“Steppe ancestry” step by step (2019): Mesolithic to Early Bronze Age Eurasia

Featuredyamnaya-gac-maykop-corded-ware-bell-beaker

The recent update on the Indo-Anatolian homeland in the Middle Volga region and its evolution as the Indo-Tocharian homeland in the Don–Volga area as described in Anthony (2019) has, at last, a strong scientific foundation, as it relies on previous linguistic and archaeological theories, now coupled with ancient phylogeography and genomic ancestry.

There are still some inconsistencies in the interpretation of the so-called “Steppe ancestry”, though, despite the one and a half years that have passed since we first had access to the closest Pontic–Caspian steppe source populations. Even my post “Steppe ancestry” step by step from a year ago is already outdated.

Admixture

The population selection process for models shown below included (1) plausibility of potential influences in the particular geographic and archaeological context; (2) looking for their clusters or particular samples in the PCA; and (3) testing with qpAdm for potential source populations that might have been involved in their development.

The results and graphics posted are therefore intended to simplistically show potential admixture events between populations potentially close to the actual sources of the target samples, whenever such mating networks could be supported by archaeology.

NOTE. This is an informal post and I am not a geneticist, so I am turning this flexibility to my advantage. If any reader is – for some strange reason – looking for a strict hypothesis testing, for the use of a full set of formal stats (as used e.g. in Ning et al. 2019 for Proto-Tocharians), and correctly redacted and peer-reviewed text, this is not the right place to find them.

spatial-pedigree-geographic-admixture
An example pedigree (a) of a focal individual sampled in the modern day, placed in its geographic context to make the spatial pedigree (b). Dashed lines denote matings, and solid lines denote parentage, with red hues for the maternal ancestors and blue hues for the paternal ancestors. In the spatial pedigree, each plane represents a sampled region in a discrete (nonoverlapping) generation, and each dot shows the birth location of an individual. The pedigree of the focal individual is highlighted back through time and across space. Image modified from Bradburd and Ralph (2019).

Despite the natural impulse to draw straight mixture trajectories (see e.g. Wang et al. 2019), simply adding or subtracting samples used for a PCA shows how the plot is affected by different variables (see e.g. what happens by including more South Asian samples to the PCA below), hence the need to draw curved arrows – not necessarily representing a sizable drift; at least not in recent prehistoric admixture events for which we have a reasonable chronological transect.

reich-arrows-admixture-neolithic-bronze-age
Representation of mixture events between European prehistoric peoples in the PCA. Image modified from David Reich‘s Who We Are and How We Got Here (2018).

Ethnolinguistic identification is a risky business that brings back memories of an evil use of cultural history and its consequences (at least in Western Europe, where this tradition was discontinued after WWII), but it seems necessary for those of us who want to find some confirmation of proposed dialectal schemes and language contacts.

Eneolithic Steppe vs. Steppe Maykop

First things first: I tested Bronze Age Eurasian peoples for the only two true steppe populations sampled to date, as potential sources of their “Steppe ancestry” – conventionally described as an EHG:CHG admixture, similar to that found in the first sampled Yamnaya individuals. I used the rightpops of Wang et al. (2018), but with a catch: since authors used WHG as a leftpop and Villabruna as a rightpop, and I find that a little inconsequential*, I preferred the strategy in Ning et al. (2019), contrasting as outgroup Eneolithic_Steppe (ca. 4300 BC) vs. Steppe_Maykop (ca. 3500 BC) when testing for WHG as a source population.

*WHG usually includes samples from a ‘western’ cluster (Loschbour and La Braña) and an ‘eastern’ cluster (Villabruna and Koros), see Lipson et al. (2017). Therefore, it doesn’t make much sense to include the same (or a very similar) population as a source AND an outgroup.

NOTE. For all other qpAdm analyses below, where WHG was not used as leftpop, I have used Villabruna as rightpop following Wang et al. (2019).

greater-caucasus-steppe-ancestry
Map of samples and sites mentioned in Wang et al. (2019), modified from the original to include labels of Eneolithic_Steppe and Steppe_Maykop samples. See PCA and ADMIXTURE grahpic for the identification of specific samples.

Results are not much different from what has been reported. In general, Yamnaya and related groups such as Bell Beakers and Steppe-related Chalcolithic/Bronze Age populations show good fits for Eneolithic_Steppe as their closest source for Steppe ancestry, and bad fits for Steppe_Maykop, whereas Corded Ware groups show the opposite, supporting their known differences.

This trend seems to be tempered in some groups, though, most likely due the influence of Samara_LN-like admixture in Circum-Baltic Late Neolithic and Eastern Corded Ware groups, and the influence of Anatolia_N/EEF-like admixture in Balkan and late European CWC or BBC groups. In fact, the more EEF-related ancestry in a populatoin, the less reliable these generic models (and even specific ones) seem to become when distinguishing the Steppe-related source.

NOTE. For more on this, see the discussion on Circum-Baltic Corded Ware peoples, and the discussion on Mycenaeans and their potential source populations.

These are just broad strokes of what might have happened around the Pontic–Caspian steppes before and during the Early Bronze Age expansions. The most relevant quest right now for Indo-European studies is to ascertain the chain of admixture events that led to the development and expansion of Indo-Uralic and its offshoots, Indo-European and Uralic.

mesolithic-eastern-europe-post-swiderian
Eastern European Mesolithic with the expansion of Post-Swiderian cultures. See full map.

A history of Steppe ancestry

This post is divided in (more or less accurate) chronological developments as follows:

  1. Hunter-gatherer pottery and the steppes
  2. Khvalynsk and Sredni Stog
  3. Post-Stog and Proto-Corded Ware
  4. Yamnaya and Afanasievo

1. Hunter-gatherer pottery and the steppes

I laid out in the ASOSAH book series the general idea – based on attempts to reconstruct the linguistic ancestor of Indo-Uralic – that Eurasiatic speakers might have expanded with the North-Eastern Techno-Complex that spread through north-eastern Europe during the warm period represented by the transition of the Palaeolithic to the Mesolithic.

If one were to trust the traditional migrationist view, a post-Swiderian population expanded from central-eastern Europe (potentially related originally to Epi-Gravettian peoples, represented by WHG ancestry) into north-eastern Europe, and then further east into the Trans-Urals, to then reappear in eastern Europe as a back-migration represented by the spread of hunter-gatherer pottery.

The marked shift from WHG-like towards EHG-related ancestry from Baltic Mesolithic (ca. 30%) to Combed Ware cultures (ca. 65%-100%) supports this continuous westward expansion, that is possibly best represented in the currently available sampling by the ‘south-eastern’ shift (CHG:ANE-related) of the hunter-gatherer from Lebyazhinka IV (5600 BC) relative to the older one from Sidelkino (9300 BC), both from the Samara region in the Middle Volga:

Mesolithic-Neolithic transition ca. 7000-6000 BC, with hunter-gatherer pottery groups spreading westwards. See full map.

From Anthony (2019):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair-Shak III and Varfolomievka, they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

Given the lack of a proper geographical and chronological transect of ancient DNA from eastern European groups, and the discontinuous appearance of both R1b-M73 and R1b-M269 lineages on both sides of the Urals within the WHG:ANE cline, where EHG appears to have formed, it is impossible at this point to assert anything with enough degree of certainty. For simplicity purposes, though, I risked to equate the expansion of R1b-M73 in West Siberia as potentially associated with Micro-Altaic, and the expansion of hg. R1b-M269 with the spread of Indo-Uralic on both sides of the Urals.

NOTE. For incrementally speculative associations of languages with prehistoric cultures and their potential link to ancestry ± haplogroup expansions, you can check sections on Early Indo-Europeans and Uralians, Indo-Uralians, Altaic peoples, Eurasians, or Nostratians. I explained why I made these simplistic choices here.

While this identification of the Indo-Uralic expansion with hg. R1b is more or less straightforward for the Cis-Urals, given the available ancient DNA samples, it will be very difficult (if at all possible) to trace the migration of these originally R1b-M269-rich populations into Trans-Uralian groups that could eventually be linked to Yukaghir speakers. The sheer number of potential admixture events and bottlenecks in Siberian forest, taiga, and tundra regions since the Mesolithic until Yukaghirs were first attested is guaranteed to give more than one headache in upcoming years…

neolithic-steppes-samara-mariupol
Spread of hunter-gatherer pottery in eastern Europe ca. 6000-5000 BC. See full map.

The slight increase in WHG-related ancestry in Ukraine Neolithic groups relative to Mesolithic ones questions the arrival of this eastern influence in the north Pontic area, or at least its relevance in genomic terms, although the cluster formed is similar to the previous one and to Combed Ware groups – despite the Central European and Baltic influences in the north Pontic region – with some samples showing 0% change relative to Mesolithic groups.

ukraine-samara-mesolithic-neolithic-evolution
Structure and change in hunter-gatherer-related populations, from Mathieson et al. (2018). Inferred ancestry proportions for populations modelled as a mixture of WHG, EHG and CHG. Dashed lines show populations from the same geographic region. Percentages indicate proportion of WHG + EHG ancestry. Standard errors range from 1.5 to 8.3%.

NOTE. For more on Indo-Uralic and its reconstruction from a linguistic point of view, check out its dedicated section on ASOSAH, or the recently published (behind paywall) The Precursors of Proto-Indo-European, edited by Kloekhorst and Pronk, Brill (2019). Authors of specific chapters have posted their contributions to Academia.edu, where they can be downloaded for free.

2. Khvalynsk and Sredni Stog

The cluster formed by the three available samples of the Khvalynsk culture (early 5th millennium BC) might be described, as expected from its position in the PCA, as a mixture of EHG-like populations of the Middle Volga with CHG-like ancestry close to that represented by samples from Progress-2 and Vonyuchka, in the North Caucasus Piedmont (ca. 4300 BC):

This variable CHG-like admixture shown in the wide cluster formed by the available Khvalynsk-related samples support the interpretation of a recently created CHG mating network in Anthony (2019):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

steppe-ancestry-pca-neolithic-khvalynsk
Detail of the PCA of Eurasian samples, including Neolithic clusters with the hypothesized gene flows related to (1) the formation and (2) expansion of Khvalynsk and the (3) emergence of late Sredni Stog. See full image.

The richest copper assemblage found in all Khvalynsk burials belongs to an individual of hg. R1b-V1636 and intermediate Samara_HG:Eneolithic_Steppe ancestry, while full Eneolithic_Steppe-like admixture in the Middle Volga is represented by the commoner of Khvalynsk II, of hg. Q1. The finding of hg. R1b-V1636 in the North Caucasus Piedmont – and R1b-P297 in the Samara region (probably including Yekaterinovka) begs the question of the origin of hg. R1b-V1636 in the Khvalynsk community. Based on its absence in ancient samples from the forest zone, it is tempting to assign it to steppe hunter-gatherers down the Lower Volga and possibly to the east of it, who infiltrated the Samara region precisely during these population movements described by Anthony (2019).

Suvorovo-related samples from the Balkans, including the Varna and Smyadovo outliers of Steppe ancestry, are closely related to the Khvalynsk expansion:

Similarly, the ancestry of late Sredni Stog samples from Dereivka seem to be directly related to the expansion of Mariupol-like individuals over populations of Suvorovo-Novodanilovka-like admixture, as suggested by the resurgence of typical Ukraine Neolithic haplogroups, the shift in the PCA, and the models of Eneolithic_Steppe vs. Steppe_Maykop above:

#EDIT (11 Nov 2019): In fact, the position of the unpublished Greece_Neolithic outlier that appeared in the Wang et al. (2018) preprint (see full PCA and ADMIXTURE) show that the expanding Suvorovo chiefs from the Balkans formed a tight cluster close to the two published outliers with Steppe ancestry from Bulgaria.

The Ukraine_Neolithic outlier, possibly a Novodanilovka-related sample suggests, based on its position in the PCA close to the late Trypillian outlier of Steppe-related ancestry, that Ukraine_Eneolithic samples from Dereivka are a mixture of Ukraine_Neolithic and a Novodanilovka-like community similar to Suvorovo.

The Trypillian_Eneolithic-like admixture found among Proto-Corded Ware peoples (see below) would then feature potentially a small Steppe_Eneolithic-like component already present in the north Pontic area, too.

pca-suvorovo-novodanilovka-khvalynsk-trypillia-greece-ukraine-neolithic-outlier
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. Marked and labelled are the Balkan samples referenced in this text An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them. See the original file here.

Furthermore, whereas Anthony (2019) mentions a long-lasting predominance of hg. R1b in elite graves of the Eneolithic Volga basin, not a single sample of hg. R1a is mentioned supporting the community formed by the Alexandria individual, supposedly belonging to late Sredni Stog groups, but with a Corded Ware-like genetic profile (suggesting yet again that it is possibly a wrongly dated sample).

NOTE. A lack of first-hand information rather than an absence of R1a-M417 samples in the north Pontic forest-steppes would not be surprising, since Anthony is involved in the archaeology of the Middle Volga, but not in that of the north Pontic area.

eneolithic-pontic-caspian-steppe-khvalynsk-novodanilovka-suvorovo
Khvalynsk expansion through the Pontic–Caspian steppes in the early 5th millennium BC. See full map.

3. Post-Stog and Proto-Corded Ware

The origin of the Pre-Corded Ware ancestry is still a mystery, because of the heterogeneity of the sampled groups to date, and because the only ancestral sample that had a compatible genetic profile – I6561 from Alexandria – shows some details that make its radiocarbon date rather unlikely.

The most likely explanation for the closest source population of Corded Ware groups, found in the three core samples of Steppe_Maykop and in Trypillian Eneolithic samples from the first half of the 4th millennium BC, is still that a population of north Pontic forest-steppe hunter-gatherers hijacked this kind of ancestry, that was foreign to the north Pontic region before the Late Eneolithic period, later expanding east and west through the Podolian–Volhynian upland, due to the complex population movements of the Late Eneolithic.

NOTE. The idea of Trypillia influencing the formation of the Steppe_MLBA ancestry proper of Uralic peoples has been around for quite some time already, since the publication of Narasimhan et al. (2018) (see here or here).

steppe-ancestry-pca-corded-ware-bronze-age
Detail of the PCA of Eurasian samples, including Corded Ware groups and related clusters, as well as outliers, with hypothesized gene flows related to the (1) formation and (2) initial expansion of Pre-Corded Ware ancestry, as well as (3) later regional admixture events. See full image.

The specifics of how the Proto-Corded Ware community emerged remain unclear at this point, despite the simplistic description by Rassamakin (1999) of the Late Eneolithic north Pontic population movements as a two-stage migration of 1) late Trypillian groups (Usatovo) west → east, and (2) Late Maykop–Novosvobodnaya east → west. So, for example, Manzura (2016) on the Zhivotilovka “cultural-historical horizon” (emphasis mine):

Indeed, the very complex combination of different cultural traits in the burial sites of the Zhivotilovka type is able to generate certain problems in the search for the origins of this phenomenon. The only really consistent attribute is the burial rite in contracted position on the left or right side. Yu. Rassamakin is correct in asserting that this position of the deceased can be considered as new in the North Pontic region (Rassamakin 1999, 97). However, this opinion can be accepted only partially for the territory between Dniester and Lower Don. This position is well known in the Usatovo culture in the Northwest Pontic region, although skeletons on the right side are evidenced there only in double burials, whereas single burials contain the deceased only in a contracted position on the left side. On the other hand, the southern and western orientation of the deceased, which is one of the main burial traits of the Zhivotilovka type, is not characteristic of the Usatovo culture. Nevertheless, it is possible to suppose that at least part of the Usatovo population could have played a part in the formation of the cultural type under consideration here. One aspect of this cultural tradition, for instance, could be represented by skeletons on the left side and oriented in north-eastern and eastern directions.

Especially close ties can be traced between the Zhivotilovka and Maykop-Novosvobodnaya traditions, as exemplified by similar burial customs and various grave goods. It is beyond any doubt that the Maykop-Novosvobodnaya population was actively involved in the spread of the main Zhivotilovka cultural traits. The influence of North Caucasian traditions can be well observed, at least as far as the Dnieper Basin, but farther west influence is not manifested pronouncedly. The role of cultural units situated between the Dniester and Don rivers in the process of emergence of the Zhivotilovka type looks somewhat vague. Now, it can be quite confidently asserted that at the end of the 4th millennium BC this territory was settled by migrants from the North Caucasus and Carpathian-Dniester region. This event in theory had to stimulate cultural transformations in the Azov-Black Sea steppes and, thus, bearers of local cultural traditions perhaps could have participated in forming the culture under consideration. In any event, the Zhivotilovka type can be regarded as a complex phenomenon that emerged within the regime of intensive cultural dialogue and that it absorbed totally diff erent cultural traditions. The spread of the Zhivotilovka graves across the Pontic steppes from the Carpathians to the Lower Don or even to the Kuban Basin clearly signalizes a rapid dissolution of former cultural borders and the beginning of active movements of people, things and ideas over vast territories.

zhivotilovka-horizon-north-pontic-area

What were the factors or reasons that could have provoked this event? In the beginning of the second half of the 4th millennium BC two advanced cultural centers emerged in the south of Eastern Europe. These were the Maykop-Novosvobodnaya and Usatovo cultures, which in spite of their separation by great distances were structurally very alike. This is expressed in similar monumental burial architecture, complex burial rites, even the composition of grave goods, developed bronze metallurgy, high standards of material culture, etc. Both cultures in a completely formed state exemplify prosperous societies with a high level of economic and social organization, which can correspond to the type of ranked or early complex societies. Normally, the social elite in such polities tends to rigidly control basic domains social, economic and spiritual life using different mechanisms, even open compulsion (Earle 1987, 294-297). To some extent similar social entities can be found at this moment in the forest-steppe zone of the Carpathian-Dniester region, as reflected by the well organized settlement of Brânzeni III and the Vykhatitsy cemetery (Маркевич 1981; Дергачев 1978). In spite of their complex character, such societies represent rather friable structures, which could rapidly disintegrate due to unfavourable inner or external factors.

The societies in question emerged and existed during a time of favourable natural climatic conditions, which is considered to be a transitional period from the Atlantic to the Subboreal period, lasting approximately from 3600 to 3300 cal BC, or a climatic optimum for the steppe zone (Иванова и др. 2011, 108; Спиридонова, Алешинская 1999, 30-31). These conditions to a large degree could guarantee a stable exploitation of basic resources and support existing social hierarchies. However, after 3300 cal BC significant climatic changes occurred, accompanied by an increasing aridization and fall in temperature. This event is usually termed the “Piora oscillation” or “Rapid Climatic Event”, and is regarded as having been of global character (Magny, Haas 2004). These rapid changes could have seriously disturbed existing economic and social relations and finally provoked a similar rapid disintegration of complex social structures. In this case the sites of the Zhivotilovka type could represent mere fragments of former prosperous societies, which under conditions of the absence of centralized social control and stable cultural borders tried to recombine social and economic ties. However, the population possessed the necessary social experience and important technological resources, such as developed stock-breeding based on the breeding of small cattle and wheeled transport, so they were ready for opening new territories in their search for a better life.

maykop-trypillia-intrusion-steppes
Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

For more on chronology and the potentially larger, longer-lasting Zhivotilovka–Volchansk–Gordineşti cultural horizon and its expansion through the Podolian–Volhynian upland, read e.g. on the Yampil Complex in the latest volume 22 of Baltic-Pontic Studies (2017):

In the forest-steppe zone of the North-West Pontic area, important data concerning the chronological position of the Zhivotilovka-Volchansk group have been produced by the exploration of the Bursuceni kurgan, which is still awaiting full publication [Yarovoy 1978; cf. also Demcenko 2016; Manzura 2016]. Burials linked with the mentioned group were stratigraphically the eldest in the kurgan, and pre-dated a burial in the extended position and [Yamnaya culture] graves. Two of these burials (features 20 and 21) produced radiocarbon dates falling around 3350-3100 BC [Petrenko, Kovaliukh 2003: 108, Tab. 7]. Similar absolute age determinations were obtained for Podolia kurgans at Prydnistryanske [Goslar et al. 2015]. These dates, falling within the Late Eneolithic, mark the currently oldest horizon of kurgan burials in the forest-steppe zone of the North-West Pontic area. The Podolia graves linked with other, older traditions of the steppe Eneolithic seem to represent a slightly later horizon dated to the transition between the Late Eneolithic and Early Bronze Age.

The presence on the left bank of the Dniester River of kurgans associated with the Eneolithic tradition, which at the same time reveals connections with the Gordineşti-Kasperovce-Horodiştea complex, raises questions about the western range of the new trend in funerary rituals, and its potential connection with the expansion of the late Trypilia culture to the West Podolia and West Volhynia Regions. The data potentially suggesting the attribution of kurgans from the upper Dniester basin to this period is patchy and difficult to verify [e.g. Liczkowce – see Sulimirski 1968: 173]. In this context, the discovery of vessels in the Gordineşti style in a kurgan at Zawisznia near Sokal is inspiring [Antoniewicz 1925].

zhivotilovka-volchansk-burial-podolia
Burials representing funerary traditions of Zhivotilovka-Volchansk group in Podolie kurgans: 1 – Porohy, grave 3A/7, 2 – Kuzmin, grave 2/2 [after Klochko et al. 2015b, Bubulich, Khakhey 2001]

Another interesting aspect of potential source populations, in combination with those above for Eneolithic_Steppe vs. Steppe_Maykop, are groups with worse fits for Steppe_Maykop_core, which include Potapovka and Srubnaya, as reported by Wang et al. (2018), but also Sintastha_MLBA (although not Andronovo). This is compatible with the long-term admixture of Abashevo chiefs dominating over a majority of Poltavka-like herders in the Don-Volga-Ural steppes during the formation of the Sintashta-Potapovka-Filatovka community, also visible in the typical Yamnaya lineages and Yamnaya-like ancestry still appearing in the region centuries after the change in power structures had occurred.

NOTE. If you feel tempted to test for mixtures of Khvalynsk_EN, Eneolithic_Steppe, Yamnaya, etc. as a source population for Corded Ware, go for it, but it’s almost certain to give similar ‘good’ fits – whatever the model – in some Corded Ware groups and not in others. It is still unclear, as far as I know, how to formally distinguish a mixture of Corded Ware-related from a Yamnaya-related source in the same model, and the results obtained with a combination of Steppe_Maykop-related + Eneolithic_Steppe-related sources will probably artificially select either one or the other source, as it probably happened in Ning et al. (2019) with Proto-Tocharian samples (see qpAdm values) that most likely had a contribution of both, based on their known intense interactions in the Tarim Basin.

eneolithic-pontic-caspian-steppes-east-europe
Expansion of north Pontic cultures and related groups during the Late Eneolithic. See full map.

4. Yamnaya and Afanasievo

I don’t think it makes much sense to test for GAC (or Iberia_CA, for that matter) as Wang et al. (2019) did, given the implausibility of them taking part in the formation of late Repin during the mid-4th millennium BC around the Don-Volga interfluve (represented by its offshoots Yamnaya and Afanasievo), whether these or other EEF-related populations show ‘better’ fits or not. Therefore, I only tested for more or less straightforward potential source populations:

steppe-ancestry-pca-yamnaya-hungary-bulgaria-vucedol
Detail of the PCA of Eurasian samples, including Yamnaya groups and related clusters, as well as outliers, with hypothesized gene flows related to its (1) formation and (2) expansion. Also included is the inferred position of the admixed sample Yamnaya_Hungary_EBA1. See full image.

Quite unexpectedly – for me, at least – it appears that Afanasievo and Yamnaya invariably prefer Khvalynsk_EN as the closest source rather than a combination including Eneolithic_Steppe directly. In other words, late Repin shows largely genetic continuity with the Steppe ancestry already shown by the three sampled individuals from the Khvalynsk II cemetery, in line with the known strong bottlenecks of Khvalynsk-related groups under R1b lineages, visible also later in Afanasievo and Yamnaya and derived Indo-European-speaking groups under R1b-L23 subclades.

NOTE. This explains better the reported bad fits of models using directly Eneolithic_Steppe instead of Khvalynsk_EN for Afanasievo and Yamnaya Kalmykia, as is readily evident from the results above, instead of a rejection of an additional contribution to an Eneolithic_Steppe-like population, as I interpreted it, based on Anthony (2019).

repin-zhivotilovka-north-pontic-steppe
Map of major sites of the Zhivotilovka-Volchansk group (A) and Repin culture (B), by Rassamakin (see 1994 and 2013). (A) 1 – Primorskoye; 2 – Vasilevka; 3 – Aleksandrovka; 4 – Boguslav; 5 – Pavlograd; 6 – Zhivotilovka; 7 – Podgorodnoye; 8 – Novomoskovsk; 9- Sokolovo; 10 – Dneprelstan; 11- Razumovka; 12 – Pologi; 13 – Vinogradnoye; 14 – Novo-Filipovka; 15 – Volchansk; 16 – Yuryevka; 17 – Davydovka; 18 – Novovorontsovka; 19 – Ust-Kamenka; 20 – Staroselye; 21- Velikaya Aleksandrovka; 22- Kovalevka; 23 – Tiraspol; 24 – Cura-Bykuluy; 25 – Roshkany; 26 – Tarakliya; 27 – Kazakliya; 28 – Bolgrad; 29 – Sarateny; 30 – Bursucheny; 31 – Novye Duruitory; 232 – Kosteshty. (B) 1 – Podgorovka; 2 – Aleksandria; 3 – Volonterovka; 4 – Zamozhnoye; 5 – Kremenevka; 6 – Ogorodnoye; 7 – Boguslav; 8 – Aleksandrovka; 9 – Verkhnaya Mayevka; 10 – Duma Skela; 11 – Zamozhnoye; 12 – Mikhailovka II.

This might suggest that the Steppe ancestry visible in samples from Progress-2 and Vonyuchka, sharing the same cluster with the Khvalynsk II cemetery commoner of hg. Q1, most likely represents North Caspian or Black Sea–Caspian steppe hunter-gatherer ancestry that increased as Khvalynsk settlers expanded to the south-west towards the Greater Caucasus, probably through female exogamy. That would mean that Steppe_Maykop potentially represents the ‘original’ ancestry of steppe hunter-gatherers of the North Caucasus steppes, which is also weakly supported by the available similar admixture of the Lola culture. The chronology, geographical location and admixture of both clusters seemed to indicate the opposite.

eneolithic-steppe-maykop-ehg-chg-ag2
Modelling results for the Steppe and Caucasus cluster. Additional ‘eastern’ AG-Siberian gene flow in Steppe Maykop relative to Eneolithic Steppe. From Wang et al. (2019).

Due to the limitations of the currently available sampling and statistical tools, and barring the dubious Alexandria outlier, it is unclear how much of the late Trypillian-related admixture of late Repin (as reflected in Yamnaya and Afanasievo) corresponds to late Trypillian, Post-Stog, or Proto-Corded Ware groups from the north Pontic area. A mutual exchange suggestive of a common mating network (also supported by the mixed results obtained when including Khvalynsk_EN as source for early Corded Ware groups) seem to be the strongest proof to date of the Late Proto-Indo-European – Uralic contacts reflected in the period when post-laryngeal vocabulary was borrowed (with some samples predating the merged laryngeal loss), before the period of intense borrowing from Pre- and Proto-Indo-Iranian.

Between-group differences of Yamnaya samples are caused – like those between Corded Ware groups – by the admixture of a rapidly expanding society through exogamy with regional populations, evidenced by the inconstant affinities of western or southern outliers for previous local populations of the west Pontic or Caucasus area. This explanation for the gradual increase in local admixture is also supported by the strong, long-term patrilineal system and female exogamy practiced among expanding Proto-Indo-Europeans.

chalcolithic-early-bronze-yamnaya-corded-ware-vucedol
Groups of the Yamnaya culture and its western expansion after ca. 3100 BC, and Corded Ware after ca. 2900 BC See full map.

Bell Beakers and Mycenaeans

This Eneolithic_Steppe ancestry is also found among Bell Beaker groups (see above). More specifically, all Bell Beaker groups prefer a source closest to a combination of Yamnaya from the Don and Baden LCA individuals from Hungary, rather than with Corded Ware and GAC, despite the quite likely admixture of western Yamnaya settlers with (1) south-eastern European (west Pontic, Balkan) Chalcolithic populations during their expansion through the Lower Danube and with (2) late Corded Ware groups (already admixed with GAC-like populations) during their expansion as East Bell Beakers:

Similarly, Mycenaeans show good fits for a source close to the Yamnaya outlier from Bulgaria:

steppe-ancestry-pca-bell-beakers-mycenaeans
Detail of the PCA of Eurasian samples, including Bell Beaker and Balkan EBA groups and related clusters, as well as outliers, including ancestral Yamnaya samples from Hungary (position inferred) and Bulgaria. Also marked are Minoans, Mycenaeans and Armenian BA samples. See full image.

You can read more on Yamnaya-related admixture of Bell Beakers and Mycenaeans, and on Afanasievo-related admixture of Iron Age Proto-Tocharians.

Conclusion

The use of the concept of “Yamnaya ancestry”, then “Steppe ancestry” (and now even “Yamnaya Steppe ancestry“?) has already permeated the ongoing research of all labs working with human population genomics. Somehow, the conventional use of Yamnaya_Samara samples opposed to a combination of other ancient samples – alternatively selected among WHG, EHG, CHG/Iran_N, Anatolia_N, or ANE – has spread and is now unquestionably accepted as one of the “three quite distinct” ancestral groups that admixed to form the ancestry of modern Europeans, which is a rather odd, simplistic and anachronistic description of prehistory…

It has now become evident that authors involved with the Proto-Indo-European homeland question – and the tightly intertwined one of the Proto-Uralic homeland – are going to dedicate a great part of the discussion of many future papers to correct or outright reject the conclusions of previous publications, instead of simply going forward with new data.

The most striking argument to mistrust the current use of “Steppe ancestry” (as an alternative name for Yamnaya_Samara, and not as ancestry proper of steppe hunter-gatherers) is not the apparent difference in direct Eneolithic sources of Steppe ancestry for Corded Ware and Yamnaya-related peoples – closer to the available samples classified as Steppe_Maykop and Eneolithic_Steppe, respectively – or their different evolution under marked Y-DNA bottlenecks.

It is not even the lack of information about the distant origin of these Pontic–Caspian steppe hunter-gatherers of the 5th and 4th millennium BC, with their shared ancestral component potentially separated during the warmer Palaeolithic-Mesolithic transition, when the steppes were settled, without necessarily sharing any meaningful recent history before the formation of the Proto-Indo-Uralic community.

NOTE. I have raised this question multiple times since 2017 (see e.g. here or here).

The most striking paradox about simplistically misinterpreting “Steppe ancestry” as representative of Indo-European expansions is that those sub-Neolithic Pontic–Caspian steppe hunter-gatherers that had this ancestry in the 6th millennium BC were probably non-Indo-European-speaking communities, most likely related to the North(West) Caucasian language family, based on the substrate of Indo-Anatolian that sets it apart from Uralic within the Indo-Uralic trunk, and on later contacts of Indo-Tocharian with North-West Caucasian and Kartvelian, the former probably represented by Maykop and its contact with the Repin and early Yamnaya cultures.

NOTE. For more on this, see Allan Bomhard’s recent paper on the Caucasian substrate hypothesis and its ongoing supplement Additional Proto-Indo-European/Northwest Caucasian Lexical Parallels.

steppe-ancestry-racimo
“Spatiotemporal kriging of YAM steppe ancestry during the Holocene, using 5000 spatial grid points. The colors represent the predicted ancestry proportion at each point in the grid.” Image with evolution from ca. 2800 BC until the present day, modified from Racimo et al. (2019). The Copenhagen group considers the expansion of this component as representative of expanding Indo-Europeans…

This kind of error happens because we all – hence also authors, peer reviewers, and especially journal editors – love far-fetched conclusions and sensational titles, forgetting what a paper actually shows and – always more importantly in scientific reports – what it doesn’t show. This is particularly true when more than one field is involved and when extraordinary claims involve aspects foreign to the journal’s (and usually the own authors’) main interests. One would have thought that the glottochronological fiasco published in Science in 2012 (open access in PMC) should have taught an important lesson to everyone involved. It didn’t, because apparently no one has felt the responsibility or the shame to retract that paper yet, even in the age of population genomics.

If anything, the excesses of mathematical linguistics – using computational methods to try and reconstruct phylogenetic trees – have perpetuated a form of misunderstood Scientism which blindly relies on a simple promise made by authors in the Materials and Method section (rarely if ever kept beyond it) to use statistics rather than resorting to the harder, well-informed, comprehensive reasoning that is needed in the comparative method. After all, why should anyone invest hundreds of hours (or simply show an interest in) learning about historical linguistics, about ancient Indo-European or Uralic languages, carefully argumenting and discussing each and every detail of the reconstruction, when one can simply rely on the own guts to decide what is Science and what isn’t? When one can trust a promise that formulas have been used?

The conservative, null hypothesis when studying prehistoric Eurasian samples related to evolving cultures was universally understood as no migration, or “pots not people” (as most western archaeologists chose to believe until recently), whereas the alternative one should have been that there were in fact migration events, some of them potentially related to the expansion of Eurasian languages ancestral to the historically attested ones. Beyond this migrationist view there were obviously dozens of thorough theories concerning potential linguistic expansions associated with specific prehistoric cultures, and a myriad of less developed alternatives, all of which deserved to be evaluated after the null hypothesis had been rejected.

Despite the shortcomings of the 2015 papers and their lack of testing or discussion of different language expansion models, the spread of the so-called “Yamnaya ancestry” – an admixture especially prevalent (after the demise of the Yamnaya) among the most likely ancient Uralic-speaking groups as well as among modern Uralic speakers and recently acculturated groups from Eastern Europe – has been nevertheless invariably concluded by each lab to support the theories of their leading archaeologist, often combined with pre-aDNA theories of geneticists based on modern haplogroup distributions. This is as evident a case of confirmation bias, circular reasoning, and jumping to conclusions as it gets.

Why many researchers of other labs have chosen to follow such conclusions instead of challenging or simply ignoring them is difficult to understand.

Related

Bell Beakers and Mycenaeans from Yamnaya; Corded Ware from the forest steppe

eba-yamnaya-ancestry-hungary

I have recently written about the spread of Pre-Yamnaya or Yamnaya ancestry and Corded Ware-related ancestry throughout Eurasia, using exclusively analyses published by professional geneticists, and filling in the gaps and contradictory data with the most reasonable interpretations. I did so consciously, to avoid any suspicion that I was interspersing my own data or cherry picking results.

Now I’m finished recapitulating the known public data, and the only way forward is the assessment of these populations using the available datasets and free tools.

Understanding the complexities of qpAdm is fairly difficult without a proper genetic and statistical background, which I won’t pretend to have, so its tweaking to get strictly correct results would require an unending game of trial and error. I have sadly little time for this, even taking my tendency to procrastination into account… so I have used a simple model akin to those published before – in particular, the outgroup selection by Ning, Wang et al. (2019), who seem to be part of the only group interested in distinguishing Yamnaya-related from Corded Ware-related ancestry, probably the most relevant question discussed today in population genomics regarding the Proto-Indo-European and Proto-Uralic homelands.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

I have used for all analyses below a merged dataset including the curated one of the Reich Lab, the latest on Central and South Asia by Narasimhan, Patterson et al. (2019), on Iberia by Olalde et al. (2019), and on the East Baltic by Saag et al. (2019), as well as datasets including samples from Wang et al. (2019) and Lamnidis et al. (2018). I used (and intend to use) the same merged dataset in all cases, despite its huge size, to avoid adding one more uncontrolled variable to the analyses, so that all results obtained can be compared.

I try to prepare in advance a bunch of relevant files with left pops and right pops for each model:

  1. It seems a priori more reasonable to use geographically and chronologically closer proxy populations (say, Trypillia or GAC for Steppe-related peoples) than hypothetic combinations of ancestral ones (viz. Anatolian farmer, WHG, and EHG).
  2. This also means using subgroups closer to the most likely source population, such as (Don-Volga interfluve) Yamnaya_Kalmykia rather than (Middle Volga) Yamnaya_Samara for the western expansion of late Repin/early Yamnaya, or the early Germany_Corded_Ware.SG or Czech_Corded Ware for the group closest to the Proto-Corded Ware population (see below), likely neighbouring the Upper Vistula region.
  3. I usually test two source populations for different targets, which seems like a much more efficient way of using computer resources, whenever I know what I want to test, since I need my PC back for its normal use; whenever I don’t know exactly what to test, I use three-way admixture models and look for subsets to try and improve the results.

I have probably left out some more complex models by individualizing the most relevant groups, but for the time being this would have to do. Also, no other formal stats have been used in any case, which is an evident shortcoming, ruling out an interpretation drawn directly and only from the results below.

Full qpAdm results for each batch of samples are presented in a Google Spreadsheet, with each tab (bottom of the page) showing a different combination of sources, usually in order of formally ‘best’ (first to the left) to ‘worst’ (last to the right) fits, although the order is difficult to select in highly heterogeneous target groups, as will be readily visible.

maykop-trypillia-intrusion-steppes
Disintegration, migration, and imports of the Azov–Black Sea region. First migration event (solid arrows): Gordineşti–Maikop expansion (groups: I – Bursuchensk; II – Zhyvotylivka; III – Vovchans’k; IV – Crimean; V – Lower Don; VI – pre-Kuban). Second migration event (hollow arrows): Repin expansion. After Rassamakin (1999), Demchenko (2016).

Corded Ware origins

The latest publications on the Yampil barrow complex have not improved much our understanding of the complexity of Corded Ware origins from an archaeological point of view, involving multiple cultural (hence likely population) influences. This bit is from Ivanova et al., Baltic-Pontic Studies (2015) 20:1, and most hypotheses of the paper remain unanswered (except maybe for the relevance of the Złota group):

In the light of the above outline therefore one should argue that the ‘architecture of barrows’ associated in the ‘Yampil landscape’ of the Middle Dniester Area with the Eneolithic (specifically, mainly with the TC), precedes the development of a similar phenomenon that can be observed from 2900/2800 BC in the Upper Dniester Area and drainage basin of the Upper Vistula, associated with the CWC [Goslar et al. 2015; Włodarczak 2006; 2007; 2008; Jarosz, Włodarczak 2007]. The most consuming research question therefore is whether ritual customs making use of Eneolithic (Tripolye) ‘barrow architecture’ could have penetrated northwards along the Dniester route, where GAC communities functioned. One could also ask what role the rituals played among the autochthons [Kośko 2000; Włodarczak 2008; 2014: 335; Ivanova, Toshchev 2015b].

This issue has already been discussed with a resulting tentative systemic taxonomy in the studies of Włodarczak, arguing for the Złota culture (ZC) in the Vistula region as an illustration of one of the (Małopolska) reception centres of civilization inspirations from the oldest Pontic ‘barrow culture’ circle associated with the Eneolithic and Early Bronze Age [Włodarczak 2008]. Notably, it is in the ZC that one can notice a set of cultural traits (catacomb grave construction, burial details, forms and decoration of vessels) analogous to those shared by the north-western Black Sea Coast groups of the forest-steppe Eneolithic (chiefly Zhyvotilovka-Volchansk) and the Late Tripolye circle (chiefly Usatovo-Gordinești-Horodiștea-Kasperovtsy).

gac-trypillia-usatovo-corded-ware
Globular Amphorae culture „exodus” to the Danube Delta: a – Globular Amphorae culture; b – GAC (1), Gorodsk (2), Vykhvatintsy (3) and Usatovo (4) groups of Trypillia culture; c – Coţofeni culture; d – northern border of the late phase of Baden culture;red arrows – direction of Globular Amphora culture expansion; blue arrow – direction of „reflux” of Globular Amphora culture (apud Włodarczak, 2008, with changes).

Taking into account that I6561 might be wrongly dated, we cannot include the Corded Ware-like sample of the end-5th millennium BC in the analysis of Corded Ware origins. That uncertainty in the chronology of the appearance of “Steppe ancestry” in Proto-Corded Ware peoples complicates the selection of any potential source population from the CHG cline.

Nevertheless, the lack of hg. R1a-M417 and sizeable Pre-Yamnaya-related ancestry in the sampled Pontic forest-steppe Eneolithic populations (represented exclusively by two samples from Dereivka ca. 3600-3400 BC) would leave open the interesting possibility that a similar ancestry got to the forest-steppe region between modern Poland and Ukraine during the known complex population movements of the Late Eneolithic.

It is known that Corded Ware-derived groups and Steppe Maykop show bad fits for Pre-Yamnaya/Yamnaya ancestry, and also that Steppe Maykop is a potential source of “Steppe-related ancestry” within the Eneolithic CHG mating network of the Pontic-Caspian steppes and forest-steppes. Testing Corded Ware for recent Trypillia and Maykop influences, proper of Late Trypillia and Late Maykop groups in the North Pontic area (such as Zhyvotylivka–Vovchans’k and Gordineşti) side by side with potential Pre-Yamnaya and Yamnaya sources makes thus sense:

Now, the main obvious difference between Khvalynsk-Yamnaya and Corded Ware is the long-lasting, pervasive Y-chromosome bottlenecks under R1b lineages in the former, compared to the haplogroup variability and late bottleneck under R1a-M417 in the latter, which speaks in favour – on top of everything else – of a different community of sub-Neolithic hunter-gatherers including hg. R1a-M417 hijacking the expansion of Steppe_Maykop-related ancestry around the Volhynian-Podolian Upland.

Akin to how Yamnaya patrilineal descendants hijacked regional EEF (±CWC) ancestry components mainly through exogamy, dragging them into the different expanding Bell Beaker groups (see below), but kept their Indo-European languages, these hunter-gatherers that admixed with peoples of “Steppe ancestry” were the most likely vector of expansion of Uralic languages in Eastern Europe.

corded-ware-from-trypillia-maykop
PCA of ancient Eurasian samples. Marked likely Proto-Corded Ware samples and potential origin of its PCA cluster based on qpAdm results. See full PCA and more related files.

Baltic Corded Ware

One of the most interesting aspects of the results above is the surprising heterogeneity of the different regional groups, which is also reflected in the Y-DNA variability of early Corded Ware samples.

Seeing how Baltic CWC groups, especially the early Latvia_LN sample, show particularly bad fits with the models above, it seems necessary to test how this population might have come to be. My first impression in 2017 was that they could represent early Corded Ware groups admixed with Yamnaya settlers through their interactions along the Dnieper-Dniester corridor.

However, I recently predicted that the most likely admixture leading to their ancestry and PCA cluster would involve a Corded Ware-like group and a group related to sub-Neolithic cultures of eastern Europe, whose best proxy to date are EHG-like Khvalynsk samples (i.e. excluding the outlier with Pre-Yamnaya ancestry, I0434):

corded-ware-pca-sub-neolithic-europe
Detail of the PCA of the Corded Ware expansion. See full PCA and more related files.

Late Corded Ware + Yamnaya vanguard

Relevant are also the mixtures of Corded Ware from Esperstedt, and particularly those of the sample I0104, which I have repeated many times in this blog I suspected to be influenced by vanguard Yamnaya settlers:

The infeasible models of CWC + Yamnaya_Kalmykia ± Hungary_Baden (see below for Bell Beakers) and the potential cluster formed with other samples from the Baltic suggest that it could represent a more complex set of mixtures with sub-Neolithic populations. On the other hand, its location in Germany, late date (ca. 2500 BC or later), and position in the PCA, together with the good fits obtained for Germany_Beaker as a source, suggest that the increase in Steppe-related ancestry + EEF makes it impossible for the model (as I set it) to directly include Yamnaya_Kalmykia, despite this excess Steppe-related ancestry actually coming from Yamnaya vanguard groups.

I think it is very likely that the future publication of EEF-admixed Yamnaya_Hungary samples (or maybe even Yamnaya vanguard samples) will improve the fits of this model.

These results confirm at least the need to distrust the common interpretation of mixtures including late Corded Ware samples from Esperstedt (giving rise to the “up to 75% Yamnaya ancestry of CWC” in the 2015 papers) as representative of the Corded Ware culture as a whole, and to keep always in mind that an admixture of European BA groups including Corded Ware Esperstedt as a source also includes East BBC-like ancestry, unless proven otherwise.

yamnaya-vanguard-corded-ware-chalcolithic-early
Yamnaya vanguard groups in Corded Ware territory before the expansion of Bell Beakers (ca. 2500 BC). See full map.

Bell Beaker expansion

A hotly (re)debated topic in the past 6 months or so, and for all the wrong reasons, is the origin of the Bell Beaker folk. Archaeology, linguistics, and different Y-chromosome bottlenecks clearly indicate that Bell Beakers were at the origin of the North-West Indo-European expansion in Europe, while the survival of Corded Ware-related groups in north-eastern Europe is clearly related to the expansion of Uralic languages.

NOTE. For the interesting case of Proto-Indo-Iranians expanding with Corded Ware-like ancestry, see more on the formation of Sintashta-Potapovka-Filatovka from East Uralic-speaking Abashevo and Pre-Proto-Indo-Iranian-speaking Poltavka herders. See also more on R1a in Indo-Iranians and on the social complexity of Sintashta.

Nevertheless, every single discarded theory out there seems to keep coming back to life from time to time, and a new wave of interest in “Bell Beaker from the Single Grave culture” somehow got revived in the process, too, because this obsession – unlike the “Bell Beakers from Iberia Chalcolithic” – is apparently acceptable in certain circles, for some reason.

We know that Iberian Beakers, British Beakers, or Sicilian EBA – representing the most likely closest source population of speakers of Proto-Galaico-Lusitanian, Pre-Celtic Indo-European, and Proto-Elymian, respectively – have already been successfully tested for a direct origin among Western European Beakers in Olalde et al. (2018), Olalde et al. (2019), and Fernandes et al. (2019).

This success in ascertaining a closer Beaker source is probably due to the physical isolation of the specific groups (related to Germany_Beaker, Netherlands_Beaker, and NE_Mediterranean_Beaker samples, respectively) after their migration into regions dominated by peoples without Steppe-related ancestry. Furthermore, Celtic-speaking populations expanding with Urnfield south of the Pyrenees also show a good fit with a source close to France_Beaker.

So I decided to test sampled Bell Beaker populations, to see if it could shed light to the most likely source population of individual Beaker groups and the direction of migration within Central Europe, i.e. roughly eastwards or westwards. As it was to be expected for closely related populations (see the relevant discussion here), an attempt to offer a simplistic analysis of direction based on formal stats does not make any sense, because most of the alternative hypotheses cannot be rejected:

Not only because of the similar values obtained, but because it is absurd to take p-values as a measure of anything, especially when most of these conflicting groups with slightly ‘better’ or ‘worse’ p-values represent multiple different mixtures of the type (Yamnaya + EEF) + (Corded Ware + EEF ± Yamnaya), impossible to distinguish without selecting proper, direct ancestral populations…

A further example of how explosive the Bell Beaker expansion was into different territories, and of their extensive local admixture, is shown by the unsuccessful attempt by Olalde et al. (2018) to obtain an origin of the EEF source for all Beaker groups (excluding Iberian Beakers):

bell-beaker-local-population-iberia
Investigating the genetic makeup of Beaker-complex-associated individuals. Testing different populations as a source for the Neolithic ancestry component in Beaker-complex-associated individuals. The table shows P values (* indicates values > 0.05) for the fit of the model: ‘Steppe_EBA + Neolithic/Copper Age’ source population.
burials-yamnaya-hungary
Map of attested Yamnaya pit-grave burials in the Hungarian plains; superimposed in shades of blue are common areas covered by floods before the extensive controls imposed in the 19th century; in orange, cumulative thickness of sand, unfavourable loamy sand layer. Marked are settlements/findings of Boleráz (ca. 3500 BC on), Baden (until ca. 2800 BC), Kostolac (precise dates unknown), and Yamna kurgans (from ca. 3100/3000 BC on).

Now, there is a simpler way to understand what kind of Steppe-related ancestry is proper of Bell Beakers. I tested two simple models for some Beaker groups: Yamnaya + Hungary Baden vs. Corded Ware + GAC Poland. After all, the Bell Beaker folk should prefer a source more closely related to either Yamnaya Hungary or Central European Corded Ware:

Interestingly, models including Yamnaya + Baden show good fits for the most important groups related to North-West Indo-Europeans, including Bell Beakers from Germany, the Netherlands, Italy, and Poland, representing the most likely closest source populations of speakers of Pre-Proto-Celtic, Pre-Proto-Germanic, Proto-Italo-Venetic, and Pre-Proto-Balto-Slavic, respectively.

The admixed Yamnaya samples from Hungary that will hopefully be published soon by the Jena Lab will most likely further improve these fits, especially in combination with intermediate Chalcolithic populations of the Middle and Upper Danube and its tributaries, to a point where there will be an absolute chronological and geographical genomic trail from the fully Yamnaya-like Yamnaya settlers from Hungary to all North-West Indo-European-speaking groups of the Early Bronze Age.

The only difference between groups will be the gradual admixture events of their source Beaker group with local populations on their expansion paths, including peoples of mainly EEF, CWC+EEF, or CWC+EEF+Yamnaya related ancestry. There is ample evidence beyond ancestry models to support this, in particular continued Y-DNA bottlenecks under typical Yamnaya paternal lineages, mainly represented by R1b-L51 subclades.

east-bell-beaker-group-expansion
Distribution of the Bell Beaker East Group, with its regional provinces, as of c. 2400 cal BC (after Heyd et al. 2004, modified). See full maps.

European Early Bronze Age

European EBA groups that might show conflicting results due to multiple admixture events with Corded Ware-related populations are the Únětice culture and the Nordic Late Neolithic.

The results for Únětice groups seem to be in line with what is expected of a Central European EBA population derived from Bell Beakers admixed with surrounding poulations of East Bell Beaker and/or late (Epi-)Corded Ware descent.

Potential models of mixture for Nordic Late Neolithic samples – despite the bad fits due to the lack of direct ancestral CWC and BBC groups from Denmark – seem to be impossible to justify as derived exclusively from Single Grave or (even less) from Battle Axe peoples, supporting immigration waves of Bell Beakers from the south and further admixture events with local groups through maritime domination.

PCA of ancient European samples. Marked are Bronze Age clusters. See full PCAs.

Balkans Bronze Age

The potential origin of the typical Corded Ware Steppe-related ancestry in the social upheaval and population movements of the Dnieper-Dniester forest-steppe corridor during the 4th millennium BC raises the question: how much do Balkan Bronze Age groups owe their ancestry to a population different than the spread of Pre-Yamnaya-like Suvorovo-Novodanilovka chieftains? Furthermore, which Bronze Age groups seem to be more likely derived exclusively from Pre-Yamnaya groups, and which are more likely to be derived from a mixture of Yamnaya and Pre-Yamnaya? Do the formal stats obtained correspond to the expected results for each group?

Since the expansion of hg. I2a-L699 (TMRCA ca. 5500 BC) need not be associated with Yamnaya, some of these values – together with the assessment of each individual archaeological culture – may question their origin in a Yamnaya-related expansion rather than in a Khvalynsk-related one.

NOTE. These are the last ones I was able to test yesterday, and I have not thought these models through, so feel free to propose other source and target groups. In particular, complex movements through the North Pontic area during the Late Eneolithic would suggest that there might have been different Steppe-ancestry-related vs. EEF-related interactions in the north-west and west Pontic area before and during the expansion of Yamnaya.

Mycenaeans

One of the key Indo-European populations that should be derived from Yamnaya to confirm the Steppe hypothesis, together with North-West Indo-Europeans, are Proto-Greeks, who will in turn improve our understanding of the preceding Palaeo-Balkan community. Unfortunately, we only have Mycenaean samples from the Aegean, with slight contributions of Steppe-related ancestry.

Still, analyses with potential source populations for this Steppe ancestry show that the Yamnaya outlier from Bulgaria is a good fit:

The comparison of all results makes it quite evident the why of the good fits from (Srubnaya-related) Bulgaria_MLBA I2163 or of Sintashta_MLBA relative to the only a priori reasonable Yamnaya and Catacomb sources: it is not about some hypothetical shared ancestor in Graeco-Aryan-speaking East Yamnaya– or even Catacomb-Poltavka-related groups, because all available Yamnaya-related peoples are almost indistinguishable from each other (at least with the sampling available today). These results reflect a sizeable contribution of similar EEF-related populations from around the Carpathians in both Steppe-related groups: Corded Ware and Yamnaya settlers from the Balkans.

mycenaeans-minyan-ware-greece-minoan
Cultural groups in and around the Balkans during the Early Bronze Age. See full maps.

qpAdm magic

In hobby ancestry magic, as in magic in general, it is not about getting dubious results out of thin air: misdirection is the key. A magician needs to draw the audience attention to ‘remarkable’ ancestry percentages coupled with ‘great’ (?) p-values that purportedly “prove” what the audience expects to see, distracting everyone from the true interesting aspects, like statistical design, the data used (and its shortcomings), other opposing models, a comparison of values, a proper interpretation…you name it.

I reckon – based on the examples above – that the following problems lie at the core of bad uses of qpAdm:

  1. In the formal aspect, the poor understanding of what p-values and other formal stats obtained actually mean, and – more importantly – what they don’t mean. The simplistic trend to accept results of a few analyses at face value is necessarily wrong, in so far as there is often no proper reasoning of what is being assessed and how, and there is never a previous opinion about what could be expected if the alternative hypotheses were true.
  2. In the interpretation aspect, the poor judgement of accompanying any results with simplistic, superficial, irrelevant, and often plainly wrong archaeological or linguistic data selected a posteriori; the inclusion of some racial or sociopolitical overtones in the mixture to set a propitious mood in the target audience; and a sort of ritualistic theatrics with the main theme of ‘winning’, that is best completed with ad hominems.

If you get rid of all this, the most reasonable interpretation of the output of a model proposed and tested should be similar to Nick Patterson’s words in his explanation of qpWave and qpAdm use:

Here we see that, at least in this analysis there are reasonable models with CordedWareNeolithic is a mix of either WHG or LBKNeolithic and YamnayaEBA. (…) The point of this note is not to give a serious phylogenetic analysis but the results here certainly support a major Steppe contribution to the Corded Ware population, which is entirely concordant with the archaeology [?].

Very far, as you can see, from the childish “Eureka! I proved the source!”-kind of thinking common among hobbyists.

The Mycenaean case is an illustrative example: if the Yamnaya outlier from Bulgaria were not available, and if one were not careful when designing and assessing those mixture models, the interpretation would range from erroneous (viz. a Graeco-Aryan substrate, as I initially thought) to impossible (say, inventing migration waves of Sintashta or Srubnaya peoples into Crete). The models presented above show that a contribution of Yamnaya to Mycenaeans couldn’t be rejected, and this alone should have been enough to accept Yamnaya as the most likely source population of “Steppe ancestry” in Proto-Greeks, pending intermediate samples from the Balkans. In other words, one could actually find that ‘the best’ p-values for source populations of Mycenaeans is a combination of modern Poles + Turks, despite the impracticality of such a model…

I haven’t been able to reproduce results which supposedly showed that Corded Ware is more likely to be derived from (Pre-)Yamnaya than other source population, or that Corded Ware is better suited as the ancestral population of Bell Beakers. The analyses above show values in line with what has been published in recent scientific papers, and what should be expected based on linguistics and archaeology. So I’ll go out on a limb here and say that it’s only through a careful selection of outgroups and samples tested, and of as few compared models as possible, that you could eventually get this kind of results and interpretation, if at all.

Whether that kind of special care for outgroups and samples is about (a) an acceptable fine-tuning of the analyses, (b) a simplistic selection dragged from the first papers published and applied indiscriminately to all models, or (c) cherry picking analyses until results fit the expected outcome, is a question that will become mostly irrelevant when future publications continue to support an origin of the expansion of ancient Indo-European languages in Khvalynsk- and Yamnaya-related migrations.

Feel free to suggest (reasonable) modifications to correct some of these models in the comments. Also, be sure to check out other values such as proportions, SD or SNPs of the different results that I might have not taken into account when assessing ‘good’ or ‘bad’ fits.

Related

Yamnaya ancestry: mapping the Proto-Indo-European expansions

steppe-ancestry-expansion-europe

The latest papers from Ning et al. Cell (2019) and Anthony JIES (2019) have offered some interesting new data, supporting once more what could be inferred since 2015, and what was evident in population genomics since 2017: that Proto-Indo-Europeans expanded under R1b bottlenecks, and that the so-called “Steppe ancestry” referred to two different components, one – Yamnaya or Steppe_EMBA ancestry – expanding with Proto-Indo-Europeans, and the other one – Corded Ware or Steppe_MLBA ancestry – expanding with Uralic speakers.

The following maps are based on formal stats published in the papers and supplementary materials from 2015 until today, mainly on Wang et al. (2018 & 2019), Mathieson et al. (2018) and Olalde et al. (2018), and others like Lazaridis et al. (2016), Lazaridis et al. (2017), Mittnik et al. (2018), Lamnidis et al. (2018), Fernandes et al. (2018), Jeong et al. (2019), Olalde et al. (2019), etc.

NOTE. As in the Corded Ware ancestry maps, the selected reports in this case are centered on the prototypical Yamnaya ancestry vs. other simplified components, so everything else refers to simplistic ancestral components widespread across populations that do not necessarily share any recent connection, much less a language. In fact, most of the time they clearly didn’t. They can be interpreted as “EHG that is not part of the Yamnaya component”, or “CHG that is not part of the Yamnaya component”. They can’t be read as “expanding EHG people/language” or “expanding CHG people/language”, at least no more than maps of “Steppe ancestry” can be read as “expanding Steppe people/language”. Also, remember that I have left the default behaviour for color classification, so that the highest value (i.e. 1, or white colour) could mean anything from 10% to 100% depending on the specific ancestry and period; that’s what the legend is for… But, fere libenter homines id quod volunt credunt.

Sections:

  1. Neolithic or the formation of Early Indo-European
  2. Eneolithic or the expansion of Middle Proto-Indo-European
  3. Chalcolithic / Early Bronze Age or the expansion of Late Proto-Indo-European
  4. European Early Bronze Age and MLBA or the expansion of Late PIE dialects

1. Neolithic

Anthony (2019) agrees with the most likely explanation of the CHG component found in Yamnaya, as derived from steppe hunter-fishers close to the lower Volga basin. The ultimate origin of this specific CHG-like component that eventually formed part of the Pre-Yamnaya ancestry is not clear, though:

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA.

neolithic-chg-ancestry
Natural neighbor interpolation of CHG ancestry among Neolithic populations. See full map.

The typical EHG component that formed part eventually of Pre-Yamnaya ancestry came from the Middle Volga Basin, most likely close to the Samara region, as shown by the sampled Samara hunter-gatherer (ca. 5600-5500 BC):

After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed.

neolithic-ehg-ancestry
Natural neighbor interpolation of EHG ancestry among Neolithic populations. See full map.

To the west, in the Dnieper-Dniester area, WHG became the dominant ancestry after the Mesolithic, at the expense of EHG, revealing a likely mating network reaching to the north into the Baltic:

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes (…)

neolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Neolithic populations. See full map.

North-West Anatolia Neolithic ancestry, proper of expanding Early European farmers, is found up to border of the Dniester, as Anthony (2007) had predicted.

neolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Neolithic populations. See full map.

2. Eneolithic

From Anthony (2019):

After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

(…) this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes.

From Wang et al (2019):

Three individuals from the sites of Progress 2 and Vonyuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbour EHG and CHG related ancestry, are genetically very similar to Eneolithic individuals from Khvalynsk II and the Samara region. This extends the cline of dilution of EHG ancestry via CHG-related ancestry to sites immediately north of the Caucasus foothills

eneolithic-pre-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Neolithic populations. See full map. This map corresponds roughly to the map of Khvalynsk-Novodanilovka expansion, and in particular to the expansion of horse-head pommel-scepters (read more about Khvalynsk, and specifically about horse symbolism)

NOTE. Unpublished samples from Ekaterinovka have been previously reported as within the R1b-L23 tree. Interestingly, although the Varna outlier is a female, the Balkan outlier from Smyadovo shows two positive SNP calls for hg. R1b-M269. However, its poor coverage makes its most conservative haplogroup prediction R-M343.

The formation of this Pre-Yamnaya ancestry sets this Volga-Caucasus Khvalynsk community apart from the rest of the EHG-like population of eastern Europe.

eneolithic-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Eneolithic populations. See full map.

Anthony (2019) seems to rely on ADMIXTURE graphics when he writes that the late Sredni Stog sample from Alexandria shows “80% Khvalynsk-type steppe ancestry (CHG&EHG)”. While this seems the most logical conclusion of what might have happened after the Suvorovo-Novodanilovka expansion through the North Pontic steppes (see my post on “Steppe ancestry” step by step), formal stats have not confirmed that.

In fact, analyses published in Wang et al. (2019) rejected that Corded Ware groups are derived from this Pre-Yamnaya ancestry, a reality that had been already hinted in Narasimhan et al. (2018), when Steppe_EMBA showed a poor fit for expanding Srubna-Andronovo populations. Hence the need to consider the whole CHG component of the North Pontic area separately:

eneolithic-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Eneolithic populations. See full map. You can read more about population movements in the late Sredni Stog and closer to the Proto-Corded Ware period.

NOTE. Fits for WHG + CHG + EHG in Neolithic and Eneolithic populations are taken in part from Mathieson et al. (2019) supplementary materials (download Excel here). Unfortunately, while data on the Ukraine_Eneolithic outlier from Alexandria abounds, I don’t have specific data on the so-called ‘outlier’ from Dereivka compared to the other two analyzed together, so these maps of CHG and EHG expansion are possibly showing a lesser distribution to the west than the real one ca. 4000-3500 BC.

eneolithic-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Eneolithic populations. See full map.

Anatolia Neolithic ancestry clearly spread to the east into the north Pontic area through a Middle Eneolithic mating network, most likely opened after the Khvalynsk expansion:

eneolithic-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Eneolithic populations. See full map.
eneolithic-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Eneolithic populations. See full map.

Regarding Y-chromosome haplogroups, Anthony (2019) insists on the evident association of Khvalynsk, Yamnaya, and the spread of Pre-Yamnaya and Yamnaya ancestry with the expansion of elite R1b-L754 (and some I2a2) individuals:

eneolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Early Eneolithic in the Pontic-Caspian steppes. See full map, and see culture, ADMIXTURE, Y-DNA, and mtDNA maps of the Early Eneolithic and Late Eneolithic.

3. Early Bronze Age

Data from Wang et al. (2019) show that Corded Ware-derived populations do not have good fits for Eneolithic_Steppe-like ancestry, no matter the model. In other words: Corded Ware populations show not only a higher contribution of Anatolia Neolithic ancestry (ca. 20-30% compared to the ca. 2-10% of Yamnaya); they show a different EHG + CHG combination compared to the Pre-Yamnaya one.

eneolithic-steppe-best-fits
Supplementary Table 13. P values of rank=2 and admixture proportions in modelling Steppe ancestry populations as a three-way admixture of Eneolithic steppe Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Test, Eneolithic_steppe, Anatolian_Neolithic, WHG.
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Yamnaya Kalmykia and Afanasievo show the closest fits to the Eneolithic population of the North Caucasian steppes, rejecting thus sizeable contributions from Anatolia Neolithic and/or WHG, as shown by the SD values. Both probably show then a Pre-Yamnaya ancestry closest to the late Repin population.

wang-eneolithic-steppe-caucasus-yamnaya
Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional AF ancestry in Steppe groups and additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups. See tables above. Modified from Wang et al. (2019). Within a blue square, Yamnaya-related groups; within a cyan square, Corded Ware-related groups. Green background behind best p-values. In red circle, SD of AF/WHG ancestry contribution in Afanasevo and Yamnaya Kalmykia, with ranges that almost include 0%.

EBA maps include data from Wang et al. (2018) supplementary materials, specifically unpublished Yamnaya samples from Hungary that appeared in analysis of the preprint, but which were taken out of the definitive paper. Their location among Yamnaya settlers from Hungary is speculative, although most uncovered kurgans in Hungary are concentrated in the Tisza-Danube interfluve.

eba-yamnaya-ancestry
Natural neighbor interpolation of Pre-Yamnaya ancestry among Early Bronze Age populations. See full map. This map corresponds roughly with the known expansion of late Repin/Yamnaya settlers.

The Y-chromosome bottleneck of elite males from Proto-Indo-European clans under R1b-L754 and some I2a2 subclades, already visible in the Khvalynsk sampling, became even more noticeable in the subsequent expansion of late Repin/early Yamnaya elites under R1b-L23 and I2a-L699:

chalcolithic-early-y-dna
Y-DNA haplogroups in West Eurasia during the Yamnaya expansion. See full map and maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Chalcolithic and Yamnaya Hungary.

Maps of CHG, EHG, Anatolia Neolithic, and probably WHG show the expansion of these components among Corded Ware-related groups in North Eurasia, apart from other cultures close to the Caucasus:

NOTE. For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you can read the post Corded Ware ancestry in North Eurasia and the Uralic expansion.

eba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Early Bronze Age populations. See full map.
eba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Early Bronze Age populations. See full map.
eba-whg-ancestry
Natural neighbor interpolation of WHG ancestry among Early Bronze Age populations. See full map.
eba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Early Bronze Age populations. See full map.
eba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Early Bronze Age populations. See full map.

4. Middle to Late Bronze Age

The following maps show the most likely distribution of Yamnaya ancestry during the Bell Beaker-, Balkan-, and Sintashta-Potapovka-related expansions.

4.1. Bell Beakers

The amount of Yamnaya ancestry is probably overestimated among populations where Bell Beakers replaced Corded Ware. A map of Yamnaya ancestry among Bell Beakers gets trickier for the following reasons:

  • Expanding Repin peoples of Pre-Yamnaya ancestry must have had admixture through exogamy with late Sredni Stog/Proto-Corded Ware peoples during their expansion into the North Pontic area, and Sredni Stog in turn had probably some Pre-Yamnaya admixture, too (although they don’t appear in the simplistic formal stats above). This is supported by the increase of Anatolia farmer ancestry in more western Yamna samples.
  • Later, Yamnaya admixed through exogamy with Corded Ware-like populations in Central Europe during their expansion. Even samples from the Middle to Upper Danube and around the Lower Rhine will probably show increasing contributions of Steppe_MLBA, at the same time as they show an increasing proportion of EEF-related ancestry.
  • To complicate things further, the late Corded Ware Espersted family (from ca. 2500 BC or later) shows, in turn, what seems like a recent admixture with Yamnaya vanguard groups, with the sample of highest Yamnaya ancestry being the paternal uncle of other individuals (all of hg. R1a-M417), suggesting that there might have been many similar Central European mating networks from the mid-3rd millennium BC on, of (mainly) Yamnaya-like R1b elites displaying a small proportion of CW-like ancestry admixing through exogamy with Corded Ware-like peoples who already had some Yamnaya ancestry.
mlba-yamnaya-ancestry
Natural neighbor interpolation of Yamnaya ancestry among Middle to Late Bronze Age populations (Esperstedt CWC site close to BK_DE, label is hidden by BK_DE_SAN). See full map. You can see how this map correlated with the map of Late Copper Age migrations and Yamanaya into Bell Beaker expansion.

NOTE. Terms like “exogamy”, “male-driven migration”, and “sex bias”, are not only based on the Y-chromosome bottlenecks visible in the different cultural expansions since the Palaeolithic. Despite the scarce sampling available in 2017 for analysis of “Steppe ancestry”-related populations, it appeared to show already a male sex bias in Goldberg et al. (2017), and it has been confirmed for Neolithic and Copper Age population movements in Mathieson et al. (2018) – see Supplementary Table 5. The analysis of male-biased expansion of “Steppe ancestry” in CWC Esperstedt and Bell Beaker Germany is, for the reasons stated above, not very useful to distinguish their mutual influence, though.

Based on data from Olalde et al. (2019), Bell Beakers from Germany are the closest sampled ones to expanding East Bell Beakers, and those close to the Rhine – i.e. French, Dutch, and British Beakers in particular – show a clear excess “Steppe ancestry” due to their exogamy with local Corded Ware groups:

Only one 2-way model fits the ancestry in Iberia_CA_Stp with P-value>0.05: Germany_Beaker + Iberia_CA. Finding a Bell Beaker-related group as a plausible source for the introduction of steppe ancestry into Iberia is consistent with the fact that some of the individuals in the Iberia_CA_Stp group were excavated in Bell Beaker associated contexts. Models with Iberia_CA and other Bell Beaker groups such as France_Beaker (P-value=7.31E-06), Netherlands_Beaker (P-value=1.03E-03) and England_Beaker (P-value=4.86E-02) failed, probably because they have slightly higher proportions of steppe ancestry than the true source population.

olalde-iberia-chalcolithic

The exogamy with Corded Ware-like groups in the Lower Rhine Basin seems at this point undeniable, as is the origin of Bell Beakers around the Middle-Upper Danube Basin from Yamnaya Hungary.

To avoid this excess “Steppe ancestry” showing up in the maps, since Bell Beakers from Germany pack the most Yamnaya ancestry among East Bell Beakers outside Hungary (ca. 51.1% “Steppe ancestry”), I equated this maximum with BK_Scotland_Ach (which shows ca. 61.1% “Steppe ancestry”, highest among western Beakers), and applied a simple rule of three for “Steppe ancestry” in Dutch and British Beakers.

NOTE. Formal stats for “Steppe ancestry” in Bell Beaker groups are available in Olalde et al. (2018) supplementary materials (PDF). I didn’t apply this adjustment to Bk_FR groups because of the R1b Bell Beaker sample from the Champagne/Alsace region reported by Samantha Brunel that will pack more Yamnaya ancestry than any other sampled Beaker to date, hence probably driving the Yamnaya ancestry up in French samples.

The most likely outcome in the following years, when Yamnaya and Corded Ware ancestry are investigated separately, is that Yamnaya ancestry will be much lower the farther away from the Middle and Lower Danube region, similar to the case in Iberia, so the map above probably overestimates this component in most Beakers to the north of the Danube. Even the late Hungarian Beaker samples, who pack the highest Yamnaya ancestry (up to 75%) among Beakers, represent likely a back-migration of Moravian Beakers, and will probably show a contribution of Corded Ware ancestry due to the exogamy with local Moravian groups.

Despite this decreasing admixture as Bell Beakers spread westward, the explosive expansion of Yamnaya R1b male lineages (in words of David Reich) and the radical replacement of local ones – whether derived from Corded Ware or Neolithic groups – shows the true extent of the North-West Indo-European expansion in Europe:

chalcolithic-late-y-dna
Y-DNA haplogroups in West Eurasia during the Bell Beaker expansion. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Late Copper Age and of the Yamnaya-Bell Beaker transition.

4.2. Palaeo-Balkan

There is scarce data on Palaeo-Balkan movements yet, although it is known that:

  1. Yamnaya ancestry appears among Mycenaeans, with the Yamnaya Bulgaria sample being its best current ancestral fit;
  2. the emergence of steppe ancestry and R1b-M269 in the eastern Mediterranean was associated with Ancient Greeks;
  3. Thracians, Albanians, and Armenians also show R1b-M269 subclades and “Steppe ancestry”.

4.3. Sintashta-Potapovka-Filatovka

Interestingly, Potapovka is the only Corded Ware derived culture that shows good fits for Yamnaya ancestry, despite having replaced Poltavka in the region under the same Corded Ware-like (Abashevo) influence as Sintashta.

This proves that there was a period of admixture in the Pre-Proto-Indo-Iranian community between CWC-like Abashevo and Yamnaya-like Catacomb-Poltavka herders in the Sintashta-Potapovka-Filatovka community, probably more easily detectable in this group because of the specific temporal and geographic sampling available.

srubnaya-yamnaya-ehg-chg-ancestry
Supplementary Table 14. P values of rank=3 and admixture proportions in modelling Steppe ancestry populations as a four-way admixture of distal sources EHG, CHG, Anatolian_Neolithic and WHG using 14 outgroups.
Left populations: Steppe cluster, EHG, CHG, WHG, Anatolian_Neolithic
Right populations: Mbuti.DG, Ust_Ishim.DG, Kostenki14, MA1, Han.DG, Papuan.DG, Onge.DG, Villabruna, Vestonice16, ElMiron, Ethiopia_4500BP.SG, Karitiana.DG, Natufian, Iran_Ganj_Dareh_Neolithic.

Srubnaya ancestry shows a best fit with non-Pre-Yamnaya ancestry, i.e. with different CHG + EHG components – possibly because the more western Potapovka (ancestral to Proto-Srubnaya Pokrovka) also showed good fits for it. Srubnaya shows poor fits for Pre-Yamnaya ancestry probably because Corded Ware-like (Abashevo) genetic influence increased during its formation.

On the other hand, more eastern Corded Ware-derived groups like Sintashta and its more direct offshoot Andronovo show poor fits with this model, too, but their fits are still better than those including Pre-Yamnaya ancestry.

mlba-ehg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya EHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-chg-ancestry
Natural neighbor interpolation of non-Pre-Yamnaya CHG ancestry among Middle to Late Bronze Age populations. See full map.
mlba-anatolia-farmer-ancestry
Natural neighbor interpolation of Anatolia Neolithic ancestry among Middle to Late Bronze Age populations. See full map.
mlba-iran-chl-ancestry
Natural neighbor interpolation of Iran Chl. ancestry among Middle to Late Bronze Age populations. See full map.

NOTE For maps with actual formal stats of Corded Ware ancestry from the Early Bronze Age to the modern times, you should read the post Corded Ware ancestry in North Eurasia and the Uralic expansion instead.

The bottleneck of Proto-Indo-Iranians under R1a-Z93 was not yet complete by the time when the Sintashta-Potapovka-Filatovka community expanded with the Srubna-Andronovo horizon:

early-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the European Early Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Bronze Age.

4.4. Afanasevo

At the end of the Afanasevo culture, at least three samples show hg. Q1b (ca. 2900-2500 BC), which seemed to point to a resurgence of local lineages, despite continuity of the prototypical Pre-Yamnaya ancestry. On the other hand, Anthony (2019) makes this cryptic statement:

Yamnaya men were almost exclusively R1b, and pre-Yamnaya Eneolithic Volga-Caspian-Caucasus steppe men were principally R1b, with a significant Q1a minority.

Since the only available samples from the Khvalynsk community are R1b (x3), Q1a(x1), and R1a(x1), it seems strange that Anthony would talk about a “significant minority”, unless Q1a (potentially Q1b in the newer nomenclature) will pop up in some more individuals of those ca. 30 new to be published. Because he also mentions I2a2 as appearing in one elite burial, it seems Q1a (like R1a-M459) will not appear under elite kurgans, although it is still possible that hg. Q1a was involved in the expansion of Afanasevo to the east.

middle-bronze-age-y-dna
Y-DNA haplogroups in West Eurasia during the Middle Bronze Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Middle Bronze Age and the Late Bronze Age.

Okunevo, which replaced Afanasevo in the Altai region, shows a majority of hg. Q1b, but also some R1b-M269 samples proper of Afanasevo, suggesting partial genetic continuity.

NOTE. Other sampled Siberian populations clearly show a variety of Q subclades that likely expanded during the Palaeolithic, such as Baikal EBA samples from Ust’Ida and Shamanka with a majority of Q1b, and hg. Q reported from Elunino, Sagsai, Khövsgöl, and also among peoples of the Srubna-Andronovo horizon (the Krasnoyarsk MLBA outlier), and in Karasuk.

From Damgaard et al. Science (2018):

(…) in contrast to the lack of identifiable admixture from Yamnaya and Afanasievo in the CentralSteppe_EMBA, there is an admixture signal of 10 to 20% Yamnaya and Afanasievo in the Okunevo_EMBA samples, consistent with evidence of western steppe influence. This signal is not seen on the X chromosome (qpAdm P value for admixture on X 0.33 compared to 0.02 for autosomes), suggesting a male-derived admixture, also consistent with the fact that 1 of 10 Okunevo_EMBA males carries a R1b1a2a2 Y chromosome related to those found in western pastoralists. In contrast, there is no evidence of western steppe admixture among the more eastern Baikal region region Bronze Age (~2200 to 1800 BCE) samples.

This Yamnaya ancestry has been also recently found to be the best fit for the Iron Age population of Shirenzigou in Xinjiang – where Tocharian languages were attested centuries later – despite the haplogroup diversity acquired during their evolution, likely through an intermediate Chemurchek culture (see a recent discussion on the elusive Proto-Tocharians).

Haplogroup diversity seems to be common in Iron Age populations all over Eurasia, most likely due to the spread of different types of sociopolitical structures where alliances played a more relevant role in the expansion of peoples. A well-known example of this is the spread of Akozino warrior-traders in the whole Baltic region under a partial N1a-VL29-bottleneck associated with the emerging chiefdom-based systems under the influence of expanding steppe nomads.

early-iron-age-y-dna
Y-DNA haplogroups in West Eurasia during the Early Iron Age. See full map and see maps of cultures, ADMIXTURE, Y-DNA, and mtDNA of the Early Iron Age and Late Iron Age.

Surprisingly, then, Proto-Tocharians from Shirenzigou pack up to 74% Yamnaya ancestry, in spite of the 2,000 years that separate them from the demise of the Afanasevo culture. They show more Yamnaya ancestry than any other population by that time, being thus a sort of Late PIE fossils not only in their archaic dialect, but also in their genetic profile:

shirenzigou-afanasievo-yamnaya-andronovo-srubna-ulchi-han

The recent intrusion of Corded Ware-like ancestry, as well as the variable admixture with Siberian and East Asian populations, both point to the known intense Old Iranian and Old/Middle Chinese contacts. The scarce Proto-Samoyedic and Proto-Turkic loans in Tocharian suggest a rather loose, probably more distant connection with East Uralic and Altaic peoples from the forest-steppe and steppe areas to the north (read more about external influences on Tocharian).

Interestingly, both R1b samples, MO12 and M15-2 – likely of Asian R1b-PH155 branch – show a best fit for Andronovo/Srubna + Hezhen/Ulchi ancestry, suggesting a likely connection with Iranians to the east of Xinjiang, who later expanded as the Wusun and Kangju. How they might have been related to Huns and Xiongnu individuals, who also show this haplogroup, is yet unknown, although Huns also show hg. R1a-Z93 (probably most R1a-Z2124) and Steppe_MLBA ancestry, earlier associated with expanding Iranian peoples of the Srubna-Andronovo horizon.

All in all, it seems that prehistoric movements explained through the lens of genetic research fit perfectly well the linguistic reconstruction of Proto-Indo-European and Proto-Uralic.

Related

Volga Basin R1b-rich Proto-Indo-Europeans of (Pre-)Yamnaya ancestry

yamnaya-expansion

New paper (behind paywall) by David Anthony, Archaeology, Genetics, and Language in the Steppes: A Comment on Bomhard, complementing in a favourable way Bomhard’s Caucasian substrate hypothesis in the current issue of the JIES.

NOTE. I have tried to access this issue for some days, but it’s just not indexed in my university library online service (ProQuest) yet. This particular paper is on Academia.edu, though, as are Bomhard’s papers on this issue in his site.

Interesting excerpts (emphasis mine):

Along the banks of the lower Volga many excavated hunting-fishing camp sites are dated 6200-4500 BC. They could be the source of CHG ancestry in the steppes. At about 6200 BC, when these camps were first established at Kair Shak III and Varfolomievka (42 and 28 on Figure 2), they hunted primarily saiga antelope around Dzhangar, south of the lower Volga, and almost exclusively onagers in the drier desert-steppes at Kair-Shak, north of the lower Volga. Farther north at the lower/middle Volga ecotone, at sites such as Varfolomievka and Oroshaemoe hunter-fishers who made pottery similar to that at Kair-Shak hunted onagers and saiga antelope in the desert-steppe, horses in the steppe, and aurochs in the riverine forests. Finally, in the Volga steppes north of Saratov and near Samara, hunter-fishers who made a different kind of pottery (Samara type) and hunted wild horses and red deer definitely were EHG. A Samara hunter-gatherer of this era buried at Lebyazhinka IV, dated 5600-5500 BC, was one of the first named examples of the EHG genetic type (Haak et al. 2015). This individual, like others from the same region, had no or very little CHG ancestry. The CHG mating network had not yet reached Samara by 5500 BC.

morgunova-eneolithic-pontic-caspian
Eneolithic settlements (1–5, 7, 10–16, 20, 22–43, 48, 50), burial grounds (6, 8–9, 17–19, 21, 47, 49) and kurgans (44–46) of the steppe Ural-Volga region: 1 Ivanovka; 2 Turganik; 3 Kuzminki; 4 Mullino; 5 Davlekanovo; 6 Sjezheye (burial ground); 7 Vilovatoe; 8 Ivanovka; 9 Krivoluchye; 10–13 LebjazhinkaI-III-IV-V; 14 Gundorovka; 15–16 Bol. Rakovka I-II; 17–18 Khvalunsk I-II; 19 Lipoviy Ovrag; 20 Alekseevka; 21 Khlopkovskiy; 22 Kuznetsovo I; 23 Ozinki II; 24 Altata; 25 Monakhov I; 26 Oroshaemoe; 27 Rezvoe; 28 Varpholomeevka; 29 Vetelki; 30 Pshenichnoe; 31 Kumuska; 32 Inyasovo; 33 Shapkino VI; 34 Russkoe Truevo I; 35 Tsaritsa I-II; 36 Kamenka I; 37 Kurpezhe-Molla; 38 Istay; 39 Isekiy; 40 Koshalak; 41 Kara-Khuduk; 42 Kair-Shak VI; 43 Kombakte; 44 Berezhnovka I-II; 45 Rovnoe; 46 Politotdelskoe; 47 burial near s. Pushkino; 48 Elshanka; 49 Novoorsk; 50 Khutor Repin. Modified from Morgunova (2014).

But before 4500 BC, CHG ancestry appeared among the EHG hunter-fishers in the middle Volga steppes from Samara to Saratov, at the same time that domesticated cattle and sheep-goats appeared. The Reich lab now has whole-genome aDNA data from more than 30 individuals from three Eneolithic cemeteries in the Volga steppes between the cities of Saratov and Samara (Khlopkov Bugor, Khvalynsk, and Ekaterinovka), all dated around the middle of the fifth millennium BC. Many dates from human bone are older, even before 5000 BC, but they are affected by strong reservoir effects, derived from a diet rich in fish, making them appear too old (Shishlina et al 2009), so the dates I use here accord with published and unpublished dates from a few dated animal bones (not fish-eaters) in graves.

Only three individuals from Khvalynsk are published, and they were first published in a report that did not mention the site in the text (Mathieson et al. 2015), so they went largely unnoticed. Nevertheless, they are crucial for understanding the evolution of the Yamnaya mating network in the steppes. They were mentioned briefly in Damgaard et al (2018) but were not graphed. They were re-analyzed and their admixture components were illustrated in a bar graph in Wang et al (2018: figure 2c), but they are not the principal focus of any published study. All of the authors who examined them agreed that these three Khvalynsk individuals, dated about 4500 BC, showed EHG ancestry admixed substantially with CHG, and not a trace of Anatolian Farmer ancestry, so the CHG was a Hotu-Cave or Kotias-Cave type of un-admixed CHG. The proportion of CHG in the Wang et al. (2018) bar graphs is about 20-30% in two individuals, substantially less CHG than in Yamnaya; but the third Khvalynsk individual had more than 50% CHG, like Yamnaya. The ca. 30 additional unpublished individuals from three middle Volga Eneolithic cemeteries, including Khvalynsk, preliminarily show the same admixed EHG/CHG ancestry in varying proportions. Most of the males belonged to Y-chromosome haplogroup R1b1a, like almost all Yamnaya males, but Khvalynsk also had some minority Y-chromosome haplogroups (R1a, Q1a, J, I2a2) that do not appear or appear only rarely (I2a2) in Yamnaya graves.

eneolithic-steppes
Pontic-Caspian steppe and neighbouring groups in the Neolithic. See full map.

Wang et al. (2018) discovered that this middle Volga mating network extended down to the North Caucasian steppes, where at cemeteries such as Progress-2 and Vonyuchka, dated 4300 BC, the same Khvalynsk-type ancestry appeared, an admixture of CHG and EHG with no Anatolian Farmer ancestry, with steppe-derived Y-chromosome haplogroup R1b. These three individuals in the North Caucasus steppes had higher proportions of CHG, overlapping Yamnaya. Without any doubt, a CHG population that was not admixed with Anatolian Farmers mated with EHG populations in the Volga steppes and in the North Caucasus steppes before 4500 BC. We can refer to this admixture as pre-Yamnaya, because it makes the best currently known genetic ancestor for EHG/CHG R1b Yamnaya genomes. The Progress-2 individuals from North Caucasus steppe graves lived not far from the pre-Maikop farmers of the Belaya valley, but they did not exchange mates, according to their DNA.

The hunter-fisher camps that first appeared on the lower Volga around 6200 BC could represent the migration northward of un-admixed CHG hunter-fishers from the steppe parts of the southeastern Caucasus, a speculation that awaits confirmation from aDNA. After 5000 BC domesticated animals appeared in these same sites in the lower Volga, and in new ones, and in grave sacrifices at Khvalynsk and Ekaterinovka. CHG genes and domesticated animals flowed north up the Volga, and EHG genes flowed south into the North Caucasus steppes, and the two components became admixed. After approximately 4500 BC the Khvalynsk archaeological culture united the lower and middle Volga archaeological sites into one variable archaeological culture that kept domesticated sheep, goats, and cattle (and possibly horses). In my estimation, Khvalynsk might represent the oldest phase of PIE.

eneolithic-early-steppes
Pontic-Caspian steppe and neighbouring groups in the Early Eneolithic. See full map.

Anatolian Farmer ancestry and Yamnaya origins

The Eneolithic Volga-North Caucasus mating network (Khvalynsk/Progress-2 type) exhibited EHG/CHG admixtures and Y-chromosome haplogroups similar to Yamnaya, but without Yamnaya’s additional Anatolian Farmer ancestry. (…)

Like the Mesolithic and Neolithic populations here, the Eneolithic populations of Dnieper-Donets II type seem to have limited their mating network to the rich, strategic region they occupied, centered on the Rapids. The absence of CHG shows that they did not mate frequently if at all with the people of the Volga steppes, a surprising but undeniable discovery. Archaeologists have seen connections in ornament types and in some details of funeral ritual between Dnieper-Donets cemeteries of the Mariupol-Nikol’skoe type and cemeteries in the middle Volga steppes such as Khvalynsk and S’yez’zhe (Vasiliev 1981:122-123). Also their cranio-facial types were judged to be similar (Bogdanov and Khokhlov 2012:212). So it it surprising that their aDNA does not indicate any genetic admixture with Khvalynsk or Progress-2. Also, neither they nor the Volga steppe Eneolithic populations showed any Anatolian Farmer ancestry. (…)

All three of the steppe-admixed exceptions were from the Varna region (Mathieson et al. 2018). One of them was the famous “golden man’ at Varna (Krause et al. 2016), Grave 43, whose steppe ancestry was the most doubtful of the three. If he had steppe ancestry, it was sufficiently distant (five+ generations before him) that he was not a statistically significant outlier, but he was displaced in the steppe direction, away from the central values of the majority of typical Anatolian Farmers at Varna and elsewhere. The other two, at Varna (grave 158, a 5-7-year-old girl) and Smyadovo (grave 29, a male 20-25 years old), were statistically significant outliers who had recent steppe ancestry (consistent with grandparents or great-grandparents) of the EHG/CHG Khvalynsk/Progress-2 type, not of the Dnieper Rapids EHG/WHG type.

(…) I believe that the Suvorovo-Cernavoda I movement into the lower Danube valley and the Balkans about 4300 BC separated early PIE-speakers (pre-Anatolian) from the steppe population that stayed behind in the steppes and that later developed into late PIE and Yamnaya.

This archaeological transition marked the breakdown of the mating barrier between steppe and Anatolian Farmer mating networks. After this 4300-4200 BC event, Anatolian Farmer ancestry began to pop up in the steppes. The currently oldest sample with Anatolian Farmer ancestry in the steppes in an individual at Aleksandriya, a Sredni Stog cemetery on the Donets in eastern Ukraine. Sredni Stog has often been discussed as a possible Yamnaya ancestor in Ukraine (Anthony 2007: 239- 254). The single published grave is dated about 4000 BC (4045– 3974 calBC/ 5215±20 BP/ PSUAMS-2832) and shows 20% Anatolian Farmer ancestry and 80% Khvalynsk-type steppe ancestry (CHG&EHG). His Y-chromosome haplogroup was R1a-Z93, similar to the later Sintashta culture and to South Asian Indo-Aryans, and he is the earliest known sample to show the genetic adaptation to lactase persistence (I3910-T). Another pre-Yamnaya grave with Anatolian Farmer ancestry was analyzed from the Dnieper valley at Dereivka, dated 3600-3400 BC (grave 73, 3634–3377 calBC/ 4725±25 BP/ UCIAMS-186349). She also had 20% Anatolian Farmer ancestry, but she showed less CHG than Aleksandriya and more Dereivka-1 ancestry, not surprising for a Dnieper valley sample, but also showing that the old fifth-millennium-type EHG/WHG Dnieper ancestry survived into the fourth millennium BC in the Dnieper valley (Mathieson et al. 2018).

late-eneolithic-repin
Pontic-Caspian steppe and neighbouring groups in the Late Eneolithic. See full map.

Probably, late PIE (Yamnaya) evolved in the same part of the steppes—the Volga-Caucasus steppes between the lower Don, the lower and middle Volga, and the North Caucasus piedmont—where early PIE evolved, and where appropriate EHG/CHG admixtures and Y-chromosome haplogroups were seen already in the Eneolithic (without Anatolian Farmer). There have always been archaeologists who argued for an origin of Yamnaya in the Volga steppes, including Gimbutas (1963), Merpert (1974), and recently Morgunova (2014), who argued that this was where Repin-type ceramics, an important early Yamnaya pottery type, first appeared in dated contexts before Yamnaya, about 3600 BC. The genetic evidence is consistent with Yamnaya EHG/CHG origins in the Volga-Caucasus steppes. Also, if contact with the Maikop culture was a fundamental cause of the innovations in transport and metallurgy that defined the Yamnaya culture, then the lower Don-North Caucasus-lower Volga steppes, closest to the North Caucasus, would be where the earliest phase is expected.

I would still guess that the Darkveti-Meshoko culture and its descendant Maikop culture established the linguistic ancestor of the Northwest Caucasian languages in approximately the region where they remained. I also accept the general consensus that the appearance of the hierarchical Maikop culture about 3600 BC had profound effects on pre-Yamnaya and early Yamnaya steppe cultures. Yamnaya metallurgy borrowed from the Maikop culture two-sided molds, tanged daggers, cast shaft hole axes with a single blade, and arsenical copper. Wheeled vehicles might have entered the steppes through Maikop, revolutionizing steppe economies and making Yamnaya pastoral nomadism possible after 3300 BC.

For those who still hoped that Proto-Indo-Europeans of Yamnaya/Afanasievo ancestry from the Don-Volga region were associated with the expansion of hg. R1a-M417, in a sort of mythical “R1-rich” Indo-European society, it seems this is going to be yet another prediction based on ancestry magic that goes wrong.

Proto-Indo-Europeans were, however, associated with other subclades beyond R1b-M269, probably (as I wrote recently) R1b-V1636, I2a-L699, Q1a-M25, and R1a-YP1272, but also interestingly some J subclade, so let’s see what surprises the new study on Khvalynsk and Yamnaya settlers from the Carpathian Basin brings…

On the bright side, it is indirectly confirmed that late Sredni Stog formed part of the neighbouring Corded Ware-like populations of ca. 20-30%+ Anatolian farmer ancestry that gave Yamnaya its share (ca. 6-10%), relative to the comparatively unmixed Khvalynsk and late Repin population (as shown by Afanasevo).

In this steppe mating network that opened up after the Khvalynsk expansion, the increasing admixture of Anatolian farmer-related ancestry in Yamnaya from east (ca. 2-10%) to west (ca. 6-15%) points to an exogamy of late Repin males in their western/south-western regions with populations around the Don River basin and beyond (and endogamy within the Yamnaya community), in an evolution relevant for language expansions and language contacts during the Late Eneolithic.

NOTE. “Mating network” is my new preferred term for “ancestry”. Also great to see scholars finally talk about “Pre-Yamnaya” ancestry, which – combined with the distinction of Yamnaya from Corded Ware ancestry – will no doubt help differentiate fine-scale population movements of steppe- and forest-steppe-related populations.

north-pontic-kvityana-dereivka-repin
Modified from Rassamakin (1999), adding red color to Repin expansion. The system of the latest Eneolithic Pointic cultures and the sites of the Zhivotilovo-Volchanskoe type: 1) Volchanskoe; 2) Zhivotilovka; 3) Vishnevatoe; 4) Koisug.

The whole issue of the JIES is centered on Caucasian influences on Early PIE as an Indo-Uralic dialect, and this language contact/substrate is useful to locate the most likely candidates for the Northeast and Northwest Caucasian and the Proto-Indo-European homelands.

On the other hand, it would also be interesting to read a discussion of how this Volga homeland of Middle PIE and Don-Volga-Ural homeland of Late PIE would be reconciled with the known continuous contacts of Uralic with Middle and Late PIE (see here) to locate the most likely Proto-Uralic homeland.

Especially because Corded Ware fully replaced all sub-Neolithic groups to the north and east of Khvalynsk/Yamnaya, like Volosovo, so no other population neighbouring Middle and Late Proto-Indo-Europeans survived into the Bronze Age…

EDIT: For those new to this blog, this information on unpublished samples from the Volga River basin is yet another confirmation of Khokhlov’s report on the R1b-L23 samples from Yekaterinovka, and its confirmation by a co-author of The unique elite Khvalynsk male from a Yekaterinovskiy Cape burial, apart from more support to the newest data placing Yekaterinovka culturally and probably chronologically between Samara and Khvalynsk.

Related

“Steppe ancestry” step by step: Khvalynsk, Sredni Stog, Repin, Yamna, Corded Ware

dzudzuana_pca-large

Wang et al. (2018) is obviously a game changer in many aspects. I have already written about the upcoming Yamna Hungary samples, about the new Steppe_Eneolithic and Caucasus Eneolithic keystones, and about the upcoming Greece Neolithic samples with steppe ancestry.

An interesting aspect of the paper, hidden among so many relevant details, is a clearer picture of how the so-called Yamnaya or steppe ancestry evolved from Samara hunter-gatherers to Yamna nomadic pastoralists, and how this ancestry appeared among Proto-Corded Ware populations.

anatolia-neolithic-steppe-eneolithic
Image modified from Wang et al. (2018). Marked are in orange: equivalent Steppe_Maykop ADMIXTURE; in red, approximate limit of Anatolia_Neolithic ancestry found in Yamna populations; in blue, Corded Ware-related groups. “Modelling results for the Steppe and Caucasus cluster. Admixture proportions based on (temporally and geographically) distal and proximal models, showing additional Anatolian farmer-related ancestry in Steppe groups as well as additional gene flow from the south in some of the Steppe groups as well as the Caucasus groups.”

Please note: arrows of “ancestry movement” in the following PCAs do not necessarily represent physical population movements, or even ethnolinguistic change. To avoid misinterpretations, I have depicted arrows with Y-DNA haplogroup migrations to represent the most likely true ethnolinguistic movements. Admixture graphics shown are from Wang et al. (2018), and also (the K12) from Mathieson et al. (2018).

1. Samara to Early Khvalynsk

The so-called steppe ancestry was born during the Khvalynsk expansion through the steppes, probably through exogamy of expanding elite clans (eventually all R1b-M269 lineages) originally of Samara_HG ancestry. The nearest group to the ANE-like ghost population with which Samara hunter-gatherers admixed is represented by the Steppe_Eneolithic / Steppe_Maykop cluster (from the Northern Caucasus Piedmont).

Steppe_Eneolithic samples, of R1b1 lineages, are probably expanded Khvalynsk peoples, showing thus a proximate ancestry of an Early Eneolithic ghost population of the Northern Caucasus. Steppe_Maykop samples represent a later replacement of this Steppe_Eneolithic population – and/or a similar population with further contribution of ANE-like ancestry – in the area some 1,000 years later.

PCA-caucasus-steppe-samara

This is what Steppe_Maykop looks like, different from Steppe_Eneolithic:

steppe-maykop-admixture

NOTE. This admixture shows how different Steppe_Maykop is from Steppe_Eneolithic, but in the different supervised ADMIXTURE graphics below Maykop_Eneolithic is roughly equivalent to Eneolithic_Steppe (see orange arrow in ADMIXTURE graphic above). This is useful for a simplified analysis, but actual differences between Khvalynsk, Sredni Stog, Afanasevo, Yamna and Corded Ware are probably underestimated in the analyses below, and will become clearer in the future when more ancestral hunter-gatherer populations are added to the analysis.

2. Early Khvalynsk expansion

We have direct data of Khvalynsk-Novodanilovka-like populations thanks to Khvalynsk and Steppe_Eneolithic samples (although I’ve used the latter above to represent the ghost Caucasus population with which Samara_HG admixed).

We also have indirect data. First, there is the PCA with outliers:

PCA-khvalynsk-steppe

Second, we have data from north Pontic Ukraine_Eneolithic samples (see next section).

Third, there is the continuity of late Repin / Afanasevo with Steppe_Eneolithic (see below).

3. Proto-Corded Ware expansion

It is unclear if R1a-M459 subclades were continuously in the steppe and resurged after the Khvalynsk expansion, or (the most likely option) they came from the forested region of the Upper Dnieper area, possibly from previous expansions there with hunter-gatherer pottery.

Supporting the latter is the millennia-long continuity of R1b-V88 and I2a2 subclades in the north Pontic Mesolithic, Neolithic, and Early Eneolithic Sredni Stog culture, until ca. 4500 BC (and even later, during the second half).

Only at the end of the Early Eneolithic with the disappearance of Novodanilovka (and beginning of the steppe ‘hiatus’ of Rassamakin) is R1a to be found in Ukraine again (after disappearing from the record some 2,000 years earlier), related to complex population movements in the north Pontic area.

NOTE. In the PCA, a tentative position of Novodanilovka closer to Anatolia_Neolithic / Dzudzuana ancestry is selected, based on the apparent cline formed by Ukraine_Eneolithic samples, and on the position and ancestry of Sredni Stog, Yamna, and Corded Ware later. A good alternative would be to place Novodanilovka still closer to the Balkan outliers (i.e. Suvorovo), and a source closer to EHG as the ancestry driven by the migration of R1a-M417.

PCA-sredni-stog-steppe

The first sample with steppe ancestry appears only after 4250 BC in the forest-steppe, centuries after the samples with steppe ancestry from the Northern Caucasus and the Balkans, which points to exogamy of expanding R1a-M417 lineages with the remnants of the Novodanilovka population.

steppe-ancestry-admixture-sredni-stog

4. Repin / Early Yamna expansion

We don’t have direct data on early Repin settlers. But we do have a very close representative: Afanasevo, a population we know comes directly from the Repin/late Khvalynsk expansion ca. 3500/3300 BC (just before the emergence of Early Yamna), and which shows fully Steppe_Eneolithic-like ancestry.

afanasevo-admixture

Compared to this eastern Repin expansion that gave Afanasevo, the late Repin expansion to the west ca. 3300 BC that gave rise to the Yamna culture was one of colonization, evidenced by the admixture with north Pontic (Sredni Stog-like) populations, no doubt through exogamy:

PCA-repin-yamna

This admixture is also found (in lesser proportion) in east Yamna groups, which supports the high mobility and exogamy practices among western and eastern Yamna clans, not only with locals:

yamnaya-admixture

5. Corded Ware

Corded Ware represents a quite homogeneous expansion of a late Sredni Stog population, compatible with the traditional location of Proto-Corded Ware peoples in the steppe-forest/forest zone of the Dnieper-Dniester region.

PCA-latvia-ln-steppe

We don’t have a comparison with Ukraine_Eneolithic or Corded Ware samples in Wang et al. (2018), but we do have proximate sources for Abashevo, when compared to the Poltavka population (with which it admixed in the Volga-Ural steppes): Sintashta, Potapovka, Srubna (with further Abashevo contribution), and Andronovo:

sintashta-poltavka-andronovo-admixture

The two CWC outliers from the Baltic show what I thought was an admixture with Yamna. However, given the previous mixture of Eneolithic_Steppe in north Pontic steppe-forest populations, this elevated “steppe ancestry” found in Baltic_LN (similar to west Yamna) seems rather an admixture of Baltic sub-Neolithic peoples with a north Pontic Eneolithic_Steppe-like population. Late Repin settlers also admixed with a similar population during its colonization of the north Pontic area, hence the Baltic_LN – west Yamna similarities.

NOTE. A direct admixture with west Yamna populations through exogamy by the ancestors of this Baltic population cannot be ruled out yet (without direct access to more samples), though, because of the contacts of Corded Ware with west Yamna settlers in the forest-steppe regions.

steppe-ancestry-admixture-latvia

A similar case is found in the Yamna outlier from Mednikarovo south of the Danube. It would be absurd to think that Yamna from the Balkans comes from Corded Ware (or vice versa), just because the former is closer in the PCA to the latter than other Yamna samples. The same error is also found e.g. in the Corded Ware → Bell Beaker theory, because of their proximity in the PCA and their shared “steppe ancestry”. All those theories have been proven already wrong.

NOTE. A similar fallacy is found in potential Sintashta→Mycenaean connections, where we should distinguish statistically that result from an East/West Yamna + Balkans_BA admixture. In fact, genetic links of Mycenaeans with west Yamna settlers prove this (there are some related analyses in Anthrogenica, but the site is down at this moment). To try to relate these two populations (separated more than 1,000 years before Sintashta) is like comparing ancient populations to modern ones, without the intermediate samples to trace the real anthropological trail of what is found…Pure numbers and wishful thinking.

Conclusion

Yamna and Corded Ware show a similar “steppe ancestry” due to convergence. I have said so many times (see e.g. here). This was clear long ago, just by looking at the Y-chromosome bottlenecks that differentiate them – and Tomenable noticed this difference in ADMIXTURE from the supplementary materials in Mathieson et al. (2017), well before Wang et al. (2018).

This different stock stems from (1) completely different ancestral populations + (2) different, long-lasting Y-chromosome bottlenecks. Their similarities come from the two neighbouring cultures admixing with similar populations.

If all this does not mean anything, and each lab was going to support some pre-selected archaeological theories from the 1960s or the 1980s, coupled with outdated linguistic models no matter what – Anthony’s model + Ringe’s glottochronological tree of the early 2000s in the Reich Lab; and worse, Kristiansen’s CWC-IE + Germano-Slavonic models of the 1940s in the Copenhagen group – , I have to repeat my question again:

What’s (so much published) ancient DNA useful for, exactly?

See also

Related

The Yampil Barrow complex and the Yamna connection with forest-steppe cultures

yamna-diet-pca

Researchers involved in the investigation of the Yampil Barrow Complex are taking the opportunity of their latest genetic paper to publish and upload more papers in Academia.edu.

NOTE. These are from the free volume 22 of Baltic-Pontic Studies, Podolia “Barrow Culture” Communities: 4th/3rd-2nd Mill. BC. The Yampil Barrow Complex: Interdisciplinary Studies, whose website gives a warning depending on your browser (because of the lack of secure connection). Here is a link to the whole PDF.

Here are some of them, with interesting excerpts (emphasis mine):

1. Kurgan rites in the Eneolithic and Early Bronze age Podolia in light of materials from the funerary ceremonial centre at Yampil, by Piotr Włodarczak (2017).

The particular interest in this group stemmed from its specific location within the “Yamnaya cultural-historical entity”: its exposure to Central European Corded ware culture (further as CWC) on the one hand, and discernible contact with communities representing the Globular Amphorae culture (GAC), expanding to the south-east, on the other [e.g. Szmyt 1999; 2000]. The location on the fringes of the north-western variant of the Yamnaya culture (YC) [acc. to Merpert 1974; cf Rassamakin 2013a; 2013b; Rassamakin, Nikolova 2008] opened up an interesting perspective for tracing the transfer of Central European cultural patterns to the North Pontic area, and for determining the specificity of the cultural model of steppe communities, which due to their geographic location seemed somehow predestined for westward expansion.

yampil-barrow-complex
locations of Eneolithic and Early bronze age kurgan cemeteries in Podolia 1-7 – yampil cluster (1 – dobrianka, 2 – Klembivka, 3 – Pidlisivka, 4 – Porohy, 5 – Pysarivka, 6 – Prydnistryanske, 7 – Severynivka), 8-11 – Kamienka cluster (8 – hrustovaia, 9 – Kuzmin, 10 – Ocniţa, 11 – Podoima), 12 – mocra, 13 – Tymkove

Podolia kurgans originate from various stages of the Eneolithic and Early bronze ages, and this chronological diversity is reflected in differences in construction of mounds and central graves for which kurgans were originally built (being burials of the “kurgans’ founders”). These oldest burials link with various Eneolithic and YC communities, and the taxonomic attribution of some of the phenomena discussed here poses difficulties. This stems from the nature of the finds, which are sometimes only slightly distinctive and often retrieved from contexts difficult to interpret (e.g. from kurgans damaged to a significant degree). Another reason for the high discordance and ambiguity of opinions lies in the nature of the problem itself, since taxonomic definitions can be no more than proxies for cultural processes which are both fluid and multi-directional. This is particularly evident for phenomena associated with the Eneolithic and the very beginnings of the Bronze Age in steppe and forest-steppe areas [e.g. Rassamakin 2013; Manzura 2016], while later stages (the classic and late YC) are marked by much more regularity in terms of funeral rituals. Funerary behaviours displayed by Eneolithic steppe groups were the outcome of intercultural relationships and often combined elements borrowed from different milieus [e.g. Rassamakin 2008: 215, 216]. One consequence of this is the multitude of approaches to the description of Eneolithic phenomena proposed in the literature, with the controversies the situation creates. This is also true for the Podolia kurgans discussed here, where chronology is relatively easy to interpret while taxonomical attributions are much more difficult. A good example in this context is a recently published complex at Prydnistryanske, which has been linked either with the late Trypilia group of Gordinești [Klochko et al 2015d] or with the Eneolithic steppe formation known as Zhivotilovka-Volchansk [Manzura 2016], or recently with the Bursuceni group [Demcenko 2016].

A distinct feature of Podolia kurgans having YC burials is the multi-phase nature of their mounds, a feature recorded throughout the North Pontic area. It is particularly evident in the cases of sequences of burials (typically two burials) placed in the central parts of kurgans and connected with separate stages of the mound’s construction. In this context, the temporal and cultural relationship between the older and younger burial becomes a very interesting issue. Younger burials typically revealed traits characteristic of the YC complex, while older ones were often different and distinguished by a different shape of the grave pit and sometimes a different arrangement and orientation of the body as well. In the most evident cases, older pits held a body in the extended position, reminiscent of the Postmariupol/ Kvityana tradition (…). In such cases, the older grave often stands out with a funerary tradition diverging from model YC behaviours, in terms of orientation, body position, and constructional features.

yamna-corded-ware-podolia-yampil
Location of Yampil and Kamienka ceremonial centres, and barrows of the Yamnaya culture, Corded Ware culture, and Late Eneolithic groups of the Podolia Plateau and adjacent areas. Legend. 1 – barrows and barrow groups of the Yamnaya culture; 2 – barrows and barrow groups of the Corded Ware culture; 3 – Eneolithic barrows; 4 – barrows of undetermined cultural attribution, dated to the 3rd millennium BC [after Włodarczak 2014b, revised]

Kvitjana and Trypillia

The Pre-Yamnaya (Eneolithic) phase came to be distinguished in kurgan cemeteries from the Podolie region after the discovery of burials in extended position (i.e. of the Kvityana/Postmariupol type) at Ocniţa (Fig 10: 2, 3) [kurgans 6 and 7; Manzura et al 1992] and Tymkove (Fig 10: 1) [Subbotin et al 2000, 84, ris 3: 4]. In all these three cases the burials marked the oldest phase of mound construction, and later YC burials were dug into the central part of the kurgan, which entailed the remodelling and considerable enlargement of the mound. Both the chronological and taxonomic positions of extended burials in the North Pontic area are subjects of debate [e.g. Manzura 2010; Rassamakin 2013; Ivanova 2015, 280-282] (…)

The chronological position of graves with burials in extended position can be narrowed down thanks to stratigraphic observations made in kurgans at Bursuceni, between the Dniester and Prut rivers [Yarovoy 1978]. Graves from this site were younger than the burials representing the Zhivotilovka-Volchansk tradition and older than those linked with the early phase of YC based on a relatively compact series of radiocarbon dates obtained for graves of the Zhivotilovka-Volchansk group, the chronology of burials in extended position can be determined as the very close of the 4th – beginning of the 3rd millennia BC (most likely around 3100-2800 BC).

Early and late Yamna

A model ceremonial-funerary complex created by a YC community is a group of kurgans in Pysarivka village [harat et al 2014: 104-165]. Nine mounds have been explored there, of which eight (1, 3-9) yielded central burials of YC sharing a number of similar features (Fig 13). The deceased were placed in regular, rectangular pits having vertical walls Vykids (mounds of soil extracted while digging grave pits) formed regular narrow walls surrounding each grave, and seem to have been integral elements of sepulchral architecture. Chambers were covered with 5-7 timbers/planks arranged parallel to the grave’s longer axis. Another characteristic element was that of wooden stakes driven symmetrically into the bottom along grave chamber edges, recorded in four cases. The deceased were laid on their backs, in a contracted position with the knees up. The head was as a rule turned to W, with possible deflections towards NW or SW Skeletons bore traces of painting with ochre.

kurgan-yampil-yamna
Prydnistryanske, Yampil region reconstruction of stages of grave IV/4 construction by M. Podsiadło

The role of south-eastern connections at the early stage of YC development can also be seen in grave IV/4 at Prydnistryanske. This is indicated by a combined (wood and stone) roof construction involving stela-like slabs, and by the skull of the deceased characteristically painted with red pigment. The absolute date obtained for grave IV/4 (ca 3100-3000 bC) suggests its early provenance [Goslar et al 2015]. The grave was most likely connected with the oldest stage of enlargement of the Eneolithic barrow [Klochko et al 2015].

The middle phase of YC is quite clearly evident in Podolia kurgans, it is marked by burials dug into the existing mounds. These are either single burials inserted into different parts of the mounds, or groups of graves forming arches around a central part. Graves with steps leading to the burial chamber are typical of that stage, and they were wider than those in the centres of kurgans. Chambers were typically roofed with planks or timbers placed perpendicularly to the grave’s longer axis burials on one side and burials on the back but leaning to either side become more numerous, and upper limbs were most often placed in A, G, H, or I arrangements ceramic vessels become more common in graves, including forms indicative of contacts with GAC and CWC milieus.


2. The previously announced paper on a specific burial showing postmortem marks: Ritual position and “tattooing” techniques in the funeral practices of the “Barrow cultures” of the Pontic-Caspian steppe/forest-steppe area Porohy 3A, Yampil region, Vinnytsia Oblast: Specialist analysis research perspectives, by Żurkiewicz et al. (2018):

Based on the anatomical properties of the structure of a human body, the histological structure of the skin and location of the dye used for tattooing, having conducted an analysis of postmortem changes occurring within the skin after death, and having taken into consideration the continuous and regular nature of the pattern on the ulnae of the individual from grave no. 10, an interdisciplinary team of researchers has concluded that there is no possibility of a transfer of tattoo dye from the skin onto the surface of an individual’s bone.

The analysis of two ulnae documented in this article indicates that the patterns were made using tree tar, postmortem and directly onto the skeletonised human remains. The placement of the individual’s ulnae in grave no. 10 (Fig. 10), and the location of patterns on the upper skin surface, that is, on surfaces accessible without changing the arrangement of the body, may suggest that the patterns were created on the skeletonised remains without the need to change their placement in the pit (= in situ).

The present conclusions ought to see the beginning of a wider research programme focused on the analysis of the techniques used to create decorations on bones in “kurgan cultures” communities in the context of the Pontic-Caspian Region.

ulna-marks
Porohy, Yampil Region, barrow 3A, feature 10. Macro- and microscopic examination results: 1 – right ulna with visible decorations and close-up of the decoration; 2 – left ulna with visible decorations and close-up of the decoration. Photo by D. Lorkiewicz-Muszyńska

3. Builders and users of ritual centres, Yampil barrow complex: studies of diett based on stable carbon nitrogen isotope composition, by Goslar et al. (2017).

Foxtail millet caryopses are used to make primarily flour, groats and pancakes [lityńska-zając, wasylikowa 2005: 109]. Grains and flour are easily digestible and as such, they are recommended to infants and the elderly. Grains are also fed to fowl and poultry in Asia, foxtail millet is used to make beer and wine, while in China it is also used for medicinal purposes [Hanelt 2001 (Ed )]. Various dishes and beverages made from broomcorn and foxtail millet caryopses in Eurasia are listed by Sakamoto [1987a]. Detailed ethnobotanical studies of the cultivation, crop processing and food preparation in the Iberian Peninsula were presented by Moreno-Larrazabal et al.[2015] .

The geographical area under discussion can be related to historical and ethnographic data indicating the use of grits and groats in the diet. They had been known in the menus of European societies since the ‘pre-agrarian’ times. The isotope finding of millet domination in the diet of middle Dniester Yampil Barrow Complex, complemented by bioarchaeological data from the upper steppe Dniester area (from the similarly ‘early-barrow’ Usatovo group/culture with strongly marked ‘eastern’ civilization influences), makes it reasonable to consider the possibility that already in the prologue of late Eneolithic-Early bronze barrow culture (3300- 2800 BC) development there was a clear dividing line of millet groats use – or millet presence – that is, so-called yagla groats (yagla, yagly = millet in Old Slavic languages).

correlation-diet-dereivka-isotopic
Composition of stable carbon and nitrogen isotopes in bone collagen from the Yampil Barrow Complex against the ranges of isotopic composition expected for various diet components [after Gerling 2015: Fig 6 16] The meaning of colours and symbols concerning the Yampil Barrow Complex is the same as in Fig 3 For the sake of comparison, the isotopic composition in human >bones from two sites on the dnieper (ca 5200-5000 bC) is given, in which the share of freshwater fish in the diet was confirmed by the measurements of the reservoir effect [lillie et al. 2009]

Related

Kurgan origins and expansion with Khvalynsk-Novodanilovka chieftains

burials-ochre-steppe

The concept of ‘Kurgan peoples’ is a general idea whereby ‘kurgan builders’ are identified with Indo-European speakers. It is a consequence of the oversimplification of Gimbutas’ theory, and is still widespread among linguists, archaeologists, geneticists, and amateurs alike.

NOTE. On the already simplistic assumptions of Gimbutas regarding the so-called ‘kurgan’ burials, see e.g. Häusler’s early criticism.

However, as more ancient DNA studies appear, many ancient cultures once held as ‘kurganized’ are becoming more and more clearly disconnected from Proto-Indo-Europeans: So for example Varna, Cucuteni-Trypillia, Maykop, or Northern Iranian kurgan builders.

The first marked burials

In his chapter Aspects of Pontic Steppe Development (4550-3000 BC), Ukrainian researcher Yuri Rassamakin makes some interesting remarks.

NOTE. As you may know, Rassamakin supports a ‘Skelyan’ (macro-)culture encompassing every group from the North Pontic steppe and steppe-forest, where (therefore) Novodanilovka or Suvorovo would be just rich elites among Sredni Stog and related ‘commoners’. So he can hardly be described as interested in supporting Khvalynsk over Sredni Stog influence…

The first period of development (ca. 4550 – 4100/4000 BC) is marked as a period of emergence of the first burial symbols.

Gimbutas – like later her pupil Mallory -, Merpert, or Danilenko believed that the first mark of emerging kurgans were precisely the presence of constructions above burials, such as simple, small, stone henges, dolmens, cists, or cairns. Hence the traditional connection of ‘kurgans’ with Sredni Stog. This Sredni Stog connection is currently still a widespread belief, that is kept alive because it appears in many secondary sources (e.g. the much beloved as it is outdated and simplistic reference book Encyclopedia of Indo-European Culture).

These first constructions described as from Sredni Stog were nevertheless found solely among Sredni Stog ‘elites’. That is, burials from Novodanlilovka-type cultural sites. So, following the initial assessments of this culture by Soviet archaeologists (like Telegin), for Gimbutas (1956) they were among ‘Sredni Stog’ burials, and for Merpert (1959) they might have been due to an “initial, genetic basis” originally from Khvalynsk, and thus (what was described as) Sredni Stog seemed to have been formed under “strong eastern influences”.

NOTE. From Rassamakin’s own account: Gimbutas’ model was later corrected, when in the mid-1980s Telegin judged that the cemeteries in fact represented an independent cultural type (Novodanilovka-type sites), developing over two stages (Telegin 1985a, 311-20; 1991). These were the same burials which Danilenko thought reflected a distinct pastoralist culture among the early Yamnaya tribes, which Gimbutas attributed to the first kurgan wave, and which Merpert, in part, ascribed to the first chronological period of the early Yamnaya culture-historical province.

megalithic-monuments
The classification of megalithic monuments of the Pantie steppe. (After Dovzhenko 1993, fig. 1 with changes by the author.)

These early constructions, however, are not found anywhere else in the North Pontic region except for those ‘Sredni Stog elites’:

  • Rooves made from separate slabs with cairns are known in the Dnieper and Volga regions: In the Khvalynsk I culture, 17% of burials were superimposed with stone cairns or had a single stone marker.
  • Cists with cairns are known from Severskii Donets and Azov areas.
  • A unique cromlech is described from the Dniester-Danube area (Suvorovo).
  • In the remaining cases, especially for the Volga area and pre-Caucasus steppe, there are some specific variants:
    1. Use of natural hills as a burial marker
    2. Presence of smalll earthen or wooden constructions.

If we accept that these constructions are the first rudimentary kurgans or proto-kurgans, and that kurgans were a mark of expanding Indo-European culture, let’s see who built them first and why:

The emergence of kurgans

emergence-kurganIn his book Рождение Кургана (2012), The Emergence of the Kurgan, Sergei Korenevskiy makes a thorough analysis of the first kurgan finds.

The Novodanilovka group (ca. 4500-4000 BC), coincident with the Trypillia B1 stage, is characterized by the presence of ochre (in great quantity) in burials, as seen in Khvalynsk, as well as stone constructions in burials.

NOTE. Similarly to Rassamakin, Korenevskiy believes in the unity of North Pontic cultures, and specifically of Novodanilovka chiefs among Sredni Stog commoners, and of all of them with Khvalynsk in a Khvalynsk-Sredni Stog cultural-historical region, because of their “chronological and regional coincidence” and similar pottery, in spite of differences in burial and symbolism. So, hardly an interested party in supporting the expansion of Khvalynsk to the west, either.

Obviously, for those of us who believe that symbolism and burials do mean something beyond similar pottery decoration, in the instances where Sredni Stog appears in his text, it should be read Novodanilovka (and Khvalynsk-Sredni Stog should be read Khvalynsk-Novodanilovka) instead; because he is not referring to the older Khvalynsk – Sredni Stog community of the beginning of the 5th millennium, but to a very distinct group of sites related to the Khvalynsk expansion with horse symbolism at the end of the 5th millenium.

For the early Eneolithic time and the existence of the Khvalynsk-Sredni Stog community, on the problem under consideration, the main source [of knowledge for the first kurgans] may be the Nalchik and Khvalynsk burial grounds.

The kurgans themselves were not simple pits filled with earth. There was a belief that the funerary structure was the place where the buried moved to another world. Most likely, such a place could be considered to be a generic collective cemetery.

The second important point may be that the Eneolithic era was the time of development of a prestigious economy that created its values ​​in the form of different things. Among them were items requiring high skills or manufacturing techniques (different woolen tools, scepters, stone bracelets), as well as tools that occupy an important role in labor, war and industry (stone flat axes, arrowheads, knife-like plates and chips of flint). The decorations of the burial costume included certain iconic objects – bone plates from canine fang, pins, bone sticks with a hole- “zurki”).

Presented were a variety of beads from bone, stone, shell. Bead washers could be collected in whole garlands, thus acquiring a special value. Prestigious cult things, presumably, were copper jewelry: beads, rings, bracelets. They, like the shells, were products of the gift exchange and reflected the direct or indirect involvement of the owners.

kurgan-eneolithic-settlements
Map of the Eneolithic burial monuments of the Pontic – Ciscaucasian steppes (automatically translated from Russian):
1 – Csongrad, 2 – Decha Mureshului, 3 – Targovishte (Gonova Mogila), 4 – Kulvec, 5 – Devnya river, 6 – Kamenar, 7 – Kasimcha, 8 – Lungoch-Fundund, 9 – Falciu, 10 – Jurdjulesti, 11 – 12 – Suvorovo, 13 – Kaynary, 14 – Artsz, 15 – Koshary, 16 – Krivoy Rog, 17 – Zalina, 18 – Dereyevka, 19 – Igren 8, 20 – Chapley, 21 – Petro-Svistunovo, 22 – in Vinogradny, 23 in Zagorozhye, 24 in Novodanilovka, 25 in Blagoveshchenka, 26 in Kut, 27 in Lower Rogachik, 28 in Lyubimovka, 29 in Alekasandria, 30 in Yama, 31 in Olkhovatka, 32 in Aleksandrov, 33 in Lugansk Voroshilovgrad), 34 – Don, 35 – Mariupol, 36 – Liventsovka-1, 37 – Wet Chaltyr, 38 – Likhovsky, 39 – Mukhin II, 40 – Karataevo, 41 – Coysug, 42 – Krasnogorovka III, 43 – South, 44 – hut. Popova, 45 – Baturinskaya, 46 – Novotitarovskaya, 47 – Staronizhesteblyevskaya, 48 – Suvorovskaya, 49 – Cheerful Grove I and III, 50 – Kyzburun III, 51 – Nalchik, 52 – Upper Akbash, 53 – Galyugaevsky barrows, 54 – Coma – Ravo, 55 – Bamut, 56 – Arkhara, 57 – Kursavsky, 58 – Nikolsky, 59 – Kokberek, 60 – New School, 61 – Tube, 62 – Narym-Bay, 63 – Ak Zhounas, 64 – Shlyakhovsky, 65 – Political , 66 – Berezovka I and II, 67 – Even, 68 – Novotrivolnoe, 69 – Tarlyk, 70 – Engels-Anisovka, 71 – Khlopkovo hillfort, 72 – Khvalynsk I and II, 73 – Krivoluchye, 74 – Ivanovsky, 75 – Tunnel, 76 – Ipatovo , 77 – Aigursky, 78 – Tipki, 79 – Sharahalsun, 80 – Chograi, 81 – Overload, 82 – Novokorsunovskaya, 83 – Cardonik, 84 – Vladimirovskaya 85 – Pyatigorsk (Konstantinovsky plateau), 86 – Steblitsky, 87 – Jangr, 88 – Progress-2 The map was made on the basis of the publication I.V. Manzuri (Manzura, 2000. With. 244, fig. 1) with additions of the author

Khvalynsk and Nalchik first marked burials

[The Nalchik burials:] with respect to the reconstruction of social relations, data are few. In general, the funerary practice of this necropolis does not reflect the position of any fighting tools in the grave. (…)

Judging by the rare ornaments from the burials of the necropolis, the population that left it was implicated in the prestigious values of the Khvalynsk-Sredni Stog community. A more detailed picture of the era of early Eneolithic reflects the data of the Khvalynsk-type burial ground.

northern-caucasus-group
Funerary monuments of the steppe Eneolithic Ciscaucasian group, the Don-Volga interfluve and the Nalchik burial ground against the background of the Eneolithic groups of South of Eastern Europe (automatically translated from Russian): 1 – Aigursky, 2 – Veselyaya Roshcha and s. Zhukovsky, 3 – Sharahalsun, 4 – Chograi, 5 – Galyugaevsky burial mounds, 6 – Komarovo, 7 – Grozny, 8 – Suvorovo, 9 – Upper Akbash, 10 – Kizburun III, 11 – Baturin, 12 – Staronizhnesteblyevskaya, 13 – Novotitarovskaya, 14 – Cardonik, 15 – Steblitsky, 16 – Vladimirovskaya, 17 – Tunnel, 18 – Progress-2, 19 – Ipatovo, 20 – Novokorsunovskaya, 21 – Bamut 22 – Kursavsky, 23 – Arkhara, 24 – Nikolsky, 25 – Jangr, 26 – Overload, 27 – Shlyakhovsky, 28 – Nalchik burial ground, 29 – Samashki, 30 – Pyatigorsk, Konstantinovsky plateau, 31 – Berezhnovka-I, 32 – Bykovo I – Ciscaucasian groups a, II – Volga-Manych group, III – Lower Don group, IV – Dono-Donetsk group, V – Podneprovskaya group, VI – Zavolzhskaya (Volga-Uriural) group (given in fragmentary form: Berezhnovka I, room 5, item 22, Bykovo 2 point 3)
caucasus-mountains-eneolithic
Map from Wang et al. (2018) [to be compared with the initial distribution of kurgans in the region]. The zoomed map shows the location of sites in the Caucasus. The size of the circle reflects number of individuals that produced genome-wide data. The dashed line illustrates a hypothetical geographic border between genetically distinct Steppe and Caucasus clusters.

(…) the Khvalynsk burial ground was characterized by a system of age groups and a forming social structure based on the hierarchy of estate groups. The social organization of Khvalynians can be characterized by the stage of evolution of a small-family variant of the development of a primitive society, in which the social status of a man and a woman became closer. The role of the married woman / mother was accentuated. Archaeological signs of this process can be considered joint burials of old people and children and as part of burials with same and mixed genders.

khvalynsk-burial-statistics
Statistics of the Khvalynsk burial ground. Примечание: ж. — женский, п. — подросток, р. — ребенок, м. — мужской, вз. — взрослый

In summary, one can arrive at the following conclusions. It is unlikely to be a mistake if we assume that the Khvalynsk burial ground was abandoned by a local community that lived on the basis of the tribal collective. Their economic activities were connected with hunting, fishing, homestead cattle breeding with an obvious acquaintance with the horse (it is not known if the object of hunting or domestication). In the mythology of the afterlife and the funerary traditions of the Khvalynians, the same egalitarianism of the forms of funerary buildings was dominant, but signs of the personification of graves began to appear, with marks in the rarest of cases with stones.

Unlike the Nalchik cemetery, in the Khvalynsk and Khlopkovsky burial grounds, new trends in assessments of the suitability of implements for funerary practice are clearly discernible. So, they expressed themselves in the appearance of rare graves with scepters, axes – buggers, stone adzes, harpoons and fishing hooks. Basically, all these symbols of the rite are associated with male burials. The least saturated with burial items with stone adzes, and they are represented in small forms. But the fact is important. Society began to pay attention to these categories of objects, linking their symbols with mythological ideas about the things of the afterlife and their functions in the “other dimension of reality” specifically as tools of war and symbols of military power or valor (axes with trunnions), spiritual power (scepters), as well as woodworking (adzes). In terms of “wealth”, these complexes were not particularly distinguished from other inventory sets.

The population that left the Khvalynsk burial ground had to do with the deficit of the era, which was copper products. The latter emphasized, apparently, the age status of some men from 40 to 60 years old and adult women. Another scarce raw material could be a sea shell (item 38) from the burial of a man aged 25-35 years.

As a result, it can be concluded that the complexes of funerary ritual of the Khvalynsk burial ground indicate the existence of ideas about a person at the time of his transition to another world, as a member of the collective of the clan (community) with the admitted individual prestige of things that emphasize his age or social status, but in the framework of the common egalitarian tradition of a collective necropolis. At this time, presumably, views were developing on the relationship of the things put in the grave with the “property” of the buried.

scepter-finds
Map of finds of scepters 1: 1 – Khvalynsky burial ground; 2 – Cotton hill fort and cemetery; 3 – Fitionion; 4 – Rezevo; 5 – Drama; 6 – Vinc de Jos; 7 – Ružinoas; 8 – Kayraklia; 9 – Selcuca; 10 – Suvorovo; 1 1 – Terekli Mekteb; 12 – Khlopkovsky burial ground; 13 – Kasimcha; 14 – Kokbek; 15 – Samara (Kuibyshev); 16 – Shlyakhovsky; 17 – Archa; 18 – Mogosesti; 19 – Vladikavkaz (Ordzhonikidze); 20 – Jungr; 21 – Harvesting; 22 – Maykop; 23 – Alexandria; 2: 1 – Valen; 2 – Yasenev Polyana; 3 – Birllesti; 4 – Harvesting; 5 – Rostov-on-Don; 6 – Berezovskaya HPP; 7 – Zhora de Souz, 8 – Fedeshen; 9 – Konstantinovsky settlement. Conditional signs. 1 – group 3, 2 – group 4, 3 – groups 1, 2, 4 – group 5, 5 – group 4, 6 – group 6

The aftermath of the kurgan expansion

The most important phenomenon in the Weltanschauung of the late Eneolithic population in the steppes of Eastern Europe and Ciscaucasia was the spread of the religious tradition, relatively new in comparison with the time of the Mariupol cultural and historical community, according to which the deceased began to go to another world in a position on his back, crocheted, in the company of ochre magic.

This position appears to be dominant in the materials of the Khvalynsk cemetery, and as a very significant – but not dominant – feature of the materials of the Nalchik cemetery. The posture on the back is crocheted, becoming typical for the Sredni Stog culture, as well as the bearers of the oldest Kurgan traditions in the Ciscaucasia and the Volga-Don region.

Our position on this issue is as follows. I can fully adhere to the opinion of B. Govedaritsa and I.V. Manzura that the transition of the population of the Khvalynsk – Sredni Stog community to the tradition of the burial crouched on their backs looks like the most important ideological innovation in the mythology of death among the local population of Eastern Europe and Ciscaucasia in relation to the earlier time of the Mariupol cultural and historical community.

variant-kurgan-burials-steppe
Chronology of Cucuteni-Tripolye cultures after Videiko (2004), with corresponding Khvalynsk / Nalchik / Novodanilovka / Pre-Maykop / Maykop kurgans.

In the funerary practice of this cultural education there is much in common with the traditions of the funerary practice of the Balkan-Danube region. At the same time, the posture pose on the back is spread more widely in the Neolithic and Eneolithic than only Western Europe. It was recorded in the necropolis of Kul-Tepe I in Azerbaijan (Abibulaev, 1982), the necropolis of Tepe Gissar in Iran (Schmidt, 1933, 1937), in burials 1, 2 in the settlement of Poylu II of Leleatepin culture in Azerbaijan (the Kura valley) (Museibli , 2010. P. 208). In other words, it is the same universal way of inhumation, like a pose on one side or a burial on the back, although not so widespread on a global scale.

From where and how such ritualism could appear in its specific carriers, it definitely cannot always be established. But let us pay attention to the fact that the peculiarity of the posture of the deceased population of the Khvalynsk – Sredni Stog community on the back is that the deceased was not simply placed on his back, he was often heavily sprinkled with ochre. The last detail of the ritual clearly has a prototype for the carriers of the Mariupol community of the Northern Black Sea Region. This suggests that such funerary practice of the Khvalynsk – Sredni Stog community was formed on the spot, as an internal transformation of the ritual of a stretched-out body with a copious sprinkling of the bone with mineral red paint. The idea of ​​innovation was to set the feet on the ground, which caused the knees to rise.

burials-ochre
Map of burial monuments with ochre by regions in the Pontic – Ciscaucasian area (Govedariča, 2004). I – Carpathian group, II – Northwestern group, III – North Black Sea group, IV – Volga-Caspian group, V – North Caucasian group

The consequence for the Proto-Indo-European homeland

So, from now on, when someone says “the oldest known kurgans come from Sredni Stog”, you know what that means: first, these are not the oldest ‘kurgans’, but rather ‘proto-kurgans’ (after, all, some of the first radiocarbon dates of full fledged steppe kurgans come from the Repin culture, if we don’t take the rich Maykop variant into account); and second, they were not really from Sredni Stog, but from Khvalynsk-related cultures, because the first rudimentary kurgans can be clearly traced back to Khvalynsk, Novodanilovka, Northern-Caucasus, and Suvorovo sites.

The latest genetic research on Khvalynsk- and Yamna-related migrations should have been a party for all involved in a quest to know the truth about Proto-Indo-Europeans, as it is becoming clear that their language and culture expanded from the eastern Pontic-Caspian steppe. This is a short checklist of relevant facts:

✅ Khvalynsk formed from EHG + local steppe Neolithic groups: checked.

✅ Kurgan origins and expansion from Khvalynsk: checked.

✅ Expansion of horse domestication and horse symbolism from Khvalynsk: checked.

✅ Arrival of steppe ancestry in the Balkans with Suvorovo: checked.

✅ Patrilineal clans proven by Y-DNA bottlenecks in Khvalynsk and Yamna: checked.

✅ Homogeneous genetic admixture of expanding Yamna: checked.

✅ Admixture different from Yamna in coetaneous West and Central European, Corded Ware, Fennoscandian, Caucasus, and Indus Valley samples: checked.

✅ Expansion of Khvalynsk as Early Yamna and Afanasevo: checked.

✅ Expansion of Yamna Hungary as East Bell Beakers: checked.

✅ Y-DNA bottlenecks of expanding Bell Beakers: checked.

✅ Expansion of East Yamna (and admixture with CWC) in Sintashta/Potapovka: checked.

✅ Y-DNA bottlenecks of expanding Andronovo/Srubna: checked.

✅ Yamna in the Balkans and steppe ancestry in Mycenaeans (in contrast with Minoans): checked.

✅ Bell Beaker expansion over Europe and later resurge of R1a-Z645 in Central-East Europe: checked.

All this combined is giving a clear-cut image of how Proto-Indo-Europeans expanded. More importantly, it shows – as I have said many times already – that Proto-Indo-European was a real language, spoken by an evolving and expanding community (with radical language changes beautifully coupled with archaeological expansions). The implications of this are huge, if only because we can finally get rid of all naysayers in linguistics and archaeology, who wanted to speak about ‘constellations of languages’ and ‘pots not people’.

So why would some of those who describe themselves as interested in Prehistory not accept this as the most likely picture right now? I can just think of one tiny item of the checklist, among many that are left unchecked or have been unchecked due to the latest genetic research:

❌ ‘MY haplogroup’ was involved in the expansion of ‘MY people’: Unchecked.

It is not just that this isn’t checked. It was checked by many in the 1990s and in the 2000s, and some stupid magical meaning was attributed to it. But now it has been unchecked for most Europeans, and this has caused an absurd unrest among some of them, who are now joining those who already opposed mainstream theories (e.g. supporters of the Anatolian homeland, the Iran homeland, the Indus Valley homeland, etc.) with a common aim: to spread reactionary views against the mainstream theories.

If all samples from Khvalynsk, Yamna, Afanasevo, and Bell Beaker had been R1a-Z645; most European Neolithic samples had shown R1b-L23 subclades; and results from Sredni Stog, Corded Ware and part of the Indo-Iranian community were of haplogroup N1c-L392 (although eventually R1a-Z645 had expanded with Indo-Iranians)… Would these people doubt all those facts from the checklist? I don’t think so.

Related

About Scepters, Horses, and War: on Khvalynsk migrants in the Caucasus and the Danube

steppe-horse-sceptre-khvalynsk

dergachev-scepters-khavlynsk-horsesAbout two months ago I stumbled upon a gem in archaeological studies related to Proto-Indo-Europeans, the book О скипетрах, о лошадях, о войне: этюды в защиту миграционной концепции М.Гимбутас (On sceptres, on horses, on war: Studies in defence of M. Gimbutas’ migration concepts), 2007, by V. A. Dergachev, from the Institute of Cultural Heritage of the Moldavian Republic.

Dergachev’s work dedicates 488 pages to a very specific Final Neolithic-Eneolithic period in the Pontic-Caspian steppe, and the most relevant parts of the book concern the nature and expansion of horses and horse domestication, horse-head scepters, and other horse-related symbology – arguably the most relevant cultural signs associated with Proto-Indo-European speakers in this period.

I haven’t had enough time to read the whole book, but I have read with interest certain important chapters.

About Scepters

Typological classification

The genetic and chronological relationship of horse-head pommel-scepters is classified with incredible detail, to the extent that one could divide subregions among those cultures using them.

khvalynsk-horse-head-scepters
Scheme of regional distribution – chronological – typological development of the carved horse-head stone scepters.

Simplified conclusions of this section include (emphasis mine):

  1. The [horse-head pommel-]scepters arose originally in the depth of the Khvalynsk culture. Following the now well-known finds, they are definitely related to those of the Middle Volga group.
  2. horse-head-pommel-scepters-distribution
    General scheme of genetic and chronological development of carved scepters by visual assessment of morphological details.
  3. In their next modifications, these scepters continued to evolve and develop into the area of the Khvalynsk culture in its latest stages, and possibly later.
  4. Simultaneously, with the same modifications, these scepters “are introduced” into common usage in the Novodanilovka culture, which in its spread by one wing was in contact and interspersed immediately with the area of Khvalynsk remains; and on the other hand, far in the south – in the Pre-Kuban and Ciscaucasian regions – within the range of the Domaikopska culture; and in the west – in the Carpathian – Post-Kuban – with the areas of early agricultural cultures Cucuteni A – Trypillia B1, Gumelnița-Karanovo VI.
  5. The simultaneous presence in the areas of the Ciscaucasian, Carpatho-Danubian, and especially Novodinilovka cultures, whose carriers continue the Khvalynian traditions of making stone scepters, and the scepters themselves (in their non-functional implication in the local cultural environment), all definitely allow us to view these findings as imported Novodanilovka objects.
distribution-horse-scepters
Schematic depiction of the spread of horse-head scepters in the Middle Eneolithic. See a full version with notes here.

Cultural relevance of scepters

The text goes on to make an international comparison of scepters and their relevance as a cultural phenomenon, with its strong symbolic functions as divine object, its use in times of peace, in times of war, and in a system of ritual power.

horse-scepters-steppe
Restoration of V. A. Dergachev: a) model for restoration – Paleolithic and Neolithic wands; b) the expected appearance of the Eneolithic scepter on the handle with a coupling (according to Dergachev 2007).
Especially interesting is the section dedicated to Agamemnon’s scepter in the Iliad, one of the oldest Indo-European epics. Here is an excerpt from Illiad II.100-110 (see here the Greek version) with the scepter’s human and divine genealogy:

Then among them lord Agamemnon uprose, bearing in his hands the sceptre which Hephaestus had wrought with toil. Hephaestus gave it to king Zeus, son of Cronos, and Zeus gave it to the messenger Argeïphontes; and Hermes, the lord, gave it to Pelops, driver of horses, and Pelops in turn gave it to Atreus, shepherd of the host; and Atreus at his death left it to Thyestes, rich in flocks, and Thyestes again left it to Agamemnon to bear, that so he might be lord of many isles and of all Argos.

About the horse

His studies on horse remains show an interesting, detailed quantitative and statistical approach to the importance and (cultural and chronological) origin of horses (and likely horse domestication) in each culture.

Although the part on horse remains is probably a bit outdated today, after many recent studies of Eneolithic steppe sites (see here one example), it still shows the relative distribution of horse bone remains among different steppe cultures, which is probably similar to what could be reported today:

distribution-horses-steppe-eneolithic
Territorial distribution of horse remains in the Middle Eneolithic period. Absolute and relative numbers.

Even more interesting is the relationship of the distribution of horse remains with archaeological complexes and horse-related symbols. Some excerpts from the conclusions of this section:

  1. Accounting and analysis of archeo-zoological and archaeological data proper for a horse for a vast area from the Tisza and the Middle Danube to the Caucasus and the Urals (which includes the main cultures of the western agricultural, Caucasian, and Eastern European cultural zones) clearly points to the eastern cultural zone as a zone of the originally the most important social significance of a horse as the only possible zone of the earliest domestication, horseback riding and all-round use of a horse. In relation to the eastern, the western land – the ancient Carpatho-Danubian or the Caucasian cultural zones – are secondary and subordinate to the first on the phenomenon under consideration.
  2. horse-symbols
    Horse-shaped hanger-amulets made of bone.
  3. The first quantitative leap in the manifestation of the remnants of a horse, marking itself and the first qualitative changes in the social status of this animal, is due mainly to the Middle Volga culture of the developed Neolithic of the Middle Volga region (in part, the Southwest Urals), which, accordingly, determine the cultural context, time and geographic region – or, the initial, single and main epicenter of the process of taming and domestication of a horse.
  4. On the one hand, the subsequent substantial increase in the number of horse remnants, and, on the other, the wide inclusion of the horse in cults, rituals, funerary rituals (horse pendants, ornamented metacarpus, horse bones, sacrificial altars) in the Samara culture of the Early Eneolithic of the same region definitely indicates the continuing increase in the social significance of this species of animal, which was most likely expressed in the final design of a specialized horse breeding culture and, accordingly, in a wide range of applications using a horse for riding. At the same time, we can observe the beginning of the transfer of the already domesticated horse from the original historical and geographic epicenter to other cultures of the eastern cultural zone and, in part, the cultures closest to the periphery of this zone, into the western agricultural zone (Bolgrad-Aldeni P, Pre-CuCuteni-Trypillya A) .
  5. expansion-horse-steppe
    Schematic depiction of cultures and regional-chronological distribution of percentage of horse remains. (Depicted are arrows from Middle Volga and Samara culture to the rest)
  6. Middle Eneolithic – early stages. One of the leading places in the remnants of the horse is in the Middle Volga region, the Khvalynsk culture. Genetically related to the Samara, the Khvalynsk I culture preserves the traditions of the ritual, cultural meaning, the treatment of the image of a horse in funerals (altars, horse bones, funerary rituals). But, At the same time, it is in this precise culture that the image of the horse, included in the social symbolism (horse-head pommel-scepter), for the first time it acquires a special, maximum social significance. That is why the appearance and subsequent widespread distribution of the social symbols in Novodanilovka-type objects can definitely be considered as another qualitative leap in the social significance of a horse – its use for military purposes for close and distant expeditions. And such an interpretation is fully confirmed from the analysis of Novodanilovka-type objects, which is the subject of discussion.
  7. Judging by the osteological data and the typological evolution of the horse-head scepters, the Khvalynian culture and remains of the Novodanilovka type are already associated with the relatively widespread and intensive findings of domesticated horses in various areas of the eastern cultural zone (semi-desert regions of the Lower Volga and the Caspian region – Khvalynsk culture, forest-steppe and steppe from the Volga to the Dnieper – Sredni Stog, Repin cultures), and the western – agricultural (Gumelnitsa, Cucuteni A-Tripolye Bl), and the Caucasus (Pre-Maykop) zones, where, however, the horse played a very modest role.
  8. samara-khvalynsk-horses
    Schematic depiction of cultures and regional-chronological distribution of zooarchaeological and ritual data on horses. (Shadowed are from top to bottom the Middle Volga, Samara, Khvalynsk, and Novodanilovka; in bold, other percentages of unrelated cultures: e.g. to the left of Khvalynsk and Novodanilovka, Sredni Stog with 29.65% overall horse bone remains, but 0% of horse symbolism)
  9. From the functional point of view, according to the sum of the data, there is no reason to doubt that in the eastern zone the horse is already present in the Late Neolithic period. Since its domestication and the emergence of a specialized horse breeding, it has been also widely used for meat, milk and dairy products (including the traditional hippace tradition of the later Scythians), and since the beginning of the early Eneolithic for transport and for riding purposes. Another thing is the horse as a means of war, a means of distant travel and expansion. The beginning of the use of a horse for these purposes, in the opinion of the author, is determined by the appearance of social symbolism in the form of horse-head scepters, and is most fully reflected in the memories of the Khvalynsk culture and, in particular, the Novodanilovka type. Concerning western or Caucasian cultural zones related to Khvalynsk, the horse is thought to have been linked to the eastern region, used mainly for riding, as a means of transport and for communication, which, however, does not exclude its use for meat.

These are the main conclusions-interpretations, suggesting the analysis and archaeological and other sources containing information about the horse. And as for our pommel-scepters, then, as can be seen from these sources, the main thing is that the culture of the Middle Volga region, according to all the data, definitely accumulates in itself the longest traditions associated with the gradual increase of social significance of the horse. And if so, this circumstance motivates the possibility or necessity of appearing in the environment of the bearers of this culture of unique signs-symbols that carry within themselves or reflect the image of this animal as an extremely significant social reality. The revealed and characterized quality, as a matter of fact, fill or open by themselves the hypothetical elements we have previously identified, the meanings of that particularity, folded in the social sign-symbol, in our case – the horse-head-shaped scepter.

horse-symbolism-rituals-steppe
Archaeological sites with objects (signs-symbols) related to horses. Horse-head scepters included in other maps are excluded from this one (notice the conspicuous absence of such objects in Sredni Stog and neighbouring North Pontic regions).

The relevance of Dergachev’s work

As you certainly know by now if you are a usual reader of this blog, there were two other seminal publications that same year correcting and expanding Gimbutas’ model:

Each one of these works taken independently (especially the books) may give a different version of Proto-Indo-European migrations; Anthony and Dergachev are heirs of Gimbutas’ simplistic kurgan-based model, and of other previous, now rejected ideas, and they reflect them whenever they don’t deal with first-hand investigation (and even sometimes when interpreting their own data). Taken together – and especially in combination with recent genetic studies – , though, they describe a clearer, solider model of how Proto-Indo-Europeans developed and expanded.

distribution-scepters-steppe
Distribution of horse-head scepters, according to Dergachev, Sorokin (1986).

Anthony’s publication overshadowed the importance of Dergachev’s work for the English-speaking world – and by extension for the rest of us. However, V. A. Dergachev’s updated study of his previous work on steppe cultures shows the right, thorough, and diligent way of describing the expansion of early Khvalynsk-Novodanilovka chieftains with the horse and horse symbolism into the Caucasus and the Lower Danube (like the seminal work of Harrison & Heyd 2007 described the expansion of Yamna settlers with East Bell Beakers, culturally opposed to Corded Ware and to the Proto-Beakers). On the other hand, Anthony’s broad-brush, superficial description of thousands of years of potential Indo-European-speaking peoples gave a migration picture that – although generally right (like radiocarbon-based Iberian origin of the Bell Beaker culture was right) – was bound to be wrong in some essential details, as we are seeing in archaeology and genetics.

NOTE. As I have said before, Anthony’s interpretations of Sredni Stog culture representing a sort of ‘peasants’ under the rule of Novodanilovka chiefs was based on old theories of Telegin, who changed his mind – as did the rest of the Russian school well before the publication of Dergachev’s book, considering both as distinct cultural phenomena. Anthony selected the old interpretation, not to follow a Gimbutas / Kristiansen model of Sredni Stog being Indo-European and expanding with GAC into Corded Ware (because, for him, Corded Ware peoples were originally non-Indo-European speakers): he seems to have done it to prove that Proto-Anatolian traveled indeed through the North Pontic area, i.e. to avoid the regional ‘gap’ in the maps, if you like. Then with the expansion of Repin over the area, Sredni Stog peoples would have been absorbed. With genetic investigation, as we know, and with this kind of detailed archaeological studies, the traditional preference for “large and early” IE territories – proper of the mid-20th century – are no longer necessary.

sredni-stog-suvorovo-novodanilovka-cernavoda
Anthony (2007): “Steppe and Danubian sites at the time of the Suvorovo-Novodanilovka intrusion, about 4200-3900 BC.”

Steppe Eneolithic

We already had in 2016 a Samara hunter-gatherer sample dated ca. 5600 BC, representative of EHG ancestry, of haplogroup R1b1a. We also had three early Khvalynsk samples from Samara Eneolithic dated ca. 4600 BC, with a drift towards (what we believe now is) a population from the Caucasus, showing haplogroups Q1a, R1a1(xM198), and R1b1a, the last one described in its paper as from a high-status burial, similar to high-status individuals buried under kurgans in later Yamna graves (of R1b-L23 lineages), and therefore likely a founder of an elite group of patrilineally-related families, while the R1a1 sample showed scarce decoration, and does not belong to the M417 lineage expanded later in Sredni Stog or Corded Ware.

In 2017 we knew of the Ukraine_Eneolithic sample I6561, from Alexandria, of a precise subclade (L657) of haplogroup R1a-Z93, dated ca. 4000 BC, and likely from the Sredni Stog (or maybe Kvitjana) culture. This sample alone makes it quite likely that the expansion of R1a-Z645 subclades happened earlier than expected, and that it was associated with movements along forest-steppe cultures, most likely along the Upper Dniester or Dnieper-Dniester corridor up to the Forest Zone.

We have now confirmation that Khvalynsk samples from the Yekaterinovka Cape settlement ca. 4250-4000 BC were reported by a genetic lab (to the archaeological team responsible) as being of R1b-L23 subclades, although the precise clades (reported as P312 and U106) are possibly not accurate.

NOTE. Curiously enough, and quite revealing for the close relationship of scepters to the ritual source of power for Khvalynsk chieftains (political and/or religious leaders), the scepter found in the elite burial 45 of the Ekaterinovka cape (a riverine settlement) shows a unique zoomorphic carving, possibly resembling a toothed fish or reptile, rather than the most common horse-related motifs of the time.

ekaterinovka-cape-scepter
Zoomorphic carved stone scepter of the Ekaterinovka Cape burial 45: photos (left) and schematic depiction (right).

With Wang et al. (2018), a real game-changer in the Khvalynsk – Sredni Stog (and also in the Yamna/Bell Beaker – Corded Ware) opposition, we also know that two Steppe Eneolithic samples from the Northern Caucasus Piedmont, dated ca. 4300-4100 BC, show haplogroup R1b1. Although its direct connection to the expansion of early Khvalynsk with horse-related symbolism is not clear from the archaeological information shared (none), this is what the paper has to say about them:

The two distinct clusters are already visible in the oldest individuals of our temporal transect, dated to the Eneolithic period (~6300-6100 yBP/4300-4100 calBCE). Three individuals from the sites of Progress 2 and Vonjuchka 1 in the North Caucasus piedmont steppe (‘Eneolithic steppe’), which harbor Eastern and Caucasian hunter-gatherer related ancestry (EHG and CHG, respectively), are genetically very similar to Eneolithic individuals from Khalynsk II and the Samara region19, 27. This extends the cline of dilution of EHG ancestry via CHG/Iranian-like ancestry to sites immediately north of the Caucasus foothills.

In contrast, the oldest individuals from the northern mountain flank itself, which are three first degree-related individuals from the Unakozovskaya cave associated with the Darkveti-Meshoko Eneolithic culture (analysis label ‘Eneolithic Caucasus’) show mixed ancestry mostly derived from sources related to the Anatolian Neolithic (orange) and CHG/Iran Neolithic (green) in the ADMIXTURE plot (Fig. 2C). While similar ancestry profiles have been reported for Anatolian and Armenian Chalcolithic and Bronze Age individuals20, 23, this result suggests the presence of the mixed Anatolian/Iranian/CHG related ancestry north of the Great Caucasus Range as early as ~6500 years ago.

On the specific burials, we have e.g. the recent open access paper New cases of trepanations from the 5th to 3rd millennia BC in Southern Russia in the context of previous research: Possible evidence for a ritually motivated tradition of cranial surgery?, by Gresky et al. J Am Phys Anthropol (2016):

During the late 5th millennium BC, cultural groups of the Eneolithic occupied the northern circumpontic area and the areas between the North Caucasus and the Lower Volga. For the first time, individual inhumations were placed below low burial mounds (Rassamakin, 2011). During the 4th millennium BC, the area split into two cultural spheres. In the northern steppe area communities continued with the burial practice of crouched inhumations below low mounds, with this culturally transforming into the early Pit Grave culture. In contrast, in the Caucasian foothill zone and the neighbouring steppe, the Majkop-Novosvobodnaya culture emerged (Kohl and Trifonov, 2014). Similarly, during the 3rd millennium BC, two cultural spheres influenced the area: The North Caucasian Culture dominated the Caucasian foothills for the next five centuries, while in the steppe area between the Lower Don and the Caucasus, regional groups of the Catacomb Culture existed side-by-side.

Burials of the Eneolithic epoch (late 5th millennium BC)

The oldest group of individuals with trepanations are found in the North Caucasian variant of the late circumpontic Eneolithic and date to the last third of the 5th millennium BC (Korenevsky, 2012). Burials of this epoch are inhumations in shallow pits, chiefly without burial goods, but covered with large quantities of red ochre. Of special interest is a collective burial of seven individuals from VP 1/12, who were interred together in a secondary burial ritual. The sites of Tuzluki, Mukhin, Voinuchka, Progress, and Sengileevskii all belong to this period.

PCA-caucasus-khvalynsk-sredni-stog
Image modified from Wang et al. (2018). Samples projected in PCA of 84 modern-day West Eurasian populations (open symbols). Previously known clusters have been marked and referenced. An EHG and a Caucasus ‘clouds’ have been drawn, leaving Pontic-Caspian steppe and derived groups between them.See the original file here.

Without the datasets to test different models, you can only imagine what is happening with the processed, secondary data we have. The position of Eneolithic Steppe cluster in the PCA (probably Khvalynsk-related peoples already influenced by the absorbed, previous Caucasus population), as well as other potential Caucasus groups intermediate between Steppe Maykop and Caucasus Maykop (as suggested by other ancient and modern Caucasus samples), may indicate that Yamna is between Khvalynsk and such intermediate Caucasus populations (as the source of the additional CHG-related ancestry) and – as the paper itself states – that it also received additional EEF contribution, probably from the western cultures absorbed during these Khvalynsk-Novodanilovka migrations (or later during Khvalynsk/Repin migrations).

Also interpreted in light of these early Khvalynsk-Novodanilovka migrations of horse riding chieftains (and their close contacts with the Caucasus), you can clearly see where the similar CHG-like contribution to Ukraine Eneolithic and other North Pontic forest-steppe cultures (which later contributed to Proto-Corded Ware peoples) must have come from. The simplistically reported proportions of EHG:CHG:EEF ancestry might be similar in many of these groups, but the precise origin and evolution of such ancestral components is certainly not the same: statistical methods will eventually show this, when (and if) we have many more samples, but for the moment Y-DNA is the most obvious indicator of such differences.

There was no steppe people speaking a steppe language AKA immutable Proto-Indo-European: the glottochronological models spanning thousands of years are not valid for the steppe, just as they are not valid for an Anatolian homeland, nor for a Caucasus homeland. The actual cultural-historical early Sredni Stog – Khvalynsk community, formed earlier than ca. 5000 BC, is a thousand years older than the expansion of Khvalynsk with the horse, and some two thousand years older than the expansion of Khvalynsk-Repin/Early Yamna migrants (see here for the latest genetic research).

What lies between the formation of that early Eneolithic cultural-historical community, and what we see in archaeology and genetics in Middle and Late Eneolithic steppe cultures, is the radical differentiation of western (Ukraine Eneolithic, mainly forest-steppe) and eastern (Samara and Khvalynsk/Repin, mainly steppe) cultures and peoples, i.e. precisely the period of differentiation of an eastern, Proto-Indo-Hittite-speaking early Khvalynsk community (that expanded with the horse and horse-related symbols) from a western, probably Early Proto-Uralic speaking community of the North Pontic forest-steppe cultural area.

NOTE. I am not against a Neolithic ‘steppe’ language. But this steppe language was spoken before and/or during the first Neolithisation wave, and should be associated with Indo-Uralic. If there was no Indo-Uralic language, then some communities would have developed Early Proto-Indo-European and Early Proto-Uralic side by side, in close contact to allow for dozens of loanwords or wanderwords to be dated to this period (where, simplistically, PIH *H corresponds to EPU *k, with some exceptions).

steppe-forest-change
Map of a) steppe – forest-steppe border during the Eneolithic in the Pontic-Caspian region and b) the border today, showing a more limited steppe zone in the North Pontic area (reason for the specific ways of expansion of horse-related cultures and horse-related nomadic pastoralism during the Eneolithic).

The convergence that we see in PCA and Admixture of Yamna and the earliest Baltic LN / Corded Ware ‘outlier’ samples (if not directly related exogamy of some Baltic LN/CWC groups with Yamna migrants, e.g. those along the Prut), must be traced back to the period of genetic drift that began precisely with these Khvalynsk-Novodanilovka expansions, also closely associated with populations of the Caucasus, thus bringing North Pontic forest-steppe cultures (probably behind Proto-Corded Ware peoples) nearer to Khvalynsk, and both by extension to Yamna.

We have seen this problem arise in Bell Beaker samples expanding all over Europe, turning from a fully Yamnaya-like population to something else entirely in different regions, from more EEF-like to more CWC-like, sharing one common trait: Y-DNA. We are seeing the same happen with Balkan groups and Mycenaeans, with Old Hittites, and with steppe MLBA from Andronovo peoples expanding over Central and South Asia, and we know that patrilineal clans and thus Y-chromosome bottlenecks were common after Neolithisation, especially with nomadic pastoralist steppe clans (and probably also with many previous population expansions).

Steppe Eneolithic peoples were thus no different to other previous and posterior expanding groups, and ancestry is going to be similar for people living in neighbouring regions, so Y-DNA will remain the essential tool to distinguish different peoples (see here a summary of Proto-Indo-Europeans expanding R1b-L23).

We are nevertheless still seeing “R1b zombies” (a quite appropriate name I read on Anthrogenica) still arguing for a Western European origin of R1b-L23 based on EEF-like ancestry and few steppe-related contribution found in Iberian Bell Beakers (read what David Reich has to say on this question); and “OIT zombies” still arguing for IVC representing Proto-Indo-European, based on Iran_N ancestry and the minimal steppe ancestry-related impact on certain ancient Asian cultures, now partly helped by “Caucasus homeland zombies” with the new PIE=CHG model; apart from many other pet theory zombies rising occasionally from their graves here and there. Let’s hope that this virus of the undead theories does not spread too strongly to the R1a-Indo-European association, when the official data on Khvalynsk, West Yamna, and Yamna Hungary come out and show that they were dominated by R1b-L23 lineages.

Because we need to explore in detail the continuation of Khvalynsk-related (potential Proto-Anatolian) cultures in the Lower Danube and the Balkans, e.g. from Cernavoda I to Cernavoda III, then maybe to Ezero, and then to Troy; as well as the specific areas of Late Indo-European expansions associated with Early Yamna settlers turning into Bell Beakers, Balkan EBA, and Steppe MLBA-associated cultures. There is a lot of work to do on proper definition of Bronze Age cultures and their potential dialects, as well as convergence and divergence trends, and not only of Indo-European, but also of Uralic-speaking communities derived from Corded Ware cultures.

If we let the narratives of the 2000s in Genetics (in combination with the 1960s in Archaeology) dominate the conversation, then a lot of time will be absurdly lost until reality imposes itself. And it will.

EDIT (2 JUL 2018): Some sentences corrected, and some information added to the original post.

Related