b-L23 subclades.

NOTE. This explains better the reported bad fits of models using directly Eneolithic_Steppe instead of Khvalynsk_EN for Afanasievo and Yamnaya Kalmykia, as is readily evident from the results above, instead of a rejection of an additional contribution to an Eneolithic_Steppe-like population, as I interpreted it, based on Anthony (2019).

repin-zhivotilovka-north-pontic-steppe
Map of major sites of the Zhivotilovka-Volchansk group (A) and Repin culture (B), by Rassamakin (see 1994 and 2013). (A) 1 – Primorskoye; 2 – Vasilevka; 3 – Aleksandrovka; 4 – Boguslav; 5 – Pavlograd; 6 – Zhivotilovka; 7 – Podgorodnoye; 8 – Novomoskovsk; 9- Sokolovo; 10 – Dneprelstan; 11- Razumovka; 12 – Pologi; 13 – Vinogradnoye; 14 – Novo-Filipovka; 15 – Volchansk; 16 – Yuryevka; 17 – Davydovka; 18 – Novovorontsovka; 19 – Ust-Kamenka; 20 – Staroselye; 21- Velikaya Aleksandrovka; 22- Kovalevka; 23 – Tiraspol; 24 – Cura-Bykuluy; 25 – Roshkany; 26 – Tarakliya; 27 – Kazakliya; 28 – Bolgrad; 29 – Sarateny; 30 – Bursucheny; 31 – Novye Duruitory; 232 – Kosteshty. (B) 1 – Podgorovka; 2 – Aleksandria; 3 – Volonterovka; 4 – Zamozhnoye; 5 – Kremenevka; 6 – Ogorodnoye; 7 – Boguslav; 8 – Aleksandrovka; 9 – Verkhnaya Mayevka; 10 – Duma Skela; 11 – Zamozhnoye; 12 – Mikhailovka II.

This might suggest that the Steppe ancestry visible in samples from Progress-2 and Vonyuchka, sharing the same cluster with the Khvalynsk II cemetery commoner of hg. Q1, most likely represents North Caspian or Black Sea–Caspian steppe hunter-gatherer ancestry that increased as Khvalynsk settlers expanded to the south-west towards the Greater Caucasus, probably through female exogamy. That would mean that Steppe_Maykop potentially represents the ‘original’ ancestry of steppe hunter-gatherers of the North Caucasus steppes, which is also weakly supported by the available similar admixture of the Lola culture. The chronology, geographical location and admixture of both clusters seemed to indicate the opposite.

eneolithic-steppe-maykop-ehg-chg-ag2
Modelling results for the Steppe and Caucasus cluster. Additional ‘eastern’ AG-Siberian gene flow in Steppe Maykop relative to Eneolithic Steppe. From Wang et al. (2019).

Due to the limitations of the currently available sampling and statistical tools, and barring the dubious Alexandria outlier, it is unclear how much of the late Trypillian-related admixture of late Repin (as reflected in Yamnaya and Afanasievo) corresponds to late Trypillian, Post-Stog, or Proto-Corded Ware groups from the north Pontic area. A mutual exchange suggestive of a common mating network (also supported by the mixed results obtained when including Khvalynsk_EN as source for early Corded Ware groups) seem to be the strongest proof to date of the Late Proto-Indo-European – Uralic contacts reflected in the period when post-laryngeal vocabulary was borrowed (with some samples predating the merged laryngeal loss), before the period of intense borrowing from Pre- and Proto-Indo-Iranian.

Between-group differences of Yamnaya samples are caused – like those between Corded Ware groups – by the admixture of a rapidly expanding society through exogamy with regional populations, evidenced by the inconstant affinities of western or southern outliers for previous local populations of the west Pontic or Caucasus area. This explanation for the gradual increase in local admixture is also supported by the strong, long-term patrilineal system and female exogamy practiced among expanding Proto-Indo-Europeans.

chalcolithic-early-bronze-yamnaya-corded-ware-vucedol
Groups of the Yamnaya culture and its western expansion after ca. 3100 BC, and Corded Ware after ca. 2900 BC See full map.

Bell Beakers and Mycenaeans

This Eneolithic_Steppe ancestry is also found among Bell Beaker groups (see above). More specifically, all Bell Beaker groups prefer a source closest to a combination of Yamnaya from the Don and Baden LCA individuals from Hungary, rather than with Corded Ware and GAC, despite the quite likely admixture of western Yamnaya settlers with (1) south-eastern European (west Pontic, Balkan) Chalcolithic populations during their expansion through the Lower Danube and with (2) late Corded Ware groups (already admixed with GAC-like populations) during their expansion as East Bell Beakers:

Similarly, Mycenaeans show good fits for a source close to the Yamnaya outlier from Bulgaria:

steppe-ancestry-pca-bell-beakers-mycenaeans
Detail of the PCA of Eurasian samples, including Bell Beaker and Balkan EBA groups and related clusters, as well as outliers, including ancestral Yamnaya samples from Hungary (position inferred) and Bulgaria. Also marked are Minoans, Mycenaeans and Armenian BA samples. See full image.

You can read more on Yamnaya-related admixture of Bell Beakers and Mycenaeans, and on Afanasievo-related admixture of Iron Age Proto-Tocharians.

Conclusion

The use of the concept of “Yamnaya ancestry”, then “Steppe ancestry” (and now even “Yamnaya Steppe ancestry“?) has already permeated the ongoing research of all labs working with human population genomics. Somehow, the conventional use of Yamnaya_Samara samples opposed to a combination of other ancient samples – alternatively selected among WHG, EHG, CHG/Iran_N, Anatolia_N, or ANE – has spread and is now unquestionably accepted as one of the “three quite distinct” ancestral groups that admixed to form the ancestry of modern Europeans, which is a rather odd, simplistic and anachronistic description of prehistory…

It has now become evident that authors involved with the Proto-Indo-European homeland question – and the tightly intertwined one of the Proto-Uralic homeland – are going to dedicate a great part of the discussion of many future papers to correct or outright reject the conclusions of previous publications, instead of simply going forward with new data.

The most striking argument to mistrust the current use of “Steppe ancestry” (as an alternative name for Yamnaya_Samara, and not as ancestry proper of steppe hunter-gatherers) is not the apparent difference in direct Eneolithic sources of Steppe ancestry for Corded Ware and Yamnaya-related peoples – closer to the available samples classified as Steppe_Maykop and Eneolithic_Steppe, respectively – or their different evolution under marked Y-DNA bottlenecks.

It is not even the lack of information about the distant origin of these Pontic–Caspian steppe hunter-gatherers of the 5th and 4th millennium BC, with their shared ancestral component potentially separated during the warmer Palaeolithic-Mesolithic transition, when the steppes were settled, without necessarily sharing any meaningful recent history before the formation of the Proto-Indo-Uralic community.

NOTE. I have raised this question multiple times since 2017 (see e.g. here or here).

The most striking paradox about simplistically misinterpreting “Steppe ancestry” as representative of Indo-European expansions is that those sub-Neolithic Pontic–Caspian steppe hunter-gatherers that had this ancestry in the 6th millennium BC were probably non-Indo-European-speaking communities, most likely related to the North(West) Caucasian language family, based on the substrate of Indo-Anatolian that sets it apart from Uralic within the Indo-Uralic trunk, and on later contacts of Indo-Tocharian with North-West Caucasian and Kartvelian, the former probably represented by Maykop and its contact with the Repin and early Yamnaya cultures.

NOTE. For more on this, see Allan Bomhard’s recent paper on the Caucasian substrate hypothesis and its ongoing supplement Additional Proto-Indo-European/Northwest Caucasian Lexical Parallels.

steppe-ancestry-racimo
“Spatiotemporal kriging of YAM steppe ancestry during the Holocene, using 5000 spatial grid points. The colors represent the predicted ancestry proportion at each point in the grid.” Image with evolution from ca. 2800 BC until the present day, modified from Racimo et al. (2019). The Copenhagen group considers the expansion of this component as representative of expanding Indo-Europeans…

This kind of error happens because we all – hence also authors, peer reviewers, and especially journal editors – love far-fetched conclusions and sensational titles, forgetting what a paper actually shows and – always more importantly in scientific reports – what it doesn’t show. This is particularly true when more than one field is involved and when extraordinary claims involve aspects foreign to the journal’s (and usually the own authors’) main interests. One would have thought that the glottochronological fiasco published in Science in 2012 (open access in PMC) should have taught an important lesson to everyone involved. It didn’t, because apparently no one has felt the responsibility or the shame to retract that paper yet, even in the age of population genomics.

If anything, the excesses of mathematical linguistics – using computational methods to try and reconstruct phylogenetic trees – have perpetuated a form of misunderstood Scientism which blindly relies on a simple promise made by authors in the Materials and Method section (rarely if ever kept beyond it) to use statistics rather than resorting to the harder, well-informed, comprehensive reasoning that is needed in the comparative method. After all, why should anyone invest hundreds of hours (or simply show an interest in) learning about historical linguistics, about ancient Indo-European or Uralic languages, carefully argumenting and discussing each and every detail of the reconstruction, when one can simply rely on the own guts to decide what is Science and what isn’t? When one can trust a promise that formulas have been used?

The conservative, null hypothesis when studying prehistoric Eurasian samples related to evolving cultures was universally understood as no migration, or “pots not people” (as most western archaeologists chose to believe until recently), whereas the alternative one should have been that there were in fact migration events, some of them potentially related to the expansion of Eurasian languages ancestral to the historically attested ones. Beyond this migrationist view there were obviously dozens of thorough theories concerning potential linguistic expansions associated with specific prehistoric cultures, and a myriad of less developed alternatives, all of which deserved to be evaluated after the null hypothesis had been rejected.

Despite the shortcomings of the 2015 papers and their lack of testing or discussion of different language expansion models, the spread of the so-called “Yamnaya ancestry” – an admixture especially prevalent (after the demise of the Yamnaya) among the most likely ancient Uralic-speaking groups as well as among modern Uralic speakers and recently acculturated groups from Eastern Europe – has been nevertheless invariably concluded by each lab to support the theories of their leading archaeologist, often combined with pre-aDNA theories of geneticists based on modern haplogroup distributions. This is as evident a case of confirmation bias, circular reasoning, and jumping to conclusions as it gets.

Why many researchers of other labs have chosen to follow such conclusions instead of challenging or simply ignoring them is difficult to understand.

Related

More Celts of hg. R1b, more Afanasievo ancestry, more maps

iron-age-early-celtic-expansion

Interesting recent developments:

Celts and hg. R1b

Gauls

Recent paper (behind paywall) Multi-scale archaeogenetic study of two French Iron Age communities: From internal social- to broad-scale population dynamics, by Fischer et al. J Archaeol Sci (2019).

In it, Fischer and colleagues update their previous data for the Y-DNA of Gauls from the Urville-Nacqueville necropolis, Normandy (ca. 300-100 BC), with 8 samples of hg. R, at least 5 of them R1b. They also report new data from the Gallic cemetery at Gurgy ‘Les Noisats’, Southern Paris Basin (ca. 120-80 BC), with 19 samples of hg. R, at least 13 of them R1b.

In both cases, it is likely that both communities belonged (each) to the same paternal lineages, hence the patrilocal residence rules and patrilineality described for Gallic groups, also supported by the different maternal gene pools.

The interesting data would be whether these individuals were of hg. R1b-L21, hence mainly local lineages later replaced or displaced to the west, or – a priori much more likely – of some R1b-U152 and/or R1b-DF27 subclades from Central Europe that became less and less prevalent as Celts expanded into more isolated regions south of the Pyrenees and into the British Isles. Such information is lacking in the paper, probably due to the poor coverage of the samples.

early-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Early Iron Age. See full map.

Other Celts

As for early Celts, we already have:

Celtiberians from the Basque Country (one of hg. I2a) and likely Celtic genetic influence in north-east Iberia (all R1b), where Iberian languages spread later, showing that Celts expanded from some place in Central Europe, probably already with the Urnfield culture (ca. 1300 BC on).

Two Hallstatt samples from Bylany, Bohemia (ca. 836-780 BC), by Damgaard et al. Nature (2018), one of them of hg. R1b-U152.

mitterkirchen-grab-hu-i-8-hallstatt
Photo and diagram of burial HÜ-I/8, Mitterkirchen, Oberösterreich, Leskovar 1998.

Another Hallstatt HaC/D1 sample from Mittelkirchen, Austria (ca. 850-650/600), by Kiesslich et al. (2012), with predicted hg. G2a (see Athey’s haplogroup prediction).

One sample of early La Tène culture A from Putzenfeld am Dürrnberg, Hallein, Austria (ca 450–380 BC), by Kiesslich et al. (2012), with predicted hg. R1b (see Athey’s haplogroup prediction).

NOTE. For potential unreliability of haplogroup prediction with Whit Atheys’ haplogroup predictor, see e.g. Zhang et al. (2017).

kelten-dna-putzenfeld-duerrnberg-grab-376
Photo and diagram of Burial 376, Putzenfeld, Dürrnberg bei Hallein, Moser 2007.

Three Britons from Hinxton, South Cambridgeshire (ca. 170 BC – AD 80) from Schiffels et al. (2016), two of them of local hg. R1b-S461.

Indirectly, data of Vikings by Margaryan et al. (2019) from the British Isles and beyond show hg. R1b associated with modern British-like ancestry, also linked to early “Picts”, hence likely associated with Britons even after the Anglo-Saxon settlement. Supporting both (1) my recent prediction of hg. R1b-M167 expanding with Celts and (2) the reason for its presence among modern Scandinavians, is the finding of the first ancient sample of this subclade (VK166) among the Vikings of St John’s College Oxford, associated with the ‘St Brice’s Day Massacre’ (see Margaryan et al. 2019 supplementary materials).

The R1b-M167 sample shows 23.5% British-like ancestry, hence autosomally closer to other local samples (and related to the likely Picts from Orkney) than to some of his deceased partners at the site. Other samples with sizeable British-like ancestry include VK177 (32.6%, hg. R1b-U152), VK173 (33.3%, hg. I2a1b1a), or VK150 (25.6%, hg. I2a1b1a), while typical Germanic subclades like I1 or R1b-U106 – which may be associated with Anglo-Saxons, too – tend to show less.

late-iron-age-europe-y-dna
Y-DNA haplogroups in Europe during the Late Iron Age. See full map.

I remember some commenter asking recently what would happen to the theory of Proto-Indo-European-speaking R1b-rich Yamnaya culture if Celts expanded with hg. R1a, because there were only one hg. R1b and one (possibly) G2a from Hallstatt. As it turns out, they were mostly R1b. However, the increasingly frequent obsession of searching for specific haplogroups and ancestry during the Iron Age and the Middle Ages is weird, even as a desperate attempt, because:

  1. it is evident that the more recent the ancient DNA samples are, the more they are going to resemble modern populations of the same area, so ancient DNA would become essentially useless;
  2. cultures from the early Iron Age onward (and even earlier) were based on increasingly complex sociopolitical systems everywhere, which is reflected in haplogroup and ancestry variability, e.g. among Balts, East Germanic peoples, Slavs (of hg. E1b-V13, I2a-L621), or Tocharians.

In fact, even the finding of hg. R1b among Celts of central and western Europe during the Iron Age is rather unenlightening, because more specific subclades and information on ancestry changes are needed to reach any meaningful conclusion as to migration vs. acculturation waves of expanding Celtic languages, which spread into areas that were mostly Indo-European-speaking since the Bell Beaker expansion.

Afanasevo ancestry in Asia

Wang and colleagues continue to publish interesting analyses, now in the preprint Inland-coastal bifurcation of southern East Asians revealed by Hmong-Mien genomic history, by Xia et al. bioRxiv (2019).

Interesting excerpt (emphasis mine):

Although the Devil’s Cave ancestry is generally the predominant East Asian lineage in North Asia and adjacent areas, there is an intriguing discrepancy between the eastern [Korean, Japanese, Tungusic (except northernmost Oroqen), and Mongolic (except westernmost Kalmyk) speakers] and the western part [West Xiōngnú (~2,150 BP), Tiānshān Hun (~1,500 BP), Turkic-speaking Karakhanid (~1,000 BP) and Tuva, and Kalmyk]. Whereas the East Asian ancestry of populations in the western part has entirely belonged to the Devil’s Cave lineage till now, populations in the eastern part have received the genomic influence from an Amis-related lineage (17.4–52.1%) posterior to the presence of the Devil’s Cave population roughly in the same region (~7,600 BP)12. Analogically, archaeological record has documented the transmission of wet-rice cultivation from coastal China (Shāndōng and/or Liáoníng Peninsula) to Northeast Asia, notably the Korean Peninsula (Mumun pottery period, since ~3,500 BP) and the Japanese archipelago (Yayoi period, since ~2,900 BP)2. Especially for Japanese, the Austronesian-related linguistic influence in Japanese may indicate a potential contact between the Proto-Japonic speakers and population(s) affiliating to the coastal lineage. Thus, our results imply that a southern-East-Asian-related lineage could be arguably associated with the dispersal of wet-rice agriculture in Northeast Asia at least to some extent.

afanasevo-namazga-devils-gate-xiongnu-huns-tianshan-admixture
Spatial and temporal distribution of ancestries in East Asians. Reference populations and corresponding hypothesized ancestral populations: (1) Devil’s Cave (~7,600 BP), the northern East Asian lineage; (2) Amis, the southern East Asian lineage (= AHM + AAA + AAN); (3) Hòabìnhian (~7,900 BP), a lineage related to Andamanese and indigenous hunter-gatherer of MSEA; (4) Kolyma (~9,800 BP), “Ancient Palaeo-Siberians”; (5) Afanasievo (~4,800 BP), steppe ancestry; (6) Namazga (~5,200 BP), the lineage of Chalcolithic Central Asian. Here, we report the best-fitting results of qpAdm based on following criteria: (1) a feasible p-value (&mt; 0.05), (2) feasible proportions of all the ancestral components (mean &mt; 0 and standard error < mean), and (3) with the highest p-value if meeting previous conditions.

In this case, the study doesn’t compare Steppe_MLBA, though, so the findings of Afanasievo ancestry have to be taken with a pinch of salt. They are, however, compared to Namazga, so “Steppe ancestry” is there. Taking into account the limited amount of Yamnaya-like ancestry that could have reached the Tian Shan area with the Srubna-Andronovo horizon in the Iron Age (see here), and the amount of Yamnaya-like ancestry that appears in some of these populations, it seems unlikely that this amount of “Steppe ancestry” would emerge as based only on Steppe_MLBA, hence the most likely contacts of Turkic peoples with populations of both Afanasievo (first) and Corded Ware-derived ancestry (later) to the west of Lake Baikal.

(1) The simplification of ancestral components into A vs. B vs. C… (when many were already mixed), and (2) the simplistic selection of one OR the other in the preferred models (such as those published for Yamnaya or Corded Ware), both common strategies in population genomics pose evident problems when assessing the actual gene flow from some populations into others.

Also, it seems that when the “Steppe”-like contribution is small, both Yamnaya and Corded Ware ancestry will be good fits in admixed populations of Central Asia, due to the presence of peoples of EHG-like (viz. West Siberia HG) and/or CHG-like (viz. Namazga) ancestry in the area. Unless and until these problems are addressed, there is little that can be confidently said about the history of Yamnaya vs. Corded Ware admixture among Asian peoples.

Maps, maps, and more maps

As you have probably noticed if you follow this blog regularly, I have been experimenting with GIS software in the past month or so, trying to map haplogroups and ancestry components (see examples for Vikings, Corded Ware, and Yamnaya). My idea was to show the (pre)historical evolution of ancestry and haplogroups coupled with the atlas of prehistoric migrations, but I have to understand first what I can do with GIS statistical tools.

My latest exercise has been to map modern haplogroup distribution (now added to the main menu above) using data from the latest available reports. While there have been no great surprises – beyond the sometimes awful display of data by some papers – I think it is becoming clearer with each new publication how wrong it was for geneticists to target initially those populations considered “isolated” – hence subject to strong founder effects – to extrapolate language relationships. For example:

  • The mapping of R1b-M269, in particular basal subclades, corresponds nicely with the Indo-European expansions.
  • There is no clear relationship of R1b, not even R1b-DF27 (especially basal subclades), with Basques. There is no apparent relationship between the distribution of R1b-M269 and some mythical non-Indo-European “Old Europeans”, like Etruscans or Caucasian speakers, either.
  • Basal R1a-M417 shows an interesting distribution, as do maps of basal Z282 and Z93 subclades, despite the evident late bottlenecks and acculturation among Slavs.
  • The distribution of hg. N1a-VL29 (and other N1a-L392 subclades) is clearly dissociated from Uralic peoples, and their expansion in the whole Baltic Sea during the Iron Age doesn’t seem to be related to any specific linguistic expansion.
  • haplogroup-n1a-vl29
    Modern distribution of haplogroup N1a-VL29. See full map.
  • Even the most recent association in Post et al. (2019) with hg. N1a-Z1639 – due to the lack of relationship of Uralic with N1a-VL29 – seems like a stretch, seeing how it probably expanded from the Kola Peninsula and the East Urals, and neither the Lovozero Ware nor forest hunter-fishers of the Cis- and Trans-Urals regions were Uralic-speaking cultures.
  • The current prevalence of hg. R1b-M73 supports its likely expansion with Turkic-speaking peoples.
  • The distribution of haplogroup R1b-V88 in Africa doesn’t look like it was a mere founder effect in Chadic peoples – although they certainly underwent a bottleneck under it.
  • The distribution of R1a-M420 (xM198) and hg. R1b-M343 (possibly not fully depicted in the east) seem to be related to expansions close to the Caucasus, supporting once more their location in Eastern Europe / West Siberia during the Mesolithic.
  • The mapping of E1b-V13 and I-M170 (I haven’t yet divided it into subclades) are particularly relevant for the recent eastward expansion of early Slavic peoples.

All in all, modern haplogroup distribution might have been used to ascertain prehistoric language movements even in the 2000s. It was the obsession with (and the wrong assumptions about) the “purity” of certain populations – say, Basques or Finns – what caused many of the interpretation problems and circular reasoning we are still seeing today.

I have also updated maps of Y-chromosome haplogroups reported for ancient samples in Europe and/or West Eurasia for the Early Eneolithic, Early Chalcolithic, Late Chalcolithic, Early Bronze Age, Middle Bronze Age, Late Bronze Age, Early Iron Age, Late Iron Age, Antiquity, and Middle Ages.

Haplogroup inference

I have also tried Yleaf v.2 – which seems like an improvement over the infamous v.1 – to test some samples that hobbyists and/or geneticists have reported differently in the past. I have posted the results in this ancient DNA haplogroup page. It doesn’t mean that the inferences I obtain are the correct ones, but now you have yet another source to compare.

Not many surprises here, either:

  • M15-1 and M012, two Proto-Tocharians from Shirenzigou, are of hg. R1b-PH155, not R1b-M269.
  • I0124, the Samara HG, is of hg. R1b-P297, but uncertain for both R1b-M73 and R1b-M269.
  • I0122, the Khvalynsk chieftain, is of hg. R1b-V1636.
  • I2181, the Smyadovo outlier of poor coverage, is possibly of hg. R, and could be of hg. R1b-M269, but could also be even non-P.
  • I6561 from Alexandria is probably of hg. R1a-M417, likely R1a-Z645, maybe R1a-Z93, but can’t be known beyond that, which is more in line with the TMRCA of R1a subclades and the radiocarbon date of the sample.
  • I2181, the Yamnaya individual (supposedly Pre-R1b-L51) at Lopatino II is R1b-M269, negative for R1b-L51. Nothing beyond that.

You can ask me to try mapping more data or to test the haplogroup of more samples, provided you give me a proper link to the relevant data, they are interesting for the subject of this blog…and I have the time to do it.

Related

Volga Basin R1b-rich Proto-Indo-Europeans of (Pre-)Yamnaya ancestry

yamnaya-expansion

New paper (behind paywall) by David Anthony, Archaeology, Genetics, and Language in the Steppes: A Comment on Bomhard, complementing in a favourable way Bomhard’s Caucasian substrate hypothesis in the current issue of the JIES.

NOTE. I have tried to access this issue for some days, but it’s just not indexed in my university library online service (ProQuest) yet. This particular paper is on Academia.edu, though, as are Bomhard’s papers on this issue in his site.

Interesting excerpts (emphasis mine):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair Shak III and Varfolomievka (42 and 28 on Figure 2), they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

morgunova-eneolithic-pontic-caspian
Eneolithic settlements (1–5, 7, 10–16, 20, 22–43, 48, 50), burial grounds (6, 8–9, 17–19, 21, 47, 49) and kurgans (44–46) of the steppe Ural-Volga region: 1 Ivanovka; 2 Turganik; 3 Kuzminki; 4 Mullino; 5 Davlekanovo; 6 Sjezheye (burial ground); 7 Vilovatoe; 8 Ivanovka; 9 Krivoluchye; 10–13 LebjazhinkaI-III-IV-V; 14 Gundorovka; 15–16 Bol. Rakovka I-II; 17–18 Khvalunsk I-II; 19 Lipoviy Ovrag; 20 Alekseevka; 21 Khlopkovskiy; 22 Kuznetsovo I; 23 Ozinki II; 24 Altata; 25 Monakhov I; 26 Oroshaemoe; 27 Rezvoe; 28 Varpholomeevka; 29 Vetelki; 30 Pshenichnoe; 31 Kumuska; 32 Inyasovo; 33 Shapkino VI; 34 Russkoe Truevo I; 35 Tsaritsa I-II; 36 Kamenka I; 37 Kurpezhe-Molla; 38 Istay; 39 Isekiy; 40 Koshalak; 41 Kara-Khuduk; 42 Kair-Shak VI; 43 Kombakte; 44 Berezhnovka I-II; 45 Rovnoe; 46 Politotdelskoe; 47 burial near s. Pushkino; 48 Elshanka; 49 Novoorsk; 50 Khutor Repin. Modified from Morgunova (2014).

But before 4500 BC, CHG ancestry appeared among the EHG hunter-fishers in the middle Volga steppes from Samara to Saratov, at the same time that domesticated cattle and sheep-goats appeared. The Reich lab now has whole-genome aDNA data from more than 30 individuals from three Eneolithic cemeteries in the Volga steppes between the cities of Saratov and Samara (Khlopkov Bugor, Khvalynsk, and Ekaterinovka), all dated around the middle of the fifth millennium BC. Many dates from human bone are older, even before 5000 BC, but they are affected by strong reservoir effects, derived from a diet rich in fish, making them appear too old (Shishlina et al 2009), so the dates I use here accord with published and unpublished dates from a few dated animal bones (not fish-eaters) in graves.

Only three individuals from Khvalynsk are published, and they were first published in a report that did not mention the site in the text (Mathieson et al. 2015), so they went largely unnoticed. Nevertheless, they are crucial for understanding the evolution of the Yamnaya mating network in the steppes. They were mentioned briefly in Damgaard et al (2018) but were not graphed. They were re-analyzed and their admixture components were illustrated in a bar graph in Wang et al (2018: figure 2c), but they are not the principal focus of any published study. All of the authors who examined them agreed that these three Khvalynsk individuals, dated about 4500 BC, showed EHG ancestry admixed substantially with CHG, and not a trace of Anatolian Farmer ancestry, so the CHG was a Hotu-Cave or Kotias-Cave type of un-admixed CHG. The proportion of CHG in the Wang et al. (2018) bar graphs is about 20-30% in two individuals, substantially less CHG than in Yamnaya; but the third Khvalynsk individual had more than 50% CHG, like Yamnaya. The ca. 30 additional unpublished individuals from three middle Volga Eneolithic cemeteries, including Khvalynsk, preliminarily show the same admixed EHG/CHG ancestry in varying proportions. Most of the males belonged to Y-chromosome haplogroup R1b1a, like almost all Yamnaya males, but Khvalynsk also had some minority Y-chromosome haplogroups (R1a, Q1a, J, I2a2) that do not appear or appear only rarely (I2a2) in Yamnaya graves.

eneolithic-steppes
Pontic-Caspian steppe and neighbouring groups in the Neolithic. See full map.

Wang et al. (2018) discovered that this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes. The Progress-2 individuals from North Caucasus steppe graves lived not far from the pre-Maikop farmers of the Belaya valley, but they did not exchange mates, according to their DNA.

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA. After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

eneolithic-early-steppes
Pontic-Caspian steppe and neighbouring groups in the Early Eneolithic. See full map.

Anatolian Farmer ancestry and Yamnaya origins

The Eneolithic Volga-North Caucasus mating network (Khvalynsk/Progress-2 type) exhibited EHG/CHG admixtures and Y-chromosome haplogroups similar to Yamnaya, but without Yamnaya’s additional Anatolian Farmer ancestry. (…)

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes, a surprising but undeniable discovery. Archaeologists have seen connections in ornament types and in some details of funeral ritual between Dnieper-Donets cemeteries of the Mariupol-Nikol’skoe type and cemeteries in the middle Volga steppes such as Khvalynsk and S’yez’zhe (Vasiliev 1981:122-123). Also their cranio-facial types were judged to be similar (Bogdanov and Khokhlov 2012:212). So it it surprising that their aDNA does not indicate any genetic admixture with Khvalynsk or Progress-2. Also, neither they nor the Volga steppe Eneolithic populations showed any Anatolian Farmer ancestry. (…)

All three of the steppe-admixed exceptions were from the Varna region (Mathieson et al. 2018). One of them was the famous “golden man’ at Varna (Krause et al. 2016), Grave 43, whose steppe ancestry was the most doubtful of the three. If he had steppe ancestry, it was sufficiently distant (five+ generations before him) that he was not a statistically significant outlier, but he was displaced in the steppe direction, away from the central values of the majority of typical Anatolian Farmers at Varna and elsewhere. The other two, at Varna (grave 158, a 5-7-year-old girl) and Smyadovo (grave 29, a male 20-25 years old), were statistically significant outliers who had recent steppe ancestry (consistent with grandparents or great-grandparents) of the EHG/CHG Khvalynsk/Progress-2 type, not of the Dnieper Rapids EHG/WHG type.

(…) I believe that the Suvorovo-Cernavoda I movement into the lower Danube valley and the Balkans about 4300 BC separated early PIE-speakers (pre-Anatolian) from the steppe population that stayed behind in the steppes and that later developed into late PIE and Yamnaya.

This archaeological transition marked the breakdown of the mating barrier between steppe and Anatolian Farmer mating networks. After this 4300-4200 BC event, Anatolian Farmer ancestry began to pop up in the steppes. The currently oldest sample with Anatolian Farmer ancestry in the steppes in an individual at Aleksandriya, a Sredni Stog cemetery on the Donets in eastern Ukraine. Sredni Stog has often been discussed as a possible Yamnaya ancestor in Ukraine (Anthony 2007: 239- 254). The single published grave is dated about 4000 BC (4045– 3974 calBC/ 5215±20 BP/ PSUAMS-2832) and shows 20% Anatolian Farmer ancestry and 80% Khvalynsk-type steppe ancestry (CHG&EHG). His Y-chromosome haplogroup was R1a-Z93, similar to the later Sintashta culture and to South Asian Indo-Aryans, and he is the earliest known sample to show the genetic adaptation to lactase persistence (I3910-T). Another pre-Yamnaya grave with Anatolian Farmer ancestry was analyzed from the Dnieper valley at Dereivka, dated 3600-3400 BC (grave 73, 3634–3377 calBC/ 4725±25 BP/ UCIAMS-186349). She also had 20% Anatolian Farmer ancestry, but she showed less CHG than Aleksandriya and more Dereivka-1 ancestry, not surprising for a Dnieper valley sample, but also showing that the old fifth-millennium-type EHG/WHG Dnieper ancestry survived into the fourth millennium BC in the Dnieper valley (Mathieson et al. 2018).

late-eneolithic-repin
Pontic-Caspian steppe and neighbouring groups in the Late Eneolithic. See full map.

Probably, late PIE (Yamnaya) evolved in the same part of the steppes—the Volga-Caucasus steppes between the lower Don, the lower and middle Volga, and the North Caucasus piedmont—where early PIE evolved, and where appropriate EHG/CHG admixtures and Y-chromosome haplogroups were seen already in the Eneolithic (without Anatolian Farmer). There have always been archaeologists who argued for an origin of Yamnaya in the Volga steppes, including Gimbutas (1963), Merpert (1974), and recently Morgunova (2014), who argued that this was where Repin-type ceramics, an important early Yamnaya pottery type, first appeared in dated contexts before Yamnaya, about 3600 BC. The genetic evidence is consistent with Yamnaya EHG/CHG origins in the Volga-Caucasus steppes. Also, if contact with the Maikop culture was a fundamental cause of the innovations in transport and metallurgy that defined the Yamnaya culture, then the lower Don-North Caucasus-lower Volga steppes, closest to the North Caucasus, would be where the earliest phase is expected.

I would still guess that the Darkveti-Meshoko culture and its descendant Maikop culture established the linguistic ancestor of the Northwest Caucasian languages in approximately the region where they remained. I also accept the general consensus that the appearance of the hierarchical Maikop culture about 3600 BC had profound effects on pre-Yamnaya and early Yamnaya steppe cultures. Yamnaya metallurgy borrowed from the Maikop culture two-sided molds, tanged daggers, cast shaft hole axes with a single blade, and arsenical copper. Wheeled vehicles might have entered the steppes through Maikop, revolutionizing steppe economies and making Yamnaya pastoral nomadism possible after 3300 BC.

For those who still hoped that Proto-Indo-Europeans of Yamnaya/Afanasievo ancestry from the Don-Volga region were associated with the expansion of hg. R1a-M417, in a sort of mythical “R1-rich” Indo-European society, it seems this is going to be yet another prediction based on ancestry magic that goes wrong.

Proto-Indo-Europeans were, however, associated with other subclades beyond R1b-M269, probably (as I wrote recently) R1b-V1636, I2a-L699, Q1a-M25, and R1a-YP1272, but also interestingly some J subclade, so let’s see what surprises the new study on Khvalynsk and Yamnaya settlers from the Carpathian Basin brings…

On the bright side, it is indirectly confirmed that late Sredni Stog formed part of the neighbouring Corded Ware-like populations of ca. 20-30%+ Anatolian farmer ancestry that gave Yamnaya its share (ca. 6-10%), relative to the comparatively unmixed Khvalynsk and late Repin population (as shown by Afanasevo).

In this steppe mating network that opened up after the Khvalynsk expansion, the increasing admixture of Anatolian farmer-related ancestry in Yamnaya from east (ca. 2-10%) to west (ca. 6-15%) points to an exogamy of late Repin males in their western/south-western regions with populations around the Don River basin and beyond (and endogamy within the Yamnaya community), in an evolution relevant for language expansions and language contacts during the Late Eneolithic.

NOTE. “Mating network” is my new preferred term for “ancestry”. Also great to see scholars finally talk about “Pre-Yamnaya” ancestry, which – combined with the distinction of Yamnaya from Corded Ware ancestry – will no doubt help differentiate fine-scale population movements of steppe- and forest-steppe-related populations.

north-pontic-kvityana-dereivka-repin
Modified from Rassamakin (1999), adding red color to Repin expansion. The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug.

The whole issue of the JIES is centered on Caucasian influences on Early PIE as an Indo-Uralic dialect, and this language contact/substrate is useful to locate the most likely candidates for the Northeast and Northwest Caucasian and the Proto-Indo-European homelands.

On the other hand, it would also be interesting to read a discussion of how this Volga homeland of Middle PIE and Don-Volga-Ural homeland of Late PIE would be reconciled with the known continuous contacts of Uralic with Middle and Late PIE (see here) to locate the most likely Proto-Uralic homeland.

Especially because Corded Ware fully replaced all sub-Neolithic groups to the north and east of Khvalynsk/Yamnaya, like Volosovo, so no other population neighbouring Middle and Late Proto-Indo-Europeans survived into the Bronze Age…

EDIT: For those new to this blog, this information on unpublished samples from the Volga River basin is yet another confirmation of Khokhlov’s report on the R1b-L23 samples from Yekaterinovka, and its confirmation by a co-author of The unique elite Khvalynsk male from a Yekaterinovskiy Cape burial, apart from more support to the newest data placing Yekaterinovka culturally and probably chronologically between Samara and Khvalynsk.

Related

Yamna/Afanasevo elite males dominated by R1b-L23, Okunevo brings ancient Siberian/Asian population

afanasevo-okunevo

Open access paper New genetic evidence of affinities and discontinuities between bronze age Siberian populations, by Hollard et al., Am J Phys Anthropol. (2018) 00:1–11.

NOTE. This seems to be a peer-reviewed paper based on a more precise re-examination of the samples from Hollard’s PhD thesis, Peuplement du sud de la Sibérie et de l’Altaï à l’âge du Bronze : apport de la paléogénétique (2014).

Interesting excerpts:

Afanasevo and Yamna

The Afanasievo culture is the earliest known archaeological culture of southern Siberia, occupying the Minusinsk-Altai region during the Eneolithic era 3600/3300 BC to 2500 BC (Svyatko et al., 2009; Vadetskaya et al., 2014). Archeological data showed that the Afanasievo culture had strong affinities with the Yamnaya and pre-Yamnaya Eneolithic cultures in the West (Grushin et al., 2009). This suggests a Yamnaya migration into western Altai and into Afanasievo. Note that, in most current publications, “the Yamnaya culture” combines the so-called “classical Yamnaya culture” of the Early Bronze Age and archeological sites of the preceding Repin culture in the middle reaches of the Don and Volga rivers. In the present article we conventionally use the term Yamnaya in the same sense, in which case the beginning of the “Yamnaya culture” can be dated after the middle of the 4th millennium BC, when the Afanasievo culture appeared in the Altai.

Because of numerous traits attributed to early Indo-Europeans and cultural relations with Kurgan steppe cultures, members of the Afanasievo culture are believed to have been Indo-European speakers (Mallory and Mair, 2000). In a recent whole-genome sequencing study, Allentoft et al. (2015) concluded that Eastern Yamnaya individuals and Afanasievo individuals were genetically indistinguishable. Moreover, this study and one published concurrently by Haak et al. (2015) analyzed 11 Eastern Yamnaya males and showed that all of them belonged to the R1b1a1a (formerly R1b1a) (…)

indo-european-uralic-migrations-afanasevo
Early Chalcolithic migrations ca. 3300-2600 BC.

Published works indicate that R1b was a predominant haplogroup from the late Neolithic to the early Bronze Age, notably in the Bell Beaker and Yamnaya cultures (Allentoft et al., 2015; Haak et al., 2015; Lee et al., 2012; Mathieson et al., 2015). Nearly 100% of the Afanasievo men we typed belonged to the R1b1a1a subhaplogroup and, for at least three of them, more precisely to the L23 (xM412) subclade. (…)

(…) our results therefore support the hypothesis of a genetic link between Afanasievo and Yamnaya. This also suggests that R1b was indeed dominant in the early Bronze Age Siberian steppe, at least in individuals that were buried in kurgans (possibly an elite part of the population). The geographical and temporal distribution of subhaplogroup R1b1a1a supports the hypothesis of population expansion from West to East in the Eurasian steppe during this period. It should however be noted that the Yamnaya burials from which the samples for DNA analysis were obtained (Allentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015) were dated within the limits of the Afanasievo period. Ancestors of both East Yamnaya and Afanasievo populations must therefore be sought in the context of earlier Eneolithic cultures in Eastern Europe. Sufficient Y-chromosomal data from such Eneolithic populations is, unfortunately, not yet available.

mtdna-ydna-afanasevo-okunevo
Mitochondrial- (A) and Y- (B) haplogroup distribution in studied populations

Okunevo and paternal lineage shift in South Siberia

Results obtained in the current study, from more than a dozen Okunevo individuals belonging to the earliest stage of Okunevo culture, that is the Uibat period (2500–2200 BC) (Lazaretov, 1997), suggest a discontinuity in the genetic pool between Afanasievo and Okunevo cultures. Although Y-chromosomal data obtained for bearers of the Okunevo culture showed that one individual carried haplogroup R1b, most Okunevo Y-haplogroups are representative of an Asian component represented by paternal lineages Q and NO1.

Okunevo carrier of Y-haplogroup Q1b1a-L54, which also supports this hypothesis (L54 being a marker of the lineage from which M3, the main Ameridian lineage, arose). Okunevo people could therefore be a remnant paleo-Siberian population with possible Afanasievo input, as suggested by the presence of the R1b1a1a2a subhaplogroup in one individual.

indo-european-uralic-migrations-afanasevo-late
Late Chalcolithic migrations ca. 2600-2250 BC.

Replacement of Asian Indo-European elite lineages by R1a

Published genetic data from the late Bronze Age Andronovo culture from the Minusinsk Basin (Keyser et al., 2009), the Sintashta culture from Russia (Allentoft et al., 2015) and the Srubnaya culture from the region of Samara (Mathieson et al., 2015), show that males did not belong to Y-haplogroup R1b but mostly to R1a clades: there appears to have been a change in the dominant Y-chromosomal haplogroup between the early and the late Bronze Age in these regions. Moreover, as described in Allentoft et al. (2015), the Andronovo and Sintashta peoples were closely related to each other but clearly distinct from both Yamnaya and Afanasievo. Although these results do not imply that Y-haplogroup R1b was entirely absent in these later populations, they could correspond to a replacement of the elite between these two main periods and therefore a difference in the haplogroups of the men that were preferentially buried.

indo-european-uralic-migrations-okunevo-andronovo
Early Bronze Age migrations ca. 2250-1750 BC.

Afanasevo and the Tarim Basin

The discovery, in the Tarim Basin, of well-preserved mummies from the Bronze Age allows for the construction of two hypotheses regarding the peopling of the Xinjiang province at this period. The “steppe hypothesis,” argues for a link with nomadic steppe herders (Hemphill and Mallory, 2004), possibly represented in this case by Afanasievo populations and their descendants (Mallory and Mair, 2000). However, newly published cultural data from the burial grounds of Gumugou (Wang, 2014) and Xiaohe (Xinjiang, 2003, 2007) shows material culture and burial rites incompatible with the Afanasievo culture. The earliest 14C date for Tarim Basin burials would place them at the turn of the 2nd millenium BC (Wang, 2013), 500 years after the Afanasievo period.

Instead, early Gumugou and Xiaohe burial grounds were contemporary with the start of the Andronovo period. Likewise, the Bronze Age population of the Xinjiang at Gumugou/Qäwrighul is not phenotypically closest to Afanasievo but to the Andronovo (Fedorovo) group of northeastern Kazakhstan and western Altai (Kozintsev, 2009). Our investigations demonstrate that Y-chromosomal lineage composition is also compatible with the notion that the ancient Tarim population was genetically distinct from the Afanasievo population. The only Y-haplogroup found by Li et al. (2010) in the Bronze Age Tarim Basin population was Y-haplogroup R1a, which suggests a proximity of this population with Andronovo groups rather than Afanasievo groups.

I don’t think these finds are much of a surprise based on what we already know, or need much explanation…

I would add that, once again, we have more proof that the movement of Okunevo and related ancient Siberian migrants from Central or North Asia will not be able to explain the presence of Uralic languages spread over North-East Europe and Scandinavia already during the Bronze Age.

Also interesting is to read in more peer-reviewed papers the idea of Late Indo-European speakers clearly linked to the expansion of patrilineally-related elite males marked by haplogroup R1b-L23, most likely since Eneolithic Khvalynsk/Repin cultures.

Related:

Olalde et al. and Mathieson et al. (Nature 2018): R1b-L23 dominates Bell Beaker and Yamna, R1a-M417 resurges in East-Central Europe during the Bronze Age

The official papers Olalde et al. (Nature 2018) and Mathieson et al. (Nature 2018) have appeared. They are based on the 2017 preprints at BioRxiv The Beaker Phenomenon And The Genomic Transformation Of Northwest Europe and The Genomic History Of Southeastern Europe respectively, but with a sizeable number of new samples.

Papers are behind a paywall, but here are the authors’ shareable links to read the papers and supplementary materials: Olalde et al. (2018), Mathieson et al. (2018).

NOTE: The corresponding datasets have been added to the Reich Lab website. Remember you can use my drafts on DIY Human Ancestry analysis (viz. Plink/Eigensoft, PCA, or ADMIXTURE) to investigate the data further in your own computer.

olalde_pca
Image modified by me, from Olalde et al (2018). PCA of 999 Eurasian individuals. Marked is the late CWC outlier sample from Esperstedt, showing how early East Bell Beaker samples are the closest to Yamna samples.

I don’t have time to analyze the samples in detail right now, but in short they seem to convey the same information as before: in Olalde et al. (2018) the pattern of Y-DNA haplogroup and steppe ancestry distribution is overwhelming, with an all-R1b-L23 Bell Beaker people accompanying steppe ancestry into western Europe.

EDIT: In Mathieson et al. (2018), a sample classified as of Ukraine_Eneolithic from Dereivka ca. 2890-2696 BC is of R1b1a1a2a2-Z2103 subclade, so Western Yamna during the migrations also of R1b-L23 subclades, in contrast with the previous R1a lineages in Ukraine. In Olalde et al. (2018), it is clearly stated that of the four BB individuals with higher steppe ancestry, the two with higher coverage could be classified as of R1b-S116/P312 subclades.

This is compatible with the expansion of Indo-European-speaking Yamna migrants (also mainly of R1b-L23 subclades) into the East Bell Beaker group, as described with detail in Archaeology (and with the population movement we are seeing having been predicted) first by Volker Heyd in 2007.

yamna-bell-beaker
Yamna – East Bell Beaker migration 3000-2300 BC. Adapted from Harrison and Heyd (2007), Heyd (2007)

Also, the resurge of R1a-Z645 subclades in Czech and Polish lands (from previous Corded Ware migrants) accompanying other lineages indigenous to the region – seems to have happened only after the Bell Beaker expansion into these territories, during the Bronze Age, probably leading to the formation of the Balto-Slavic community, as I predicted based on previous papers. The fact that a sample of R1b-U106 subclade pops up in this territory is interesting from the point of view of a shared substrate with Germanic, as is the earlier BB sample of R1b-Z2103 for its connection with Graeco-Aryan dialects.

All this suggests that a North-West Indo-European dialect – ancestor of Italo-Celtic, Germanic, and Balto-Slavic -, supported in Linguistics by most modern Indo-European schools of thought, expanded roughly along the Danube, and later to northern, eastern, and western Europe with the Bell Beaker expansion, as supported in Anthropology by Mallory (in Celtic from the West 2, 2013), and by Prescott for the development of a Nordic or Pre-Germanic language in Scandinavia since 1995.

copper-age-late-bell-beaker
Diachronic map of Late Copper Age migrations including Classical Bell Beaker (east group) expansion from central Europe ca. 2600-2250 BC

Maybe more importantly, the fact that only Indo-Iranian-speaking Sintashta-Petrovka (and later Andronovo) cultures were clearly associated with R1a-Z645 subclades, and rather late – after mixing with early Chalcolithic North Caspian steppe groups (mainly East Yamna and Poltavka herders of R1b-L23 subclades) – gives support to the theory that Corded Ware (and probably the earlier Sredni Stog) groups did not speak or spread Indo-European languages with their migration, but most likely Uralic – as seen in recent papers on the much later arrival of haplogroup N1c – (compatible with the Corded Ware substrate hypothesis), adopting Indo-Iranian by way of cultural diffusion or founder effect events.

As Sheldon Cooper would say,

Under normal circumstances I’d say I told you so. But, as I have told you so with such vehemence and frequency already the phrase has lost all meaning. Therefore, I will be replacing it with the phrase, I informed you thusly

I informed you thusly: